1 /*
2 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
3 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
4 *
5 * This file contains the interrupt descriptor management code
6 *
7 * Detailed information is available in Documentation/core-api/genericirq.rst
8 *
9 */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19
20 #include "internals.h"
21
22 /*
23 * lockdep: we want to handle all irq_desc locks as a single lock-class:
24 */
25 static struct lock_class_key irq_desc_lock_class;
26
27 #if defined(CONFIG_SMP)
irq_affinity_setup(char * str)28 static int __init irq_affinity_setup(char *str)
29 {
30 alloc_bootmem_cpumask_var(&irq_default_affinity);
31 cpulist_parse(str, irq_default_affinity);
32 /*
33 * Set at least the boot cpu. We don't want to end up with
34 * bugreports caused by random comandline masks
35 */
36 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40
init_irq_default_affinity(void)41 static void __init init_irq_default_affinity(void)
42 {
43 if (!cpumask_available(irq_default_affinity))
44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 if (cpumask_empty(irq_default_affinity))
46 cpumask_setall(irq_default_affinity);
47 }
48 #else
init_irq_default_affinity(void)49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53
54 #ifdef CONFIG_SMP
alloc_masks(struct irq_desc * desc,int node)55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 GFP_KERNEL, node))
59 return -ENOMEM;
60
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 GFP_KERNEL, node)) {
64 free_cpumask_var(desc->irq_common_data.affinity);
65 return -ENOMEM;
66 }
67 #endif
68
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 free_cpumask_var(desc->irq_common_data.affinity);
75 return -ENOMEM;
76 }
77 #endif
78 return 0;
79 }
80
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)81 static void desc_smp_init(struct irq_desc *desc, int node,
82 const struct cpumask *affinity)
83 {
84 if (!affinity)
85 affinity = irq_default_affinity;
86 cpumask_copy(desc->irq_common_data.affinity, affinity);
87
88 #ifdef CONFIG_GENERIC_PENDING_IRQ
89 cpumask_clear(desc->pending_mask);
90 #endif
91 #ifdef CONFIG_NUMA
92 desc->irq_common_data.node = node;
93 #endif
94 }
95
96 #else
97 static inline int
alloc_masks(struct irq_desc * desc,int node)98 alloc_masks(struct irq_desc *desc, int node) { return 0; }
99 static inline void
desc_smp_init(struct irq_desc * desc,int node,const struct cpumask * affinity)100 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
101 #endif
102
desc_set_defaults(unsigned int irq,struct irq_desc * desc,int node,const struct cpumask * affinity,struct module * owner)103 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
104 const struct cpumask *affinity, struct module *owner)
105 {
106 int cpu;
107
108 desc->irq_common_data.handler_data = NULL;
109 desc->irq_common_data.msi_desc = NULL;
110
111 desc->irq_data.common = &desc->irq_common_data;
112 desc->irq_data.irq = irq;
113 desc->irq_data.chip = &no_irq_chip;
114 desc->irq_data.chip_data = NULL;
115 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
116 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
117 irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
118 desc->handle_irq = handle_bad_irq;
119 desc->depth = 1;
120 desc->irq_count = 0;
121 desc->irqs_unhandled = 0;
122 desc->tot_count = 0;
123 desc->name = NULL;
124 desc->owner = owner;
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
127 desc_smp_init(desc, node, affinity);
128 }
129
130 int nr_irqs = NR_IRQS;
131 EXPORT_SYMBOL_GPL(nr_irqs);
132
133 static DEFINE_MUTEX(sparse_irq_lock);
134 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
135
136 #ifdef CONFIG_SPARSE_IRQ
137
138 static void irq_kobj_release(struct kobject *kobj);
139
140 #ifdef CONFIG_SYSFS
141 static struct kobject *irq_kobj_base;
142
143 #define IRQ_ATTR_RO(_name) \
144 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
145
per_cpu_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)146 static ssize_t per_cpu_count_show(struct kobject *kobj,
