1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54
55 #define CREATE_TRACE_POINTS
56
57 #include "rcu.h"
58
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "rcupdate."
63
64 #ifndef CONFIG_TINY_RCU
65 extern int rcu_expedited; /* from sysctl */
66 module_param(rcu_expedited, int, 0);
67 extern int rcu_normal; /* from sysctl */
68 module_param(rcu_normal, int, 0);
69 static int rcu_normal_after_boot;
70 module_param(rcu_normal_after_boot, int, 0);
71 #endif /* #ifndef CONFIG_TINY_RCU */
72
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 /**
75 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
76 *
77 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
78 * RCU-sched read-side critical section. In absence of
79 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
80 * critical section unless it can prove otherwise. Note that disabling
81 * of preemption (including disabling irqs) counts as an RCU-sched
82 * read-side critical section. This is useful for debug checks in functions
83 * that required that they be called within an RCU-sched read-side
84 * critical section.
85 *
86 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
87 * and while lockdep is disabled.
88 *
89 * Note that if the CPU is in the idle loop from an RCU point of
90 * view (ie: that we are in the section between rcu_idle_enter() and
91 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
92 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
93 * that are in such a section, considering these as in extended quiescent
94 * state, so such a CPU is effectively never in an RCU read-side critical
95 * section regardless of what RCU primitives it invokes. This state of
96 * affairs is required --- we need to keep an RCU-free window in idle
97 * where the CPU may possibly enter into low power mode. This way we can
98 * notice an extended quiescent state to other CPUs that started a grace
99 * period. Otherwise we would delay any grace period as long as we run in
100 * the idle task.
101 *
102 * Similarly, we avoid claiming an SRCU read lock held if the current
103 * CPU is offline.
104 */
rcu_read_lock_sched_held(void)105 int rcu_read_lock_sched_held(void)
106 {
107 int lockdep_opinion = 0;
108
109 if (!debug_lockdep_rcu_enabled())
110 return 1;
111 if (!rcu_is_watching())
112 return 0;
113 if (!rcu_lockdep_current_cpu_online())
114 return 0;
115 if (debug_locks)
116 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
117 return lockdep_opinion || !preemptible();
118 }
119 EXPORT_SYMBOL(rcu_read_lock_sched_held);
120 #endif
121
122 #ifndef CONFIG_TINY_RCU
123
124 /*
125 * Should expedited grace-period primitives always fall back to their
126 * non-expedited counterparts? Intended for use within RCU. Note
127 * that if the user specifies both rcu_expedited and rcu_normal, then
128 * rcu_normal wins. (Except during the time period during boot from
129 * when the first task is spawned until the rcu_set_runtime_mode()
130 * core_initcall() is invoked, at which point everything is expedited.)
131 */
rcu_gp_is_normal(void)132 bool rcu_gp_is_normal(void)
133 {
134 return READ_ONCE(rcu_normal) &&
135 rcu_scheduler_active != RCU_SCHEDULER_INIT;
136 }
137 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
138
139 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
140
141 /*
142 * Should normal grace-period primitives be expedited? Intended for
143 * use within RCU. Note that this function takes the rcu_expedited
144 * sysfs/boot variable and rcu_scheduler_active into account as well
145 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
146 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
147 */
rcu_gp_is_expedited(void)148 bool rcu_gp_is_expedited(void)
149 {
150 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
151 rcu_scheduler_active == RCU_SCHEDULER_INIT;
152 }
153 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
154
155 /**
156 * rcu_expedite_gp - Expedite future RCU grace periods
157 *
158 * After a call to this function, future calls to synchronize_rcu() and
159 * friends act as the corresponding synchronize_rcu_expedited() function
160 * had instead been called.
161 */
rcu_expedite_gp(void)162 void rcu_expedite_gp(void)
163 {
164 atomic_inc(&rcu_expedited_nesting);
165 }
166 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
167
168 /**
169 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
170 *
171 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
172 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
173 * and if the rcu_expedited sysfs/boot parameter is not set, then all
174 * subsequent calls to synchronize_rcu() and friends will return to
175 * their normal non-expedited behavior.
