• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 
55 #define CREATE_TRACE_POINTS
56 
57 #include "rcu.h"
58 
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "rcupdate."
63 
64 #ifndef CONFIG_TINY_RCU
65 extern int rcu_expedited; /* from sysctl */
66 module_param(rcu_expedited, int, 0);
67 extern int rcu_normal; /* from sysctl */
68 module_param(rcu_normal, int, 0);
69 static int rcu_normal_after_boot;
70 module_param(rcu_normal_after_boot, int, 0);
71 #endif /* #ifndef CONFIG_TINY_RCU */
72 
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 /**
75  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
76  *
77  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
78  * RCU-sched read-side critical section.  In absence of
79  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
80  * critical section unless it can prove otherwise.  Note that disabling
81  * of preemption (including disabling irqs) counts as an RCU-sched
82  * read-side critical section.  This is useful for debug checks in functions
83  * that required that they be called within an RCU-sched read-side
84  * critical section.
85  *
86  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
87  * and while lockdep is disabled.
88  *
89  * Note that if the CPU is in the idle loop from an RCU point of
90  * view (ie: that we are in the section between rcu_idle_enter() and
91  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
92  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
93  * that are in such a section, considering these as in extended quiescent
94  * state, so such a CPU is effectively never in an RCU read-side critical
95  * section regardless of what RCU primitives it invokes.  This state of
96  * affairs is required --- we need to keep an RCU-free window in idle
97  * where the CPU may possibly enter into low power mode. This way we can
98  * notice an extended quiescent state to other CPUs that started a grace
99  * period. Otherwise we would delay any grace period as long as we run in
100  * the idle task.
101  *
102  * Similarly, we avoid claiming an SRCU read lock held if the current
103  * CPU is offline.
104  */
rcu_read_lock_sched_held(void)105 int rcu_read_lock_sched_held(void)
106 {
107 	int lockdep_opinion = 0;
108 
109 	if (!debug_lockdep_rcu_enabled())
110 		return 1;
111 	if (!rcu_is_watching())
112 		return 0;
113 	if (!rcu_lockdep_current_cpu_online())
114 		return 0;
115 	if (debug_locks)
116 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
117 	return lockdep_opinion || !preemptible();
118 }
119 EXPORT_SYMBOL(rcu_read_lock_sched_held);
120 #endif
121 
122 #ifndef CONFIG_TINY_RCU
123 
124 /*
125  * Should expedited grace-period primitives always fall back to their
126  * non-expedited counterparts?  Intended for use within RCU.  Note
127  * that if the user specifies both rcu_expedited and rcu_normal, then
128  * rcu_normal wins.  (Except during the time period during boot from
129  * when the first task is spawned until the rcu_set_runtime_mode()
130  * core_initcall() is invoked, at which point everything is expedited.)
131  */
rcu_gp_is_normal(void)132 bool rcu_gp_is_normal(void)
133 {
134 	return READ_ONCE(rcu_normal) &&
135 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
136 }
137 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
138 
139 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
140 
141 /*
142  * Should normal grace-period primitives be expedited?  Intended for
143  * use within RCU.  Note that this function takes the rcu_expedited
144  * sysfs/boot variable and rcu_scheduler_active into account as well
145  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
146  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
147  */
rcu_gp_is_expedited(void)148 bool rcu_gp_is_expedited(void)
149 {
150 	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
151 	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
152 }
153 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
154 
155 /**
156  * rcu_expedite_gp - Expedite future RCU grace periods
157  *
158  * After a call to this function, future calls to synchronize_rcu() and
159  * friends act as the corresponding synchronize_rcu_expedited() function
160  * had instead been called.
161  */
rcu_expedite_gp(void)162 void rcu_expedite_gp(void)
163 {
164 	atomic_inc(&rcu_expedited_nesting);
165 }
166 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
167 
168 /**
169  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
170  *
171  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
172  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
173  * and if the rcu_expedited sysfs/boot parameter is not set, then all
174  * subsequent calls to synchronize_rcu() and friends will return to
175  * their normal non-expedited behavior.