147 struct kobj_attribute *attr, char *buf)
148 {
149 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
150 int cpu, irq = desc->irq_data.irq;
151 ssize_t ret = 0;
152 char *p = "";
153
154 for_each_possible_cpu(cpu) {
155 unsigned int c = kstat_irqs_cpu(irq, cpu);
156
157 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
158 p = ",";
159 }
160
161 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
162 return ret;
163 }
164 IRQ_ATTR_RO(per_cpu_count);
165
chip_name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t chip_name_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168 {
169 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
170 ssize_t ret = 0;
171
172 raw_spin_lock_irq(&desc->lock);
173 if (desc->irq_data.chip && desc->irq_data.chip->name) {
174 ret = scnprintf(buf, PAGE_SIZE, "%s\n",
175 desc->irq_data.chip->name);
176 }
177 raw_spin_unlock_irq(&desc->lock);
178
179 return ret;
180 }
181 IRQ_ATTR_RO(chip_name);
182
hwirq_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)183 static ssize_t hwirq_show(struct kobject *kobj,
184 struct kobj_attribute *attr, char *buf)
185 {
186 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
187 ssize_t ret = 0;
188
189 raw_spin_lock_irq(&desc->lock);
190 if (desc->irq_data.domain)
191 ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
192 raw_spin_unlock_irq(&desc->lock);
193
194 return ret;
195 }
196 IRQ_ATTR_RO(hwirq);
197
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)198 static ssize_t type_show(struct kobject *kobj,
199 struct kobj_attribute *attr, char *buf)
200 {
201 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
202 ssize_t ret = 0;
203
204 raw_spin_lock_irq(&desc->lock);
205 ret = sprintf(buf, "%s\n",
206 irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
207 raw_spin_unlock_irq(&desc->lock);
208
209 return ret;
210
211 }
212 IRQ_ATTR_RO(type);
213
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)214 static ssize_t name_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf)
216 {
217 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
218 ssize_t ret = 0;
219
220 raw_spin_lock_irq(&desc->lock);
221 if (desc->name)
222 ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
223 raw_spin_unlock_irq(&desc->lock);
224
225 return ret;
226 }
227 IRQ_ATTR_RO(name);
228
actions_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)229 static ssize_t actions_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231 {
232 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
233 struct irqaction *action;
234 ssize_t ret = 0;
235 char *p = "";
236
237 raw_spin_lock_irq(&desc->lock);
238 for (action = desc->action; action != NULL; action = action->next) {
239 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
240 p, action->name);
241 p = ",";
242 }
243 raw_spin_unlock_irq(&desc->lock);
244
245 if (ret)
246 ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
247
248 return ret;
249 }
250 IRQ_ATTR_RO(actions);
251
252 static struct attribute *irq_attrs[] = {
253 &per_cpu_count_attr.attr,
254 &chip_name_attr.attr,
255 &hwirq_attr.attr,
256 &type_attr.attr,
257 &name_attr.attr,
258 &actions_attr.attr,
259 NULL
260 };
261
262 static struct kobj_type irq_kobj_type = {
263 .release = irq_kobj_release,
264 .sysfs_ops = &kobj_sysfs_ops,
265 .default_attrs = irq_attrs,
266 };
267
irq_sysfs_add(int irq,struct irq_desc * desc)268 static void irq_sysfs_add(int irq, struct irq_desc *desc)
269 {
270 if (irq_kobj_base) {
271 /*
272 * Continue even in case of failure as this is nothing
273 * crucial.
274 */
275 if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
276 pr_warn("Failed to add kobject for irq %d\n", irq);
277 }
278 }
279
irq_sysfs_del(struct irq_desc * desc)280 static void irq_sysfs_del(struct irq_desc *desc)
281 {
282 /*
283 * If irq_sysfs_init() has not yet been invoked (early boot), then
284 * irq_kobj_base is NULL and the descriptor was never added.
285 * kobject_del() complains about a object with no parent, so make
286 * it conditional.