176 */
rcu_unexpedite_gp(void)177 void rcu_unexpedite_gp(void)
178 {
179 atomic_dec(&rcu_expedited_nesting);
180 }
181 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
182
183 /*
184 * Inform RCU of the end of the in-kernel boot sequence.
185 */
rcu_end_inkernel_boot(void)186 void rcu_end_inkernel_boot(void)
187 {
188 rcu_unexpedite_gp();
189 if (rcu_normal_after_boot)
190 WRITE_ONCE(rcu_normal, 1);
191 }
192
193 #endif /* #ifndef CONFIG_TINY_RCU */
194
195 /*
196 * Test each non-SRCU synchronous grace-period wait API. This is
197 * useful just after a change in mode for these primitives, and
198 * during early boot.
199 */
rcu_test_sync_prims(void)200 void rcu_test_sync_prims(void)
201 {
202 if (!IS_ENABLED(CONFIG_PROVE_RCU))
203 return;
204 synchronize_rcu();
205 synchronize_rcu_bh();
206 synchronize_sched();
207 synchronize_rcu_expedited();
208 synchronize_rcu_bh_expedited();
209 synchronize_sched_expedited();
210 }
211
212 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
213
214 /*
215 * Switch to run-time mode once RCU has fully initialized.
216 */
rcu_set_runtime_mode(void)217 static int __init rcu_set_runtime_mode(void)
218 {
219 rcu_test_sync_prims();
220 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
221 rcu_test_sync_prims();
222 return 0;
223 }
224 core_initcall(rcu_set_runtime_mode);
225
226 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
227
228 #ifdef CONFIG_PREEMPT_RCU
229
230 /*
231 * Preemptible RCU implementation for rcu_read_lock().
232 * Just increment ->rcu_read_lock_nesting, shared state will be updated
233 * if we block.
234 */
__rcu_read_lock(void)235 void __rcu_read_lock(void)
236 {
237 current->rcu_read_lock_nesting++;
238 barrier(); /* critical section after entry code. */
239 }
240 EXPORT_SYMBOL_GPL(__rcu_read_lock);
241
242 /*
243 * Preemptible RCU implementation for rcu_read_unlock().
244 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
245 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
246 * invoke rcu_read_unlock_special() to clean up after a context switch
247 * in an RCU read-side critical section and other special cases.
248 */
__rcu_read_unlock(void)249 void __rcu_read_unlock(void)
250 {
251 struct task_struct *t = current;
252
253 if (t->rcu_read_lock_nesting != 1) {
254 --t->rcu_read_lock_nesting;
255 } else {
256 barrier(); /* critical section before exit code. */
257 t->rcu_read_lock_nesting = INT_MIN;
258 barrier(); /* assign before ->rcu_read_unlock_special load */
259 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
260 rcu_read_unlock_special(t);
261 barrier(); /* ->rcu_read_unlock_special load before assign */
262 t->rcu_read_lock_nesting = 0;
263 }
264 #ifdef CONFIG_PROVE_LOCKING
265 {
266 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
267
268 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
269 }
270 #endif /* #ifdef CONFIG_PROVE_LOCKING */
271 }
272 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
273
274 #endif /* #ifdef CONFIG_PREEMPT_RCU */
275
276 #ifdef CONFIG_DEBUG_LOCK_ALLOC
277 static struct lock_class_key rcu_lock_key;
278 struct lockdep_map rcu_lock_map =
279 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
280 EXPORT_SYMBOL_GPL(rcu_lock_map);
281
282 static struct lock_class_key rcu_bh_lock_key;
283 struct lockdep_map rcu_bh_lock_map =
284 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
285 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
286
287 static struct lock_class_key rcu_sched_lock_key;
288 struct lockdep_map rcu_sched_lock_map =
289 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
290 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
291
292 static struct lock_class_key rcu_callback_key;
293 struct lockdep_map rcu_callback_map =
294 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
295 EXPORT_SYMBOL_GPL(rcu_callback_map);
296
debug_lockdep_rcu_enabled(void)297 int notrace debug_lockdep_rcu_enabled(void)
298 {
299 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
300 current->lockdep_recursion == 0;
301 }
302 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
303
304 /**
305 * rcu_read_lock_held() - might we be in RCU read-side critical section?
