• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32 
33 #include "posix-timers.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37 
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:		Lock for syncrhonized access to the base
41  * @timerqueue:		Timerqueue head managing the list of events
42  * @gettime:		Function to read the time correlating to the base
43  * @base_clockid:	clockid for the base
44  */
45 static struct alarm_base {
46 	spinlock_t		lock;
47 	struct timerqueue_head	timerqueue;
48 	ktime_t			(*gettime)(void);
49 	clockid_t		base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51 
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59 
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62 
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer		rtctimer;
65 static struct rtc_device	*rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67 
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
alarmtimer_get_rtcdev(void)75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77 	unsigned long flags;
78 	struct rtc_device *ret;
79 
80 	spin_lock_irqsave(&rtcdev_lock, flags);
81 	ret = rtcdev;
82 	spin_unlock_irqrestore(&rtcdev_lock, flags);
83 
84 	return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87 
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)88 static int alarmtimer_rtc_add_device(struct device *dev,
89 				struct class_interface *class_intf)
90 {
91 	unsigned long flags;
92 	struct rtc_device *rtc = to_rtc_device(dev);
93 	struct wakeup_source *__ws;
94 	int ret = 0;
95 
96 	if (rtcdev)
97 		return -EBUSY;
98 
99 	if (!rtc->ops->set_alarm)
100 		return -1;
101 	if (!device_may_wakeup(rtc->dev.parent))
102 		return -1;
103 
104 	__ws = wakeup_source_register("alarmtimer");
105 
106 	spin_lock_irqsave(&rtcdev_lock, flags);
107 	if (!rtcdev) {
108 		if (!try_module_get(rtc->owner)) {
109 			ret = -1;
110 			goto unlock;
111 		}
112 
113 		rtcdev = rtc;
114 		/* hold a reference so it doesn't go away */
115 		get_device(dev);
116 		ws = __ws;
117 		__ws = NULL;
118 	}
119 unlock:
120 	spin_unlock_irqrestore(&rtcdev_lock, flags);
121 
122 	wakeup_source_unregister(__ws);
123 
124 	return ret;
125 }
126 
alarmtimer_rtc_timer_init(void)127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129 	rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131 
132 static struct class_interface alarmtimer_rtc_interface = {
133 	.add_dev = &alarmtimer_rtc_add_device,
134 };
135 
alarmtimer_rtc_interface_setup(void)136 static int alarmtimer_rtc_interface_setup(void)
137 {
138 	alarmtimer_rtc_interface.class = rtc_class;
139 	return class_interface_register(&alarmtimer_rtc_interface);
140 }
alarmtimer_rtc_interface_remove(void)141 static void alarmtimer_rtc_interface_remove(void)
142 {
143 	class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
alarmtimer_get_rtcdev(void)146 struct rtc_device *alarmtimer_get_rtcdev(void)
147 {
148 	return NULL;
149 }
150 #define rtcdev (NULL)
alarmtimer_rtc_interface_setup(void)151 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)152 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)153 static inline void alarmtimer_rtc_timer_init(void) { }
154 #endif
155 
156 /**
157  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
158  * @base: pointer to the base where the timer is being run
159  * @alarm: pointer to alarm being enqueued.
160  *
161  * Adds alarm to a alarm_base timerqueue
162  *
163  * Must hold base->lock when calling.
164  */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)165 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
166 {
167 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
168 		timerqueue_del(&base->timerqueue, &alarm->node);
169 
170 	timerqueue_add(&base->timerqueue, &alarm->node);
171 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
172 }
173 
174 /**
175  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
176  * @base: pointer to the base where the timer is running
177  * @alarm: pointer to alarm being removed
178  *
179  * Removes alarm to a alarm_base timerqueue
180  *
181  * Must hold base->lock when calling.
182  */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)183 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
184 {
185 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
186 		return;
187 
188 	timerqueue_del(&base->timerqueue, &alarm->node);
189 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
190 }
191 
192 
193 /**
194  * alarmtimer_fired - Handles alarm hrtimer being fired.
195  * @timer: pointer to hrtimer being run
196  *
197  * When a alarm timer fires, this runs through the timerqueue to
198  * see which alarms expired, and runs those. If there are more alarm
199  * timers queued for the future, we set the hrtimer to fire when
200  * when the next future alarm timer expires.