287 */
288 if (irq_kobj_base)
289 kobject_del(&desc->kobj);
290 }
291
irq_sysfs_init(void)292 static int __init irq_sysfs_init(void)
293 {
294 struct irq_desc *desc;
295 int irq;
296
297 /* Prevent concurrent irq alloc/free */
298 irq_lock_sparse();
299
300 irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
301 if (!irq_kobj_base) {
302 irq_unlock_sparse();
303 return -ENOMEM;
304 }
305
306 /* Add the already allocated interrupts */
307 for_each_irq_desc(irq, desc)
308 irq_sysfs_add(irq, desc);
309 irq_unlock_sparse();
310
311 return 0;
312 }
313 postcore_initcall(irq_sysfs_init);
314
315 #else /* !CONFIG_SYSFS */
316
317 static struct kobj_type irq_kobj_type = {
318 .release = irq_kobj_release,
319 };
320
irq_sysfs_add(int irq,struct irq_desc * desc)321 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
irq_sysfs_del(struct irq_desc * desc)322 static void irq_sysfs_del(struct irq_desc *desc) {}
323
324 #endif /* CONFIG_SYSFS */
325
326 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
327
irq_insert_desc(unsigned int irq,struct irq_desc * desc)328 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
329 {
330 radix_tree_insert(&irq_desc_tree, irq, desc);
331 }
332
irq_to_desc(unsigned int irq)333 struct irq_desc *irq_to_desc(unsigned int irq)
334 {
335 return radix_tree_lookup(&irq_desc_tree, irq);
336 }
337 EXPORT_SYMBOL(irq_to_desc);
338
delete_irq_desc(unsigned int irq)339 static void delete_irq_desc(unsigned int irq)
340 {
341 radix_tree_delete(&irq_desc_tree, irq);
342 }
343
344 #ifdef CONFIG_SMP
free_masks(struct irq_desc * desc)345 static void free_masks(struct irq_desc *desc)
346 {
347 #ifdef CONFIG_GENERIC_PENDING_IRQ
348 free_cpumask_var(desc->pending_mask);
349 #endif
350 free_cpumask_var(desc->irq_common_data.affinity);
351 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
352 free_cpumask_var(desc->irq_common_data.effective_affinity);
353 #endif
354 }
355 #else
free_masks(struct irq_desc * desc)356 static inline void free_masks(struct irq_desc *desc) { }
357 #endif
358
irq_lock_sparse(void)359 void irq_lock_sparse(void)
360 {
361 mutex_lock(&sparse_irq_lock);
362 }
363
irq_unlock_sparse(void)364 void irq_unlock_sparse(void)
365 {
366 mutex_unlock(&sparse_irq_lock);
367 }
368
alloc_desc(int irq,int node,unsigned int flags,const struct cpumask * affinity,struct module * owner)369 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
370 const struct cpumask *affinity,
371 struct module *owner)
372 {
373 struct irq_desc *desc;
374
375 desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
376 if (!desc)
377 return NULL;
378 /* allocate based on nr_cpu_ids */
379 desc->kstat_irqs = alloc_percpu(unsigned int);
380 if (!desc->kstat_irqs)
381 goto err_desc;
382
383 if (alloc_masks(desc, node))
384 goto err_kstat;
385
386 raw_spin_lock_init(&desc->lock);
387 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
388 mutex_init(&desc->request_mutex);
389 init_rcu_head(&desc->rcu);
390
391 desc_set_defaults(irq, desc, node, affinity, owner);
392 irqd_set(&desc->irq_data, flags);
393 kobject_init(&desc->kobj, &irq_kobj_type);
394
395 return desc;
396
397 err_kstat:
398 free_percpu(desc->kstat_irqs);
399 err_desc:
400 kfree(desc);
401 return NULL;
402 }
403
irq_kobj_release(struct kobject * kobj)404 static void irq_kobj_release(struct kobject *kobj)
405 {
406 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
407
408 free_masks(desc);
409 free_percpu(desc->kstat_irqs);
410 kfree(desc);
411 }
412
delayed_free_desc(struct rcu_head * rhp)413 static void delayed_free_desc(struct rcu_head *rhp)
414 {
415 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
416
417 kobject_put(&desc->kobj);
418 }
419
free_desc(unsigned int irq)420 static void free_desc(unsigned int irq)
421 {
422 struct irq_desc *desc = irq_to_desc(irq);
423
424 irq_remove_debugfs_entry(desc);
425 unregister_irq_proc(irq, desc);
426
427 /*
428 * sparse_irq_lock protects also show_interrupts() and
429 * kstat_irq_usr(). Once we deleted the descriptor from the
430 * sparse tree we can free it. Access in proc will fail to
431 * lookup the descriptor.
