• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/device.h>
29 #include <linux/clocksource.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33 #include <linux/tick.h>
34 #include <linux/kthread.h>
35 
36 #include "tick-internal.h"
37 #include "timekeeping_internal.h"
38 
39 /**
40  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41  * @mult:	pointer to mult variable
42  * @shift:	pointer to shift variable
43  * @from:	frequency to convert from
44  * @to:		frequency to convert to
45  * @maxsec:	guaranteed runtime conversion range in seconds
46  *
47  * The function evaluates the shift/mult pair for the scaled math
48  * operations of clocksources and clockevents.
49  *
50  * @to and @from are frequency values in HZ. For clock sources @to is
51  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52  * event @to is the counter frequency and @from is NSEC_PER_SEC.
53  *
54  * The @maxsec conversion range argument controls the time frame in
55  * seconds which must be covered by the runtime conversion with the
56  * calculated mult and shift factors. This guarantees that no 64bit
57  * overflow happens when the input value of the conversion is
58  * multiplied with the calculated mult factor. Larger ranges may
59  * reduce the conversion accuracy by chosing smaller mult and shift
60  * factors.
61  */
62 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64 {
65 	u64 tmp;
66 	u32 sft, sftacc= 32;
67 
68 	/*
69 	 * Calculate the shift factor which is limiting the conversion
70 	 * range:
71 	 */
72 	tmp = ((u64)maxsec * from) >> 32;
73 	while (tmp) {
74 		tmp >>=1;
75 		sftacc--;
76 	}
77 
78 	/*
79 	 * Find the conversion shift/mult pair which has the best
80 	 * accuracy and fits the maxsec conversion range:
81 	 */
82 	for (sft = 32; sft > 0; sft--) {
83 		tmp = (u64) to << sft;
84 		tmp += from / 2;
85 		do_div(tmp, from);
86 		if ((tmp >> sftacc) == 0)
87 			break;
88 	}
89 	*mult = tmp;
90 	*shift = sft;
91 }
92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93 
94 /*[Clocksource internal variables]---------
95  * curr_clocksource:
96  *	currently selected clocksource.
97  * clocksource_list:
98  *	linked list with the registered clocksources
99  * clocksource_mutex:
100  *	protects manipulations to curr_clocksource and the clocksource_list
101  * override_name:
102  *	Name of the user-specified clocksource.
103  */
104 static struct clocksource *curr_clocksource;
105 static LIST_HEAD(clocksource_list);
106 static DEFINE_MUTEX(clocksource_mutex);
107 static char override_name[CS_NAME_LEN];
108 static int finished_booting;
109 
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111 static void clocksource_watchdog_work(struct work_struct *work);
112 static void clocksource_select(void);
113 
114 static LIST_HEAD(watchdog_list);
115 static struct clocksource *watchdog;
116 static struct timer_list watchdog_timer;
117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118 static DEFINE_SPINLOCK(watchdog_lock);
119 static int watchdog_running;
120 static atomic_t watchdog_reset_pending;
121 
122 static int clocksource_watchdog_kthread(void *data);
123 static void __clocksource_change_rating(struct clocksource *cs, int rating);
124 
125 /*
126  * Interval: 0.5sec Threshold: 0.0625s
127  */
128 #define WATCHDOG_INTERVAL (HZ >> 1)
129 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
130 
clocksource_watchdog_work(struct work_struct * work)131 static void clocksource_watchdog_work(struct work_struct *work)
132 {
133 	/*
134 	 * If kthread_run fails the next watchdog scan over the
135 	 * watchdog_list will find the unstable clock again.
136 	 */
137 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
138 }
139 
__clocksource_unstable(struct clocksource * cs)140 static void __clocksource_unstable(struct clocksource *cs)
141 {
142 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
143 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
144 
145 	if (cs->mark_unstable)
146 		cs->mark_unstable(cs);
147 
148 	if (finished_booting)
149 		schedule_work(&watchdog_work);
150 }
151 
152 /**
153  * clocksource_mark_unstable - mark clocksource unstable via watchdog
154  * @cs:		clocksource to be marked unstable
155  *
156  * This function is called instead of clocksource_change_rating from
157  * cpu hotplug code to avoid a deadlock between the clocksource mutex
158  * and the cpu hotplug mutex. It defers the update of the clocksource
159  * to the watchdog thread.