176  */
rcu_unexpedite_gp(void)177 void rcu_unexpedite_gp(void)
178 {
179 	atomic_dec(&rcu_expedited_nesting);
180 }
181 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
182 
183 /*
184  * Inform RCU of the end of the in-kernel boot sequence.
185  */
rcu_end_inkernel_boot(void)186 void rcu_end_inkernel_boot(void)
187 {
188 	rcu_unexpedite_gp();
189 	if (rcu_normal_after_boot)
190 		WRITE_ONCE(rcu_normal, 1);
191 }
192 
193 #endif /* #ifndef CONFIG_TINY_RCU */
194 
195 /*
196  * Test each non-SRCU synchronous grace-period wait API.  This is
197  * useful just after a change in mode for these primitives, and
198  * during early boot.
199  */
rcu_test_sync_prims(void)200 void rcu_test_sync_prims(void)
201 {
202 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
203 		return;
204 	synchronize_rcu();
205 	synchronize_rcu_bh();
206 	synchronize_sched();
207 	synchronize_rcu_expedited();
208 	synchronize_rcu_bh_expedited();
209 	synchronize_sched_expedited();
210 }
211 
212 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
213 
214 /*
215  * Switch to run-time mode once RCU has fully initialized.
216  */
rcu_set_runtime_mode(void)217 static int __init rcu_set_runtime_mode(void)
218 {
219 	rcu_test_sync_prims();
220 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
221 	rcu_test_sync_prims();
222 	return 0;
223 }
224 core_initcall(rcu_set_runtime_mode);
225 
226 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
227 
228 #ifdef CONFIG_PREEMPT_RCU
229 
230 /*
231  * Preemptible RCU implementation for rcu_read_lock().
232  * Just increment ->rcu_read_lock_nesting, shared state will be updated
233  * if we block.
234  */
__rcu_read_lock(void)235 void __rcu_read_lock(void)
236 {
237 	current->rcu_read_lock_nesting++;
238 	barrier();  /* critical section after entry code. */
239 }
240 EXPORT_SYMBOL_GPL(__rcu_read_lock);
241 
242 /*
243  * Preemptible RCU implementation for rcu_read_unlock().
244  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
245  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
246  * invoke rcu_read_unlock_special() to clean up after a context switch
247  * in an RCU read-side critical section and other special cases.
248  */
__rcu_read_unlock(void)249 void __rcu_read_unlock(void)
250 {
251 	struct task_struct *t = current;
252 
253 	if (t->rcu_read_lock_nesting != 1) {
254 		--t->rcu_read_lock_nesting;
255 	} else {
256 		barrier();  /* critical section before exit code. */
257 		t->rcu_read_lock_nesting = INT_MIN;
258 		barrier();  /* assign before ->rcu_read_unlock_special load */
259 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
260 			rcu_read_unlock_special(t);
261 		barrier();  /* ->rcu_read_unlock_special load before assign */
262 		t->rcu_read_lock_nesting = 0;
263 	}
264 #ifdef CONFIG_PROVE_LOCKING
265 	{
266 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
267 
268 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
269 	}
270 #endif /* #ifdef CONFIG_PROVE_LOCKING */
271 }
272 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
273 
274 #endif /* #ifdef CONFIG_PREEMPT_RCU */
275 
276 #ifdef CONFIG_DEBUG_LOCK_ALLOC
277 static struct lock_class_key rcu_lock_key;
278 struct lockdep_map rcu_lock_map =
279 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
280 EXPORT_SYMBOL_GPL(rcu_lock_map);
281 
282 static struct lock_class_key rcu_bh_lock_key;
283 struct lockdep_map rcu_bh_lock_map =
284 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
285 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
286 
287 static struct lock_class_key rcu_sched_lock_key;
288 struct lockdep_map rcu_sched_lock_map =
289 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
290 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
291 
292 static struct lock_class_key rcu_callback_key;
293 struct lockdep_map rcu_callback_map =
294 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
295 EXPORT_SYMBOL_GPL(rcu_callback_map);
296 
debug_lockdep_rcu_enabled(void)297 int notrace debug_lockdep_rcu_enabled(void)
298 {
299 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
300 	       current->lockdep_recursion == 0;
301 }
302 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
303 
304 /**
305  * rcu_read_lock_held() - might we be in RCU read-side critical section?