432 *
433 * The sysfs entry must be serialized against a concurrent
434 * irq_sysfs_init() as well.
435 */
436 irq_sysfs_del(desc);
437 delete_irq_desc(irq);
438
439 /*
440 * We free the descriptor, masks and stat fields via RCU. That
441 * allows demultiplex interrupts to do rcu based management of
442 * the child interrupts.
443 */
444 call_rcu(&desc->rcu, delayed_free_desc);
445 }
446
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct cpumask * affinity,struct module * owner)447 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
448 const struct cpumask *affinity, struct module *owner)
449 {
450 const struct cpumask *mask = NULL;
451 struct irq_desc *desc;
452 unsigned int flags;
453 int i;
454
455 /* Validate affinity mask(s) */
456 if (affinity) {
457 for (i = 0, mask = affinity; i < cnt; i++, mask++) {
458 if (cpumask_empty(mask))
459 return -EINVAL;
460 }
461 }
462
463 flags = affinity ? IRQD_AFFINITY_MANAGED : 0;
464 mask = NULL;
465
466 for (i = 0; i < cnt; i++) {
467 if (affinity) {
468 node = cpu_to_node(cpumask_first(affinity));
469 mask = affinity;
470 affinity++;
471 }
472 desc = alloc_desc(start + i, node, flags, mask, owner);
473 if (!desc)
474 goto err;
475 irq_insert_desc(start + i, desc);
476 irq_sysfs_add(start + i, desc);
477 }
478 bitmap_set(allocated_irqs, start, cnt);
479 return start;
480
481 err:
482 for (i--; i >= 0; i--)
483 free_desc(start + i);
484 return -ENOMEM;
485 }
486
irq_expand_nr_irqs(unsigned int nr)487 static int irq_expand_nr_irqs(unsigned int nr)
488 {
489 if (nr > IRQ_BITMAP_BITS)
490 return -ENOMEM;
491 nr_irqs = nr;
492 return 0;
493 }
494
early_irq_init(void)495 int __init early_irq_init(void)
496 {
497 int i, initcnt, node = first_online_node;
498 struct irq_desc *desc;
499
500 init_irq_default_affinity();
501
502 /* Let arch update nr_irqs and return the nr of preallocated irqs */
503 initcnt = arch_probe_nr_irqs();
504 printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
505 NR_IRQS, nr_irqs, initcnt);
506
507 if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
508 nr_irqs = IRQ_BITMAP_BITS;
509
510 if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
511 initcnt = IRQ_BITMAP_BITS;
512
513 if (initcnt > nr_irqs)
514 nr_irqs = initcnt;
515
516 for (i = 0; i < initcnt; i++) {
517 desc = alloc_desc(i, node, 0, NULL, NULL);
518 set_bit(i, allocated_irqs);
519 irq_insert_desc(i, desc);
520 }
521 return arch_early_irq_init();
522 }
523
524 #else /* !CONFIG_SPARSE_IRQ */
525
526 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
527 [0 ... NR_IRQS-1] = {
528 .handle_irq = handle_bad_irq,
529 .depth = 1,
530 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
531 }
532 };
533
early_irq_init(void)534 int __init early_irq_init(void)
535 {
536 int count, i, node = first_online_node;
537 struct irq_desc *desc;
538
539 init_irq_default_affinity();
540
541 printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
542
543 desc = irq_desc;
544 count = ARRAY_SIZE(irq_desc);
545
546 for (i = 0; i < count; i++) {
547 desc[i].kstat_irqs = alloc_percpu(unsigned int);
548 alloc_masks(&desc[i], node);
549 raw_spin_lock_init(&desc[i].lock);
550 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
551 mutex_init(&desc[i].request_mutex);
552 desc_set_defaults(i, &desc[i], node, NULL, NULL);
553 }
554 return arch_early_irq_init();
555 }
556
irq_to_desc(unsigned int irq)557 struct irq_desc *irq_to_desc(unsigned int irq)
558 {
559 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
560 }
561 EXPORT_SYMBOL(irq_to_desc);
562
free_desc(unsigned int irq)563 static void free_desc(unsigned int irq)
564 {