160  */
clocksource_mark_unstable(struct clocksource * cs)161 void clocksource_mark_unstable(struct clocksource *cs)
162 {
163 	unsigned long flags;
164 
165 	spin_lock_irqsave(&watchdog_lock, flags);
166 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
167 		if (list_empty(&cs->wd_list))
168 			list_add(&cs->wd_list, &watchdog_list);
169 		__clocksource_unstable(cs);
170 	}
171 	spin_unlock_irqrestore(&watchdog_lock, flags);
172 }
173 
clocksource_watchdog(unsigned long data)174 static void clocksource_watchdog(unsigned long data)
175 {
176 	struct clocksource *cs;
177 	u64 csnow, wdnow, cslast, wdlast, delta;
178 	int64_t wd_nsec, cs_nsec;
179 	int next_cpu, reset_pending;
180 
181 	spin_lock(&watchdog_lock);
182 	if (!watchdog_running)
183 		goto out;
184 
185 	reset_pending = atomic_read(&watchdog_reset_pending);
186 
187 	list_for_each_entry(cs, &watchdog_list, wd_list) {
188 
189 		/* Clocksource already marked unstable? */
190 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
191 			if (finished_booting)
192 				schedule_work(&watchdog_work);
193 			continue;
194 		}
195 
196 		local_irq_disable();
197 		csnow = cs->read(cs);
198 		wdnow = watchdog->read(watchdog);
199 		local_irq_enable();
200 
201 		/* Clocksource initialized ? */
202 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
203 		    atomic_read(&watchdog_reset_pending)) {
204 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
205 			cs->wd_last = wdnow;
206 			cs->cs_last = csnow;
207 			continue;
208 		}
209 
210 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
211 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
212 					     watchdog->shift);
213 
214 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
215 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
216 		wdlast = cs->wd_last; /* save these in case we print them */
217 		cslast = cs->cs_last;
218 		cs->cs_last = csnow;
219 		cs->wd_last = wdnow;
220 
221 		if (atomic_read(&watchdog_reset_pending))
222 			continue;
223 
224 		/* Check the deviation from the watchdog clocksource. */
225 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
226 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
227 				smp_processor_id(), cs->name);
228 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
229 				watchdog->name, wdnow, wdlast, watchdog->mask);
230 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
231 				cs->name, csnow, cslast, cs->mask);
232 			__clocksource_unstable(cs);
233 			continue;
234 		}
235 
236 		if (cs == curr_clocksource && cs->tick_stable)
237 			cs->tick_stable(cs);
238 
239 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
240 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
241 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
242 			/* Mark it valid for high-res. */
243 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
244 
245 			/*
246 			 * clocksource_done_booting() will sort it if
247 			 * finished_booting is not set yet.
248 			 */
249 			if (!finished_booting)
250 				continue;
251 
252 			/*
253 			 * If this is not the current clocksource let
254 			 * the watchdog thread reselect it. Due to the
255 			 * change to high res this clocksource might
256 			 * be preferred now. If it is the current
257 			 * clocksource let the tick code know about
258 			 * that change.
259 			 */
260 			if (cs != curr_clocksource) {
261 				cs->flags |= CLOCK_SOURCE_RESELECT;
262 				schedule_work(&watchdog_work);
263 			} else {
264 				tick_clock_notify();
265 			}
266 		}
267 	}
268 
269 	/*
270 	 * We only clear the watchdog_reset_pending, when we did a
271 	 * full cycle through all clocksources.
272 	 */
273 	if (reset_pending)
274 		atomic_dec(&watchdog_reset_pending);
275 
276 	/*
277 	 * Cycle through CPUs to check if the CPUs stay synchronized
278 	 * to each other.