306  *
307  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
308  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
309  * this assumes we are in an RCU read-side critical section unless it can
310  * prove otherwise.  This is useful for debug checks in functions that
311  * require that they be called within an RCU read-side critical section.
312  *
313  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
314  * and while lockdep is disabled.
315  *
316  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
317  * occur in the same context, for example, it is illegal to invoke
318  * rcu_read_unlock() in process context if the matching rcu_read_lock()
319  * was invoked from within an irq handler.
320  *
321  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
322  * offline from an RCU perspective, so check for those as well.
323  */
rcu_read_lock_held(void)324 int rcu_read_lock_held(void)
325 {
326 	if (!debug_lockdep_rcu_enabled())
327 		return 1;
328 	if (!rcu_is_watching())
329 		return 0;
330 	if (!rcu_lockdep_current_cpu_online())
331 		return 0;
332 	return lock_is_held(&rcu_lock_map);
333 }
334 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
335 
336 /**
337  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
338  *
339  * Check for bottom half being disabled, which covers both the
340  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
341  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
342  * will show the situation.  This is useful for debug checks in functions
343  * that require that they be called within an RCU read-side critical
344  * section.
345  *
346  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
347  *
348  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
349  * offline from an RCU perspective, so check for those as well.
350  */
rcu_read_lock_bh_held(void)351 int rcu_read_lock_bh_held(void)
352 {
353 	if (!debug_lockdep_rcu_enabled())
354 		return 1;
355 	if (!rcu_is_watching())
356 		return 0;
357 	if (!rcu_lockdep_current_cpu_online())
358 		return 0;
359 	return in_softirq() || irqs_disabled();
360 }
361 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
362 
363 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
364 
365 /**
366  * wakeme_after_rcu() - Callback function to awaken a task after grace period
367  * @head: Pointer to rcu_head member within rcu_synchronize structure
368  *
369  * Awaken the corresponding task now that a grace period has elapsed.
370  */
wakeme_after_rcu(struct rcu_head * head)371 void wakeme_after_rcu(struct rcu_head *head)
372 {
373 	struct rcu_synchronize *rcu;
374 
375 	rcu = container_of(head, struct rcu_synchronize, head);
376 	complete(&rcu->completion);
377 }
378 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
379 
__wait_rcu_gp(bool checktiny,int n,call_rcu_func_t * crcu_array,struct rcu_synchronize * rs_array)380 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
381 		   struct rcu_synchronize *rs_array)
382 {
383 	int i;
384 	int j;
385 
386 	/* Initialize and register callbacks for each flavor specified. */
387 	for (i = 0; i < n; i++) {
388 		if (checktiny &&
389 		    (crcu_array[i] == call_rcu ||
390 		     crcu_array[i] == call_rcu_bh)) {
391 			might_sleep();
392 			continue;
393 		}
394 		init_rcu_head_on_stack(&rs_array[i].head);
395 		init_completion(&rs_array[i].completion);
396 		for (j = 0; j < i; j++)
397 			if (crcu_array[j] == crcu_array[i])
398 				break;
399 		if (j == i)
400 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
401 	}
402 
403 	/* Wait for all callbacks to be invoked. */
404 	for (i = 0; i < n; i++) {
405 		if (checktiny &&
406 		    (crcu_array[i] == call_rcu ||
407 		     crcu_array[i] == call_rcu_bh))
408 			continue;
409 		for (j = 0; j < i; j++)
410 			if (crcu_array[j] == crcu_array[i])
411 				break;
412 		if (j == i)
413 			wait_for_completion(&rs_array[i].completion);
414 		destroy_rcu_head_on_stack(&rs_array[i].head);
415 	}
416 }
417 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
418 
419 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
init_rcu_head(struct rcu_head * head)420 void init_rcu_head(struct rcu_head *head)
421 {
422 	debug_object_init(head, &rcuhead_debug_descr);
423 }
424 EXPORT_SYMBOL_GPL(init_rcu_head);
425 
destroy_rcu_head(struct rcu_head * head)426 void destroy_rcu_head(struct rcu_head *head)
427 {
428 	debug_object_free(head, &rcuhead_debug_descr);
429 }
430 EXPORT_SYMBOL_GPL(destroy_rcu_head);
431 
rcuhead_is_static_object(void * addr)432 static bool rcuhead_is_static_object(void *addr)
433 {
434 	return true;
435 }
436 
437 /**
438  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
439  * @head: pointer to rcu_head structure to be initialized