201  */
alarmtimer_fired(struct hrtimer * timer)202 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
203 {
204 	struct alarm *alarm = container_of(timer, struct alarm, timer);
205 	struct alarm_base *base = &alarm_bases[alarm->type];
206 	unsigned long flags;
207 	int ret = HRTIMER_NORESTART;
208 	int restart = ALARMTIMER_NORESTART;
209 
210 	spin_lock_irqsave(&base->lock, flags);
211 	alarmtimer_dequeue(base, alarm);
212 	spin_unlock_irqrestore(&base->lock, flags);
213 
214 	if (alarm->function)
215 		restart = alarm->function(alarm, base->gettime());
216 
217 	spin_lock_irqsave(&base->lock, flags);
218 	if (restart != ALARMTIMER_NORESTART) {
219 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
220 		alarmtimer_enqueue(base, alarm);
221 		ret = HRTIMER_RESTART;
222 	}
223 	spin_unlock_irqrestore(&base->lock, flags);
224 
225 	trace_alarmtimer_fired(alarm, base->gettime());
226 	return ret;
227 
228 }
229 
alarm_expires_remaining(const struct alarm * alarm)230 ktime_t alarm_expires_remaining(const struct alarm *alarm)
231 {
232 	struct alarm_base *base = &alarm_bases[alarm->type];
233 	return ktime_sub(alarm->node.expires, base->gettime());
234 }
235 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
236 
237 #ifdef CONFIG_RTC_CLASS
238 /**
239  * alarmtimer_suspend - Suspend time callback
240  * @dev: unused
241  * @state: unused
242  *
243  * When we are going into suspend, we look through the bases
244  * to see which is the soonest timer to expire. We then
245  * set an rtc timer to fire that far into the future, which
246  * will wake us from suspend.
247  */
alarmtimer_suspend(struct device * dev)248 static int alarmtimer_suspend(struct device *dev)
249 {
250 	ktime_t min, now, expires;
251 	int i, ret, type;
252 	struct rtc_device *rtc;
253 	unsigned long flags;
254 	struct rtc_time tm;
255 
256 	spin_lock_irqsave(&freezer_delta_lock, flags);
257 	min = freezer_delta;
258 	expires = freezer_expires;
259 	type = freezer_alarmtype;
260 	freezer_delta = 0;
261 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
262 
263 	rtc = alarmtimer_get_rtcdev();
264 	/* If we have no rtcdev, just return */
265 	if (!rtc)
266 		return 0;
267 
268 	/* Find the soonest timer to expire*/
269 	for (i = 0; i < ALARM_NUMTYPE; i++) {
270 		struct alarm_base *base = &alarm_bases[i];
271 		struct timerqueue_node *next;
272 		ktime_t delta;
273 
274 		spin_lock_irqsave(&base->lock, flags);
275 		next = timerqueue_getnext(&base->timerqueue);
276 		spin_unlock_irqrestore(&base->lock, flags);
277 		if (!next)
278 			continue;
279 		delta = ktime_sub(next->expires, base->gettime());
280 		if (!min || (delta < min)) {
281 			expires = next->expires;
282 			min = delta;
283 			type = i;
284 		}
285 	}
286 	if (min == 0)
287 		return 0;
288 
289 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
290 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
291 		return -EBUSY;
292 	}
293 
294 	trace_alarmtimer_suspend(expires, type);
295 
296 	/* Setup an rtc timer to fire that far in the future */
297 	rtc_timer_cancel(rtc, &rtctimer);
298 	rtc_read_time(rtc, &tm);
299 	now = rtc_tm_to_ktime(tm);
300 	now = ktime_add(now, min);
301 
302 	/* Set alarm, if in the past reject suspend briefly to handle */
303 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
304 	if (ret < 0)
305 		__pm_wakeup_event(ws, MSEC_PER_SEC);
306 	return ret;
307 }
308 
alarmtimer_resume(struct device * dev)309 static int alarmtimer_resume(struct device *dev)
310 {
311 	struct rtc_device *rtc;
312 
313 	rtc = alarmtimer_get_rtcdev();
314 	if (rtc)
315 		rtc_timer_cancel(rtc, &rtctimer);
316 	return 0;
317 }
318 
319 #else
alarmtimer_suspend(struct device * dev)320 static int alarmtimer_suspend(struct device *dev)
