• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include <linux/sched/task_stack.h>
15 
16 #include "internal.h"
17 
18 struct callchain_cpus_entries {
19 	struct rcu_head			rcu_head;
20 	struct perf_callchain_entry	*cpu_entries[0];
21 };
22 
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25 
perf_callchain_entry__sizeof(void)26 static inline size_t perf_callchain_entry__sizeof(void)
27 {
28 	return (sizeof(struct perf_callchain_entry) +
29 		sizeof(__u64) * (sysctl_perf_event_max_stack +
30 				 sysctl_perf_event_max_contexts_per_stack));
31 }
32 
33 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
34 static atomic_t nr_callchain_events;
35 static DEFINE_MUTEX(callchain_mutex);
36 static struct callchain_cpus_entries *callchain_cpus_entries;
37 
38 
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)39 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
40 				  struct pt_regs *regs)
41 {
42 }
43 
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)44 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
45 				struct pt_regs *regs)
46 {
47 }
48 
release_callchain_buffers_rcu(struct rcu_head * head)49 static void release_callchain_buffers_rcu(struct rcu_head *head)
50 {
51 	struct callchain_cpus_entries *entries;
52 	int cpu;
53 
54 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
55 
56 	for_each_possible_cpu(cpu)
57 		kfree(entries->cpu_entries[cpu]);
58 
59 	kfree(entries);
60 }
61 
release_callchain_buffers(void)62 static void release_callchain_buffers(void)
63 {
64 	struct callchain_cpus_entries *entries;
65 
66 	entries = callchain_cpus_entries;
67 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
68 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 }
70 
alloc_callchain_buffers(void)71 static int alloc_callchain_buffers(void)
72 {
73 	int cpu;
74 	int size;
75 	struct callchain_cpus_entries *entries;
76 
77 	/*
78 	 * We can't use the percpu allocation API for data that can be
79 	 * accessed from NMI. Use a temporary manual per cpu allocation
80 	 * until that gets sorted out.
81 	 */
82 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
83 
84 	entries = kzalloc(size, GFP_KERNEL);
85 	if (!entries)
86 		return -ENOMEM;
87 
88 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
89 
90 	for_each_possible_cpu(cpu) {
91 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
92 							 cpu_to_node(cpu));
93 		if (!entries->cpu_entries[cpu])
94 			goto fail;
95 	}
96 
97 	rcu_assign_pointer(callchain_cpus_entries, entries);
98 
99 	return 0;
100 
101 fail:
102 	for_each_possible_cpu(cpu)
103 		kfree(entries->cpu_entries[cpu]);
104 	kfree(entries);
105 
106 	return -ENOMEM;
107 }
108 
get_callchain_buffers(int event_max_stack)109 int get_callchain_buffers(int event_max_stack)
110 {
111 	int err = 0;
112 	int count;
113 
114 	mutex_lock(&callchain_mutex);
115 
116 	count = atomic_inc_return(&nr_callchain_events);
117 	if (WARN_ON_ONCE(count < 1)) {
118 		err = -EINVAL;
119 		goto exit;
120 	}
121 
122 	/*
123 	 * If requesting per event more than the global cap,
124 	 * return a different error to help userspace figure
125 	 * this out.
126 	 *
127 	 * And also do it here so that we have &callchain_mutex held.
128 	 */
129 	if (event_max_stack > sysctl_perf_event_max_stack) {
130 		err = -EOVERFLOW;
131 		goto exit;
132 	}
133 
134 	if (count == 1)
135 		err = alloc_callchain_buffers();
136 exit:
137 	if (err)
138 		atomic_dec(&nr_callchain_events);
139 
140 	mutex_unlock(&callchain_mutex);
141 
142 	return err;
143 }
144 
put_callchain_buffers(void)145 void put_callchain_buffers(void)
146 {
147 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
148 		release_callchain_buffers();
149 		mutex_unlock(&callchain_mutex);
150 	}
151 }
152 
get_callchain_entry(int * rctx)153 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
154 {
155 	int cpu;
156 	struct callchain_cpus_entries *entries;
157 
158 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
159 	if (*rctx == -1)
160 		return NULL;
161 
162 	entries = rcu_dereference(callchain_cpus_entries);
163 	if (!entries)
164 		return NULL;
165 
166 	cpu = smp_processor_id();
167 
168 	return (((void *)entries->cpu_entries[cpu]) +
169 		(*rctx * perf_callchain_entry__sizeof()));
170 }
171 
172 static void
put_callchain_entry(int rctx)173 put_callchain_entry(int rctx)
174 {
175 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
176 }
177 
178 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)179 perf_callchain(struct perf_event *event, struct pt_regs *regs)
180 {
181 	bool kernel = !event->attr.exclude_callchain_kernel;
182 	bool user   = !event->attr.exclude_callchain_user;
183 	/* Disallow cross-task user callchains. */
184 	bool crosstask = event->ctx->task && event->ctx->task != current;
185 	const u32 max_stack = event->attr.sample_max_stack;
186 
187 	if (!kernel && !user)
188 		return NULL;
189 
190 	return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
191 }
192 
193 struct perf_callchain_entry *
get_perf_callchain(struct pt_regs * regs,u32 init_nr,bool kernel,bool user,u32 max_stack,bool crosstask,bool add_mark)194 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
195 		   u32 max_stack, bool crosstask, bool add_mark)
196 {
197 	struct perf_callchain_entry *entry;
198 	struct perf_callchain_entry_ctx ctx;
199 	int rctx;
200 
201 	entry = get_callchain_entry(&rctx);
202 	if (rctx == -1)
203 		return NULL;
204 
205 	if (!entry)
206 		goto exit_put;
207 
208 	ctx.entry     = entry;
209 	ctx.max_stack = max_stack;
210 	ctx.nr	      = entry->nr = init_nr;
211 	ctx.contexts       = 0;
212 	ctx.contexts_maxed = false;
213 
214 	if (kernel && !user_mode(regs)) {
215 		if (add_mark)
216 			perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
217 		perf_callchain_kernel(&ctx, regs);
218 	}
219 
220 	if (user) {
221 		if (!user_mode(regs)) {
222 			if  (current->mm)
223 				regs = task_pt_regs(current);
224 			else
225 				regs = NULL;
226 		}
227 
228 		if (regs) {
229 			mm_segment_t fs;
230 
231 			if (crosstask)
232 				goto exit_put;
233 
234 			if (add_mark)
235 				perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
236 
237 			fs = get_fs();
238 			set_fs(USER_DS);
239 			perf_callchain_user(&ctx, regs);
240 			set_fs(fs);
241 		}
242 	}
243 
244 exit_put:
245 	put_callchain_entry(rctx);
246 
247 	return entry;
248 }
249 
250 /*
251  * Used for sysctl_perf_event_max_stack and
252  * sysctl_perf_event_max_contexts_per_stack.
253  */
perf_event_max_stack_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)254 int perf_event_max_stack_handler(struct ctl_table *table, int write,
255 				 void __user *buffer, size_t *lenp, loff_t *ppos)
256 {
257 	int *value = table->data;
258 	int new_value = *value, ret;
259 	struct ctl_table new_table = *table;
260 
261 	new_table.data = &new_value;
262 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
263 	if (ret || !write)
264 		return ret;
265 
266 	mutex_lock(&callchain_mutex);
267 	if (atomic_read(&nr_callchain_events))
268 		ret = -EBUSY;
269 	else
270 		*value = new_value;
271 
272 	mutex_unlock(&callchain_mutex);
273 
274 	return ret;
275 }
276