• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "cgroup-internal.h"
2 
3 #include <linux/ctype.h>
4 #include <linux/kmod.h>
5 #include <linux/sort.h>
6 #include <linux/delay.h>
7 #include <linux/mm.h>
8 #include <linux/sched/signal.h>
9 #include <linux/sched/task.h>
10 #include <linux/magic.h>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/delayacct.h>
14 #include <linux/pid_namespace.h>
15 #include <linux/cgroupstats.h>
16 
17 #include <trace/events/cgroup.h>
18 
19 /*
20  * pidlists linger the following amount before being destroyed.  The goal
21  * is avoiding frequent destruction in the middle of consecutive read calls
22  * Expiring in the middle is a performance problem not a correctness one.
23  * 1 sec should be enough.
24  */
25 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
26 
27 /* Controllers blocked by the commandline in v1 */
28 static u16 cgroup_no_v1_mask;
29 
30 /*
31  * pidlist destructions need to be flushed on cgroup destruction.  Use a
32  * separate workqueue as flush domain.
33  */
34 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
35 
36 /*
37  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
38  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
39  */
40 static DEFINE_SPINLOCK(release_agent_path_lock);
41 
cgroup1_ssid_disabled(int ssid)42 bool cgroup1_ssid_disabled(int ssid)
43 {
44 	return cgroup_no_v1_mask & (1 << ssid);
45 }
46 
47 /**
48  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
49  * @from: attach to all cgroups of a given task
50  * @tsk: the task to be attached
51  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)52 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
53 {
54 	struct cgroup_root *root;
55 	int retval = 0;
56 
57 	mutex_lock(&cgroup_mutex);
58 	percpu_down_write(&cgroup_threadgroup_rwsem);
59 	for_each_root(root) {
60 		struct cgroup *from_cgrp;
61 
62 		if (root == &cgrp_dfl_root)
63 			continue;
64 
65 		spin_lock_irq(&css_set_lock);
66 		from_cgrp = task_cgroup_from_root(from, root);
67 		spin_unlock_irq(&css_set_lock);
68 
69 		retval = cgroup_attach_task(from_cgrp, tsk, false);
70 		if (retval)
71 			break;
72 	}
73 	percpu_up_write(&cgroup_threadgroup_rwsem);
74 	mutex_unlock(&cgroup_mutex);
75 
76 	return retval;
77 }
78 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
79 
80 /**
81  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
82  * @to: cgroup to which the tasks will be moved
83  * @from: cgroup in which the tasks currently reside
84  *
85  * Locking rules between cgroup_post_fork() and the migration path
86  * guarantee that, if a task is forking while being migrated, the new child
87  * is guaranteed to be either visible in the source cgroup after the
88  * parent's migration is complete or put into the target cgroup.  No task
89  * can slip out of migration through forking.
90  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)91 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
92 {
93 	DEFINE_CGROUP_MGCTX(mgctx);
94 	struct cgrp_cset_link *link;
95 	struct css_task_iter it;
96 	struct task_struct *task;
97 	int ret;
98 
99 	if (cgroup_on_dfl(to))
100 		return -EINVAL;
101 
102 	ret = cgroup_migrate_vet_dst(to);
103 	if (ret)
104 		return ret;
105 
106 	mutex_lock(&cgroup_mutex);
107 
108 	percpu_down_write(&cgroup_threadgroup_rwsem);
109 
110 	/* all tasks in @from are being moved, all csets are source */
111 	spin_lock_irq(&css_set_lock);
112 	list_for_each_entry(link, &from->cset_links, cset_link)
113 		cgroup_migrate_add_src(link->cset, to, &mgctx);
114 	spin_unlock_irq(&css_set_lock);
115 
116 	ret = cgroup_migrate_prepare_dst(&mgctx);
117 	if (ret)
118 		goto out_err;
119 
120 	/*
121 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
122 	 * ->can_attach() fails.
123 	 */
124 	do {
125 		css_task_iter_start(&from->self, 0, &it);
126 
127 		do {
128 			task = css_task_iter_next(&it);
129 		} while (task && (task->flags & PF_EXITING));
130 
131 		if (task)
132 			get_task_struct(task);
133 		css_task_iter_end(&it);
134 
135 		if (task) {
136 			ret = cgroup_migrate(task, false, &mgctx);
137 			if (!ret)
138 				trace_cgroup_transfer_tasks(to, task, false);
139 			put_task_struct(task);
140 		}
141 	} while (task && !ret);
142 out_err:
143 	cgroup_migrate_finish(&mgctx);
144 	percpu_up_write(&cgroup_threadgroup_rwsem);
145 	mutex_unlock(&cgroup_mutex);
146 	return ret;
147 }
148 
149 /*
150  * Stuff for reading the 'tasks'/'procs' files.
151  *
152  * Reading this file can return large amounts of data if a cgroup has
153  * *lots* of attached tasks. So it may need several calls to read(),
154  * but we cannot guarantee that the information we produce is correct
155  * unless we produce it entirely atomically.
156  *
157  */
158 
159 /* which pidlist file are we talking about? */
160 enum cgroup_filetype {
161 	CGROUP_FILE_PROCS,
162 	CGROUP_FILE_TASKS,
163 };
164 
165 /*
166  * A pidlist is a list of pids that virtually represents the contents of one
167  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
168  * a pair (one each for procs, tasks) for each pid namespace that's relevant
169  * to the cgroup.