321 {
322 	return 0;
323 }
324 
alarmtimer_resume(struct device * dev)325 static int alarmtimer_resume(struct device *dev)
326 {
327 	return 0;
328 }
329 #endif
330 
331 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))332 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
333 	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
334 {
335 	timerqueue_init(&alarm->node);
336 	alarm->timer.function = alarmtimer_fired;
337 	alarm->function = function;
338 	alarm->type = type;
339 	alarm->state = ALARMTIMER_STATE_INACTIVE;
340 }
341 
342 /**
343  * alarm_init - Initialize an alarm structure
344  * @alarm: ptr to alarm to be initialized
345  * @type: the type of the alarm
346  * @function: callback that is run when the alarm fires
347  */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))348 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
349 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
350 {
351 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
352 		     HRTIMER_MODE_ABS);
353 	__alarm_init(alarm, type, function);
354 }
355 EXPORT_SYMBOL_GPL(alarm_init);
356 
357 /**
358  * alarm_start - Sets an absolute alarm to fire
359  * @alarm: ptr to alarm to set
360  * @start: time to run the alarm
361  */
alarm_start(struct alarm * alarm,ktime_t start)362 void alarm_start(struct alarm *alarm, ktime_t start)
363 {
364 	struct alarm_base *base = &alarm_bases[alarm->type];
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&base->lock, flags);
368 	alarm->node.expires = start;
369 	alarmtimer_enqueue(base, alarm);
370 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
371 	spin_unlock_irqrestore(&base->lock, flags);
372 
373 	trace_alarmtimer_start(alarm, base->gettime());
374 }
375 EXPORT_SYMBOL_GPL(alarm_start);
376 
377 /**
378  * alarm_start_relative - Sets a relative alarm to fire
379  * @alarm: ptr to alarm to set
380  * @start: time relative to now to run the alarm
381  */
alarm_start_relative(struct alarm * alarm,ktime_t start)382 void alarm_start_relative(struct alarm *alarm, ktime_t start)
383 {
384 	struct alarm_base *base = &alarm_bases[alarm->type];
385 
386 	start = ktime_add_safe(start, base->gettime());
387 	alarm_start(alarm, start);
388 }
389 EXPORT_SYMBOL_GPL(alarm_start_relative);
390 
alarm_restart(struct alarm * alarm)391 void alarm_restart(struct alarm *alarm)
392 {
393 	struct alarm_base *base = &alarm_bases[alarm->type];
394 	unsigned long flags;
395 
396 	spin_lock_irqsave(&base->lock, flags);
397 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
398 	hrtimer_restart(&alarm->timer);
399 	alarmtimer_enqueue(base, alarm);
400 	spin_unlock_irqrestore(&base->lock, flags);
401 }
402 EXPORT_SYMBOL_GPL(alarm_restart);
403 
404 /**
405  * alarm_try_to_cancel - Tries to cancel an alarm timer
406  * @alarm: ptr to alarm to be canceled
407  *
408  * Returns 1 if the timer was canceled, 0 if it was not running,
409  * and -1 if the callback was running
410  */
alarm_try_to_cancel(struct alarm * alarm)411 int alarm_try_to_cancel(struct alarm *alarm)
412 {
413 	struct alarm_base *base = &alarm_bases[alarm->type];
414 	unsigned long flags;
415 	int ret;
416 
417 	spin_lock_irqsave(&base->lock, flags);
418 	ret = hrtimer_try_to_cancel(&alarm->timer);
419 	if (ret >= 0)
420 		alarmtimer_dequeue(base, alarm);
421 	spin_unlock_irqrestore(&base->lock, flags);
422 
423 	trace_alarmtimer_cancel(alarm, base->gettime());
424 	return ret;
425 }
426 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
427 
428 
429 /**
430  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
431  * @alarm: ptr to alarm to be canceled
432  *
433  * Returns 1 if the timer was canceled, 0 if it was not active.