279 	 */
280 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
281 	if (next_cpu >= nr_cpu_ids)
282 		next_cpu = cpumask_first(cpu_online_mask);
283 
284 	/*
285 	 * Arm timer if not already pending: could race with concurrent
286 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
287 	 */
288 	if (!timer_pending(&watchdog_timer)) {
289 		watchdog_timer.expires += WATCHDOG_INTERVAL;
290 		add_timer_on(&watchdog_timer, next_cpu);
291 	}
292 out:
293 	spin_unlock(&watchdog_lock);
294 }
295 
clocksource_start_watchdog(void)296 static inline void clocksource_start_watchdog(void)
297 {
298 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
299 		return;
300 	init_timer(&watchdog_timer);
301 	watchdog_timer.function = clocksource_watchdog;
302 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
303 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
304 	watchdog_running = 1;
305 }
306 
clocksource_stop_watchdog(void)307 static inline void clocksource_stop_watchdog(void)
308 {
309 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
310 		return;
311 	del_timer(&watchdog_timer);
312 	watchdog_running = 0;
313 }
314 
clocksource_reset_watchdog(void)315 static inline void clocksource_reset_watchdog(void)
316 {
317 	struct clocksource *cs;
318 
319 	list_for_each_entry(cs, &watchdog_list, wd_list)
320 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
321 }
322 
clocksource_resume_watchdog(void)323 static void clocksource_resume_watchdog(void)
324 {
325 	atomic_inc(&watchdog_reset_pending);
326 }
327 
clocksource_enqueue_watchdog(struct clocksource * cs)328 static void clocksource_enqueue_watchdog(struct clocksource *cs)
329 {
330 	unsigned long flags;
331 
332 	INIT_LIST_HEAD(&cs->wd_list);
333 
334 	spin_lock_irqsave(&watchdog_lock, flags);
335 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
336 		/* cs is a clocksource to be watched. */
337 		list_add(&cs->wd_list, &watchdog_list);
338 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
339 	} else {
340 		/* cs is a watchdog. */
341 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
342 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
343 	}
344 	spin_unlock_irqrestore(&watchdog_lock, flags);
345 }
346 
clocksource_select_watchdog(bool fallback)347 static void clocksource_select_watchdog(bool fallback)
348 {
349 	struct clocksource *cs, *old_wd;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&watchdog_lock, flags);
353 	/* save current watchdog */
354 	old_wd = watchdog;
355 	if (fallback)
356 		watchdog = NULL;
357 
358 	list_for_each_entry(cs, &clocksource_list, list) {
359 		/* cs is a clocksource to be watched. */
360 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
361 			continue;
362 
363 		/* Skip current if we were requested for a fallback. */
364 		if (fallback && cs == old_wd)
365 			continue;
366 
367 		/* Pick the best watchdog. */
368 		if (!watchdog || cs->rating > watchdog->rating)
369 			watchdog = cs;
370 	}
371 	/* If we failed to find a fallback restore the old one. */
372 	if (!watchdog)
373 		watchdog = old_wd;
374 
375 	/* If we changed the watchdog we need to reset cycles. */
376 	if (watchdog != old_wd)
377 		clocksource_reset_watchdog();
378 
379 	/* Check if the watchdog timer needs to be started. */
380 	clocksource_start_watchdog();
381 	spin_unlock_irqrestore(&watchdog_lock, flags);
382 }
383 
clocksource_dequeue_watchdog(struct clocksource * cs)384 static void clocksource_dequeue_watchdog(struct clocksource *cs)
385 {
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&watchdog_lock, flags);
389 	if (cs != watchdog) {
390 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
391 			/* cs is a watched clocksource. */
392 			list_del_init(&cs->wd_list);
393 			/* Check if the watchdog timer needs to be stopped. */
394 			clocksource_stop_watchdog();
395 		}
396 	}
397 	spin_unlock_irqrestore(&watchdog_lock, flags);
398 }
399 
__clocksource_watchdog_kthread(void)400 static int __clocksource_watchdog_kthread(void)
401 {
402 	struct clocksource *cs, *tmp;
403 	unsigned long flags;
404 	LIST_HEAD(unstable);
405 	int select = 0;
406 
407 	spin_lock_irqsave(&watchdog_lock, flags);
408 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
409 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
410 			list_del_init(&cs->wd_list);
411 			list_add(&cs->wd_list, &unstable);
412 			select = 1;
413 		}
414 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
415 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