306 *
307 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
308 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
309 * this assumes we are in an RCU read-side critical section unless it can
310 * prove otherwise. This is useful for debug checks in functions that
311 * require that they be called within an RCU read-side critical section.
312 *
313 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
314 * and while lockdep is disabled.
315 *
316 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
317 * occur in the same context, for example, it is illegal to invoke
318 * rcu_read_unlock() in process context if the matching rcu_read_lock()
319 * was invoked from within an irq handler.
320 *
321 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
322 * offline from an RCU perspective, so check for those as well.
323 */
rcu_read_lock_held(void)324 int rcu_read_lock_held(void)
325 {
326 if (!debug_lockdep_rcu_enabled())
327 return 1;
328 if (!rcu_is_watching())
329 return 0;
330 if (!rcu_lockdep_current_cpu_online())
331 return 0;
332 return lock_is_held(&rcu_lock_map);
333 }
334 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
335
336 /**
337 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
338 *
339 * Check for bottom half being disabled, which covers both the
340 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
341 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
342 * will show the situation. This is useful for debug checks in functions
343 * that require that they be called within an RCU read-side critical
344 * section.
345 *
346 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
347 *
348 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
349 * offline from an RCU perspective, so check for those as well.
350 */
rcu_read_lock_bh_held(void)351 int rcu_read_lock_bh_held(void)
352 {
353 if (!debug_lockdep_rcu_enabled())
354 return 1;
355 if (!rcu_is_watching())
356 return 0;
357 if (!rcu_lockdep_current_cpu_online())
358 return 0;
359 return in_softirq() || irqs_disabled();
360 }
361 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
362
363 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
364
365 /**
366 * wakeme_after_rcu() - Callback function to awaken a task after grace period
367 * @head: Pointer to rcu_head member within rcu_synchronize structure
368 *
369 * Awaken the corresponding task now that a grace period has elapsed.
370 */
wakeme_after_rcu(struct rcu_head * head)371 void wakeme_after_rcu(struct rcu_head *head)
372 {
373 struct rcu_synchronize *rcu;
374
375 rcu = container_of(head, struct rcu_synchronize, head);
376 complete(&rcu->completion);
377 }
378 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
379
__wait_rcu_gp(bool checktiny,int n,call_rcu_func_t * crcu_array,struct rcu_synchronize * rs_array)380 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
381 struct rcu_synchronize *rs_array)
382 {
383 int i;
384 int j;
385
386 /* Initialize and register callbacks for each flavor specified. */
387 for (i = 0; i < n; i++) {
388 if (checktiny &&
389 (crcu_array[i] == call_rcu ||
390 crcu_array[i] == call_rcu_bh)) {
391 might_sleep();
392 continue;
393 }
394 init_rcu_head_on_stack(&rs_array[i].head);
395 init_completion(&rs_array[i].completion);
396 for (j = 0; j < i; j++)
397 if (crcu_array[j] == crcu_array[i])
398 break;
399 if (j == i)
400 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
401 }
402
403 /* Wait for all callbacks to be invoked. */
404 for (i = 0; i < n; i++) {
405 if (checktiny &&
406 (crcu_array[i] == call_rcu ||
407 crcu_array[i] == call_rcu_bh))
408 continue;
409 for (j = 0; j < i; j++)
410 if (crcu_array[j] == crcu_array[i])
411 break;
412 if (j == i)
413 wait_for_completion(&rs_array[i].completion);
414 destroy_rcu_head_on_stack(&rs_array[i].head);
415 }
416 }
417 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
418
419 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
init_rcu_head(struct rcu_head * head)420 void init_rcu_head(struct rcu_head *head)
421 {
422 debug_object_init(head, &rcuhead_debug_descr);
423 }
424 EXPORT_SYMBOL_GPL(init_rcu_head);
425
destroy_rcu_head(struct rcu_head * head)426 void destroy_rcu_head(struct rcu_head *head)
427 {
428 debug_object_free(head, &rcuhead_debug_descr);
429 }
430 EXPORT_SYMBOL_GPL(destroy_rcu_head);
431
rcuhead_is_static_object(void * addr)432 static bool rcuhead_is_static_object(void *addr)
433 {
434 return true;
435 }
436
437 /**
438 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
439 * @head: pointer to rcu_head structure to be initialized
440 *
