1 /*
2 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/preempt.h>
19 #include <linux/spinlock.h>
20 #include <linux/debug_locks.h>
21 #include <linux/smp.h>
22 #include <linux/cpumask.h>
23 #include <linux/irq_work.h>
24 #include <linux/printk.h>
25
26 #include "internal.h"
27
28 /*
29 * printk() could not take logbuf_lock in NMI context. Instead,
30 * it uses an alternative implementation that temporary stores
31 * the strings into a per-CPU buffer. The content of the buffer
32 * is later flushed into the main ring buffer via IRQ work.
33 *
34 * The alternative implementation is chosen transparently
35 * by examinig current printk() context mask stored in @printk_context
36 * per-CPU variable.
37 *
38 * The implementation allows to flush the strings also from another CPU.
39 * There are situations when we want to make sure that all buffers
40 * were handled or when IRQs are blocked.
41 */
42 static int printk_safe_irq_ready;
43
44 #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \
45 sizeof(atomic_t) - \
46 sizeof(atomic_t) - \
47 sizeof(struct irq_work))
48
49 struct printk_safe_seq_buf {
50 atomic_t len; /* length of written data */
51 atomic_t message_lost;
52 struct irq_work work; /* IRQ work that flushes the buffer */
53 unsigned char buffer[SAFE_LOG_BUF_LEN];
54 };
55
56 static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
57 static DEFINE_PER_CPU(int, printk_context);
58
59 #ifdef CONFIG_PRINTK_NMI
60 static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
61 #endif
62
63 /* Get flushed in a more safe context. */
queue_flush_work(struct printk_safe_seq_buf * s)64 static void queue_flush_work(struct printk_safe_seq_buf *s)
65 {
66 if (printk_safe_irq_ready) {
67 /* Make sure that IRQ work is really initialized. */
68 smp_rmb();
69 irq_work_queue(&s->work);
70 }
71 }
72
73 /*
74 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
75 * have dedicated buffers, because otherwise printk-safe preempted by
76 * NMI-printk would have overwritten the NMI messages.
77 *
78 * The messages are fushed from irq work (or from panic()), possibly,
79 * from other CPU, concurrently with printk_safe_log_store(). Should this
80 * happen, printk_safe_log_store() will notice the buffer->len mismatch
81 * and repeat the write.
82 */
printk_safe_log_store(struct printk_safe_seq_buf * s,const char * fmt,va_list args)83 static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
84 const char *fmt, va_list args)
85 {
86 int add;
87 size_t len;
88 va_list ap;
89
90 again:
91 len = atomic_read(&s->len);
92
93 /* The trailing '\0' is not counted into len. */
94 if (len >= sizeof(s->buffer) - 1) {
95 atomic_inc(&s->message_lost);
96 queue_flush_work(s);
97 return 0;
98 }
99
100 /*
101 * Make sure that all old data have been read before the buffer
102 * was reset. This is not needed when we just append data.
103 */
104 if (!len)
105 smp_rmb();
106
107 va_copy(ap, args);
108 add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
109 va_end(ap);
110 if (!add)
111 return 0;
112
113 /*
114 * Do it once again if the buffer has been flushed in the meantime.
115 * Note that atomic_cmpxchg() is an implicit memory barrier that
116 * makes sure that the data were written before updating s->len.
117 */
118 if (atomic_cmpxchg(&s->len, len, len + add) != len)
119 goto again;
120
121 queue_flush_work(s);
122 return add;
123 }
124
printk_safe_flush_line(const char * text,int len)125 static inline void printk_safe_flush_line(const char *text, int len)
126 {
127 /*
128 * Avoid any console drivers calls from here, because we may be
129 * in NMI or printk_safe context (when in panic). The messages
130 * must go only into the ring buffer at this stage. Consoles will
131 * get explicitly called later when a crashdump is not generated.