416 			select = 1;
417 		}
418 	}
419 	/* Check if the watchdog timer needs to be stopped. */
420 	clocksource_stop_watchdog();
421 	spin_unlock_irqrestore(&watchdog_lock, flags);
422 
423 	/* Needs to be done outside of watchdog lock */
424 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
425 		list_del_init(&cs->wd_list);
426 		__clocksource_change_rating(cs, 0);
427 	}
428 	return select;
429 }
430 
clocksource_watchdog_kthread(void * data)431 static int clocksource_watchdog_kthread(void *data)
432 {
433 	mutex_lock(&clocksource_mutex);
434 	if (__clocksource_watchdog_kthread())
435 		clocksource_select();
436 	mutex_unlock(&clocksource_mutex);
437 	return 0;
438 }
439 
clocksource_is_watchdog(struct clocksource * cs)440 static bool clocksource_is_watchdog(struct clocksource *cs)
441 {
442 	return cs == watchdog;
443 }
444 
445 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
446 
clocksource_enqueue_watchdog(struct clocksource * cs)447 static void clocksource_enqueue_watchdog(struct clocksource *cs)
448 {
449 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
450 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
451 }
452 
clocksource_select_watchdog(bool fallback)453 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)454 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)455 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)456 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)457 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)458 void clocksource_mark_unstable(struct clocksource *cs) { }
459 
460 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
461 
462 /**
463  * clocksource_suspend - suspend the clocksource(s)
464  */
clocksource_suspend(void)465 void clocksource_suspend(void)
466 {
467 	struct clocksource *cs;
468 
469 	list_for_each_entry_reverse(cs, &clocksource_list, list)
470 		if (cs->suspend)
471 			cs->suspend(cs);
472 }
473 
474 /**
475  * clocksource_resume - resume the clocksource(s)
476  */
clocksource_resume(void)477 void clocksource_resume(void)
478 {
479 	struct clocksource *cs;
480 
481 	list_for_each_entry(cs, &clocksource_list, list)
482 		if (cs->resume)
483 			cs->resume(cs);
484 
485 	clocksource_resume_watchdog();
486 }
487 
488 /**
489  * clocksource_touch_watchdog - Update watchdog
490  *
491  * Update the watchdog after exception contexts such as kgdb so as not
492  * to incorrectly trip the watchdog. This might fail when the kernel
493  * was stopped in code which holds watchdog_lock.
494  */
clocksource_touch_watchdog(void)495 void clocksource_touch_watchdog(void)
496 {
497 	clocksource_resume_watchdog();
498 }
499 
500 /**
501  * clocksource_max_adjustment- Returns max adjustment amount
502  * @cs:         Pointer to clocksource
503  *
504  */
clocksource_max_adjustment(struct clocksource * cs)505 static u32 clocksource_max_adjustment(struct clocksource *cs)
506 {
507 	u64 ret;
508 	/*
509 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
510 	 */
511 	ret = (u64)cs->mult * 11;
512 	do_div(ret,100);
513 	return (u32)ret;
514 }
515 
516 /**
517  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
518  * @mult:	cycle to nanosecond multiplier
519  * @shift:	cycle to nanosecond divisor (power of two)
520  * @maxadj:	maximum adjustment value to mult (~11%)
521  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
522  * @max_cyc:	maximum cycle value before potential overflow (does not include
523  *		any safety margin)
524  *
525  * NOTE: This function includes a safety margin of 50%, in other words, we
526  * return half the number of nanoseconds the hardware counter can technically
527  * cover. This is done so that we can potentially detect problems caused by
528  * delayed timers or bad hardware, which might result in time intervals that
529  * are larger than what the math used can handle without overflows.
530  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)531 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
532 {
533 	u64 max_nsecs, max_cycles;
534 
535 	/*
536 	 * Calculate the maximum number of cycles that we can pass to the
537 	 * cyc2ns() function without overflowing a 64-bit result.
538 	 */
539 	max_cycles = ULLONG_MAX;
540 	do_div(max_cycles, mult+maxadj);
541 
542 	/*
543 	 * The actual maximum number of cycles we can defer the clocksource is
544 	 * determined by the minimum of max_cycles and mask.
545 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
546 	 * too long if there's a large negative adjustment.