440  *
441  * This function informs debugobjects of a new rcu_head structure that
442  * has been allocated as an auto variable on the stack.  This function
443  * is not required for rcu_head structures that are statically defined or
444  * that are dynamically allocated on the heap.  This function has no
445  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
446  */
init_rcu_head_on_stack(struct rcu_head * head)447 void init_rcu_head_on_stack(struct rcu_head *head)
448 {
449 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
450 }
451 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
452 
453 /**
454  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
455  * @head: pointer to rcu_head structure to be initialized
456  *
457  * This function informs debugobjects that an on-stack rcu_head structure
458  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
459  * function is not required for rcu_head structures that are statically
460  * defined or that are dynamically allocated on the heap.  Also as with
461  * init_rcu_head_on_stack(), this function has no effect for
462  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
463  */
destroy_rcu_head_on_stack(struct rcu_head * head)464 void destroy_rcu_head_on_stack(struct rcu_head *head)
465 {
466 	debug_object_free(head, &rcuhead_debug_descr);
467 }
468 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
469 
470 struct debug_obj_descr rcuhead_debug_descr = {
471 	.name = "rcu_head",
472 	.is_static_object = rcuhead_is_static_object,
473 };
474 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
475 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
476 
477 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
do_trace_rcu_torture_read(const char * rcutorturename,struct rcu_head * rhp,unsigned long secs,unsigned long c_old,unsigned long c)478 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
479 			       unsigned long secs,
480 			       unsigned long c_old, unsigned long c)
481 {
482 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
483 }
484 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
485 #else
486 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
487 	do { } while (0)
488 #endif
489 
490 #ifdef CONFIG_RCU_STALL_COMMON
491 
492 #ifdef CONFIG_PROVE_RCU
493 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
494 #else
495 #define RCU_STALL_DELAY_DELTA	       0
496 #endif
497 
498 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
499 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
500 
501 module_param(rcu_cpu_stall_suppress, int, 0644);
502 module_param(rcu_cpu_stall_timeout, int, 0644);
503 
rcu_jiffies_till_stall_check(void)504 int rcu_jiffies_till_stall_check(void)
505 {
506 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
507 
508 	/*
509 	 * Limit check must be consistent with the Kconfig limits
510 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
511 	 */
512 	if (till_stall_check < 3) {
513 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
514 		till_stall_check = 3;
515 	} else if (till_stall_check > 300) {
516 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
517 		till_stall_check = 300;
518 	}
519 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
520 }
521 
rcu_sysrq_start(void)522 void rcu_sysrq_start(void)
523 {
524 	if (!rcu_cpu_stall_suppress)
525 		rcu_cpu_stall_suppress = 2;
526 }
527 
rcu_sysrq_end(void)528 void rcu_sysrq_end(void)
529 {
530 	if (rcu_cpu_stall_suppress == 2)
531 		rcu_cpu_stall_suppress = 0;
532 }
533 
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)534 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
535 {
536 	rcu_cpu_stall_suppress = 1;
537 	return NOTIFY_DONE;
538 }
539 
540 static struct notifier_block rcu_panic_block = {
541 	.notifier_call = rcu_panic,
542 };
543 
check_cpu_stall_init(void)544 static int __init check_cpu_stall_init(void)
545 {
546 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
547 	return 0;
548 }
549 early_initcall(check_cpu_stall_init);
550 
551 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
552 
553 #ifdef CONFIG_TASKS_RCU
554 
555 /*
556  * Simple variant of RCU whose quiescent states are voluntary context switch,
557  * user-space execution, and idle.  As such, grace periods can take one good
558  * long time.  There are no read-side primitives similar to rcu_read_lock()
559  * and rcu_read_unlock() because this implementation is intended to get
560  * the system into a safe state for some of the manipulations involved in
561  * tracing and the like.  Finally, this implementation does not support
562  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
563  * per-CPU callback lists will be needed.