441 * This function informs debugobjects of a new rcu_head structure that
442 * has been allocated as an auto variable on the stack. This function
443 * is not required for rcu_head structures that are statically defined or
444 * that are dynamically allocated on the heap. This function has no
445 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
446 */
init_rcu_head_on_stack(struct rcu_head * head)447 void init_rcu_head_on_stack(struct rcu_head *head)
448 {
449 debug_object_init_on_stack(head, &rcuhead_debug_descr);
450 }
451 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
452
453 /**
454 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
455 * @head: pointer to rcu_head structure to be initialized
456 *
457 * This function informs debugobjects that an on-stack rcu_head structure
458 * is about to go out of scope. As with init_rcu_head_on_stack(), this
459 * function is not required for rcu_head structures that are statically
460 * defined or that are dynamically allocated on the heap. Also as with
461 * init_rcu_head_on_stack(), this function has no effect for
462 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
463 */
destroy_rcu_head_on_stack(struct rcu_head * head)464 void destroy_rcu_head_on_stack(struct rcu_head *head)
465 {
466 debug_object_free(head, &rcuhead_debug_descr);
467 }
468 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
469
470 struct debug_obj_descr rcuhead_debug_descr = {
471 .name = "rcu_head",
472 .is_static_object = rcuhead_is_static_object,
473 };
474 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
475 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
476
477 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
do_trace_rcu_torture_read(const char * rcutorturename,struct rcu_head * rhp,unsigned long secs,unsigned long c_old,unsigned long c)478 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
479 unsigned long secs,
480 unsigned long c_old, unsigned long c)
481 {
482 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
483 }
484 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
485 #else
486 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
487 do { } while (0)
488 #endif
489
490 #ifdef CONFIG_RCU_STALL_COMMON
491
492 #ifdef CONFIG_PROVE_RCU
493 #define RCU_STALL_DELAY_DELTA (5 * HZ)
494 #else
495 #define RCU_STALL_DELAY_DELTA 0
496 #endif
497
498 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
499 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
500
501 module_param(rcu_cpu_stall_suppress, int, 0644);
502 module_param(rcu_cpu_stall_timeout, int, 0644);
503
rcu_jiffies_till_stall_check(void)504 int rcu_jiffies_till_stall_check(void)
505 {
506 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
507
508 /*
509 * Limit check must be consistent with the Kconfig limits
510 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
511 */
512 if (till_stall_check < 3) {
513 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
514 till_stall_check = 3;
515 } else if (till_stall_check > 300) {
516 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
517 till_stall_check = 300;
518 }
519 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
520 }
521
rcu_sysrq_start(void)522 void rcu_sysrq_start(void)
523 {
524 if (!rcu_cpu_stall_suppress)
525 rcu_cpu_stall_suppress = 2;
526 }
527
rcu_sysrq_end(void)528 void rcu_sysrq_end(void)
529 {
530 if (rcu_cpu_stall_suppress == 2)
531 rcu_cpu_stall_suppress = 0;
532 }
533
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)534 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
535 {
536 rcu_cpu_stall_suppress = 1;
537 return NOTIFY_DONE;
538 }
539
540 static struct notifier_block rcu_panic_block = {
541 .notifier_call = rcu_panic,
542 };
543
check_cpu_stall_init(void)544 static int __init check_cpu_stall_init(void)
545 {
546 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
547 return 0;
548 }
549 early_initcall(check_cpu_stall_init);
550
551 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
552
553 #ifdef CONFIG_TASKS_RCU
554
555 /*
556 * Simple variant of RCU whose quiescent states are voluntary context switch,
557 * user-space execution, and idle. As such, grace periods can take one good
558 * long time. There are no read-side primitives similar to rcu_read_lock()
559 * and rcu_read_unlock() because this implementation is intended to get
560 * the system into a safe state for some of the manipulations involved in
561 * tracing and the like. Finally, this implementation does not support
562 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
563 * per-CPU callback lists will be needed.