170  */
171 struct cgroup_pidlist {
172 	/*
173 	 * used to find which pidlist is wanted. doesn't change as long as
174 	 * this particular list stays in the list.
175 	*/
176 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
177 	/* array of xids */
178 	pid_t *list;
179 	/* how many elements the above list has */
180 	int length;
181 	/* each of these stored in a list by its cgroup */
182 	struct list_head links;
183 	/* pointer to the cgroup we belong to, for list removal purposes */
184 	struct cgroup *owner;
185 	/* for delayed destruction */
186 	struct delayed_work destroy_dwork;
187 };
188 
189 /*
190  * The following two functions "fix" the issue where there are more pids
191  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
192  * TODO: replace with a kernel-wide solution to this problem
193  */
194 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)195 static void *pidlist_allocate(int count)
196 {
197 	if (PIDLIST_TOO_LARGE(count))
198 		return vmalloc(count * sizeof(pid_t));
199 	else
200 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
201 }
202 
pidlist_free(void * p)203 static void pidlist_free(void *p)
204 {
205 	kvfree(p);
206 }
207 
208 /*
209  * Used to destroy all pidlists lingering waiting for destroy timer.  None
210  * should be left afterwards.
211  */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)212 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
213 {
214 	struct cgroup_pidlist *l, *tmp_l;
215 
216 	mutex_lock(&cgrp->pidlist_mutex);
217 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
218 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
219 	mutex_unlock(&cgrp->pidlist_mutex);
220 
221 	flush_workqueue(cgroup_pidlist_destroy_wq);
222 	BUG_ON(!list_empty(&cgrp->pidlists));
223 }
224 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)225 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
226 {
227 	struct delayed_work *dwork = to_delayed_work(work);
228 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
229 						destroy_dwork);
230 	struct cgroup_pidlist *tofree = NULL;
231 
232 	mutex_lock(&l->owner->pidlist_mutex);
233 
234 	/*
235 	 * Destroy iff we didn't get queued again.  The state won't change
236 	 * as destroy_dwork can only be queued while locked.
237 	 */
238 	if (!delayed_work_pending(dwork)) {
239 		list_del(&l->links);
240 		pidlist_free(l->list);
241 		put_pid_ns(l->key.ns);
242 		tofree = l;
243 	}
244 
245 	mutex_unlock(&l->owner->pidlist_mutex);
246 	kfree(tofree);
247 }
248 
249 /*
250  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
251  * Returns the number of unique elements.
252  */
pidlist_uniq(pid_t * list,int length)253 static int pidlist_uniq(pid_t *list, int length)
254 {
255 	int src, dest = 1;
256 
257 	/*
258 	 * we presume the 0th element is unique, so i starts at 1. trivial
259 	 * edge cases first; no work needs to be done for either
260 	 */
261 	if (length == 0 || length == 1)
262 		return length;
263 	/* src and dest walk down the list; dest counts unique elements */
264 	for (src = 1; src < length; src++) {
265 		/* find next unique element */
266 		while (list[src] == list[src-1]) {
267 			src++;
268 			if (src == length)
269 				goto after;
270 		}
271 		/* dest always points to where the next unique element goes */
272 		list[dest] = list[src];
273 		dest++;
274 	}
275 after:
276 	return dest;
277 }
278 
279 /*
280  * The two pid files - task and cgroup.procs - guaranteed that the result
281  * is sorted, which forced this whole pidlist fiasco.  As pid order is
282  * different per namespace, each namespace needs differently sorted list,
283  * making it impossible to use, for example, single rbtree of member tasks
284  * sorted by task pointer.  As pidlists can be fairly large, allocating one
285  * per open file is dangerous, so cgroup had to implement shared pool of
286  * pidlists keyed by cgroup and namespace.
287  */
cmppid(const void * a,const void * b)288 static int cmppid(const void *a, const void *b)
289 {
290 	return *(pid_t *)a - *(pid_t *)b;
291 }
292 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)293 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
294 						  enum cgroup_filetype type)
295 {
296 	struct cgroup_pidlist *l;
297 	/* don't need task_nsproxy() if we're looking at ourself */
298 	struct pid_namespace *ns = task_active_pid_ns(current);
299 
300 	lockdep_assert_held(&cgrp->pidlist_mutex);
301 
302 	list_for_each_entry(l, &cgrp->pidlists, links)
303 		if (l->key.type == type && l->key.ns == ns)
304 			return l;
305 	return NULL;
306 }
307 
308 /*
309  * find the appropriate pidlist for our purpose (given procs vs tasks)
310  * returns with the lock on that pidlist already held, and takes care
311  * of the use count, or returns NULL with no locks held if we're out of
312  * memory.
313  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)314 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
315 						enum cgroup_filetype type)
316 {
317 	struct cgroup_pidlist *l;
318 
319 	lockdep_assert_held(&cgrp->pidlist_mutex);
320 
321 	l = cgroup_pidlist_find(cgrp, type);
322 	if (l)
323 		return l;
324 
325 	/* entry not found; create a new one */
326 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
327 	if (!l)
328 		return l;
329 
330 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
331 	l->key.type = type;
332 	/* don't need task_nsproxy() if we're looking at ourself */
333 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
334 	l->owner = cgrp;
335 	list_add(&l->links, &cgrp->pidlists);
336 	return l;
337 }
338 
339 /**
340  * cgroup_task_count - count the number of tasks in a cgroup.