564  */
565 
566 /* Global list of callbacks and associated lock. */
567 static struct rcu_head *rcu_tasks_cbs_head;
568 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
569 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
570 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
571 
572 /* Track exiting tasks in order to allow them to be waited for. */
573 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
574 
575 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
576 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
577 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
578 module_param(rcu_task_stall_timeout, int, 0644);
579 
580 static void rcu_spawn_tasks_kthread(void);
581 static struct task_struct *rcu_tasks_kthread_ptr;
582 
583 /**
584  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
585  * @rhp: structure to be used for queueing the RCU updates.
586  * @func: actual callback function to be invoked after the grace period
587  *
588  * The callback function will be invoked some time after a full grace
589  * period elapses, in other words after all currently executing RCU
590  * read-side critical sections have completed. call_rcu_tasks() assumes
591  * that the read-side critical sections end at a voluntary context
592  * switch (not a preemption!), entry into idle, or transition to usermode
593  * execution.  As such, there are no read-side primitives analogous to
594  * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
595  * to determine that all tasks have passed through a safe state, not so
596  * much for data-strcuture synchronization.
597  *
598  * See the description of call_rcu() for more detailed information on
599  * memory ordering guarantees.
600  */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)601 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
602 {
603 	unsigned long flags;
604 	bool needwake;
605 	bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
606 
607 	rhp->next = NULL;
608 	rhp->func = func;
609 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
610 	needwake = !rcu_tasks_cbs_head;
611 	*rcu_tasks_cbs_tail = rhp;
612 	rcu_tasks_cbs_tail = &rhp->next;
613 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
614 	/* We can't create the thread unless interrupts are enabled. */
615 	if ((needwake && havetask) ||
616 	    (!havetask && !irqs_disabled_flags(flags))) {
617 		rcu_spawn_tasks_kthread();
618 		wake_up(&rcu_tasks_cbs_wq);
619 	}
620 }
621 EXPORT_SYMBOL_GPL(call_rcu_tasks);
622 
623 /**
624  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
625  *
626  * Control will return to the caller some time after a full rcu-tasks
627  * grace period has elapsed, in other words after all currently
628  * executing rcu-tasks read-side critical sections have elapsed.  These
629  * read-side critical sections are delimited by calls to schedule(),
630  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
631  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
632  *
633  * This is a very specialized primitive, intended only for a few uses in
634  * tracing and other situations requiring manipulation of function
635  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
636  * is not (yet) intended for heavy use from multiple CPUs.
637  *
638  * Note that this guarantee implies further memory-ordering guarantees.
639  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
640  * each CPU is guaranteed to have executed a full memory barrier since the
641  * end of its last RCU-tasks read-side critical section whose beginning
642  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
643  * having an RCU-tasks read-side critical section that extends beyond
644  * the return from synchronize_rcu_tasks() is guaranteed to have executed
645  * a full memory barrier after the beginning of synchronize_rcu_tasks()
646  * and before the beginning of that RCU-tasks read-side critical section.
647  * Note that these guarantees include CPUs that are offline, idle, or
648  * executing in user mode, as well as CPUs that are executing in the kernel.
649  *
650  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
651  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
652  * to have executed a full memory barrier during the execution of
653  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
654  * (but again only if the system has more than one CPU).