564 */
565
566 /* Global list of callbacks and associated lock. */
567 static struct rcu_head *rcu_tasks_cbs_head;
568 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
569 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
570 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
571
572 /* Track exiting tasks in order to allow them to be waited for. */
573 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
574
575 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
576 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
577 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
578 module_param(rcu_task_stall_timeout, int, 0644);
579
580 static void rcu_spawn_tasks_kthread(void);
581 static struct task_struct *rcu_tasks_kthread_ptr;
582
583 /**
584 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
585 * @rhp: structure to be used for queueing the RCU updates.
586 * @func: actual callback function to be invoked after the grace period
587 *
588 * The callback function will be invoked some time after a full grace
589 * period elapses, in other words after all currently executing RCU
590 * read-side critical sections have completed. call_rcu_tasks() assumes
591 * that the read-side critical sections end at a voluntary context
592 * switch (not a preemption!), entry into idle, or transition to usermode
593 * execution. As such, there are no read-side primitives analogous to
594 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
595 * to determine that all tasks have passed through a safe state, not so
596 * much for data-strcuture synchronization.
597 *
598 * See the description of call_rcu() for more detailed information on
599 * memory ordering guarantees.
600 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)601 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
602 {
603 unsigned long flags;
604 bool needwake;
605 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
606
607 rhp->next = NULL;
608 rhp->func = func;
609 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
610 needwake = !rcu_tasks_cbs_head;
611 *rcu_tasks_cbs_tail = rhp;
612 rcu_tasks_cbs_tail = &rhp->next;
613 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
614 /* We can't create the thread unless interrupts are enabled. */
615 if ((needwake && havetask) ||
616 (!havetask && !irqs_disabled_flags(flags))) {
617 rcu_spawn_tasks_kthread();
618 wake_up(&rcu_tasks_cbs_wq);
619 }
620 }
621 EXPORT_SYMBOL_GPL(call_rcu_tasks);
622
623 /**
624 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
625 *
626 * Control will return to the caller some time after a full rcu-tasks
627 * grace period has elapsed, in other words after all currently
628 * executing rcu-tasks read-side critical sections have elapsed. These
629 * read-side critical sections are delimited by calls to schedule(),
630 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
631 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
632 *
633 * This is a very specialized primitive, intended only for a few uses in
634 * tracing and other situations requiring manipulation of function
635 * preambles and profiling hooks. The synchronize_rcu_tasks() function
636 * is not (yet) intended for heavy use from multiple CPUs.
637 *
638 * Note that this guarantee implies further memory-ordering guarantees.
639 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
640 * each CPU is guaranteed to have executed a full memory barrier since the
641 * end of its last RCU-tasks read-side critical section whose beginning
642 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
643 * having an RCU-tasks read-side critical section that extends beyond
644 * the return from synchronize_rcu_tasks() is guaranteed to have executed
645 * a full memory barrier after the beginning of synchronize_rcu_tasks()
646 * and before the beginning of that RCU-tasks read-side critical section.
647 * Note that these guarantees include CPUs that are offline, idle, or
648 * executing in user mode, as well as CPUs that are executing in the kernel.
