• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55 
56 #include <linux/uaccess.h>
57 
58 #include <trace/events/timer.h>
59 
60 #include "tick-internal.h"
61 
62 /*
63  * The timer bases:
64  *
65  * There are more clockids than hrtimer bases. Thus, we index
66  * into the timer bases by the hrtimer_base_type enum. When trying
67  * to reach a base using a clockid, hrtimer_clockid_to_base()
68  * is used to convert from clockid to the proper hrtimer_base_type.
69  */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 	.clock_base =
75 	{
76 		{
77 			.index = HRTIMER_BASE_MONOTONIC,
78 			.clockid = CLOCK_MONOTONIC,
79 			.get_time = &ktime_get,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 			.get_time = &ktime_get_real,
85 		},
86 		{
87 			.index = HRTIMER_BASE_BOOTTIME,
88 			.clockid = CLOCK_BOOTTIME,
89 			.get_time = &ktime_get_boottime,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 		},
96 	}
97 };
98 
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 	/* Make sure we catch unsupported clockids */
101 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
102 
103 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
104 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
105 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107 };
108 
109 /*
110  * Functions and macros which are different for UP/SMP systems are kept in a
111  * single place
112  */
113 #ifdef CONFIG_SMP
114 
115 /*
116  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117  * such that hrtimer_callback_running() can unconditionally dereference
118  * timer->base->cpu_base
119  */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 	.seq = SEQCNT_ZERO(migration_cpu_base),
122 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124 
125 #define migration_base	migration_cpu_base.clock_base[0]
126 
127 /*
128  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129  * means that all timers which are tied to this base via timer->base are
130  * locked, and the base itself is locked too.
131  *
132  * So __run_timers/migrate_timers can safely modify all timers which could
133  * be found on the lists/queues.
134  *
135  * When the timer's base is locked, and the timer removed from list, it is
136  * possible to set timer->base = &migration_base and drop the lock: the timer
137  * remains locked.
138  */
139 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 					     unsigned long *flags)
142 {
143 	struct hrtimer_clock_base *base;
144 
145 	for (;;) {
146 		base = timer->base;
147 		if (likely(base != &migration_base)) {
148 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 			if (likely(base == timer->base))
150 				return base;
151 			/* The timer has migrated to another CPU: */
152 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 		}
154 		cpu_relax();
155 	}
156 }
157 
158 /*
159  * With HIGHRES=y we do not migrate the timer when it is expiring
160  * before the next event on the target cpu because we cannot reprogram
161  * the target cpu hardware and we would cause it to fire late.
162  *
163  * Called with cpu_base->lock of target cpu held.
164  */
165 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 	ktime_t expires;
170 
171 	if (!new_base->cpu_base->hres_active)
172 		return 0;
173 
174 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 	return expires <= new_base->cpu_base->expires_next;
176 #else
177 	return 0;
178 #endif
179 }
180 
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 					 int pinned)
185 {
186 	if (pinned || !base->migration_enabled)
187 		return base;
188 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 					 int pinned)
194 {
195 	return base;
196 }
197 #endif
198 
199 /*
200  * We switch the timer base to a power-optimized selected CPU target,
201  * if:
202  *	- NO_HZ_COMMON is enabled
203  *	- timer migration is enabled
204  *	- the timer callback is not running
205  *	- the timer is not the first expiring timer on the new target
206  *
207  * If one of the above requirements is not fulfilled we move the timer
208  * to the current CPU or leave it on the previously assigned CPU if
209  * the timer callback is currently running.
210  */
211 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 		    int pinned)
214 {
215 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 	struct hrtimer_clock_base *new_base;
217 	int basenum = base->index;
218 
219 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 	new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 	new_base = &new_cpu_base->clock_base[basenum];
223 
224 	if (base != new_base) {
225 		/*
226 		 * We are trying to move timer to new_base.
227 		 * However we can't change timer's base while it is running,
228 		 * so we keep it on the same CPU. No hassle vs. reprogramming
229 		 * the event source in the high resolution case. The softirq
230 		 * code will take care of this when the timer function has
231 		 * completed. There is no conflict as we hold the lock until
232 		 * the timer is enqueued.
233 		 */
234 		if (unlikely(hrtimer_callback_running(timer)))
235 			return base;
236 
237 		/* See the comment in lock_hrtimer_base() */
238 		timer->base = &migration_base;
239 		raw_spin_unlock(&base->cpu_base->lock);
240 		raw_spin_lock(&new_base->cpu_base->lock);
241 
242 		if (new_cpu_base != this_cpu_base &&
243 		    hrtimer_check_target(timer, new_base)) {
244 			raw_spin_unlock(&new_base->cpu_base->lock);
245 			raw_spin_lock(&base->cpu_base->lock);
246 			new_cpu_base = this_cpu_base;
247 			timer->base = base;
248 			goto again;
249 		}
250 		timer->base = new_base;
251 	} else {
252 		if (new_cpu_base != this_cpu_base &&
253 		    hrtimer_check_target(timer, new_base)) {
254 			new_cpu_base = this_cpu_base;
255 			goto again;
256 		}
257 	}
258 	return new_base;
259 }
260 
261 #else /* CONFIG_SMP */
262 
263 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 	struct hrtimer_clock_base *base = timer->base;
267 
268 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 
270 	return base;
271 }
272 
273 # define switch_hrtimer_base(t, b, p)	(b)
274 
275 #endif	/* !CONFIG_SMP */
276 
277 /*
278  * Functions for the union type storage format of ktime_t which are
279  * too large for inlining:
280  */
281 #if BITS_PER_LONG < 64
282 /*
283  * Divide a ktime value by a nanosecond value
284  */
__ktime_divns(const ktime_t kt,s64 div)285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 	int sft = 0;
288 	s64 dclc;
289 	u64 tmp;
290 
291 	dclc = ktime_to_ns(kt);
292 	tmp = dclc < 0 ? -dclc : dclc;
293 
294 	/* Make sure the divisor is less than 2^32: */
295 	while (div >> 32) {
296 		sft++;
297 		div >>= 1;
298 	}
299 	tmp >>= sft;
300 	do_div(tmp, (unsigned long) div);
301 	return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305 
306 /*
307  * Add two ktime values and do a safety check for overflow:
308  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 	ktime_t res = ktime_add_unsafe(lhs, rhs);
312 
313 	/*
314 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 	 * return to user space in a timespec:
316 	 */
317 	if (res < 0 || res < lhs || res < rhs)
318 		res = ktime_set(KTIME_SEC_MAX, 0);
319 
320 	return res;
321 }
322 
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324 
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326 
327 static struct debug_obj_descr hrtimer_debug_descr;
328 
hrtimer_debug_hint(void * addr)329 static void *hrtimer_debug_hint(void *addr)
330 {
331 	return ((struct hrtimer *) addr)->function;
332 }
333 
334 /*