655  */
synchronize_rcu_tasks(void)656 void synchronize_rcu_tasks(void)
657 {
658 	/* Complain if the scheduler has not started.  */
659 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
660 			 "synchronize_rcu_tasks called too soon");
661 
662 	/* Wait for the grace period. */
663 	wait_rcu_gp(call_rcu_tasks);
664 }
665 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
666 
667 /**
668  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
669  *
670  * Although the current implementation is guaranteed to wait, it is not
671  * obligated to, for example, if there are no pending callbacks.
672  */
rcu_barrier_tasks(void)673 void rcu_barrier_tasks(void)
674 {
675 	/* There is only one callback queue, so this is easy.  ;-) */
676 	synchronize_rcu_tasks();
677 }
678 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
679 
680 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)681 static void check_holdout_task(struct task_struct *t,
682 			       bool needreport, bool *firstreport)
683 {
684 	int cpu;
685 
686 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
687 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
688 	    !READ_ONCE(t->on_rq) ||
689 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
690 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
691 		WRITE_ONCE(t->rcu_tasks_holdout, false);
692 		list_del_init(&t->rcu_tasks_holdout_list);
693 		put_task_struct(t);
694 		return;
695 	}
696 	rcu_request_urgent_qs_task(t);
697 	if (!needreport)
698 		return;
699 	if (*firstreport) {
700 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
701 		*firstreport = false;
702 	}
703 	cpu = task_cpu(t);
704 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
705 		 t, ".I"[is_idle_task(t)],
706 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
707 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
708 		 t->rcu_tasks_idle_cpu, cpu);
709 	sched_show_task(t);
710 }
711 
712 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)713 static int __noreturn rcu_tasks_kthread(void *arg)
714 {
715 	unsigned long flags;
716 	struct task_struct *g, *t;
717 	unsigned long lastreport;
718 	struct rcu_head *list;
719 	struct rcu_head *next;
720 	LIST_HEAD(rcu_tasks_holdouts);
721 
722 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
723 	housekeeping_affine(current);
724 
725 	/*
726 	 * Each pass through the following loop makes one check for
727 	 * newly arrived callbacks, and, if there are some, waits for
728 	 * one RCU-tasks grace period and then invokes the callbacks.
729 	 * This loop is terminated by the system going down.  ;-)
730 	 */
731 	for (;;) {
732 
733 		/* Pick up any new callbacks. */
734 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
735 		list = rcu_tasks_cbs_head;
736 		rcu_tasks_cbs_head = NULL;
737 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
738 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
739 
740 		/* If there were none, wait a bit and start over. */
741 		if (!list) {
742 			wait_event_interruptible(rcu_tasks_cbs_wq,
743 						 rcu_tasks_cbs_head);
744 			if (!rcu_tasks_cbs_head) {
745 				WARN_ON(signal_pending(current));
746 				schedule_timeout_interruptible(HZ/10);
747 			}
748 			continue;
749 		}
750 
751 		/*
752 		 * Wait for all pre-existing t->on_rq and t->nvcsw
753 		 * transitions to complete.  Invoking synchronize_sched()
754 		 * suffices because all these transitions occur with
755 		 * interrupts disabled.  Without this synchronize_sched(),
756 		 * a read-side critical section that started before the
757 		 * grace period might be incorrectly seen as having started
758 		 * after the grace period.
759 		 *
760 		 * This synchronize_sched() also dispenses with the
761 		 * need for a memory barrier on the first store to
762 		 * ->rcu_tasks_holdout, as it forces the store to happen
763 		 * after the beginning of the grace period.
764 		 */
765 		synchronize_sched();
766 
767 		/*
768 		 * There were callbacks, so we need to wait for an
769 		 * RCU-tasks grace period.  Start off by scanning
770 		 * the task list for tasks that are not already
771 		 * voluntarily blocked.  Mark these tasks and make
772 		 * a list of them in rcu_tasks_holdouts.
773 		 */
774 		rcu_read_lock();
775 		for_each_process_thread(g, t) {
776 			if (t != current && READ_ONCE(t->on_rq) &&
777 			    !is_idle_task(t)) {
778 				get_task_struct(t);
779 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
780 				WRITE_ONCE(t->rcu_tasks_holdout, true);
781 				list_add(&t->rcu_tasks_holdout_list,
782 					 &rcu_tasks_holdouts);
783 			}
784 		}
785 		rcu_read_unlock();
786 
787 		/*
788 		 * Wait for tasks that are in the process of exiting.