547 	 */
548 	max_cycles = min(max_cycles, mask);
549 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
550 
551 	/* return the max_cycles value as well if requested */
552 	if (max_cyc)
553 		*max_cyc = max_cycles;
554 
555 	/* Return 50% of the actual maximum, so we can detect bad values */
556 	max_nsecs >>= 1;
557 
558 	return max_nsecs;
559 }
560 
561 /**
562  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
563  * @cs:         Pointer to clocksource to be updated
564  *
565  */
clocksource_update_max_deferment(struct clocksource * cs)566 static inline void clocksource_update_max_deferment(struct clocksource *cs)
567 {
568 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
569 						cs->maxadj, cs->mask,
570 						&cs->max_cycles);
571 }
572 
573 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
574 
clocksource_find_best(bool oneshot,bool skipcur)575 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
576 {
577 	struct clocksource *cs;
578 
579 	if (!finished_booting || list_empty(&clocksource_list))
580 		return NULL;
581 
582 	/*
583 	 * We pick the clocksource with the highest rating. If oneshot
584 	 * mode is active, we pick the highres valid clocksource with
585 	 * the best rating.
586 	 */
587 	list_for_each_entry(cs, &clocksource_list, list) {
588 		if (skipcur && cs == curr_clocksource)
589 			continue;
590 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
591 			continue;
592 		return cs;
593 	}
594 	return NULL;
595 }
596 
__clocksource_select(bool skipcur)597 static void __clocksource_select(bool skipcur)
598 {
599 	bool oneshot = tick_oneshot_mode_active();
600 	struct clocksource *best, *cs;
601 
602 	/* Find the best suitable clocksource */
603 	best = clocksource_find_best(oneshot, skipcur);
604 	if (!best)
605 		return;
606 
607 	/* Check for the override clocksource. */
608 	list_for_each_entry(cs, &clocksource_list, list) {
609 		if (skipcur && cs == curr_clocksource)
610 			continue;
611 		if (strcmp(cs->name, override_name) != 0)
612 			continue;
613 		/*
614 		 * Check to make sure we don't switch to a non-highres
615 		 * capable clocksource if the tick code is in oneshot
616 		 * mode (highres or nohz)
617 		 */
618 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
619 			/* Override clocksource cannot be used. */
620 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
621 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
622 					cs->name);
623 				override_name[0] = 0;
624 			} else {
625 				/*
626 				 * The override cannot be currently verified.
627 				 * Deferring to let the watchdog check.
628 				 */
629 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
630 					cs->name);
631 			}
632 		} else
633 			/* Override clocksource can be used. */
634 			best = cs;
635 		break;
636 	}
637 
638 	if (curr_clocksource != best && !timekeeping_notify(best)) {
639 		pr_info("Switched to clocksource %s\n", best->name);
640 		curr_clocksource = best;
641 	}
642 }
643 
644 /**
645  * clocksource_select - Select the best clocksource available
646  *
647  * Private function. Must hold clocksource_mutex when called.
648  *
649  * Select the clocksource with the best rating, or the clocksource,
650  * which is selected by userspace override.
651  */
clocksource_select(void)652 static void clocksource_select(void)
653 {
654 	__clocksource_select(false);
655 }
656 
clocksource_select_fallback(void)657 static void clocksource_select_fallback(void)
658 {
659 	__clocksource_select(true);
660 }
661 
662 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)663 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)664 static inline void clocksource_select_fallback(void) { }
665 
666 #endif
667 
668 /*
669  * clocksource_done_booting - Called near the end of core bootup
670  *
671  * Hack to avoid lots of clocksource churn at boot time.
672  * We use fs_initcall because we want this to start before
673  * device_initcall but after subsys_initcall.
674  */
clocksource_done_booting(void)675 static int __init clocksource_done_booting(void)
676 {
677 	mutex_lock(&clocksource_mutex);
678 	curr_clocksource = clocksource_default_clock();
679 	finished_booting = 1;
680 	/*
681 	 * Run the watchdog first to eliminate unstable clock sources
682 	 */
683 	__clocksource_watchdog_kthread();
684 	clocksource_select();
685 	mutex_unlock(&clocksource_mutex);
686 	return 0;
687 }
688 fs_initcall(clocksource_done_booting);
689 
690 /*
691  * Enqueue the clocksource sorted by rating
692  */
clocksource_enqueue(struct clocksource * cs)693 static void clocksource_enqueue(struct clocksource *cs)
694 {
695 	struct list_head *entry = &clocksource_list;
696 	struct clocksource *tmp;
697 
698 	list_for_each_entry(tmp, &clocksource_list, list) {
699 		/* Keep track of the place, where to insert */
700 		if (tmp->rating < cs->rating)
701 			break;
702 		entry = &tmp->list;
703 	}
704 	list_add(&cs->list, entry);
705 }
706 
707 /**
708  * __clocksource_update_freq_scale - Used update clocksource with new freq
709  * @cs:		clocksource to be registered
710  * @scale:	Scale factor multiplied against freq to get clocksource hz
711  * @freq:	clocksource frequency (cycles per second) divided by scale
712  *
713  * This should only be called from the clocksource->enable() method.