341  * @cgrp: the cgroup in question
342  */
cgroup_task_count(const struct cgroup * cgrp)343 int cgroup_task_count(const struct cgroup *cgrp)
344 {
345 	int count = 0;
346 	struct cgrp_cset_link *link;
347 
348 	spin_lock_irq(&css_set_lock);
349 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
350 		count += link->cset->nr_tasks;
351 	spin_unlock_irq(&css_set_lock);
352 	return count;
353 }
354 
355 /*
356  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
357  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)358 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
359 			      struct cgroup_pidlist **lp)
360 {
361 	pid_t *array;
362 	int length;
363 	int pid, n = 0; /* used for populating the array */
364 	struct css_task_iter it;
365 	struct task_struct *tsk;
366 	struct cgroup_pidlist *l;
367 
368 	lockdep_assert_held(&cgrp->pidlist_mutex);
369 
370 	/*
371 	 * If cgroup gets more users after we read count, we won't have
372 	 * enough space - tough.  This race is indistinguishable to the
373 	 * caller from the case that the additional cgroup users didn't
374 	 * show up until sometime later on.
375 	 */
376 	length = cgroup_task_count(cgrp);
377 	array = pidlist_allocate(length);
378 	if (!array)
379 		return -ENOMEM;
380 	/* now, populate the array */
381 	css_task_iter_start(&cgrp->self, 0, &it);
382 	while ((tsk = css_task_iter_next(&it))) {
383 		if (unlikely(n == length))
384 			break;
385 		/* get tgid or pid for procs or tasks file respectively */
386 		if (type == CGROUP_FILE_PROCS)
387 			pid = task_tgid_vnr(tsk);
388 		else
389 			pid = task_pid_vnr(tsk);
390 		if (pid > 0) /* make sure to only use valid results */
391 			array[n++] = pid;
392 	}
393 	css_task_iter_end(&it);
394 	length = n;
395 	/* now sort & (if procs) strip out duplicates */
396 	sort(array, length, sizeof(pid_t), cmppid, NULL);
397 	if (type == CGROUP_FILE_PROCS)
398 		length = pidlist_uniq(array, length);
399 
400 	l = cgroup_pidlist_find_create(cgrp, type);
401 	if (!l) {
402 		pidlist_free(array);
403 		return -ENOMEM;
404 	}
405 
406 	/* store array, freeing old if necessary */
407 	pidlist_free(l->list);
408 	l->list = array;
409 	l->length = length;
410 	*lp = l;
411 	return 0;
412 }
413 
414 /*
415  * seq_file methods for the tasks/procs files. The seq_file position is the
416  * next pid to display; the seq_file iterator is a pointer to the pid
417  * in the cgroup->l->list array.
418  */
419 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)420 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
421 {
422 	/*
423 	 * Initially we receive a position value that corresponds to
424 	 * one more than the last pid shown (or 0 on the first call or
425 	 * after a seek to the start). Use a binary-search to find the
426 	 * next pid to display, if any
427 	 */
428 	struct kernfs_open_file *of = s->private;
429 	struct cgroup *cgrp = seq_css(s)->cgroup;
430 	struct cgroup_pidlist *l;
431 	enum cgroup_filetype type = seq_cft(s)->private;
432 	int index = 0, pid = *pos;
433 	int *iter, ret;
434 
435 	mutex_lock(&cgrp->pidlist_mutex);
436 
437 	/*
438 	 * !NULL @of->priv indicates that this isn't the first start()
439 	 * after open.  If the matching pidlist is around, we can use that.
440 	 * Look for it.  Note that @of->priv can't be used directly.  It
441 	 * could already have been destroyed.
442 	 */
443 	if (of->priv)
444 		of->priv = cgroup_pidlist_find(cgrp, type);
445 
446 	/*
447 	 * Either this is the first start() after open or the matching
448 	 * pidlist has been destroyed inbetween.  Create a new one.
449 	 */
450 	if (!of->priv) {
451 		ret = pidlist_array_load(cgrp, type,
452 					 (struct cgroup_pidlist **)&of->priv);
453 		if (ret)
454 			return ERR_PTR(ret);
455 	}
456 	l = of->priv;
457 
458 	if (pid) {
459 		int end = l->length;
460 
461 		while (index < end) {
462 			int mid = (index + end) / 2;
463 			if (l->list[mid] == pid) {
464 				index = mid;
465 				break;
466 			} else if (l->list[mid] <= pid)
467 				index = mid + 1;
468 			else
469 				end = mid;
470 		}
471 	}
472 	/* If we're off the end of the array, we're done */
473 	if (index >= l->length)
474 		return NULL;
475 	/* Update the abstract position to be the actual pid that we found */
476 	iter = l->list + index;
477 	*pos = *iter;
478 	return iter;
479 }
480 
cgroup_pidlist_stop(struct seq_file * s,void * v)481 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
482 {
483 	struct kernfs_open_file *of = s->private;
484 	struct cgroup_pidlist *l = of->priv;
485 
486 	if (l)
487 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
488 				 CGROUP_PIDLIST_DESTROY_DELAY);
489 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
490 }
491 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)492 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
493 {
494 	struct kernfs_open_file *of = s->private;
495 	struct cgroup_pidlist *l = of->priv;
496 	pid_t *p = v;
497 	pid_t *end = l->list + l->length;
498 	/*
499 	 * Advance to the next pid in the array. If this goes off the
500 	 * end, we're done
501 	 */
502 	p++;
503 	if (p >= end) {
504 		(*pos)++;
505 		return NULL;
506 	} else {
507 		*pos = *p;
508 		return p;
509 	}
510 }
511 
cgroup_pidlist_show(struct seq_file * s,void * v)512 static int cgroup_pidlist_show(struct seq_file *s, void *v)
513 {
514 	seq_printf(s, "%d\n", *(int *)v);
515 
516 	return 0;
517 }
518 
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)519 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
520 				     char *buf, size_t nbytes, loff_t off,
521 				     bool threadgroup)
522 {
523 	struct cgroup *cgrp;
524 	struct task_struct *task;
525 	const struct cred *cred, *tcred;
526 	ssize_t ret;
527 
528 	cgrp = cgroup_kn_lock_live(of->kn, false);
529 	if (!cgrp)
530 		return -ENODEV;
531 
532 	task = cgroup_procs_write_start(buf, threadgroup);
533 	ret = PTR_ERR_OR_ZERO(task);
534 	if (ret)
535 		goto out_unlock;
536 
537 	/*
538 	 * Even if we're attaching all tasks in the thread group, we only
539 	 * need to check permissions on one of them.