132 */
133 printk_deferred("%.*s", len, text);
134 }
135
136 /* printk part of the temporary buffer line by line */
printk_safe_flush_buffer(const char * start,size_t len)137 static int printk_safe_flush_buffer(const char *start, size_t len)
138 {
139 const char *c, *end;
140 bool header;
141
142 c = start;
143 end = start + len;
144 header = true;
145
146 /* Print line by line. */
147 while (c < end) {
148 if (*c == '\n') {
149 printk_safe_flush_line(start, c - start + 1);
150 start = ++c;
151 header = true;
152 continue;
153 }
154
155 /* Handle continuous lines or missing new line. */
156 if ((c + 1 < end) && printk_get_level(c)) {
157 if (header) {
158 c = printk_skip_level(c);
159 continue;
160 }
161
162 printk_safe_flush_line(start, c - start);
163 start = c++;
164 header = true;
165 continue;
166 }
167
168 header = false;
169 c++;
170 }
171
172 /* Check if there was a partial line. Ignore pure header. */
173 if (start < end && !header) {
174 static const char newline[] = KERN_CONT "\n";
175
176 printk_safe_flush_line(start, end - start);
177 printk_safe_flush_line(newline, strlen(newline));
178 }
179
180 return len;
181 }
182
report_message_lost(struct printk_safe_seq_buf * s)183 static void report_message_lost(struct printk_safe_seq_buf *s)
184 {
185 int lost = atomic_xchg(&s->message_lost, 0);
186
187 if (lost)
188 printk_deferred("Lost %d message(s)!\n", lost);
189 }
190
191 /*
192 * Flush data from the associated per-CPU buffer. The function
193 * can be called either via IRQ work or independently.
194 */
__printk_safe_flush(struct irq_work * work)195 static void __printk_safe_flush(struct irq_work *work)
196 {
197 static raw_spinlock_t read_lock =
198 __RAW_SPIN_LOCK_INITIALIZER(read_lock);
199 struct printk_safe_seq_buf *s =
200 container_of(work, struct printk_safe_seq_buf, work);
201 unsigned long flags;
202 size_t len;
203 int i;
204
205 /*
206 * The lock has two functions. First, one reader has to flush all
207 * available message to make the lockless synchronization with
208 * writers easier. Second, we do not want to mix messages from
209 * different CPUs. This is especially important when printing
210 * a backtrace.
211 */
212 raw_spin_lock_irqsave(&read_lock, flags);
213
214 i = 0;
215 more:
216 len = atomic_read(&s->len);
217
218 /*
219 * This is just a paranoid check that nobody has manipulated
220 * the buffer an unexpected way. If we printed something then
221 * @len must only increase. Also it should never overflow the
222 * buffer size.
223 */
224 if ((i && i >= len) || len > sizeof(s->buffer)) {
225 const char *msg = "printk_safe_flush: internal error\n";
226
227 printk_safe_flush_line(msg, strlen(msg));
228 len = 0;
229 }
230
231 if (!len)
232 goto out; /* Someone else has already flushed the buffer. */
233
234 /* Make sure that data has been written up to the @len */
235 smp_rmb();
236 i += printk_safe_flush_buffer(s->buffer + i, len - i);
237
238 /*
239 * Check that nothing has got added in the meantime and truncate
240 * the buffer. Note that atomic_cmpxchg() is an implicit memory
241 * barrier that makes sure that the data were copied before
242 * updating s->len.
243 */
244 if (atomic_cmpxchg(&s->len, len, 0) != len)
245 goto more;
246
247 out:
248 report_message_lost(s);
249 raw_spin_unlock_irqrestore(&read_lock, flags);
250 }
251
252 /**
253 * printk_safe_flush - flush all per-cpu nmi buffers.
254 *
255 * The buffers are flushed automatically via IRQ work. This function
256 * is useful only when someone wants to be sure that all buffers have
257 * been flushed at some point.
258 */
printk_safe_flush(void)259 void printk_safe_flush(void)
260 {
261 int cpu;
262
263 for_each_possible_cpu(cpu) {
264 #ifdef CONFIG_PRINTK_NMI
265 __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
266 #endif
267 __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
268 }
269 }
270
271 /**
272 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
273 * goes down.
274 *
275 * Similar to printk_safe_flush() but it can be called even in NMI context when
276 * the system goes down. It does the best effort to get NMI messages into
277 * the main ring buffer.
278 *
279 * Note that it could try harder when there is only one CPU online.
280 */
printk_safe_flush_on_panic(void)281 void printk_safe_flush_on_panic(void)
282 {
283 /*
284 * Make sure that we could access the main ring buffer.