335  * fixup_init is called when:
336  * - an active object is initialized
337  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 	struct hrtimer *timer = addr;
341 
342 	switch (state) {
343 	case ODEBUG_STATE_ACTIVE:
344 		hrtimer_cancel(timer);
345 		debug_object_init(timer, &hrtimer_debug_descr);
346 		return true;
347 	default:
348 		return false;
349 	}
350 }
351 
352 /*
353  * fixup_activate is called when:
354  * - an active object is activated
355  * - an unknown non-static object is activated
356  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 	switch (state) {
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return false;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct hrtimer *timer = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		hrtimer_cancel(timer);
379 		debug_object_free(timer, &hrtimer_debug_descr);
380 		return true;
381 	default:
382 		return false;
383 	}
384 }
385 
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 	.name		= "hrtimer",
388 	.debug_hint	= hrtimer_debug_hint,
389 	.fixup_init	= hrtimer_fixup_init,
390 	.fixup_activate	= hrtimer_fixup_activate,
391 	.fixup_free	= hrtimer_fixup_free,
392 };
393 
debug_hrtimer_init(struct hrtimer * timer)394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 	debug_object_init(timer, &hrtimer_debug_descr);
397 }
398 
debug_hrtimer_activate(struct hrtimer * timer)399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 	debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403 
debug_hrtimer_deactivate(struct hrtimer * timer)404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 	debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408 
debug_hrtimer_free(struct hrtimer * timer)409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 	debug_object_free(timer, &hrtimer_debug_descr);
412 }
413 
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 			   enum hrtimer_mode mode);
416 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 			   enum hrtimer_mode mode)
419 {
420 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 	__hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 
destroy_hrtimer_on_stack(struct hrtimer * timer)425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 	debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 
431 #else
debug_hrtimer_init(struct hrtimer * timer)432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436 
437 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 	   enum hrtimer_mode mode)
440 {
441 	debug_hrtimer_init(timer);
442 	trace_hrtimer_init(timer, clockid, mode);
443 }
444 
debug_activate(struct hrtimer * timer)445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 	debug_hrtimer_activate(timer);
448 	trace_hrtimer_start(timer);
449 }
450 
debug_deactivate(struct hrtimer * timer)451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 	debug_hrtimer_deactivate(timer);
454 	trace_hrtimer_cancel(timer);
455 }
456 
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
hrtimer_update_next_timer(struct hrtimer_cpu_base * cpu_base,struct hrtimer * timer)458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 					     struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 	cpu_base->next_timer = timer;
463 #endif
464 }
465 
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude)466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base,
467 					const struct hrtimer *exclude)
468 {
469 	struct hrtimer_clock_base *base = cpu_base->clock_base;
470 	unsigned int active = cpu_base->active_bases;
471 	ktime_t expires, expires_next = KTIME_MAX;
472 
473 	hrtimer_update_next_timer(cpu_base, NULL);
474 	for (; active; base++, active >>= 1) {
475 		struct timerqueue_node *next;
476 		struct hrtimer *timer;
477 
478 		if (!(active & 0x01))
479 			continue;
480 
481 		next = timerqueue_getnext(&base->active);
482 		timer = container_of(next, struct hrtimer, node);
483 		if (timer == exclude) {
484 			/* Get to the next timer in the queue. */
485 			struct rb_node *rbn = rb_next(&next->node);
486 
487 			next = rb_entry_safe(rbn, struct timerqueue_node, node);
488 			if (!next)
489 				continue;
490 
491 			timer = container_of(next, struct hrtimer, node);
492 		}
493 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
494 		if (expires < expires_next) {
495 			expires_next = expires;
496 
497 			/* Skip cpu_base update if a timer is being excluded. */
498 			if (exclude)
499 				continue;
500 
501 			hrtimer_update_next_timer(cpu_base, timer);
502 		}
503 	}
504 	/*
505 	 * clock_was_set() might have changed base->offset of any of
506 	 * the clock bases so the result might be negative. Fix it up
507 	 * to prevent a false positive in clockevents_program_event().
508 	 */
509 	if (expires_next < 0)
510 		expires_next = 0;
511 	return expires_next;
512 }
513 #endif
514 
hrtimer_update_base(struct hrtimer_cpu_base * base)515 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
516 {
517 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
518 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
519 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
520 
521 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
522 					    offs_real, offs_boot, offs_tai);
523 }
524 
525 /* High resolution timer related functions */
526 #ifdef CONFIG_HIGH_RES_TIMERS
527 
528 /*
529  * High resolution timer enabled ?
530  */
531 static bool hrtimer_hres_enabled __read_mostly  = true;
532 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
533 EXPORT_SYMBOL_GPL(hrtimer_resolution);
534 
535 /*
536  * Enable / Disable high resolution mode
537  */
setup_hrtimer_hres(char * str)538 static int __init setup_hrtimer_hres(char *str)
539 {
540 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
541 }
542 
543 __setup("highres=", setup_hrtimer_hres);
544 
545 /*
546  * hrtimer_high_res_enabled - query, if the highres mode is enabled
547  */
hrtimer_is_hres_enabled(void)548 static inline int hrtimer_is_hres_enabled(void)
549 {
550 	return hrtimer_hres_enabled;
551 }
552 
553 /*
554  * Is the high resolution mode active ?
555  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)556 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
557 {
558 	return cpu_base->hres_active;
559 }
560 
hrtimer_hres_active(void)561 static inline int hrtimer_hres_active(void)
562 {
563 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
564 }
565 
566 /*
567  * Reprogram the event source with checking both queues for the
568  * next event
569  * Called with interrupts disabled and base->lock held
570  */
571 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)572 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
573 {
574 	ktime_t expires_next;
575 
576 	if (!cpu_base->hres_active)
577 		return;
578 
579 	expires_next = __hrtimer_get_next_event(cpu_base, NULL);
580 
581 	if (skip_equal && expires_next == cpu_base->expires_next)
582 		return;
583 
584 	cpu_base->expires_next = expires_next;
585 
586 	/*
587 	 * If a hang was detected in the last timer interrupt then we
588 	 * leave the hang delay active in the hardware. We want the
589 	 * system to make progress. That also prevents the following
590 	 * scenario:
591 	 * T1 expires 50ms from now
592 	 * T2 expires 5s from now
593 	 *
594 	 * T1 is removed, so this code is called and would reprogram
595 	 * the hardware to 5s from now. Any hrtimer_start after that
596 	 * will not reprogram the hardware due to hang_detected being
597 	 * set. So we'd effectivly block all timers until the T2 event
598 	 * fires.