649 *
650 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
651 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
652 * to have executed a full memory barrier during the execution of
653 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
654 * (but again only if the system has more than one CPU).
655 */
synchronize_rcu_tasks(void)656 void synchronize_rcu_tasks(void)
657 {
658 /* Complain if the scheduler has not started. */
659 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
660 "synchronize_rcu_tasks called too soon");
661
662 /* Wait for the grace period. */
663 wait_rcu_gp(call_rcu_tasks);
664 }
665 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
666
667 /**
668 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
669 *
670 * Although the current implementation is guaranteed to wait, it is not
671 * obligated to, for example, if there are no pending callbacks.
672 */
rcu_barrier_tasks(void)673 void rcu_barrier_tasks(void)
674 {
675 /* There is only one callback queue, so this is easy. ;-) */
676 synchronize_rcu_tasks();
677 }
678 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
679
680 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)681 static void check_holdout_task(struct task_struct *t,
682 bool needreport, bool *firstreport)
683 {
684 int cpu;
685
686 if (!READ_ONCE(t->rcu_tasks_holdout) ||
687 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
688 !READ_ONCE(t->on_rq) ||
689 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
690 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
691 WRITE_ONCE(t->rcu_tasks_holdout, false);
692 list_del_init(&t->rcu_tasks_holdout_list);
693 put_task_struct(t);
694 return;
695 }
696 rcu_request_urgent_qs_task(t);
697 if (!needreport)
698 return;
699 if (*firstreport) {
700 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
701 *firstreport = false;
702 }
703 cpu = task_cpu(t);
704 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
705 t, ".I"[is_idle_task(t)],
706 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
707 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
708 t->rcu_tasks_idle_cpu, cpu);
709 sched_show_task(t);
710 }
711
712 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)713 static int __noreturn rcu_tasks_kthread(void *arg)
714 {
715 unsigned long flags;
716 struct task_struct *g, *t;
717 unsigned long lastreport;
718 struct rcu_head *list;
719 struct rcu_head *next;
720 LIST_HEAD(rcu_tasks_holdouts);
721
722 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
723 housekeeping_affine(current);
724
725 /*
726 * Each pass through the following loop makes one check for
727 * newly arrived callbacks, and, if there are some, waits for
728 * one RCU-tasks grace period and then invokes the callbacks.
729 * This loop is terminated by the system going down. ;-)
730 */
731 for (;;) {
732
733 /* Pick up any new callbacks. */
734 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
735 list = rcu_tasks_cbs_head;
736 rcu_tasks_cbs_head = NULL;
737 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
738 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
739
740 /* If there were none, wait a bit and start over. */
741 if (!list) {
742 wait_event_interruptible(rcu_tasks_cbs_wq,
743 rcu_tasks_cbs_head);
744 if (!rcu_tasks_cbs_head) {
745 WARN_ON(signal_pending(current));
746 schedule_timeout_interruptible(HZ/10);
747 }
748 continue;
749 }
750
751 /*
752 * Wait for all pre-existing t->on_rq and t->nvcsw
753 * transitions to complete. Invoking synchronize_sched()
754 * suffices because all these transitions occur with
755 * interrupts disabled. Without this synchronize_sched(),
756 * a read-side critical section that started before the
757 * grace period might be incorrectly seen as having started
758 * after the grace period.
759 *
760 * This synchronize_sched() also dispenses with the
761 * need for a memory barrier on the first store to
762 * ->rcu_tasks_holdout, as it forces the store to happen
763 * after the beginning of the grace period.
764 */
765 synchronize_sched();
766
767 /*
768 * There were callbacks, so we need to wait for an
769 * RCU-tasks grace period. Start off by scanning
770 * the task list for tasks that are not already
771 * voluntarily blocked. Mark these tasks and make
772 * a list of them in rcu_tasks_holdouts.