789 		 * This does only part of the job, ensuring that all
790 		 * tasks that were previously exiting reach the point
791 		 * where they have disabled preemption, allowing the
792 		 * later synchronize_sched() to finish the job.
793 		 */
794 		synchronize_srcu(&tasks_rcu_exit_srcu);
795 
796 		/*
797 		 * Each pass through the following loop scans the list
798 		 * of holdout tasks, removing any that are no longer
799 		 * holdouts.  When the list is empty, we are done.
800 		 */
801 		lastreport = jiffies;
802 		while (!list_empty(&rcu_tasks_holdouts)) {
803 			bool firstreport;
804 			bool needreport;
805 			int rtst;
806 			struct task_struct *t1;
807 
808 			schedule_timeout_interruptible(HZ);
809 			rtst = READ_ONCE(rcu_task_stall_timeout);
810 			needreport = rtst > 0 &&
811 				     time_after(jiffies, lastreport + rtst);
812 			if (needreport)
813 				lastreport = jiffies;
814 			firstreport = true;
815 			WARN_ON(signal_pending(current));
816 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
817 						rcu_tasks_holdout_list) {
818 				check_holdout_task(t, needreport, &firstreport);
819 				cond_resched();
820 			}
821 		}
822 
823 		/*
824 		 * Because ->on_rq and ->nvcsw are not guaranteed
825 		 * to have a full memory barriers prior to them in the
826 		 * schedule() path, memory reordering on other CPUs could
827 		 * cause their RCU-tasks read-side critical sections to
828 		 * extend past the end of the grace period.  However,
829 		 * because these ->nvcsw updates are carried out with
830 		 * interrupts disabled, we can use synchronize_sched()
831 		 * to force the needed ordering on all such CPUs.
832 		 *
833 		 * This synchronize_sched() also confines all
834 		 * ->rcu_tasks_holdout accesses to be within the grace
835 		 * period, avoiding the need for memory barriers for
836 		 * ->rcu_tasks_holdout accesses.
837 		 *
838 		 * In addition, this synchronize_sched() waits for exiting
839 		 * tasks to complete their final preempt_disable() region
840 		 * of execution, cleaning up after the synchronize_srcu()
841 		 * above.
842 		 */
843 		synchronize_sched();
844 
845 		/* Invoke the callbacks. */
846 		while (list) {
847 			next = list->next;
848 			local_bh_disable();
849 			list->func(list);
850 			local_bh_enable();
851 			list = next;
852 			cond_resched();
853 		}
854 		schedule_timeout_uninterruptible(HZ/10);
855 	}
856 }
857 
858 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
rcu_spawn_tasks_kthread(void)859 static void rcu_spawn_tasks_kthread(void)
860 {
861 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
862 	struct task_struct *t;
863 
864 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
865 		smp_mb(); /* Ensure caller sees full kthread. */
866 		return;
867 	}
868 	mutex_lock(&rcu_tasks_kthread_mutex);
869 	if (rcu_tasks_kthread_ptr) {
870 		mutex_unlock(&rcu_tasks_kthread_mutex);
871 		return;
872 	}
873 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
874 	BUG_ON(IS_ERR(t));
875 	smp_mb(); /* Ensure others see full kthread. */
876 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
877 	mutex_unlock(&rcu_tasks_kthread_mutex);
878 }
879 
880 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
exit_tasks_rcu_start(void)881 void exit_tasks_rcu_start(void)
882 {
883 	preempt_disable();
884 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
885 	preempt_enable();
886 }
887 
888 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
exit_tasks_rcu_finish(void)889 void exit_tasks_rcu_finish(void)
890 {
891 	preempt_disable();
892 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
893 	preempt_enable();
894 }
895 
896 #endif /* #ifdef CONFIG_TASKS_RCU */
897 
898 #ifndef CONFIG_TINY_RCU
899 
900 /*
901  * Print any non-default Tasks RCU settings.