599 	 */
600 	if (cpu_base->hang_detected)
601 		return;
602 
603 	tick_program_event(cpu_base->expires_next, 1);
604 }
605 
606 /*
607  * When a timer is enqueued and expires earlier than the already enqueued
608  * timers, we have to check, whether it expires earlier than the timer for
609  * which the clock event device was armed.
610  *
611  * Called with interrupts disabled and base->cpu_base.lock held
612  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)613 static void hrtimer_reprogram(struct hrtimer *timer,
614 			      struct hrtimer_clock_base *base)
615 {
616 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
617 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
618 
619 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
620 
621 	/*
622 	 * If the timer is not on the current cpu, we cannot reprogram
623 	 * the other cpus clock event device.
624 	 */
625 	if (base->cpu_base != cpu_base)
626 		return;
627 
628 	/*
629 	 * If the hrtimer interrupt is running, then it will
630 	 * reevaluate the clock bases and reprogram the clock event
631 	 * device. The callbacks are always executed in hard interrupt
632 	 * context so we don't need an extra check for a running
633 	 * callback.
634 	 */
635 	if (cpu_base->in_hrtirq)
636 		return;
637 
638 	/*
639 	 * CLOCK_REALTIME timer might be requested with an absolute
640 	 * expiry time which is less than base->offset. Set it to 0.
641 	 */
642 	if (expires < 0)
643 		expires = 0;
644 
645 	if (expires >= cpu_base->expires_next)
646 		return;
647 
648 	/* Update the pointer to the next expiring timer */
649 	cpu_base->next_timer = timer;
650 
651 	/*
652 	 * If a hang was detected in the last timer interrupt then we
653 	 * do not schedule a timer which is earlier than the expiry
654 	 * which we enforced in the hang detection. We want the system
655 	 * to make progress.
656 	 */
657 	if (cpu_base->hang_detected)
658 		return;
659 
660 	/*
661 	 * Program the timer hardware. We enforce the expiry for
662 	 * events which are already in the past.
663 	 */
664 	cpu_base->expires_next = expires;
665 	tick_program_event(expires, 1);
666 }
667 
668 /*
669  * Initialize the high resolution related parts of cpu_base
670  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
672 {
673 	base->expires_next = KTIME_MAX;
674 	base->hang_detected = 0;
675 	base->hres_active = 0;
676 	base->next_timer = NULL;
677 }
678 
679 /*
680  * Retrigger next event is called after clock was set
681  *
682  * Called with interrupts disabled via on_each_cpu()
683  */
retrigger_next_event(void * arg)684 static void retrigger_next_event(void *arg)
685 {
686 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
687 
688 	if (!base->hres_active)
689 		return;
690 
691 	raw_spin_lock(&base->lock);
692 	hrtimer_update_base(base);
693 	hrtimer_force_reprogram(base, 0);
694 	raw_spin_unlock(&base->lock);
695 }
696 
697 /*
698  * Switch to high resolution mode
699  */
hrtimer_switch_to_hres(void)700 static void hrtimer_switch_to_hres(void)
701 {
702 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703 
704 	if (tick_init_highres()) {
705 		printk(KERN_WARNING "Could not switch to high resolution "
706 				    "mode on CPU %d\n", base->cpu);
707 		return;
708 	}
709 	base->hres_active = 1;
710 	hrtimer_resolution = HIGH_RES_NSEC;
711 
712 	tick_setup_sched_timer();
713 	/* "Retrigger" the interrupt to get things going */
714 	retrigger_next_event(NULL);
715 }
716 
clock_was_set_work(struct work_struct * work)717 static void clock_was_set_work(struct work_struct *work)
718 {
719 	clock_was_set();
720 }
721 
722 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
723 
724 /*
725  * Called from timekeeping and resume code to reprogram the hrtimer
726  * interrupt device on all cpus.
727  */
clock_was_set_delayed(void)728 void clock_was_set_delayed(void)
729 {
730 	schedule_work(&hrtimer_work);
731 }
732 
733 #else
734 
__hrtimer_hres_active(struct hrtimer_cpu_base * b)735 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
hrtimer_hres_active(void)736 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)737 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)738 static inline void hrtimer_switch_to_hres(void) { }
739 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)740 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)741 static inline int hrtimer_reprogram(struct hrtimer *timer,
742 				    struct hrtimer_clock_base *base)
743 {
744 	return 0;
745 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)746 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)747 static inline void retrigger_next_event(void *arg) { }
748 
749 #endif /* CONFIG_HIGH_RES_TIMERS */
750 
751 /*
752  * Clock realtime was set
753  *
754  * Change the offset of the realtime clock vs. the monotonic
755  * clock.
756  *
757  * We might have to reprogram the high resolution timer interrupt. On
758  * SMP we call the architecture specific code to retrigger _all_ high
759  * resolution timer interrupts. On UP we just disable interrupts and
760  * call the high resolution interrupt code.
761  */
clock_was_set(void)762 void clock_was_set(void)
763 {
764 #ifdef CONFIG_HIGH_RES_TIMERS
765 	/* Retrigger the CPU local events everywhere */
766 	on_each_cpu(retrigger_next_event, NULL, 1);
767 #endif
768 	timerfd_clock_was_set();
769 }
770 
771 /*
772  * During resume we might have to reprogram the high resolution timer
773  * interrupt on all online CPUs.  However, all other CPUs will be
774  * stopped with IRQs interrupts disabled so the clock_was_set() call
775  * must be deferred.
776  */
hrtimers_resume(void)777 void hrtimers_resume(void)
778 {
779 	WARN_ONCE(!irqs_disabled(),
780 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
781 
782 	/* Retrigger on the local CPU */
783 	retrigger_next_event(NULL);
784 	/* And schedule a retrigger for all others */
785 	clock_was_set_delayed();
786 }
787 
788 /*
789  * Counterpart to lock_hrtimer_base above:
790  */
791 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)792 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
793 {
794 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
795 }
796 
797 /**
798  * hrtimer_forward - forward the timer expiry
799  * @timer:	hrtimer to forward
800  * @now:	forward past this time
801  * @interval:	the interval to forward
802  *
803  * Forward the timer expiry so it will expire in the future.
804  * Returns the number of overruns.
805  *
806  * Can be safely called from the callback function of @timer. If
807  * called from other contexts @timer must neither be enqueued nor
808  * running the callback and the caller needs to take care of
809  * serialization.
810  *
811  * Note: This only updates the timer expiry value and does not requeue
812  * the timer.