773 */
774 rcu_read_lock();
775 for_each_process_thread(g, t) {
776 if (t != current && READ_ONCE(t->on_rq) &&
777 !is_idle_task(t)) {
778 get_task_struct(t);
779 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
780 WRITE_ONCE(t->rcu_tasks_holdout, true);
781 list_add(&t->rcu_tasks_holdout_list,
782 &rcu_tasks_holdouts);
783 }
784 }
785 rcu_read_unlock();
786
787 /*
788 * Wait for tasks that are in the process of exiting.
789 * This does only part of the job, ensuring that all
790 * tasks that were previously exiting reach the point
791 * where they have disabled preemption, allowing the
792 * later synchronize_sched() to finish the job.
793 */
794 synchronize_srcu(&tasks_rcu_exit_srcu);
795
796 /*
797 * Each pass through the following loop scans the list
798 * of holdout tasks, removing any that are no longer
799 * holdouts. When the list is empty, we are done.
800 */
801 lastreport = jiffies;
802 while (!list_empty(&rcu_tasks_holdouts)) {
803 bool firstreport;
804 bool needreport;
805 int rtst;
806 struct task_struct *t1;
807
808 schedule_timeout_interruptible(HZ);
809 rtst = READ_ONCE(rcu_task_stall_timeout);
810 needreport = rtst > 0 &&
811 time_after(jiffies, lastreport + rtst);
812 if (needreport)
813 lastreport = jiffies;
814 firstreport = true;
815 WARN_ON(signal_pending(current));
816 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
817 rcu_tasks_holdout_list) {
818 check_holdout_task(t, needreport, &firstreport);
819 cond_resched();
820 }
821 }
822
823 /*
824 * Because ->on_rq and ->nvcsw are not guaranteed
825 * to have a full memory barriers prior to them in the
826 * schedule() path, memory reordering on other CPUs could
827 * cause their RCU-tasks read-side critical sections to
828 * extend past the end of the grace period. However,
829 * because these ->nvcsw updates are carried out with
830 * interrupts disabled, we can use synchronize_sched()
831 * to force the needed ordering on all such CPUs.
832 *
833 * This synchronize_sched() also confines all
834 * ->rcu_tasks_holdout accesses to be within the grace
835 * period, avoiding the need for memory barriers for
836 * ->rcu_tasks_holdout accesses.
837 *
838 * In addition, this synchronize_sched() waits for exiting
839 * tasks to complete their final preempt_disable() region
840 * of execution, cleaning up after the synchronize_srcu()
841 * above.
842 */
843 synchronize_sched();
844
845 /* Invoke the callbacks. */
846 while (list) {
847 next = list->next;
848 local_bh_disable();
849 list->func(list);
850 local_bh_enable();
851 list = next;
852 cond_resched();
853 }
854 schedule_timeout_uninterruptible(HZ/10);
855 }
856 }
857
858 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
rcu_spawn_tasks_kthread(void)859 static void rcu_spawn_tasks_kthread(void)
860 {
861 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
862 struct task_struct *t;
863
864 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
865 smp_mb(); /* Ensure caller sees full kthread. */
866 return;
867 }
868 mutex_lock(&rcu_tasks_kthread_mutex);
869 if (rcu_tasks_kthread_ptr) {
870 mutex_unlock(&rcu_tasks_kthread_mutex);
871 return;
872 }
873 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
874 BUG_ON(IS_ERR(t));
875 smp_mb(); /* Ensure others see full kthread. */
876 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
877 mutex_unlock(&rcu_tasks_kthread_mutex);
878 }
879
880 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
exit_tasks_rcu_start(void)881 void exit_tasks_rcu_start(void)
882 {
883 preempt_disable();
884 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
885 preempt_enable();
886 }
887
888 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
exit_tasks_rcu_finish(void)889 void exit_tasks_rcu_finish(void)
890 {
891 preempt_disable();
892 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
893 preempt_enable();
894 }
895
896 #endif /* #ifdef CONFIG_TASKS_RCU */
897
898 #ifndef CONFIG_TINY_RCU
899
900 /*
901 * Print any non-default Tasks RCU settings.