434  */
alarm_cancel(struct alarm * alarm)435 int alarm_cancel(struct alarm *alarm)
436 {
437 	for (;;) {
438 		int ret = alarm_try_to_cancel(alarm);
439 		if (ret >= 0)
440 			return ret;
441 		cpu_relax();
442 	}
443 }
444 EXPORT_SYMBOL_GPL(alarm_cancel);
445 
446 
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)447 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
448 {
449 	u64 overrun = 1;
450 	ktime_t delta;
451 
452 	delta = ktime_sub(now, alarm->node.expires);
453 
454 	if (delta < 0)
455 		return 0;
456 
457 	if (unlikely(delta >= interval)) {
458 		s64 incr = ktime_to_ns(interval);
459 
460 		overrun = ktime_divns(delta, incr);
461 
462 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
463 							incr*overrun);
464 
465 		if (alarm->node.expires > now)
466 			return overrun;
467 		/*
468 		 * This (and the ktime_add() below) is the
469 		 * correction for exact:
470 		 */
471 		overrun++;
472 	}
473 
474 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
475 	return overrun;
476 }
477 EXPORT_SYMBOL_GPL(alarm_forward);
478 
alarm_forward_now(struct alarm * alarm,ktime_t interval)479 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
480 {
481 	struct alarm_base *base = &alarm_bases[alarm->type];
482 
483 	return alarm_forward(alarm, base->gettime(), interval);
484 }
485 EXPORT_SYMBOL_GPL(alarm_forward_now);
486 
487 #ifdef CONFIG_POSIX_TIMERS
488 
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)489 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
490 {
491 	struct alarm_base *base;
492 	unsigned long flags;
493 	ktime_t delta;
494 
495 	switch(type) {
496 	case ALARM_REALTIME:
497 		base = &alarm_bases[ALARM_REALTIME];
498 		type = ALARM_REALTIME_FREEZER;
499 		break;
500 	case ALARM_BOOTTIME:
501 		base = &alarm_bases[ALARM_BOOTTIME];
502 		type = ALARM_BOOTTIME_FREEZER;
503 		break;
504 	default:
505 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
506 		return;
507 	}
508 
509 	delta = ktime_sub(absexp, base->gettime());
510 
511 	spin_lock_irqsave(&freezer_delta_lock, flags);
512 	if (!freezer_delta || (delta < freezer_delta)) {
513 		freezer_delta = delta;
514 		freezer_expires = absexp;
515 		freezer_alarmtype = type;
516 	}
517 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
518 }
519 
520 /**
521  * clock2alarm - helper that converts from clockid to alarmtypes
522  * @clockid: clockid.
523  */
clock2alarm(clockid_t clockid)524 static enum alarmtimer_type clock2alarm(clockid_t clockid)
525 {
526 	if (clockid == CLOCK_REALTIME_ALARM)
527 		return ALARM_REALTIME;
528 	if (clockid == CLOCK_BOOTTIME_ALARM)
529 		return ALARM_BOOTTIME;
530 	return -1;
531 }
532 
533 /**
534  * alarm_handle_timer - Callback for posix timers
535  * @alarm: alarm that fired
536  *
537  * Posix timer callback for expired alarm timers.
538  */
alarm_handle_timer(struct alarm * alarm,ktime_t now)539 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
540 							ktime_t now)
541 {
542 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
543 					    it.alarm.alarmtimer);
544 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
545 	unsigned long flags;
546 	int si_private = 0;
547 
548 	spin_lock_irqsave(&ptr->it_lock, flags);
549 
550 	ptr->it_active = 0;
551 	if (ptr->it_interval)
552 		si_private = ++ptr->it_requeue_pending;
553 
554 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
555 		/*
556 		 * Handle ignored signals and rearm the timer. This will go
557 		 * away once we handle ignored signals proper.
558 		 */
559 		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
560 		++ptr->it_requeue_pending;
561 		ptr->it_active = 1;
562 		result = ALARMTIMER_RESTART;
563 	}
564 	spin_unlock_irqrestore(&ptr->it_lock, flags);
565 
566 	return result;
567 }
568 
569 /**
570  * alarm_timer_rearm - Posix timer callback for rearming timer
571  * @timr:	Pointer to the posixtimer data struct
572  */
alarm_timer_rearm(struct k_itimer * timr)573 static void alarm_timer_rearm(struct k_itimer *timr)
574 {
575 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
576 
577 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
578 	alarm_start(alarm, alarm->node.expires);
579 }
580 
581 /**
582  * alarm_timer_forward - Posix timer callback for forwarding timer
583  * @timr:	Pointer to the posixtimer data struct
584  * @now:	Current time to forward the timer against
585  */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)586 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
587 {
588 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
589 
590 	return alarm_forward(alarm, timr->it_interval, now);
591 }
592 
593 /**
594  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
595  * @timr:	Pointer to the posixtimer data struct
596  * @now:	Current time to calculate against
597  */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)598 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
599 {
600 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
601 
602 	return ktime_sub(alarm->node.expires, now);
603 }
604 
605 /**
606  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
607  * @timr:	Pointer to the posixtimer data struct
608  */
alarm_timer_try_to_cancel(struct k_itimer * timr)609 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
610 {
611 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
612 }
613 
614 /**
615  * alarm_timer_arm - Posix timer callback to arm a timer
616  * @timr:	Pointer to the posixtimer data struct
617  * @expires:	The new expiry time
618  * @absolute:	Expiry value is absolute time
619  * @sigev_none:	Posix timer does not deliver signals
620  */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)621 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
622 			    bool absolute, bool sigev_none)
623 {
624 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
625 	struct alarm_base *base = &alarm_bases[alarm->type];
626 
627 	if (!absolute)
628 		expires = ktime_add_safe(expires, base->gettime());
629 	if (sigev_none)
630 		alarm->node.expires = expires;
631 	else
632 		alarm_start(&timr->it.alarm.alarmtimer, expires);
633 }
634 
635 /**
636  * alarm_clock_getres - posix getres interface
637  * @which_clock: clockid
638  * @tp: timespec to fill
639  *
640  * Returns the granularity of underlying alarm base clock
641  */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)642 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
643 {
644 	if (!alarmtimer_get_rtcdev())
645 		return -EINVAL;
646 
647 	tp->tv_sec = 0;
648 	tp->tv_nsec = hrtimer_resolution;
649 	return 0;
650 }
651 
652 /**
653  * alarm_clock_get - posix clock_get interface
654  * @which_clock: clockid
655  * @tp: timespec to fill.