813  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)814 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
815 {
816 	u64 orun = 1;
817 	ktime_t delta;
818 
819 	delta = ktime_sub(now, hrtimer_get_expires(timer));
820 
821 	if (delta < 0)
822 		return 0;
823 
824 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
825 		return 0;
826 
827 	if (interval < hrtimer_resolution)
828 		interval = hrtimer_resolution;
829 
830 	if (unlikely(delta >= interval)) {
831 		s64 incr = ktime_to_ns(interval);
832 
833 		orun = ktime_divns(delta, incr);
834 		hrtimer_add_expires_ns(timer, incr * orun);
835 		if (hrtimer_get_expires_tv64(timer) > now)
836 			return orun;
837 		/*
838 		 * This (and the ktime_add() below) is the
839 		 * correction for exact:
840 		 */
841 		orun++;
842 	}
843 	hrtimer_add_expires(timer, interval);
844 
845 	return orun;
846 }
847 EXPORT_SYMBOL_GPL(hrtimer_forward);
848 
849 /*
850  * enqueue_hrtimer - internal function to (re)start a timer
851  *
852  * The timer is inserted in expiry order. Insertion into the
853  * red black tree is O(log(n)). Must hold the base lock.
854  *
855  * Returns 1 when the new timer is the leftmost timer in the tree.
856  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)857 static int enqueue_hrtimer(struct hrtimer *timer,
858 			   struct hrtimer_clock_base *base)
859 {
860 	debug_activate(timer);
861 
862 	base->cpu_base->active_bases |= 1 << base->index;
863 
864 	/* Pairs with the lockless read in hrtimer_is_queued() */
865 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
866 
867 	return timerqueue_add(&base->active, &timer->node);
868 }
869 
870 /*
871  * __remove_hrtimer - internal function to remove a timer
872  *
873  * Caller must hold the base lock.
874  *
875  * High resolution timer mode reprograms the clock event device when the
876  * timer is the one which expires next. The caller can disable this by setting
877  * reprogram to zero. This is useful, when the context does a reprogramming
878  * anyway (e.g. timer interrupt)
879  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)880 static void __remove_hrtimer(struct hrtimer *timer,
881 			     struct hrtimer_clock_base *base,
882 			     u8 newstate, int reprogram)
883 {
884 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
885 	u8 state = timer->state;
886 
887 	/* Pairs with the lockless read in hrtimer_is_queued() */
888 	WRITE_ONCE(timer->state, newstate);
889 	if (!(state & HRTIMER_STATE_ENQUEUED))
890 		return;
891 
892 	if (!timerqueue_del(&base->active, &timer->node))
893 		cpu_base->active_bases &= ~(1 << base->index);
894 
895 #ifdef CONFIG_HIGH_RES_TIMERS
896 	/*
897 	 * Note: If reprogram is false we do not update
898 	 * cpu_base->next_timer. This happens when we remove the first
899 	 * timer on a remote cpu. No harm as we never dereference
900 	 * cpu_base->next_timer. So the worst thing what can happen is
901 	 * an superflous call to hrtimer_force_reprogram() on the
902 	 * remote cpu later on if the same timer gets enqueued again.
903 	 */
904 	if (reprogram && timer == cpu_base->next_timer)
905 		hrtimer_force_reprogram(cpu_base, 1);
906 #endif
907 }
908 
909 /*
910  * remove hrtimer, called with base lock held
911  */
912 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart)913 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
914 {
915 	u8 state = timer->state;
916 
917 	if (state & HRTIMER_STATE_ENQUEUED) {
918 		int reprogram;
919 
920 		/*
921 		 * Remove the timer and force reprogramming when high
922 		 * resolution mode is active and the timer is on the current
923 		 * CPU. If we remove a timer on another CPU, reprogramming is
924 		 * skipped. The interrupt event on this CPU is fired and
925 		 * reprogramming happens in the interrupt handler. This is a
926 		 * rare case and less expensive than a smp call.
927 		 */
928 		debug_deactivate(timer);
929 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
930 
931 		if (!restart)
932 			state = HRTIMER_STATE_INACTIVE;
933 
934 		__remove_hrtimer(timer, base, state, reprogram);
935 		return 1;
936 	}
937 	return 0;
938 }
939 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)940 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
941 					    const enum hrtimer_mode mode)
942 {
943 #ifdef CONFIG_TIME_LOW_RES
944 	/*
945 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
946 	 * granular time values. For relative timers we add hrtimer_resolution
947 	 * (i.e. one jiffie) to prevent short timeouts.
948 	 */
949 	timer->is_rel = mode & HRTIMER_MODE_REL;
950 	if (timer->is_rel)
951 		tim = ktime_add_safe(tim, hrtimer_resolution);
952 #endif
953 	return tim;
954 }
955 
956 /**
957  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
958  * @timer:	the timer to be added
959  * @tim:	expiry time
960  * @delta_ns:	"slack" range for the timer
961  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
962  *		relative (HRTIMER_MODE_REL)
963  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)964 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
965 			    u64 delta_ns, const enum hrtimer_mode mode)
966 {
967 	struct hrtimer_clock_base *base, *new_base;
968 	unsigned long flags;
969 	int leftmost;
970 
971 	base = lock_hrtimer_base(timer, &flags);
972 
973 	/* Remove an active timer from the queue: */
974 	remove_hrtimer(timer, base, true);
975 
976 	if (mode & HRTIMER_MODE_REL)
977 		tim = ktime_add_safe(tim, base->get_time());
978 
979 	tim = hrtimer_update_lowres(timer, tim, mode);
980 
981 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
982 
983 	/* Switch the timer base, if necessary: */
984 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
985 
986 	leftmost = enqueue_hrtimer(timer, new_base);
987 	if (!leftmost)
988 		goto unlock;
989 
990 	if (!hrtimer_is_hres_active(timer)) {
991 		/*
992 		 * Kick to reschedule the next tick to handle the new timer
993 		 * on dynticks target.
994 		 */
995 		if (new_base->cpu_base->nohz_active)
996 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
997 	} else {
998 		hrtimer_reprogram(timer, new_base);
999 	}
1000 unlock:
1001 	unlock_hrtimer_base(timer, &flags);
1002 }
1003 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1004 
1005 /**
1006  * hrtimer_try_to_cancel - try to deactivate a timer
1007  * @timer:	hrtimer to stop
1008  *
1009  * Returns:
1010  *  0 when the timer was not active
1011  *  1 when the timer was active
1012  * -1 when the timer is currently executing the callback function and
1013  *    cannot be stopped
1014  */
hrtimer_try_to_cancel(struct hrtimer * timer)1015 int hrtimer_try_to_cancel(struct hrtimer *timer)
1016 {
1017 	struct hrtimer_clock_base *base;
1018 	unsigned long flags;
1019 	int ret = -1;
1020 
1021 	/*
1022 	 * Check lockless first. If the timer is not active (neither
1023 	 * enqueued nor running the callback, nothing to do here.  The
1024 	 * base lock does not serialize against a concurrent enqueue,
1025 	 * so we can avoid taking it.