902 */
rcu_tasks_bootup_oddness(void)903 static void __init rcu_tasks_bootup_oddness(void)
904 {
905 #ifdef CONFIG_TASKS_RCU
906 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
907 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
908 else
909 pr_info("\tTasks RCU enabled.\n");
910 #endif /* #ifdef CONFIG_TASKS_RCU */
911 }
912
913 #endif /* #ifndef CONFIG_TINY_RCU */
914
915 #ifdef CONFIG_PROVE_RCU
916
917 /*
918 * Early boot self test parameters, one for each flavor
919 */
920 static bool rcu_self_test;
921 static bool rcu_self_test_bh;
922 static bool rcu_self_test_sched;
923
924 module_param(rcu_self_test, bool, 0444);
925 module_param(rcu_self_test_bh, bool, 0444);
926 module_param(rcu_self_test_sched, bool, 0444);
927
928 static int rcu_self_test_counter;
929
test_callback(struct rcu_head * r)930 static void test_callback(struct rcu_head *r)
931 {
932 rcu_self_test_counter++;
933 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
934 }
935
early_boot_test_call_rcu(void)936 static void early_boot_test_call_rcu(void)
937 {
938 static struct rcu_head head;
939
940 call_rcu(&head, test_callback);
941 }
942
early_boot_test_call_rcu_bh(void)943 static void early_boot_test_call_rcu_bh(void)
944 {
945 static struct rcu_head head;
946
947 call_rcu_bh(&head, test_callback);
948 }
949
early_boot_test_call_rcu_sched(void)950 static void early_boot_test_call_rcu_sched(void)
951 {
952 static struct rcu_head head;
953
954 call_rcu_sched(&head, test_callback);
955 }
956
rcu_early_boot_tests(void)957 void rcu_early_boot_tests(void)
958 {
959 pr_info("Running RCU self tests\n");
960
961 if (rcu_self_test)
962 early_boot_test_call_rcu();
963 if (rcu_self_test_bh)
964 early_boot_test_call_rcu_bh();
965 if (rcu_self_test_sched)
966 early_boot_test_call_rcu_sched();
967 rcu_test_sync_prims();
968 }
969
rcu_verify_early_boot_tests(void)970 static int rcu_verify_early_boot_tests(void)
971 {
972 int ret = 0;
973 int early_boot_test_counter = 0;
974
975 if (rcu_self_test) {
976 early_boot_test_counter++;
977 rcu_barrier();
978 }
979 if (rcu_self_test_bh) {
980 early_boot_test_counter++;
981 rcu_barrier_bh();
982 }
983 if (rcu_self_test_sched) {
984 early_boot_test_counter++;
985 rcu_barrier_sched();
986 }
987
988 if (rcu_self_test_counter != early_boot_test_counter) {
989 WARN_ON(1);
990 ret = -1;
991 }
992
993 return ret;
994 }
995 late_initcall(rcu_verify_early_boot_tests);
996 #else
rcu_early_boot_tests(void)997 void rcu_early_boot_tests(void) {}
998 #endif /* CONFIG_PROVE_RCU */
999
1000 #ifndef CONFIG_TINY_RCU
1001
1002 /*
1003 * Print any significant non-default boot-time settings.
1004 */
rcupdate_announce_bootup_oddness(void)1005 void __init rcupdate_announce_bootup_oddness(void)
1006 {
1007 if (rcu_normal)
1008 pr_info("\tNo expedited grace period (rcu_normal).\n");
1009 else if (rcu_normal_after_boot)
1010 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
1011 else if (rcu_expedited)
1012 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1013 if (rcu_cpu_stall_suppress)
1014 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1015 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1016 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1017 rcu_tasks_bootup_oddness();
1018 }
1019
1020 #endif /* #ifndef CONFIG_TINY_RCU */
1021