714  *
715  * This *SHOULD NOT* be called directly! Please use the
716  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
717  * functions.
718  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)719 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
720 {
721 	u64 sec;
722 
723 	/*
724 	 * Default clocksources are *special* and self-define their mult/shift.
725 	 * But, you're not special, so you should specify a freq value.
726 	 */
727 	if (freq) {
728 		/*
729 		 * Calc the maximum number of seconds which we can run before
730 		 * wrapping around. For clocksources which have a mask > 32-bit
731 		 * we need to limit the max sleep time to have a good
732 		 * conversion precision. 10 minutes is still a reasonable
733 		 * amount. That results in a shift value of 24 for a
734 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
735 		 * ~ 0.06ppm granularity for NTP.
736 		 */
737 		sec = cs->mask;
738 		do_div(sec, freq);
739 		do_div(sec, scale);
740 		if (!sec)
741 			sec = 1;
742 		else if (sec > 600 && cs->mask > UINT_MAX)
743 			sec = 600;
744 
745 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
746 				       NSEC_PER_SEC / scale, sec * scale);
747 	}
748 	/*
749 	 * Ensure clocksources that have large 'mult' values don't overflow
750 	 * when adjusted.
751 	 */
752 	cs->maxadj = clocksource_max_adjustment(cs);
753 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
754 		|| (cs->mult - cs->maxadj > cs->mult))) {
755 		cs->mult >>= 1;
756 		cs->shift--;
757 		cs->maxadj = clocksource_max_adjustment(cs);
758 	}
759 
760 	/*
761 	 * Only warn for *special* clocksources that self-define
762 	 * their mult/shift values and don't specify a freq.
763 	 */
764 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
765 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
766 		cs->name);
767 
768 	clocksource_update_max_deferment(cs);
769 
770 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
771 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
772 }
773 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
774 
775 /**
776  * __clocksource_register_scale - Used to install new clocksources
777  * @cs:		clocksource to be registered
778  * @scale:	Scale factor multiplied against freq to get clocksource hz
779  * @freq:	clocksource frequency (cycles per second) divided by scale
780  *
781  * Returns -EBUSY if registration fails, zero otherwise.
782  *
783  * This *SHOULD NOT* be called directly! Please use the
784  * clocksource_register_hz() or clocksource_register_khz helper functions.
785  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)786 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
787 {
788 
789 	/* Initialize mult/shift and max_idle_ns */
790 	__clocksource_update_freq_scale(cs, scale, freq);
791 
792 	/* Add clocksource to the clocksource list */
793 	mutex_lock(&clocksource_mutex);
794 	clocksource_enqueue(cs);
795 	clocksource_enqueue_watchdog(cs);
796 	clocksource_select();
797 	clocksource_select_watchdog(false);
798 	mutex_unlock(&clocksource_mutex);
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
802 
__clocksource_change_rating(struct clocksource * cs,int rating)803 static void __clocksource_change_rating(struct clocksource *cs, int rating)
804 {
805 	list_del(&cs->list);
806 	cs->rating = rating;
807 	clocksource_enqueue(cs);
808 }
809 
810 /**
811  * clocksource_change_rating - Change the rating of a registered clocksource
812  * @cs:		clocksource to be changed
813  * @rating:	new rating
814  */
clocksource_change_rating(struct clocksource * cs,int rating)815 void clocksource_change_rating(struct clocksource *cs, int rating)