1026 	 */
1027 	if (!hrtimer_active(timer))
1028 		return 0;
1029 
1030 	base = lock_hrtimer_base(timer, &flags);
1031 
1032 	if (!hrtimer_callback_running(timer))
1033 		ret = remove_hrtimer(timer, base, false);
1034 
1035 	unlock_hrtimer_base(timer, &flags);
1036 
1037 	return ret;
1038 
1039 }
1040 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1041 
1042 /**
1043  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1044  * @timer:	the timer to be cancelled
1045  *
1046  * Returns:
1047  *  0 when the timer was not active
1048  *  1 when the timer was active
1049  */
hrtimer_cancel(struct hrtimer * timer)1050 int hrtimer_cancel(struct hrtimer *timer)
1051 {
1052 	for (;;) {
1053 		int ret = hrtimer_try_to_cancel(timer);
1054 
1055 		if (ret >= 0)
1056 			return ret;
1057 		cpu_relax();
1058 	}
1059 }
1060 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1061 
1062 /**
1063  * hrtimer_get_remaining - get remaining time for the timer
1064  * @timer:	the timer to read
1065  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1066  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1067 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1068 {
1069 	unsigned long flags;
1070 	ktime_t rem;
1071 
1072 	lock_hrtimer_base(timer, &flags);
1073 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1074 		rem = hrtimer_expires_remaining_adjusted(timer);
1075 	else
1076 		rem = hrtimer_expires_remaining(timer);
1077 	unlock_hrtimer_base(timer, &flags);
1078 
1079 	return rem;
1080 }
1081 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1082 
1083 #ifdef CONFIG_NO_HZ_COMMON
1084 /**
1085  * hrtimer_get_next_event - get the time until next expiry event
1086  *
1087  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1088  */
hrtimer_get_next_event(void)1089 u64 hrtimer_get_next_event(void)
1090 {
1091 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1092 	u64 expires = KTIME_MAX;
1093 	unsigned long flags;
1094 
1095 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1096 
1097 	if (!__hrtimer_hres_active(cpu_base))
1098 		expires = __hrtimer_get_next_event(cpu_base, NULL);
1099 
1100 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1101 
1102 	return expires;
1103 }
1104 
1105 /**
1106  * hrtimer_next_event_without - time until next expiry event w/o one timer
1107  * @exclude:	timer to exclude
1108  *
1109  * Returns the next expiry time over all timers except for the @exclude one or
1110  * KTIME_MAX if none of them is pending.
1111  */
hrtimer_next_event_without(const struct hrtimer * exclude)1112 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1113 {
1114 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1115 	u64 expires = KTIME_MAX;
1116 	unsigned long flags;
1117 
1118 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1119 
1120 	if (__hrtimer_hres_active(cpu_base))
1121 		expires = __hrtimer_get_next_event(cpu_base, exclude);
1122 
1123 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1124 
1125 	return expires;
1126 }
1127 #endif
1128 
hrtimer_clockid_to_base(clockid_t clock_id)1129 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1130 {
1131 	if (likely(clock_id < MAX_CLOCKS)) {
1132 		int base = hrtimer_clock_to_base_table[clock_id];
1133 
1134 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1135 			return base;
1136 	}
1137 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1138 	return HRTIMER_BASE_MONOTONIC;
1139 }
1140 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1141 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1142 			   enum hrtimer_mode mode)
1143 {
1144 	struct hrtimer_cpu_base *cpu_base;
1145 	int base;
1146 
1147 	memset(timer, 0, sizeof(struct hrtimer));
1148 
1149 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1150 
1151 	/*
1152 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1153 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1154 	 * ensure POSIX compliance.
1155 	 */
1156 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1157 		clock_id = CLOCK_MONOTONIC;
1158 
1159 	base = hrtimer_clockid_to_base(clock_id);
1160 	timer->base = &cpu_base->clock_base[base];
1161 	timerqueue_init(&timer->node);
1162 }
1163 
1164 /**
1165  * hrtimer_init - initialize a timer to the given clock
1166  * @timer:	the timer to be initialized
1167  * @clock_id:	the clock to be used
1168  * @mode:	timer mode abs/rel
1169  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1170 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1171 		  enum hrtimer_mode mode)
1172 {
1173 	debug_init(timer, clock_id, mode);
1174 	__hrtimer_init(timer, clock_id, mode);
1175 }
1176 EXPORT_SYMBOL_GPL(hrtimer_init);
1177 
1178 /*
1179  * A timer is active, when it is enqueued into the rbtree or the
1180  * callback function is running or it's in the state of being migrated
1181  * to another cpu.
1182  *
1183  * It is important for this function to not return a false negative.
1184  */
hrtimer_active(const struct hrtimer * timer)1185 bool hrtimer_active(const struct hrtimer *timer)
1186 {
1187 	struct hrtimer_cpu_base *cpu_base;
1188 	unsigned int seq;
1189 
1190 	do {
1191 		cpu_base = READ_ONCE(timer->base->cpu_base);
1192 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1193 
1194 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1195 		    cpu_base->running == timer)
1196 			return true;
1197 
1198 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1199 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1200 
1201 	return false;
1202 }
1203 EXPORT_SYMBOL_GPL(hrtimer_active);
1204 
1205 /*
1206  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1207  * distinct sections:
1208  *
1209  *  - queued:	the timer is queued
1210  *  - callback:	the timer is being ran
1211  *  - post:	the timer is inactive or (re)queued
1212  *
1213  * On the read side we ensure we observe timer->state and cpu_base->running
1214  * from the same section, if anything changed while we looked at it, we retry.
1215  * This includes timer->base changing because sequence numbers alone are
1216  * insufficient for that.
1217  *
1218  * The sequence numbers are required because otherwise we could still observe
1219  * a false negative if the read side got smeared over multiple consequtive
1220  * __run_hrtimer() invocations.
1221  */
1222 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now)1223 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1224 			  struct hrtimer_clock_base *base,
1225 			  struct hrtimer *timer, ktime_t *now)
1226 {
1227 	enum hrtimer_restart (*fn)(struct hrtimer *);
1228 	int restart;
1229 
1230 	lockdep_assert_held(&cpu_base->lock);
1231 
1232 	debug_deactivate(timer);
1233 	cpu_base->running = timer;
1234 
1235 	/*
1236 	 * Separate the ->running assignment from the ->state assignment.
1237 	 *
1238 	 * As with a regular write barrier, this ensures the read side in
1239 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1240 	 * timer->state == INACTIVE.