656  *
657  * Provides the underlying alarm base time.
658  */
alarm_clock_get(clockid_t which_clock,struct timespec64 * tp)659 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
660 {
661 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
662 
663 	if (!alarmtimer_get_rtcdev())
664 		return -EINVAL;
665 
666 	*tp = ktime_to_timespec64(base->gettime());
667 	return 0;
668 }
669 
670 /**
671  * alarm_timer_create - posix timer_create interface
672  * @new_timer: k_itimer pointer to manage
673  *
674  * Initializes the k_itimer structure.
675  */
alarm_timer_create(struct k_itimer * new_timer)676 static int alarm_timer_create(struct k_itimer *new_timer)
677 {
678 	enum  alarmtimer_type type;
679 
680 	if (!alarmtimer_get_rtcdev())
681 		return -EOPNOTSUPP;
682 
683 	if (!capable(CAP_WAKE_ALARM))
684 		return -EPERM;
685 
686 	type = clock2alarm(new_timer->it_clock);
687 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
688 	return 0;
689 }
690 
691 /**
692  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
693  * @alarm: ptr to alarm that fired
694  *
695  * Wakes up the task that set the alarmtimer
696  */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)697 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
698 								ktime_t now)
699 {
700 	struct task_struct *task = (struct task_struct *)alarm->data;
701 
702 	alarm->data = NULL;
703 	if (task)
704 		wake_up_process(task);
705 	return ALARMTIMER_NORESTART;
706 }
707 
708 /**
709  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710  * @alarm: ptr to alarmtimer
711  * @absexp: absolute expiration time
712  *
713  * Sets the alarm timer and sleeps until it is fired or interrupted.
714  */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)715 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
716 				enum alarmtimer_type type)
717 {
718 	struct restart_block *restart;
719 	alarm->data = (void *)current;
720 	do {
721 		set_current_state(TASK_INTERRUPTIBLE);
722 		alarm_start(alarm, absexp);
723 		if (likely(alarm->data))
724 			schedule();
725 
726 		alarm_cancel(alarm);
727 	} while (alarm->data && !signal_pending(current));
728 
729 	__set_current_state(TASK_RUNNING);
730 
731 	destroy_hrtimer_on_stack(&alarm->timer);
732 
733 	if (!alarm->data)
734 		return 0;
735 
736 	if (freezing(current))
737 		alarmtimer_freezerset(absexp, type);
738 	restart = &current->restart_block;
739 	if (restart->nanosleep.type != TT_NONE) {
740 		struct timespec64 rmt;
741 		ktime_t rem;
742 
743 		rem = ktime_sub(absexp, alarm_bases[type].gettime());
744 
745 		if (rem <= 0)
746 			return 0;
747 		rmt = ktime_to_timespec64(rem);
748 
749 		return nanosleep_copyout(restart, &rmt);
750 	}
751 	return -ERESTART_RESTARTBLOCK;
752 }
753 
754 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))755 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
756 		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
757 {
758 	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
759 			      HRTIMER_MODE_ABS);
760 	__alarm_init(alarm, type, function);
761 }
762 
763 /**
764  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
765  * @restart: ptr to restart block
766  *
767  * Handles restarted clock_nanosleep calls
768  */
alarm_timer_nsleep_restart(struct restart_block * restart)769 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
770 {
771 	enum  alarmtimer_type type = restart->nanosleep.clockid;
772 	ktime_t exp = restart->nanosleep.expires;
773 	struct alarm alarm;
774 
775 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
776 
777 	return alarmtimer_do_nsleep(&alarm, exp, type);
778 }
779 
780 /**