565 struct irq_desc *desc = irq_to_desc(irq);
566 unsigned long flags;
567
568 raw_spin_lock_irqsave(&desc->lock, flags);
569 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
570 raw_spin_unlock_irqrestore(&desc->lock, flags);
571 }
572
alloc_descs(unsigned int start,unsigned int cnt,int node,const struct cpumask * affinity,struct module * owner)573 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
574 const struct cpumask *affinity,
575 struct module *owner)
576 {
577 u32 i;
578
579 for (i = 0; i < cnt; i++) {
580 struct irq_desc *desc = irq_to_desc(start + i);
581
582 desc->owner = owner;
583 }
584 bitmap_set(allocated_irqs, start, cnt);
585 return start;
586 }
587
irq_expand_nr_irqs(unsigned int nr)588 static int irq_expand_nr_irqs(unsigned int nr)
589 {
590 return -ENOMEM;
591 }
592
irq_mark_irq(unsigned int irq)593 void irq_mark_irq(unsigned int irq)
594 {
595 mutex_lock(&sparse_irq_lock);
596 bitmap_set(allocated_irqs, irq, 1);
597 mutex_unlock(&sparse_irq_lock);
598 }
599
600 #ifdef CONFIG_GENERIC_IRQ_LEGACY
irq_init_desc(unsigned int irq)601 void irq_init_desc(unsigned int irq)
602 {
603 free_desc(irq);
604 }
605 #endif
606
607 #endif /* !CONFIG_SPARSE_IRQ */
608
609 /**
610 * generic_handle_irq - Invoke the handler for a particular irq
611 * @irq: The irq number to handle
612 *
613 */
generic_handle_irq(unsigned int irq)614 int generic_handle_irq(unsigned int irq)
615 {
616 struct irq_desc *desc = irq_to_desc(irq);
617
618 if (!desc)
619 return -EINVAL;
620 generic_handle_irq_desc(desc);
621 return 0;
622 }
623 EXPORT_SYMBOL_GPL(generic_handle_irq);
624
625 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
626 /**
627 * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
628 * @domain: The domain where to perform the lookup
629 * @hwirq: The HW irq number to convert to a logical one
630 * @lookup: Whether to perform the domain lookup or not
631 * @regs: Register file coming from the low-level handling code
632 *
633 * Returns: 0 on success, or -EINVAL if conversion has failed
634 */
__handle_domain_irq(struct irq_domain * domain,unsigned int hwirq,bool lookup,struct pt_regs * regs)635 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
636 bool lookup, struct pt_regs *regs)
637 {
638 struct pt_regs *old_regs = set_irq_regs(regs);
639 unsigned int irq = hwirq;
640 int ret = 0;
641
642 irq_enter();
643
644 #ifdef CONFIG_IRQ_DOMAIN
645 if (lookup)
646 irq = irq_find_mapping(domain, hwirq);
647 #endif
648
649 /*
650 * Some hardware gives randomly wrong interrupts. Rather
651 * than crashing, do something sensible.
652 */
653 if (unlikely(!irq || irq >= nr_irqs)) {
654 ack_bad_irq(irq);
655 ret = -EINVAL;
656 } else {
657 generic_handle_irq(irq);
658 }
659
660 irq_exit();
661 set_irq_regs(old_regs);
662 return ret;
663 }
664 #endif
665
666 /* Dynamic interrupt handling */
667
668 /**
669 * irq_free_descs - free irq descriptors
670 * @from: Start of descriptor range
671 * @cnt: Number of consecutive irqs to free
672 */
irq_free_descs(unsigned int from,unsigned int cnt)673 void irq_free_descs(unsigned int from, unsigned int cnt)
674 {
675 int i;
676
677 if (from >= nr_irqs || (from + cnt) > nr_irqs)
678 return;
679
680 mutex_lock(&sparse_irq_lock);
681 for (i = 0; i < cnt; i++)
682 free_desc(from + i);
683
684 bitmap_clear(allocated_irqs, from, cnt);
685 mutex_unlock(&sparse_irq_lock);
686 }
687 EXPORT_SYMBOL_GPL(irq_free_descs);
688
689 /**
690 * irq_alloc_descs - allocate and initialize a range of irq descriptors
691 * @irq: Allocate for specific irq number if irq >= 0
692 * @from: Start the search from this irq number
693 * @cnt: Number of consecutive irqs to allocate.