540 	 */
541 	cred = current_cred();
542 	tcred = get_task_cred(task);
543 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
544 	    !uid_eq(cred->euid, tcred->uid) &&
545 	    !uid_eq(cred->euid, tcred->suid) &&
546 	    !ns_capable(tcred->user_ns, CAP_SYS_NICE))
547 		ret = -EACCES;
548 	put_cred(tcred);
549 	if (ret)
550 		goto out_finish;
551 
552 	ret = cgroup_attach_task(cgrp, task, threadgroup);
553 
554 out_finish:
555 	cgroup_procs_write_finish(task);
556 out_unlock:
557 	cgroup_kn_unlock(of->kn);
558 
559 	return ret ?: nbytes;
560 }
561 
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)562 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
563 				   char *buf, size_t nbytes, loff_t off)
564 {
565 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
566 }
567 
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)568 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
569 				   char *buf, size_t nbytes, loff_t off)
570 {
571 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
572 }
573 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)574 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
575 					  char *buf, size_t nbytes, loff_t off)
576 {
577 	struct cgroup *cgrp;
578 
579 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
580 
581 	cgrp = cgroup_kn_lock_live(of->kn, false);
582 	if (!cgrp)
583 		return -ENODEV;
584 	spin_lock(&release_agent_path_lock);
585 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
586 		sizeof(cgrp->root->release_agent_path));
587 	spin_unlock(&release_agent_path_lock);
588 	cgroup_kn_unlock(of->kn);
589 	return nbytes;
590 }
591 
cgroup_release_agent_show(struct seq_file * seq,void * v)592 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
593 {
594 	struct cgroup *cgrp = seq_css(seq)->cgroup;
595 
596 	spin_lock(&release_agent_path_lock);
597 	seq_puts(seq, cgrp->root->release_agent_path);
598 	spin_unlock(&release_agent_path_lock);
599 	seq_putc(seq, '\n');
600 	return 0;
601 }
602 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)603 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
604 {
605 	seq_puts(seq, "0\n");
606 	return 0;
607 }
608 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)609 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
610 					 struct cftype *cft)
611 {
612 	return notify_on_release(css->cgroup);
613 }
614 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)615 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
616 					  struct cftype *cft, u64 val)
617 {
618 	if (val)
619 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
620 	else
621 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
622 	return 0;
623 }
624 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)625 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
626 				      struct cftype *cft)
627 {
628 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
629 }
630 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)631 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
632 				       struct cftype *cft, u64 val)
633 {
634 	if (val)
635 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
636 	else
637 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
638 	return 0;
639 }
640 
641 /* cgroup core interface files for the legacy hierarchies */
642 struct cftype cgroup1_base_files[] = {
643 	{
644 		.name = "cgroup.procs",
645 		.seq_start = cgroup_pidlist_start,
646 		.seq_next = cgroup_pidlist_next,
647 		.seq_stop = cgroup_pidlist_stop,
648 		.seq_show = cgroup_pidlist_show,
649 		.private = CGROUP_FILE_PROCS,
650 		.write = cgroup1_procs_write,
651 	},
652 	{
653 		.name = "cgroup.clone_children",
654 		.read_u64 = cgroup_clone_children_read,
655 		.write_u64 = cgroup_clone_children_write,
656 	},
657 	{
658 		.name = "cgroup.sane_behavior",
659 		.flags = CFTYPE_ONLY_ON_ROOT,
660 		.seq_show = cgroup_sane_behavior_show,
661 	},
662 	{
663 		.name = "tasks",
664 		.seq_start = cgroup_pidlist_start,
665 		.seq_next = cgroup_pidlist_next,
666 		.seq_stop = cgroup_pidlist_stop,
667 		.seq_show = cgroup_pidlist_show,
668 		.private = CGROUP_FILE_TASKS,
669 		.write = cgroup1_tasks_write,
670 	},
671 	{
672 		.name = "notify_on_release",
673 		.read_u64 = cgroup_read_notify_on_release,
674 		.write_u64 = cgroup_write_notify_on_release,
675 	},
676 	{
677 		.name = "release_agent",
678 		.flags = CFTYPE_ONLY_ON_ROOT,
679 		.seq_show = cgroup_release_agent_show,
680 		.write = cgroup_release_agent_write,
681 		.max_write_len = PATH_MAX - 1,
682 	},
683 	{ }	/* terminate */
684 };
685 
686 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)687 static int proc_cgroupstats_show(struct seq_file *m, void *v)
688 {
689 	struct cgroup_subsys *ss;
690 	int i;
691 
692 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
693 	/*
694 	 * ideally we don't want subsystems moving around while we do this.