1241 	 */
1242 	raw_write_seqcount_barrier(&cpu_base->seq);
1243 
1244 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1245 	fn = timer->function;
1246 
1247 	/*
1248 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1249 	 * timer is restarted with a period then it becomes an absolute
1250 	 * timer. If its not restarted it does not matter.
1251 	 */
1252 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1253 		timer->is_rel = false;
1254 
1255 	/*
1256 	 * Because we run timers from hardirq context, there is no chance
1257 	 * they get migrated to another cpu, therefore its safe to unlock
1258 	 * the timer base.
1259 	 */
1260 	raw_spin_unlock(&cpu_base->lock);
1261 	trace_hrtimer_expire_entry(timer, now);
1262 	restart = fn(timer);
1263 	trace_hrtimer_expire_exit(timer);
1264 	raw_spin_lock(&cpu_base->lock);
1265 
1266 	/*
1267 	 * Note: We clear the running state after enqueue_hrtimer and
1268 	 * we do not reprogram the event hardware. Happens either in
1269 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1270 	 *
1271 	 * Note: Because we dropped the cpu_base->lock above,
1272 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1273 	 * for us already.
1274 	 */
1275 	if (restart != HRTIMER_NORESTART &&
1276 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1277 		enqueue_hrtimer(timer, base);
1278 
1279 	/*
1280 	 * Separate the ->running assignment from the ->state assignment.
1281 	 *
1282 	 * As with a regular write barrier, this ensures the read side in
1283 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1284 	 * timer->state == INACTIVE.
1285 	 */
1286 	raw_write_seqcount_barrier(&cpu_base->seq);
1287 
1288 	WARN_ON_ONCE(cpu_base->running != timer);
1289 	cpu_base->running = NULL;
1290 }
1291 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now)1292 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1293 {
1294 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1295 	unsigned int active = cpu_base->active_bases;
1296 
1297 	for (; active; base++, active >>= 1) {
1298 		struct timerqueue_node *node;
1299 		ktime_t basenow;
1300 
1301 		if (!(active & 0x01))
1302 			continue;
1303 
1304 		basenow = ktime_add(now, base->offset);
1305 
1306 		while ((node = timerqueue_getnext(&base->active))) {
1307 			struct hrtimer *timer;
1308 
1309 			timer = container_of(node, struct hrtimer, node);
1310 
1311 			/*
1312 			 * The immediate goal for using the softexpires is
1313 			 * minimizing wakeups, not running timers at the
1314 			 * earliest interrupt after their soft expiration.
1315 			 * This allows us to avoid using a Priority Search
1316 			 * Tree, which can answer a stabbing querry for
1317 			 * overlapping intervals and instead use the simple
1318 			 * BST we already have.
1319 			 * We don't add extra wakeups by delaying timers that
1320 			 * are right-of a not yet expired timer, because that
1321 			 * timer will have to trigger a wakeup anyway.
1322 			 */
1323 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1324 				break;
1325 
1326 			__run_hrtimer(cpu_base, base, timer, &basenow);
1327 		}
1328 	}
1329 }
1330 
1331 #ifdef CONFIG_HIGH_RES_TIMERS
1332 
1333 /*
1334  * High resolution timer interrupt
1335  * Called with interrupts disabled
1336  */
hrtimer_interrupt(struct clock_event_device * dev)1337 void hrtimer_interrupt(struct clock_event_device *dev)
1338 {
1339 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1340 	ktime_t expires_next, now, entry_time, delta;
1341 	int retries = 0;
1342 
1343 	BUG_ON(!cpu_base->hres_active);
1344 	cpu_base->nr_events++;
1345 	dev->next_event = KTIME_MAX;
1346 
1347 	raw_spin_lock(&cpu_base->lock);
1348 	entry_time = now = hrtimer_update_base(cpu_base);
1349 retry:
1350 	cpu_base->in_hrtirq = 1;
1351 	/*
1352 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1353 	 * held to prevent that a timer is enqueued in our queue via
1354 	 * the migration code. This does not affect enqueueing of
1355 	 * timers which run their callback and need to be requeued on
1356 	 * this CPU.
1357 	 */
1358 	cpu_base->expires_next = KTIME_MAX;
1359 
1360 	__hrtimer_run_queues(cpu_base, now);
1361 
1362 	/* Reevaluate the clock bases for the next expiry */
1363 	expires_next = __hrtimer_get_next_event(cpu_base, NULL);
1364 	/*
1365 	 * Store the new expiry value so the migration code can verify
1366 	 * against it.
1367 	 */
1368 	cpu_base->expires_next = expires_next;
1369 	cpu_base->in_hrtirq = 0;
1370 	raw_spin_unlock(&cpu_base->lock);
1371 
1372 	/* Reprogramming necessary ? */
1373 	if (!tick_program_event(expires_next, 0)) {
1374 		cpu_base->hang_detected = 0;
1375 		return;
1376 	}
1377 
1378 	/*
1379 	 * The next timer was already expired due to:
1380 	 * - tracing
1381 	 * - long lasting callbacks
1382 	 * - being scheduled away when running in a VM
1383 	 *
1384 	 * We need to prevent that we loop forever in the hrtimer
1385 	 * interrupt routine. We give it 3 attempts to avoid
1386 	 * overreacting on some spurious event.
1387 	 *
1388 	 * Acquire base lock for updating the offsets and retrieving
1389 	 * the current time.
1390 	 */
1391 	raw_spin_lock(&cpu_base->lock);
1392 	now = hrtimer_update_base(cpu_base);
1393 	cpu_base->nr_retries++;
1394 	if (++retries < 3)
1395 		goto retry;
1396 	/*
1397 	 * Give the system a chance to do something else than looping
1398 	 * here. We stored the entry time, so we know exactly how long
1399 	 * we spent here. We schedule the next event this amount of
1400 	 * time away.
1401 	 */
1402 	cpu_base->nr_hangs++;
1403 	cpu_base->hang_detected = 1;
1404 	raw_spin_unlock(&cpu_base->lock);
1405 	delta = ktime_sub(now, entry_time);
1406 	if ((unsigned int)delta > cpu_base->max_hang_time)
1407 		cpu_base->max_hang_time = (unsigned int) delta;
1408 	/*
1409 	 * Limit it to a sensible value as we enforce a longer
1410 	 * delay. Give the CPU at least 100ms to catch up.