816 {
817 	mutex_lock(&clocksource_mutex);
818 	__clocksource_change_rating(cs, rating);
819 	clocksource_select();
820 	clocksource_select_watchdog(false);
821 	mutex_unlock(&clocksource_mutex);
822 }
823 EXPORT_SYMBOL(clocksource_change_rating);
824 
825 /*
826  * Unbind clocksource @cs. Called with clocksource_mutex held
827  */
clocksource_unbind(struct clocksource * cs)828 static int clocksource_unbind(struct clocksource *cs)
829 {
830 	if (clocksource_is_watchdog(cs)) {
831 		/* Select and try to install a replacement watchdog. */
832 		clocksource_select_watchdog(true);
833 		if (clocksource_is_watchdog(cs))
834 			return -EBUSY;
835 	}
836 
837 	if (cs == curr_clocksource) {
838 		/* Select and try to install a replacement clock source */
839 		clocksource_select_fallback();
840 		if (curr_clocksource == cs)
841 			return -EBUSY;
842 	}
843 	clocksource_dequeue_watchdog(cs);
844 	list_del_init(&cs->list);
845 	return 0;
846 }
847 
848 /**
849  * clocksource_unregister - remove a registered clocksource
850  * @cs:	clocksource to be unregistered
851  */
clocksource_unregister(struct clocksource * cs)852 int clocksource_unregister(struct clocksource *cs)
853 {
854 	int ret = 0;
855 
856 	mutex_lock(&clocksource_mutex);
857 	if (!list_empty(&cs->list))
858 		ret = clocksource_unbind(cs);
859 	mutex_unlock(&clocksource_mutex);
860 	return ret;
861 }
862 EXPORT_SYMBOL(clocksource_unregister);
863 
864 #ifdef CONFIG_SYSFS
865 /**
866  * sysfs_show_current_clocksources - sysfs interface for current clocksource
867  * @dev:	unused
868  * @attr:	unused
869  * @buf:	char buffer to be filled with clocksource list
870  *
871  * Provides sysfs interface for listing current clocksource.
872  */
873 static ssize_t
sysfs_show_current_clocksources(struct device * dev,struct device_attribute * attr,char * buf)874 sysfs_show_current_clocksources(struct device *dev,
875 				struct device_attribute *attr, char *buf)
876 {
877 	ssize_t count = 0;
878 
879 	mutex_lock(&clocksource_mutex);
880 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
881 	mutex_unlock(&clocksource_mutex);
882 
883 	return count;
884 }
885 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)886 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
887 {
888 	size_t ret = cnt;
889 
890 	/* strings from sysfs write are not 0 terminated! */
891 	if (!cnt || cnt >= CS_NAME_LEN)
892 		return -EINVAL;
893 
894 	/* strip of \n: */
895 	if (buf[cnt-1] == '\n')
896 		cnt--;
897 	if (cnt > 0)
898 		memcpy(dst, buf, cnt);
899 	dst[cnt] = 0;
900 	return ret;
901 }
902 
903 /**
904  * sysfs_override_clocksource - interface for manually overriding clocksource
905  * @dev:	unused
906  * @attr:	unused
907  * @buf:	name of override clocksource
908  * @count:	length of buffer
909  *
910  * Takes input from sysfs interface for manually overriding the default
911  * clocksource selection.
912  */
sysfs_override_clocksource(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)913 static ssize_t sysfs_override_clocksource(struct device *dev,
914 					  struct device_attribute *attr,
915 					  const char *buf, size_t count)
916 {
917 	ssize_t ret;
918 
919 	mutex_lock(&clocksource_mutex);
920 
921 	ret = sysfs_get_uname(buf, override_name, count);
922 	if (ret >= 0)
923 		clocksource_select();
924 
925 	mutex_unlock(&clocksource_mutex);
926 
927 	return ret;
928 }
929 
930 /**
931  * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
932  * @dev:	unused
933  * @attr:	unused
934  * @buf:	unused
935  * @count:	length of buffer
936  *
937  * Takes input from sysfs interface for manually unbinding a clocksource.