695 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
696 	 * subsys/hierarchy state.
697 	 */
698 	mutex_lock(&cgroup_mutex);
699 
700 	for_each_subsys(ss, i)
701 		seq_printf(m, "%s\t%d\t%d\t%d\n",
702 			   ss->legacy_name, ss->root->hierarchy_id,
703 			   atomic_read(&ss->root->nr_cgrps),
704 			   cgroup_ssid_enabled(i));
705 
706 	mutex_unlock(&cgroup_mutex);
707 	return 0;
708 }
709 
cgroupstats_open(struct inode * inode,struct file * file)710 static int cgroupstats_open(struct inode *inode, struct file *file)
711 {
712 	return single_open(file, proc_cgroupstats_show, NULL);
713 }
714 
715 const struct file_operations proc_cgroupstats_operations = {
716 	.open = cgroupstats_open,
717 	.read = seq_read,
718 	.llseek = seq_lseek,
719 	.release = single_release,
720 };
721 
722 /**
723  * cgroupstats_build - build and fill cgroupstats
724  * @stats: cgroupstats to fill information into
725  * @dentry: A dentry entry belonging to the cgroup for which stats have
726  * been requested.
727  *
728  * Build and fill cgroupstats so that taskstats can export it to user
729  * space.
730  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)731 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
732 {
733 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
734 	struct cgroup *cgrp;
735 	struct css_task_iter it;
736 	struct task_struct *tsk;
737 
738 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
739 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
740 	    kernfs_type(kn) != KERNFS_DIR)
741 		return -EINVAL;
742 
743 	mutex_lock(&cgroup_mutex);
744 
745 	/*
746 	 * We aren't being called from kernfs and there's no guarantee on
747 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
748 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
749 	 */
750 	rcu_read_lock();
751 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
752 	if (!cgrp || cgroup_is_dead(cgrp)) {
753 		rcu_read_unlock();
754 		mutex_unlock(&cgroup_mutex);
755 		return -ENOENT;
756 	}
757 	rcu_read_unlock();
758 
759 	css_task_iter_start(&cgrp->self, 0, &it);
760 	while ((tsk = css_task_iter_next(&it))) {
761 		switch (tsk->state) {
762 		case TASK_RUNNING:
763 			stats->nr_running++;
764 			break;
765 		case TASK_INTERRUPTIBLE:
766 			stats->nr_sleeping++;
767 			break;
768 		case TASK_UNINTERRUPTIBLE:
769 			stats->nr_uninterruptible++;
770 			break;
771 		case TASK_STOPPED:
772 			stats->nr_stopped++;
773 			break;
774 		default:
775 			if (delayacct_is_task_waiting_on_io(tsk))
776 				stats->nr_io_wait++;
777 			break;
778 		}
779 	}
780 	css_task_iter_end(&it);
781 
782 	mutex_unlock(&cgroup_mutex);
783 	return 0;
784 }
785 
cgroup1_check_for_release(struct cgroup * cgrp)786 void cgroup1_check_for_release(struct cgroup *cgrp)
787 {
788 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
789 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
790 		schedule_work(&cgrp->release_agent_work);
791 }
792 
793 /*
794  * Notify userspace when a cgroup is released, by running the
795  * configured release agent with the name of the cgroup (path
796  * relative to the root of cgroup file system) as the argument.
797  *
798  * Most likely, this user command will try to rmdir this cgroup.
799  *
800  * This races with the possibility that some other task will be
801  * attached to this cgroup before it is removed, or that some other
802  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
803  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
804  * unused, and this cgroup will be reprieved from its death sentence,
805  * to continue to serve a useful existence.  Next time it's released,
806  * we will get notified again, if it still has 'notify_on_release' set.
807  *
808  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
809  * means only wait until the task is successfully execve()'d.  The
810  * separate release agent task is forked by call_usermodehelper(),
811  * then control in this thread returns here, without waiting for the
812  * release agent task.  We don't bother to wait because the caller of
813  * this routine has no use for the exit status of the release agent
814  * task, so no sense holding our caller up for that.
815  */
cgroup1_release_agent(struct work_struct * work)816 void cgroup1_release_agent(struct work_struct *work)
817 {
818 	struct cgroup *cgrp =
819 		container_of(work, struct cgroup, release_agent_work);
820 	char *pathbuf = NULL, *agentbuf = NULL;
821 	char *argv[3], *envp[3];
822 	int ret;
823 
824 	mutex_lock(&cgroup_mutex);
825 
826 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
827 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
828 	if (!pathbuf || !agentbuf || !strlen(agentbuf))
829 		goto out;
830 
831 	spin_lock_irq(&css_set_lock);
832 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
833 	spin_unlock_irq(&css_set_lock);
834 	if (ret < 0 || ret >= PATH_MAX)
835 		goto out;
836 
837 	argv[0] = agentbuf;
838 	argv[1] = pathbuf;
839 	argv[2] = NULL;
840 
841 	/* minimal command environment */
842 	envp[0] = "HOME=/";
843 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
844 	envp[2] = NULL;
845 
846 	mutex_unlock(&cgroup_mutex);
847 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
848 	goto out_free;
849 out:
850 	mutex_unlock(&cgroup_mutex);
851 out_free:
852 	kfree(agentbuf);
853 	kfree(pathbuf);
854 }
855 
856 /*
857  * cgroup_rename - Only allow simple rename of directories in place.