285 * Do not risk a double release when more CPUs are up.
286 */
287 if (raw_spin_is_locked(&logbuf_lock)) {
288 if (num_online_cpus() > 1)
289 return;
290
291 debug_locks_off();
292 raw_spin_lock_init(&logbuf_lock);
293 }
294
295 printk_safe_flush();
296 }
297
298 #ifdef CONFIG_PRINTK_NMI
299 /*
300 * Safe printk() for NMI context. It uses a per-CPU buffer to
301 * store the message. NMIs are not nested, so there is always only
302 * one writer running. But the buffer might get flushed from another
303 * CPU, so we need to be careful.
304 */
vprintk_nmi(const char * fmt,va_list args)305 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
306 {
307 struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
308
309 return printk_safe_log_store(s, fmt, args);
310 }
311
printk_nmi_enter(void)312 void notrace printk_nmi_enter(void)
313 {
314 this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK);
315 }
316
printk_nmi_exit(void)317 void notrace printk_nmi_exit(void)
318 {
319 this_cpu_and(printk_context, ~PRINTK_NMI_CONTEXT_MASK);
320 }
321
322 /*
323 * Marks a code that might produce many messages in NMI context
324 * and the risk of losing them is more critical than eventual
325 * reordering.
326 *
327 * It has effect only when called in NMI context. Then printk()
328 * will try to store the messages into the main logbuf directly
329 * and use the per-CPU buffers only as a fallback when the lock
330 * is not available.
331 */
printk_nmi_direct_enter(void)332 void printk_nmi_direct_enter(void)
333 {
334 if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
335 this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
336 }
337
printk_nmi_direct_exit(void)338 void printk_nmi_direct_exit(void)
339 {
340 this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
341 }
342
343 #else
344
vprintk_nmi(const char * fmt,va_list args)345 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
346 {
347 return 0;
348 }
349
350 #endif /* CONFIG_PRINTK_NMI */
351
352 /*
353 * Lock-less printk(), to avoid deadlocks should the printk() recurse
354 * into itself. It uses a per-CPU buffer to store the message, just like
355 * NMI.
356 */
vprintk_safe(const char * fmt,va_list args)357 static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
358 {
359 struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
360
361 return printk_safe_log_store(s, fmt, args);
362 }
363
364 /* Can be preempted by NMI. */
__printk_safe_enter(void)365 void __printk_safe_enter(void)
366 {
367 this_cpu_inc(printk_context);
368 }
369
370 /* Can be preempted by NMI. */
__printk_safe_exit(void)371 void __printk_safe_exit(void)
372 {
373 this_cpu_dec(printk_context);
374 }
375
vprintk_func(const char * fmt,va_list args)376 __printf(1, 0) int vprintk_func(const char *fmt, va_list args)
377 {
378 /*
379 * Try to use the main logbuf even in NMI. But avoid calling console
380 * drivers that might have their own locks.
381 */
382 if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
383 raw_spin_trylock(&logbuf_lock)) {
384 int len;
385
386 len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
387 raw_spin_unlock(&logbuf_lock);
388 defer_console_output();
389 return len;
390 }
391
392 /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
393 if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
394 return vprintk_nmi(fmt, args);
395
396 /* Use extra buffer to prevent a recursion deadlock in safe mode. */
397 if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
398 return vprintk_safe(fmt, args);
399
400 /* No obstacles. */
401 return vprintk_default(fmt, args);
402 }
403
printk_safe_init(void)404 void __init printk_safe_init(void)
405 {
406 int cpu;
407
408 for_each_possible_cpu(cpu) {
409 struct printk_safe_seq_buf *s;
410
411 s = &per_cpu(safe_print_seq, cpu);
412 init_irq_work(&s->work, __printk_safe_flush);
413
414 #ifdef CONFIG_PRINTK_NMI
415 s = &per_cpu(nmi_print_seq, cpu);
416 init_irq_work(&s->work, __printk_safe_flush);
417 #endif
418 }
419
420 /* Make sure that IRQ works are initialized before enabling. */
421 smp_wmb();
422 printk_safe_irq_ready = 1;
423
424 /* Flush pending messages that did not have scheduled IRQ works. */
425 printk_safe_flush();
426 }
427