694 * @node: Preferred node on which the irq descriptor should be allocated
695 * @owner: Owning module (can be NULL)
696 * @affinity: Optional pointer to an affinity mask array of size @cnt which
697 * hints where the irq descriptors should be allocated and which
698 * default affinities to use
699 *
700 * Returns the first irq number or error code
701 */
702 int __ref
__irq_alloc_descs(int irq,unsigned int from,unsigned int cnt,int node,struct module * owner,const struct cpumask * affinity)703 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
704 struct module *owner, const struct cpumask *affinity)
705 {
706 int start, ret;
707
708 if (!cnt)
709 return -EINVAL;
710
711 if (irq >= 0) {
712 if (from > irq)
713 return -EINVAL;
714 from = irq;
715 } else {
716 /*
717 * For interrupts which are freely allocated the
718 * architecture can force a lower bound to the @from
719 * argument. x86 uses this to exclude the GSI space.
720 */
721 from = arch_dynirq_lower_bound(from);
722 }
723
724 mutex_lock(&sparse_irq_lock);
725
726 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
727 from, cnt, 0);
728 ret = -EEXIST;
729 if (irq >=0 && start != irq)
730 goto unlock;
731
732 if (start + cnt > nr_irqs) {
733 ret = irq_expand_nr_irqs(start + cnt);
734 if (ret)
735 goto unlock;
736 }
737 ret = alloc_descs(start, cnt, node, affinity, owner);
738 unlock:
739 mutex_unlock(&sparse_irq_lock);
740 return ret;
741 }
742 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
743
744 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
745 /**
746 * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
747 * @cnt: number of interrupts to allocate
748 * @node: node on which to allocate
749 *
750 * Returns an interrupt number > 0 or 0, if the allocation fails.
751 */
irq_alloc_hwirqs(int cnt,int node)752 unsigned int irq_alloc_hwirqs(int cnt, int node)
753 {
754 int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
755
756 if (irq < 0)
757 return 0;
758
759 for (i = irq; cnt > 0; i++, cnt--) {
760 if (arch_setup_hwirq(i, node))
761 goto err;
762 irq_clear_status_flags(i, _IRQ_NOREQUEST);
763 }
764 return irq;
765
766 err:
767 for (i--; i >= irq; i--) {
768 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
769 arch_teardown_hwirq(i);
770 }
771 irq_free_descs(irq, cnt);
772 return 0;
773 }
774 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
775
776 /**
777 * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
778 * @from: Free from irq number
779 * @cnt: number of interrupts to free
780 *
781 */
irq_free_hwirqs(unsigned int from,int cnt)782 void irq_free_hwirqs(unsigned int from, int cnt)
783 {
784 int i, j;
785
786 for (i = from, j = cnt; j > 0; i++, j--) {
787 irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
788 arch_teardown_hwirq(i);
789 }
790 irq_free_descs(from, cnt);
791 }
792 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
793 #endif
794
795 /**
796 * irq_get_next_irq - get next allocated irq number
797 * @offset: where to start the search
798 *
799 * Returns next irq number after offset or nr_irqs if none is found.