858  */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)859 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
860 			  const char *new_name_str)
861 {
862 	struct cgroup *cgrp = kn->priv;
863 	int ret;
864 
865 	if (kernfs_type(kn) != KERNFS_DIR)
866 		return -ENOTDIR;
867 	if (kn->parent != new_parent)
868 		return -EIO;
869 
870 	/*
871 	 * We're gonna grab cgroup_mutex which nests outside kernfs
872 	 * active_ref.  kernfs_rename() doesn't require active_ref
873 	 * protection.  Break them before grabbing cgroup_mutex.
874 	 */
875 	kernfs_break_active_protection(new_parent);
876 	kernfs_break_active_protection(kn);
877 
878 	mutex_lock(&cgroup_mutex);
879 
880 	ret = kernfs_rename(kn, new_parent, new_name_str);
881 	if (!ret)
882 		trace_cgroup_rename(cgrp);
883 
884 	mutex_unlock(&cgroup_mutex);
885 
886 	kernfs_unbreak_active_protection(kn);
887 	kernfs_unbreak_active_protection(new_parent);
888 	return ret;
889 }
890 
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)891 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
892 {
893 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
894 	struct cgroup_subsys *ss;
895 	int ssid;
896 
897 	for_each_subsys(ss, ssid)
898 		if (root->subsys_mask & (1 << ssid))
899 			seq_show_option(seq, ss->legacy_name, NULL);
900 	if (root->flags & CGRP_ROOT_NOPREFIX)
901 		seq_puts(seq, ",noprefix");
902 	if (root->flags & CGRP_ROOT_XATTR)
903 		seq_puts(seq, ",xattr");
904 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
905 		seq_puts(seq, ",cpuset_v2_mode");
906 
907 	spin_lock(&release_agent_path_lock);
908 	if (strlen(root->release_agent_path))
909 		seq_show_option(seq, "release_agent",
910 				root->release_agent_path);
911 	spin_unlock(&release_agent_path_lock);
912 
913 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
914 		seq_puts(seq, ",clone_children");
915 	if (strlen(root->name))
916 		seq_show_option(seq, "name", root->name);
917 	return 0;
918 }
919 
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)920 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
921 {
922 	char *token, *o = data;
923 	bool all_ss = false, one_ss = false;
924 	u16 mask = U16_MAX;
925 	struct cgroup_subsys *ss;
926 	int nr_opts = 0;
927 	int i;
928 
929 #ifdef CONFIG_CPUSETS
930 	mask = ~((u16)1 << cpuset_cgrp_id);
931 #endif
932 
933 	memset(opts, 0, sizeof(*opts));
934 
935 	while ((token = strsep(&o, ",")) != NULL) {
936 		nr_opts++;
937 
938 		if (!*token)
939 			return -EINVAL;
940 		if (!strcmp(token, "none")) {
941 			/* Explicitly have no subsystems */
942 			opts->none = true;
943 			continue;
944 		}
945 		if (!strcmp(token, "all")) {
946 			/* Mutually exclusive option 'all' + subsystem name */
947 			if (one_ss)
948 				return -EINVAL;
949 			all_ss = true;
950 			continue;
951 		}
952 		if (!strcmp(token, "noprefix")) {
953 			opts->flags |= CGRP_ROOT_NOPREFIX;
954 			continue;
955 		}
956 		if (!strcmp(token, "clone_children")) {
957 			opts->cpuset_clone_children = true;
958 			continue;
959 		}
960 		if (!strcmp(token, "cpuset_v2_mode")) {
961 			opts->flags |= CGRP_ROOT_CPUSET_V2_MODE;
962 			continue;
963 		}
964 		if (!strcmp(token, "xattr")) {
965 			opts->flags |= CGRP_ROOT_XATTR;
966 			continue;
967 		}
968 		if (!strncmp(token, "release_agent=", 14)) {
969 			/* Specifying two release agents is forbidden */
970 			if (opts->release_agent)
971 				return -EINVAL;
972 			opts->release_agent =
973 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
974 			if (!opts->release_agent)
975 				return -ENOMEM;
976 			continue;
977 		}
978 		if (!strncmp(token, "name=", 5)) {
979 			const char *name = token + 5;
980 			/* Can't specify an empty name */
981 			if (!strlen(name))
982 				return -EINVAL;
983 			/* Must match [\w.-]+ */
984 			for (i = 0; i < strlen(name); i++) {
985 				char c = name[i];
986 				if (isalnum(c))
987 					continue;
988 				if ((c == '.') || (c == '-') || (c == '_'))
989 					continue;
990 				return -EINVAL;
991 			}
992 			/* Specifying two names is forbidden */
993 			if (opts->name)
994 				return -EINVAL;
995 			opts->name = kstrndup(name,
996 					      MAX_CGROUP_ROOT_NAMELEN - 1,
997 					      GFP_KERNEL);
998 			if (!opts->name)
999 				return -ENOMEM;
1000 
1001 			continue;
1002 		}
1003 
1004 		for_each_subsys(ss, i) {
1005 			if (strcmp(token, ss->legacy_name))
1006 				continue;
1007 			if (!cgroup_ssid_enabled(i))
1008 				continue;
1009 			if (cgroup1_ssid_disabled(i))
1010 				continue;
1011 
1012 			/* Mutually exclusive option 'all' + subsystem name */
1013 			if (all_ss)
1014 				return -EINVAL;
1015 			opts->subsys_mask |= (1 << i);
1016 			one_ss = true;
1017 
1018 			break;
1019 		}
1020 		if (i == CGROUP_SUBSYS_COUNT)
1021 			return -ENOENT;
1022 	}
1023 
1024 	/*
1025 	 * If the 'all' option was specified select all the subsystems,
1026 	 * otherwise if 'none', 'name=' and a subsystem name options were
1027 	 * not specified, let's default to 'all'
1028 	 */
1029 	if (all_ss || (!one_ss && !opts->none && !opts->name))
1030 		for_each_subsys(ss, i)
1031 			if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1032 				opts->subsys_mask |= (1 << i);
1033 
1034 	/*
1035 	 * We either have to specify by name or by subsystems. (So all
1036 	 * empty hierarchies must have a name).