902  */
rcu_tasks_bootup_oddness(void)903 static void __init rcu_tasks_bootup_oddness(void)
904 {
905 #ifdef CONFIG_TASKS_RCU
906 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
907 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
908 	else
909 		pr_info("\tTasks RCU enabled.\n");
910 #endif /* #ifdef CONFIG_TASKS_RCU */
911 }
912 
913 #endif /* #ifndef CONFIG_TINY_RCU */
914 
915 #ifdef CONFIG_PROVE_RCU
916 
917 /*
918  * Early boot self test parameters, one for each flavor
919  */
920 static bool rcu_self_test;
921 static bool rcu_self_test_bh;
922 static bool rcu_self_test_sched;
923 
924 module_param(rcu_self_test, bool, 0444);
925 module_param(rcu_self_test_bh, bool, 0444);
926 module_param(rcu_self_test_sched, bool, 0444);
927 
928 static int rcu_self_test_counter;
929 
test_callback(struct rcu_head * r)930 static void test_callback(struct rcu_head *r)
931 {
932 	rcu_self_test_counter++;
933 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
934 }
935 
early_boot_test_call_rcu(void)936 static void early_boot_test_call_rcu(void)
937 {
938 	static struct rcu_head head;
939 
940 	call_rcu(&head, test_callback);
941 }
942 
early_boot_test_call_rcu_bh(void)943 static void early_boot_test_call_rcu_bh(void)
944 {
945 	static struct rcu_head head;
946 
947 	call_rcu_bh(&head, test_callback);
948 }
949 
early_boot_test_call_rcu_sched(void)950 static void early_boot_test_call_rcu_sched(void)
951 {
952 	static struct rcu_head head;
953 
954 	call_rcu_sched(&head, test_callback);
955 }
956 
rcu_early_boot_tests(void)957 void rcu_early_boot_tests(void)
958 {
959 	pr_info("Running RCU self tests\n");
960 
961 	if (rcu_self_test)
962 		early_boot_test_call_rcu();
963 	if (rcu_self_test_bh)
964 		early_boot_test_call_rcu_bh();
965 	if (rcu_self_test_sched)
966 		early_boot_test_call_rcu_sched();
967 	rcu_test_sync_prims();
968 }
969 
rcu_verify_early_boot_tests(void)970 static int rcu_verify_early_boot_tests(void)
971 {
972 	int ret = 0;
973 	int early_boot_test_counter = 0;
974 
975 	if (rcu_self_test) {
976 		early_boot_test_counter++;
977 		rcu_barrier();
978 	}
979 	if (rcu_self_test_bh) {
980 		early_boot_test_counter++;
981 		rcu_barrier_bh();
982 	}
983 	if (rcu_self_test_sched) {
984 		early_boot_test_counter++;
985 		rcu_barrier_sched();
986 	}
987 
988 	if (rcu_self_test_counter != early_boot_test_counter) {
989 		WARN_ON(1);
990 		ret = -1;
991 	}
992 
993 	return ret;
994 }
995 late_initcall(rcu_verify_early_boot_tests);
996 #else
rcu_early_boot_tests(void)997 void rcu_early_boot_tests(void) {}
998 #endif /* CONFIG_PROVE_RCU */
999 
1000 #ifndef CONFIG_TINY_RCU
1001 
1002 /*
1003  * Print any significant non-default boot-time settings.
1004  */
rcupdate_announce_bootup_oddness(void)1005 void __init rcupdate_announce_bootup_oddness(void)
1006 {
1007 	if (rcu_normal)
1008 		pr_info("\tNo expedited grace period (rcu_normal).\n");
1009 	else if (rcu_normal_after_boot)
1010 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
1011 	else if (rcu_expedited)
1012 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1013 	if (rcu_cpu_stall_suppress)
1014 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1015 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1016 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1017 	rcu_tasks_bootup_oddness();
1018 }
1019 
1020 #endif /* #ifndef CONFIG_TINY_RCU */
1021