781  * alarm_timer_nsleep - alarmtimer nanosleep
782  * @which_clock: clockid
783  * @flags: determins abstime or relative
784  * @tsreq: requested sleep time (abs or rel)
785  * @rmtp: remaining sleep time saved
786  *
787  * Handles clock_nanosleep calls against _ALARM clockids
788  */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790 			      const struct timespec64 *tsreq)
791 {
792 	enum  alarmtimer_type type = clock2alarm(which_clock);
793 	struct restart_block *restart = &current->restart_block;
794 	struct alarm alarm;
795 	ktime_t exp;
796 	int ret = 0;
797 
798 	if (!alarmtimer_get_rtcdev())
799 		return -EOPNOTSUPP;
800 
801 	if (flags & ~TIMER_ABSTIME)
802 		return -EINVAL;
803 
804 	if (!capable(CAP_WAKE_ALARM))
805 		return -EPERM;
806 
807 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808 
809 	exp = timespec64_to_ktime(*tsreq);
810 	/* Convert (if necessary) to absolute time */
811 	if (flags != TIMER_ABSTIME) {
812 		ktime_t now = alarm_bases[type].gettime();
813 
814 		exp = ktime_add_safe(now, exp);
815 	}
816 
817 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
818 	if (ret != -ERESTART_RESTARTBLOCK)
819 		return ret;
820 
821 	/* abs timers don't set remaining time or restart */
822 	if (flags == TIMER_ABSTIME)
823 		return -ERESTARTNOHAND;
824 
825 	restart->fn = alarm_timer_nsleep_restart;
826 	restart->nanosleep.clockid = type;
827 	restart->nanosleep.expires = exp;
828 	return ret;
829 }
830 
831 const struct k_clock alarm_clock = {
832 	.clock_getres		= alarm_clock_getres,
833 	.clock_get		= alarm_clock_get,
834 	.timer_create		= alarm_timer_create,
835 	.timer_set		= common_timer_set,
836 	.timer_del		= common_timer_del,
837 	.timer_get		= common_timer_get,
838 	.timer_arm		= alarm_timer_arm,
839 	.timer_rearm		= alarm_timer_rearm,
840 	.timer_forward		= alarm_timer_forward,
841 	.timer_remaining	= alarm_timer_remaining,
842 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
843 	.nsleep			= alarm_timer_nsleep,
844 };
845 #endif /* CONFIG_POSIX_TIMERS */
846 
847 
848 /* Suspend hook structures */
849 static const struct dev_pm_ops alarmtimer_pm_ops = {
850 	.suspend = alarmtimer_suspend,
851 	.resume = alarmtimer_resume,
852 };
853 
854 static struct platform_driver alarmtimer_driver = {
855 	.driver = {
856 		.name = "alarmtimer",
857 		.pm = &alarmtimer_pm_ops,
858 	}
859 };
860 
861 /**
862  * alarmtimer_init - Initialize alarm timer code
863  *
864  * This function initializes the alarm bases and registers
865  * the posix clock ids.
866  */
alarmtimer_init(void)867 static int __init alarmtimer_init(void)
868 {
869 	struct platform_device *pdev;
870 	int error = 0;
871 	int i;
872 
873 	alarmtimer_rtc_timer_init();
874 
875 	/* Initialize alarm bases */
876 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
877 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
878 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
879 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
880 	for (i = 0; i < ALARM_NUMTYPE; i++) {
881 		timerqueue_init_head(&alarm_bases[i].timerqueue);
882 		spin_lock_init(&alarm_bases[i].lock);
883 	}
884 
885 	error = alarmtimer_rtc_interface_setup();
886 	if (error)
887 		return error;
888 
889 	error = platform_driver_register(&alarmtimer_driver);
890 	if (error)
891 		goto out_if;
892 
893 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
894 	if (IS_ERR(pdev)) {
895 		error = PTR_ERR(pdev);
896 		goto out_drv;
897 	}
898 	return 0;
899 
900 out_drv:
901 	platform_driver_unregister(&alarmtimer_driver);
902 out_if:
903 	alarmtimer_rtc_interface_remove();
904 	return error;
905 }
906 device_initcall(alarmtimer_init);
907