1037 	 */
1038 	if (!opts->subsys_mask && !opts->name)
1039 		return -EINVAL;
1040 
1041 	/*
1042 	 * Option noprefix was introduced just for backward compatibility
1043 	 * with the old cpuset, so we allow noprefix only if mounting just
1044 	 * the cpuset subsystem.
1045 	 */
1046 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1047 		return -EINVAL;
1048 
1049 	/* Can't specify "none" and some subsystems */
1050 	if (opts->subsys_mask && opts->none)
1051 		return -EINVAL;
1052 
1053 	return 0;
1054 }
1055 
cgroup1_remount(struct kernfs_root * kf_root,int * flags,char * data)1056 static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data)
1057 {
1058 	int ret = 0;
1059 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1060 	struct cgroup_sb_opts opts;
1061 	u16 added_mask, removed_mask;
1062 
1063 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1064 
1065 	/* See what subsystems are wanted */
1066 	ret = parse_cgroupfs_options(data, &opts);
1067 	if (ret)
1068 		goto out_unlock;
1069 
1070 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1071 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1072 			task_tgid_nr(current), current->comm);
1073 
1074 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1075 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1076 
1077 	/* Don't allow flags or name to change at remount */
1078 	if ((opts.flags ^ root->flags) ||
1079 	    (opts.name && strcmp(opts.name, root->name))) {
1080 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1081 		       opts.flags, opts.name ?: "", root->flags, root->name);
1082 		ret = -EINVAL;
1083 		goto out_unlock;
1084 	}
1085 
1086 	/* remounting is not allowed for populated hierarchies */
1087 	if (!list_empty(&root->cgrp.self.children)) {
1088 		ret = -EBUSY;
1089 		goto out_unlock;
1090 	}
1091 
1092 	ret = rebind_subsystems(root, added_mask);
1093 	if (ret)
1094 		goto out_unlock;
1095 
1096 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1097 
1098 	if (opts.release_agent) {
1099 		spin_lock(&release_agent_path_lock);
1100 		strcpy(root->release_agent_path, opts.release_agent);
1101 		spin_unlock(&release_agent_path_lock);
1102 	}
1103 
1104 	trace_cgroup_remount(root);
1105 
1106  out_unlock:
1107 	kfree(opts.release_agent);
1108 	kfree(opts.name);
1109 	mutex_unlock(&cgroup_mutex);
1110 	return ret;
1111 }
1112 
1113 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1114 	.rename			= cgroup1_rename,
1115 	.show_options		= cgroup1_show_options,
1116 	.remount_fs		= cgroup1_remount,
1117 	.mkdir			= cgroup_mkdir,
1118 	.rmdir			= cgroup_rmdir,
1119 	.show_path		= cgroup_show_path,
1120 };
1121 
cgroup1_mount(struct file_system_type * fs_type,int flags,void * data,unsigned long magic,struct cgroup_namespace * ns)1122 struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags,
1123 			     void *data, unsigned long magic,
1124 			     struct cgroup_namespace *ns)
1125 {
1126 	struct super_block *pinned_sb = NULL;
1127 	struct cgroup_sb_opts opts;
1128 	struct cgroup_root *root;
1129 	struct cgroup_subsys *ss;
1130 	struct dentry *dentry;
1131 	int i, ret;
1132 	bool new_root = false;
1133 
1134 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1135 
1136 	/* First find the desired set of subsystems */
1137 	ret = parse_cgroupfs_options(data, &opts);
1138 	if (ret)
1139 		goto out_unlock;
1140 
1141 	/*
1142 	 * Destruction of cgroup root is asynchronous, so subsystems may
1143 	 * still be dying after the previous unmount.  Let's drain the
1144 	 * dying subsystems.  We just need to ensure that the ones
1145 	 * unmounted previously finish dying and don't care about new ones
1146 	 * starting.  Testing ref liveliness is good enough.
1147 	 */
1148 	for_each_subsys(ss, i) {
1149 		if (!(opts.subsys_mask & (1 << i)) ||
1150 		    ss->root == &cgrp_dfl_root)
1151 			continue;
1152 
1153 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1154 			mutex_unlock(&cgroup_mutex);
1155 			msleep(10);
1156 			ret = restart_syscall();
1157 			goto out_free;
1158 		}
1159 		cgroup_put(&ss->root->cgrp);
1160 	}
1161 
1162 	for_each_root(root) {
1163 		bool name_match = false;
1164 
1165 		if (root == &cgrp_dfl_root)
1166 			continue;
1167 
1168 		/*
1169 		 * If we asked for a name then it must match.  Also, if
1170 		 * name matches but sybsys_mask doesn't, we should fail.