938  */
sysfs_unbind_clocksource(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)939 static ssize_t sysfs_unbind_clocksource(struct device *dev,
940 					struct device_attribute *attr,
941 					const char *buf, size_t count)
942 {
943 	struct clocksource *cs;
944 	char name[CS_NAME_LEN];
945 	ssize_t ret;
946 
947 	ret = sysfs_get_uname(buf, name, count);
948 	if (ret < 0)
949 		return ret;
950 
951 	ret = -ENODEV;
952 	mutex_lock(&clocksource_mutex);
953 	list_for_each_entry(cs, &clocksource_list, list) {
954 		if (strcmp(cs->name, name))
955 			continue;
956 		ret = clocksource_unbind(cs);
957 		break;
958 	}
959 	mutex_unlock(&clocksource_mutex);
960 
961 	return ret ? ret : count;
962 }
963 
964 /**
965  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
966  * @dev:	unused
967  * @attr:	unused
968  * @buf:	char buffer to be filled with clocksource list
969  *
970  * Provides sysfs interface for listing registered clocksources
971  */
972 static ssize_t
sysfs_show_available_clocksources(struct device * dev,struct device_attribute * attr,char * buf)973 sysfs_show_available_clocksources(struct device *dev,
974 				  struct device_attribute *attr,
975 				  char *buf)
976 {
977 	struct clocksource *src;
978 	ssize_t count = 0;
979 
980 	mutex_lock(&clocksource_mutex);
981 	list_for_each_entry(src, &clocksource_list, list) {
982 		/*
983 		 * Don't show non-HRES clocksource if the tick code is
984 		 * in one shot mode (highres=on or nohz=on)
985 		 */
986 		if (!tick_oneshot_mode_active() ||
987 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
988 			count += snprintf(buf + count,
989 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
990 				  "%s ", src->name);
991 	}
992 	mutex_unlock(&clocksource_mutex);
993 
994 	count += snprintf(buf + count,
995 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
996 
997 	return count;
998 }
999 
1000 /*
1001  * Sysfs setup bits:
1002  */
1003 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
1004 		   sysfs_override_clocksource);
1005 
1006 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
1007 
1008 static DEVICE_ATTR(available_clocksource, 0444,
1009 		   sysfs_show_available_clocksources, NULL);
1010 
1011 static struct bus_type clocksource_subsys = {
1012 	.name = "clocksource",
1013 	.dev_name = "clocksource",
1014 };
1015 
1016 static struct device device_clocksource = {
1017 	.id	= 0,
1018 	.bus	= &clocksource_subsys,
1019 };
1020 
init_clocksource_sysfs(void)1021 static int __init init_clocksource_sysfs(void)
1022 {
1023 	int error = subsys_system_register(&clocksource_subsys, NULL);
1024 
1025 	if (!error)
1026 		error = device_register(&device_clocksource);
1027 	if (!error)
1028 		error = device_create_file(
1029 				&device_clocksource,
1030 				&dev_attr_current_clocksource);
1031 	if (!error)
1032 		error = device_create_file(&device_clocksource,
1033 					   &dev_attr_unbind_clocksource);
1034 	if (!error)
1035 		error = device_create_file(
1036 				&device_clocksource,
1037 				&dev_attr_available_clocksource);
1038 	return error;
1039 }
1040 
1041 device_initcall(init_clocksource_sysfs);
1042 #endif /* CONFIG_SYSFS */
1043 
1044 /**
1045  * boot_override_clocksource - boot clock override
1046  * @str:	override name
1047  *
1048  * Takes a clocksource= boot argument and uses it
1049  * as the clocksource override name.
1050  */
boot_override_clocksource(char * str)1051 static int __init boot_override_clocksource(char* str)
1052 {
1053 	mutex_lock(&clocksource_mutex);
1054 	if (str)
1055 		strlcpy(override_name, str, sizeof(override_name));
1056 	mutex_unlock(&clocksource_mutex);
1057 	return 1;
1058 }
1059 
1060 __setup("clocksource=", boot_override_clocksource);
1061 
1062 /**
1063  * boot_override_clock - Compatibility layer for deprecated boot option
1064  * @str:	override name
1065  *
1066  * DEPRECATED! Takes a clock= boot argument and uses it
1067  * as the clocksource override name
1068  */
boot_override_clock(char * str)1069 static int __init boot_override_clock(char* str)
1070 {
1071 	if (!strcmp(str, "pmtmr")) {
1072 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1073 		return boot_override_clocksource("acpi_pm");
1074 	}
1075 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1076 	return boot_override_clocksource(str);
1077 }
1078 
1079 __setup("clock=", boot_override_clock);
1080