800 */
irq_get_next_irq(unsigned int offset)801 unsigned int irq_get_next_irq(unsigned int offset)
802 {
803 return find_next_bit(allocated_irqs, nr_irqs, offset);
804 }
805
806 struct irq_desc *
__irq_get_desc_lock(unsigned int irq,unsigned long * flags,bool bus,unsigned int check)807 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
808 unsigned int check)
809 {
810 struct irq_desc *desc = irq_to_desc(irq);
811
812 if (desc) {
813 if (check & _IRQ_DESC_CHECK) {
814 if ((check & _IRQ_DESC_PERCPU) &&
815 !irq_settings_is_per_cpu_devid(desc))
816 return NULL;
817
818 if (!(check & _IRQ_DESC_PERCPU) &&
819 irq_settings_is_per_cpu_devid(desc))
820 return NULL;
821 }
822
823 if (bus)
824 chip_bus_lock(desc);
825 raw_spin_lock_irqsave(&desc->lock, *flags);
826 }
827 return desc;
828 }
829
__irq_put_desc_unlock(struct irq_desc * desc,unsigned long flags,bool bus)830 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
831 {
832 raw_spin_unlock_irqrestore(&desc->lock, flags);
833 if (bus)
834 chip_bus_sync_unlock(desc);
835 }
836
irq_set_percpu_devid_partition(unsigned int irq,const struct cpumask * affinity)837 int irq_set_percpu_devid_partition(unsigned int irq,
838 const struct cpumask *affinity)
839 {
840 struct irq_desc *desc = irq_to_desc(irq);
841
842 if (!desc)
843 return -EINVAL;
844
845 if (desc->percpu_enabled)
846 return -EINVAL;
847
848 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
849
850 if (!desc->percpu_enabled)
851 return -ENOMEM;
852
853 if (affinity)
854 desc->percpu_affinity = affinity;
855 else
856 desc->percpu_affinity = cpu_possible_mask;
857
858 irq_set_percpu_devid_flags(irq);
859 return 0;
860 }
861
irq_set_percpu_devid(unsigned int irq)862 int irq_set_percpu_devid(unsigned int irq)
863 {
864 return irq_set_percpu_devid_partition(irq, NULL);
865 }
866
irq_get_percpu_devid_partition(unsigned int irq,struct cpumask * affinity)867 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
868 {
869 struct irq_desc *desc = irq_to_desc(irq);
870
871 if (!desc || !desc->percpu_enabled)
872 return -EINVAL;
873
874 if (affinity)
875 cpumask_copy(affinity, desc->percpu_affinity);
876
877 return 0;
878 }
879
kstat_incr_irq_this_cpu(unsigned int irq)880 void kstat_incr_irq_this_cpu(unsigned int irq)
881 {
882 kstat_incr_irqs_this_cpu(irq_to_desc(irq));
883 }
884
885 /**
886 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
887 * @irq: The interrupt number
888 * @cpu: The cpu number
889 *
890 * Returns the sum of interrupt counts on @cpu since boot for
891 * @irq. The caller must ensure that the interrupt is not removed
892 * concurrently.
893 */
kstat_irqs_cpu(unsigned int irq,int cpu)894 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
895 {
896 struct irq_desc *desc = irq_to_desc(irq);
897
898 return desc && desc->kstat_irqs ?
899 *per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
900 }
901
902 /**
903 * kstat_irqs - Get the statistics for an interrupt
904 * @irq: The interrupt number
905 *
906 * Returns the sum of interrupt counts on all cpus since boot for
907 * @irq. The caller must ensure that the interrupt is not removed
908 * concurrently.
909 */
kstat_irqs(unsigned int irq)910 unsigned int kstat_irqs(unsigned int irq)
911 {
912 struct irq_desc *desc = irq_to_desc(irq);
913 unsigned int sum = 0;
914 int cpu;
915
916 if (!desc || !desc->kstat_irqs)
917 return 0;
918 if (!irq_settings_is_per_cpu_devid(desc) &&
919 !irq_settings_is_per_cpu(desc))
920 return desc->tot_count;
921
922 for_each_possible_cpu(cpu)
923 sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
924 return sum;
925 }
926
927 /**
928 * kstat_irqs_usr - Get the statistics for an interrupt
929 * @irq: The interrupt number
930 *
931 * Returns the sum of interrupt counts on all cpus since boot for
932 * @irq. Contrary to kstat_irqs() this can be called from any
933 * preemptible context. It's protected against concurrent removal of
934 * an interrupt descriptor when sparse irqs are enabled.
935 */
kstat_irqs_usr(unsigned int irq)936 unsigned int kstat_irqs_usr(unsigned int irq)
937 {
938 unsigned int sum;
939
940 irq_lock_sparse();
941 sum = kstat_irqs(irq);
942 irq_unlock_sparse();
943 return sum;
944 }
945