1171 		 * Remember whether name matched.
1172 		 */
1173 		if (opts.name) {
1174 			if (strcmp(opts.name, root->name))
1175 				continue;
1176 			name_match = true;
1177 		}
1178 
1179 		/*
1180 		 * If we asked for subsystems (or explicitly for no
1181 		 * subsystems) then they must match.
1182 		 */
1183 		if ((opts.subsys_mask || opts.none) &&
1184 		    (opts.subsys_mask != root->subsys_mask)) {
1185 			if (!name_match)
1186 				continue;
1187 			ret = -EBUSY;
1188 			goto out_unlock;
1189 		}
1190 
1191 		if (root->flags ^ opts.flags)
1192 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1193 
1194 		/*
1195 		 * We want to reuse @root whose lifetime is governed by its
1196 		 * ->cgrp.  Let's check whether @root is alive and keep it
1197 		 * that way.  As cgroup_kill_sb() can happen anytime, we
1198 		 * want to block it by pinning the sb so that @root doesn't
1199 		 * get killed before mount is complete.
1200 		 *
1201 		 * With the sb pinned, tryget_live can reliably indicate
1202 		 * whether @root can be reused.  If it's being killed,
1203 		 * drain it.  We can use wait_queue for the wait but this
1204 		 * path is super cold.  Let's just sleep a bit and retry.
1205 		 */
1206 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1207 		if (IS_ERR(pinned_sb) ||
1208 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1209 			mutex_unlock(&cgroup_mutex);
1210 			if (!IS_ERR_OR_NULL(pinned_sb))
1211 				deactivate_super(pinned_sb);
1212 			msleep(10);
1213 			ret = restart_syscall();
1214 			goto out_free;
1215 		}
1216 
1217 		ret = 0;
1218 		goto out_unlock;
1219 	}
1220 
1221 	/*
1222 	 * No such thing, create a new one.  name= matching without subsys
1223 	 * specification is allowed for already existing hierarchies but we
1224 	 * can't create new one without subsys specification.
1225 	 */
1226 	if (!opts.subsys_mask && !opts.none) {
1227 		ret = -EINVAL;
1228 		goto out_unlock;
1229 	}
1230 
1231 	/* Hierarchies may only be created in the initial cgroup namespace. */
1232 	if (ns != &init_cgroup_ns) {
1233 		ret = -EPERM;
1234 		goto out_unlock;
1235 	}
1236 
1237 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1238 	if (!root) {
1239 		ret = -ENOMEM;
1240 		goto out_unlock;
1241 	}
1242 	new_root = true;
1243 
1244 	init_cgroup_root(root, &opts);
1245 
1246 	ret = cgroup_setup_root(root, opts.subsys_mask, PERCPU_REF_INIT_DEAD);
1247 	if (ret)
1248 		cgroup_free_root(root);
1249 
1250 out_unlock:
1251 	mutex_unlock(&cgroup_mutex);
1252 out_free:
1253 	kfree(opts.release_agent);
1254 	kfree(opts.name);
1255 
1256 	if (ret)
1257 		return ERR_PTR(ret);
1258 
1259 	dentry = cgroup_do_mount(&cgroup_fs_type, flags, root,
1260 				 CGROUP_SUPER_MAGIC, ns);
1261 
1262 	/*
1263 	 * There's a race window after we release cgroup_mutex and before
1264 	 * allocating a superblock. Make sure a concurrent process won't
1265 	 * be able to re-use the root during this window by delaying the
1266 	 * initialization of root refcnt.
1267 	 */
1268 	if (new_root) {
1269 		mutex_lock(&cgroup_mutex);
1270 		percpu_ref_reinit(&root->cgrp.self.refcnt);
1271 		mutex_unlock(&cgroup_mutex);
1272 	}
1273 
1274 	/*
1275 	 * If @pinned_sb, we're reusing an existing root and holding an
1276 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
1277 	 */
1278 	if (pinned_sb)
1279 		deactivate_super(pinned_sb);
1280 
1281 	return dentry;
1282 }
1283 
cgroup1_wq_init(void)1284 static int __init cgroup1_wq_init(void)
1285 {
1286 	/*
1287 	 * Used to destroy pidlists and separate to serve as flush domain.
1288 	 * Cap @max_active to 1 too.
1289 	 */
1290 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1291 						    0, 1);
1292 	BUG_ON(!cgroup_pidlist_destroy_wq);
1293 	return 0;
1294 }
1295 core_initcall(cgroup1_wq_init);
1296 
cgroup_no_v1(char * str)1297 static int __init cgroup_no_v1(char *str)
1298 {
1299 	struct cgroup_subsys *ss;
1300 	char *token;
1301 	int i;
1302 
1303 	while ((token = strsep(&str, ",")) != NULL) {
1304 		if (!*token)
1305 			continue;
1306 
1307 		if (!strcmp(token, "all")) {
1308 			cgroup_no_v1_mask = U16_MAX;
1309 			break;
1310 		}
1311 
1312 		for_each_subsys(ss, i) {
1313 			if (strcmp(token, ss->name) &&
1314 			    strcmp(token, ss->legacy_name))
1315 				continue;
1316 
1317 			cgroup_no_v1_mask |= 1 << i;
1318 		}
1319 	}
1320 	return 1;
1321 }
1322 __setup("cgroup_no_v1=", cgroup_no_v1);
1323