1411 	 */
1412 	if (delta > 100 * NSEC_PER_MSEC)
1413 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1414 	else
1415 		expires_next = ktime_add(now, delta);
1416 	tick_program_event(expires_next, 1);
1417 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1418 		    ktime_to_ns(delta));
1419 }
1420 
1421 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1422 static inline void __hrtimer_peek_ahead_timers(void)
1423 {
1424 	struct tick_device *td;
1425 
1426 	if (!hrtimer_hres_active())
1427 		return;
1428 
1429 	td = this_cpu_ptr(&tick_cpu_device);
1430 	if (td && td->evtdev)
1431 		hrtimer_interrupt(td->evtdev);
1432 }
1433 
1434 #else /* CONFIG_HIGH_RES_TIMERS */
1435 
__hrtimer_peek_ahead_timers(void)1436 static inline void __hrtimer_peek_ahead_timers(void) { }
1437 
1438 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1439 
1440 /*
1441  * Called from run_local_timers in hardirq context every jiffy
1442  */
hrtimer_run_queues(void)1443 void hrtimer_run_queues(void)
1444 {
1445 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1446 	ktime_t now;
1447 
1448 	if (__hrtimer_hres_active(cpu_base))
1449 		return;
1450 
1451 	/*
1452 	 * This _is_ ugly: We have to check periodically, whether we
1453 	 * can switch to highres and / or nohz mode. The clocksource
1454 	 * switch happens with xtime_lock held. Notification from
1455 	 * there only sets the check bit in the tick_oneshot code,
1456 	 * otherwise we might deadlock vs. xtime_lock.
1457 	 */
1458 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1459 		hrtimer_switch_to_hres();
1460 		return;
1461 	}
1462 
1463 	raw_spin_lock(&cpu_base->lock);
1464 	now = hrtimer_update_base(cpu_base);
1465 	__hrtimer_run_queues(cpu_base, now);
1466 	raw_spin_unlock(&cpu_base->lock);
1467 }
1468 
1469 /*
1470  * Sleep related functions:
1471  */
hrtimer_wakeup(struct hrtimer * timer)1472 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1473 {
1474 	struct hrtimer_sleeper *t =
1475 		container_of(timer, struct hrtimer_sleeper, timer);
1476 	struct task_struct *task = t->task;
1477 
1478 	t->task = NULL;
1479 	if (task)
1480 		wake_up_process(task);
1481 
1482 	return HRTIMER_NORESTART;
1483 }
1484 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1485 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1486 {
1487 	sl->timer.function = hrtimer_wakeup;
1488 	sl->task = task;
1489 }
1490 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1491 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1492 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1493 {
1494 	switch(restart->nanosleep.type) {
1495 #ifdef CONFIG_COMPAT
1496 	case TT_COMPAT:
1497 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1498 			return -EFAULT;
1499 		break;
1500 #endif
1501 	case TT_NATIVE:
1502 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1503 			return -EFAULT;
1504 		break;
1505 	default:
1506 		BUG();
1507 	}
1508 	return -ERESTART_RESTARTBLOCK;
1509 }
1510 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1511 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1512 {
1513 	struct restart_block *restart;
1514 
1515 	hrtimer_init_sleeper(t, current);
1516 
1517 	do {
1518 		set_current_state(TASK_INTERRUPTIBLE);
1519 		hrtimer_start_expires(&t->timer, mode);
1520 
1521 		if (likely(t->task))
1522 			freezable_schedule();
1523 
1524 		hrtimer_cancel(&t->timer);
1525 		mode = HRTIMER_MODE_ABS;
1526 
1527 	} while (t->task && !signal_pending(current));
1528 
1529 	__set_current_state(TASK_RUNNING);
1530 
1531 	if (!t->task)
1532 		return 0;
1533 
1534 	restart = &current->restart_block;
1535 	if (restart->nanosleep.type != TT_NONE) {
1536 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1537 		struct timespec64 rmt;
1538 
1539 		if (rem <= 0)
1540 			return 0;
1541 		rmt = ktime_to_timespec64(rem);
1542 
1543 		return nanosleep_copyout(restart, &rmt);
1544 	}
1545 	return -ERESTART_RESTARTBLOCK;
1546 }
1547 
hrtimer_nanosleep_restart(struct restart_block * restart)1548 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1549 {
1550 	struct hrtimer_sleeper t;
1551 	int ret;
1552 
1553 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1554 				HRTIMER_MODE_ABS);
1555 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1556 
1557 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1558 	destroy_hrtimer_on_stack(&t.timer);
1559 	return ret;
1560 }
1561 
hrtimer_nanosleep(const struct timespec64 * rqtp,const enum hrtimer_mode mode,const clockid_t clockid)1562 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1563 		       const enum hrtimer_mode mode, const clockid_t clockid)
1564 {
1565 	struct restart_block *restart;
1566 	struct hrtimer_sleeper t;
1567 	int ret = 0;
1568 	u64 slack;
1569 
1570 	slack = current->timer_slack_ns;
1571 	if (dl_task(current) || rt_task(current))
1572 		slack = 0;
1573 
1574 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1575 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1576 	ret = do_nanosleep(&t, mode);
1577 	if (ret != -ERESTART_RESTARTBLOCK)
1578 		goto out;
1579 
1580 	/* Absolute timers do not update the rmtp value and restart: */
1581 	if (mode == HRTIMER_MODE_ABS) {
1582 		ret = -ERESTARTNOHAND;
1583 		goto out;
1584 	}
1585 
1586 	restart = &current->restart_block;
1587 	restart->fn = hrtimer_nanosleep_restart;
1588 	restart->nanosleep.clockid = t.timer.base->clockid;
1589 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1590 out:
1591 	destroy_hrtimer_on_stack(&t.timer);
1592 	return ret;
1593 }
1594 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1595 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1596 		struct timespec __user *, rmtp)
1597 {
1598 	struct timespec64 tu;
1599 
1600 	if (get_timespec64(&tu, rqtp))
1601 		return -EFAULT;
1602 
1603 	if (!timespec64_valid(&tu))
1604 		return -EINVAL;
1605 
1606 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1607 	current->restart_block.nanosleep.rmtp = rmtp;
1608 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1609 }
1610 
1611 #ifdef CONFIG_COMPAT
1612 
COMPAT_SYSCALL_DEFINE2(nanosleep,struct compat_timespec __user *,rqtp,struct compat_timespec __user *,rmtp)1613 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1614 		       struct compat_timespec __user *, rmtp)
1615 {
1616 	struct timespec64 tu;
1617 
1618 	if (compat_get_timespec64(&tu, rqtp))
1619 		return -EFAULT;
1620 
1621 	if (!timespec64_valid(&tu))
1622 		return -EINVAL;
1623 
1624 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1625 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1626 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1627 }
1628 #endif
1629 
1630 /*
1631  * Functions related to boot-time initialization:
1632  */
hrtimers_prepare_cpu(unsigned int cpu)1633 int hrtimers_prepare_cpu(unsigned int cpu)
1634 {
1635 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1636 	int i;
1637 
1638 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1639 		cpu_base->clock_base[i].cpu_base = cpu_base;
1640 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1641 	}
1642 
1643 	cpu_base->active_bases = 0;
1644 	cpu_base->cpu = cpu;
1645 	hrtimer_init_hres(cpu_base);
1646 	return 0;
1647 }
1648 
1649 #ifdef CONFIG_HOTPLUG_CPU
1650 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1651 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1652 				struct hrtimer_clock_base *new_base)
1653 {
1654 	struct hrtimer *timer;
1655 	struct timerqueue_node *node;
1656 
1657 	while ((node = timerqueue_getnext(&old_base->active))) {
1658 		timer = container_of(node, struct hrtimer, node);
1659 		BUG_ON(hrtimer_callback_running(timer));
1660 		debug_deactivate(timer);
1661 
1662 		/*
1663 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1664 		 * timer could be seen as !active and just vanish away
1665 		 * under us on another CPU
1666 		 */
1667 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1668 		timer->base = new_base;
1669 		/*
1670 		 * Enqueue the timers on the new cpu. This does not
1671 		 * reprogram the event device in case the timer
1672 		 * expires before the earliest on this CPU, but we run
1673 		 * hrtimer_interrupt after we migrated everything to
1674 		 * sort out already expired timers and reprogram the
1675 		 * event device.
1676 		 */
1677 		enqueue_hrtimer(timer, new_base);
1678 	}
1679 }
1680 
hrtimers_dead_cpu(unsigned int scpu)1681 int hrtimers_dead_cpu(unsigned int scpu)
1682 {
1683 	struct hrtimer_cpu_base *old_base, *new_base;
1684 	int i;
1685 
1686 	BUG_ON(cpu_online(scpu));
1687 	tick_cancel_sched_timer(scpu);
1688 
1689 	local_irq_disable();
1690 	old_base = &per_cpu(hrtimer_bases, scpu);
1691 	new_base = this_cpu_ptr(&hrtimer_bases);
1692 	/*
1693 	 * The caller is globally serialized and nobody else
1694 	 * takes two locks at once, deadlock is not possible.
1695 	 */
1696 	raw_spin_lock(&new_base->lock);
1697 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1698 
1699 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1700 		migrate_hrtimer_list(&old_base->clock_base[i],
1701 				     &new_base->clock_base[i]);
1702 	}
1703 
1704 	raw_spin_unlock(&old_base->lock);
1705 	raw_spin_unlock(&new_base->lock);
1706 
1707 	/* Check, if we got expired work to do */
1708 	__hrtimer_peek_ahead_timers();
1709 	local_irq_enable();
1710 	return 0;
1711 }
1712 
1713 #endif /* CONFIG_HOTPLUG_CPU */
1714 
hrtimers_init(void)1715 void __init hrtimers_init(void)
1716 {
1717 	hrtimers_prepare_cpu(smp_processor_id());
1718 }
1719 
1720 /**
1721  * schedule_hrtimeout_range_clock - sleep until timeout
1722  * @expires:	timeout value (ktime_t)
1723  * @delta:	slack in expires timeout (ktime_t)
1724  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1725  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1726  */
1727 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,int clock)1728 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1729 			       const enum hrtimer_mode mode, int clock)
1730 {
1731 	struct hrtimer_sleeper t;
1732 
1733 	/*
1734 	 * Optimize when a zero timeout value is given. It does not
1735 	 * matter whether this is an absolute or a relative time.
1736 	 */
1737 	if (expires && *expires == 0) {
1738 		__set_current_state(TASK_RUNNING);
1739 		return 0;
1740 	}
1741 
1742 	/*
1743 	 * A NULL parameter means "infinite"
1744 	 */
1745 	if (!expires) {
1746 		schedule();
1747 		return -EINTR;
1748 	}
1749 
1750 	hrtimer_init_on_stack(&t.timer, clock, mode);
1751 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1752 
1753 	hrtimer_init_sleeper(&t, current);
1754 
1755 	hrtimer_start_expires(&t.timer, mode);
1756 
1757 	if (likely(t.task))
1758 		schedule();
1759 
1760 	hrtimer_cancel(&t.timer);
1761 	destroy_hrtimer_on_stack(&t.timer);
1762 
1763 	__set_current_state(TASK_RUNNING);
1764 
1765 	return !t.task ? 0 : -EINTR;
1766 }
1767 
1768 /**
1769  * schedule_hrtimeout_range - sleep until timeout
1770  * @expires:	timeout value (ktime_t)
1771  * @delta:	slack in expires timeout (ktime_t)
1772  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1773  *
1774  * Make the current task sleep until the given expiry time has
1775  * elapsed. The routine will return immediately unless
1776  * the current task state has been set (see set_current_state()).
1777  *
1778  * The @delta argument gives the kernel the freedom to schedule the
1779  * actual wakeup to a time that is both power and performance friendly.
1780  * The kernel give the normal best effort behavior for "@expires+@delta",
1781  * but may decide to fire the timer earlier, but no earlier than @expires.
1782  *
1783  * You can set the task state as follows -
1784  *
1785  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1786  * pass before the routine returns unless the current task is explicitly
1787  * woken up, (e.g. by wake_up_process()).
1788  *
1789  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1790  * delivered to the current task or the current task is explicitly woken
1791  * up.
1792  *
1793  * The current task state is guaranteed to be TASK_RUNNING when this
1794  * routine returns.
1795  *
1796  * Returns 0 when the timer has expired. If the task was woken before the
1797  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1798  * by an explicit wakeup, it returns -EINTR.
1799  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)1800 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1801 				     const enum hrtimer_mode mode)
1802 {
1803 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1804 					      CLOCK_MONOTONIC);
1805 }
1806 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1807 
1808 /**
1809  * schedule_hrtimeout - sleep until timeout
1810  * @expires:	timeout value (ktime_t)
1811  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812  *
1813  * Make the current task sleep until the given expiry time has
1814  * elapsed. The routine will return immediately unless
1815  * the current task state has been set (see set_current_state()).
1816  *
1817  * You can set the task state as follows -
1818  *
1819  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820  * pass before the routine returns unless the current task is explicitly
1821  * woken up, (e.g. by wake_up_process()).
1822  *
1823  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1824  * delivered to the current task or the current task is explicitly woken
1825  * up.
1826  *
1827  * The current task state is guaranteed to be TASK_RUNNING when this
1828  * routine returns.
1829  *
1830  * Returns 0 when the timer has expired. If the task was woken before the
1831  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1832  * by an explicit wakeup, it returns -EINTR.
1833  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1834 int __sched schedule_hrtimeout(ktime_t *expires,
1835 			       const enum hrtimer_mode mode)
1836 {
1837 	return schedule_hrtimeout_range(expires, 0, mode);
1838 }
1839 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1840