1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55
56 #include <linux/uaccess.h>
57
58 #include <trace/events/timer.h>
59
60 #include "tick-internal.h"
61
62 /*
63 * The timer bases:
64 *
65 * There are more clockids than hrtimer bases. Thus, we index
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
69 */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 }
97 };
98
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 /* Make sure we catch unsupported clockids */
101 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
102
103 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
104 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
105 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
106 [CLOCK_TAI] = HRTIMER_BASE_TAI,
107 };
108
109 /*
110 * Functions and macros which are different for UP/SMP systems are kept in a
111 * single place
112 */
113 #ifdef CONFIG_SMP
114
115 /*
116 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117 * such that hrtimer_callback_running() can unconditionally dereference
118 * timer->base->cpu_base
119 */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 .seq = SEQCNT_ZERO(migration_cpu_base),
122 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124
125 #define migration_base migration_cpu_base.clock_base[0]
126
127 /*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
136 * possible to set timer->base = &migration_base and drop the lock: the timer
137 * remains locked.
138 */
139 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 unsigned long *flags)
142 {
143 struct hrtimer_clock_base *base;
144
145 for (;;) {
146 base = timer->base;
147 if (likely(base != &migration_base)) {
148 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 if (likely(base == timer->base))
150 return base;
151 /* The timer has migrated to another CPU: */
152 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 }
154 cpu_relax();
155 }
156 }
157
158 /*
159 * With HIGHRES=y we do not migrate the timer when it is expiring
160 * before the next event on the target cpu because we cannot reprogram
161 * the target cpu hardware and we would cause it to fire late.
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 ktime_t expires;
170
171 if (!new_base->cpu_base->hres_active)
172 return 0;
173
174 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 return expires <= new_base->cpu_base->expires_next;
176 #else
177 return 0;
178 #endif
179 }
180
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 int pinned)
185 {
186 if (pinned || !base->migration_enabled)
187 return base;
188 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 int pinned)
194 {
195 return base;
196 }
197 #endif
198
199 /*
200 * We switch the timer base to a power-optimized selected CPU target,
201 * if:
202 * - NO_HZ_COMMON is enabled
203 * - timer migration is enabled
204 * - the timer callback is not running
205 * - the timer is not the first expiring timer on the new target
206 *
207 * If one of the above requirements is not fulfilled we move the timer
208 * to the current CPU or leave it on the previously assigned CPU if
209 * the timer callback is currently running.
210 */
211 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 int pinned)
214 {
215 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 struct hrtimer_clock_base *new_base;
217 int basenum = base->index;
218
219 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 new_base = &new_cpu_base->clock_base[basenum];
223
224 if (base != new_base) {
225 /*
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
233 */
234 if (unlikely(hrtimer_callback_running(timer)))
235 return base;
236
237 /* See the comment in lock_hrtimer_base() */
238 timer->base = &migration_base;
239 raw_spin_unlock(&base->cpu_base->lock);
240 raw_spin_lock(&new_base->cpu_base->lock);
241
242 if (new_cpu_base != this_cpu_base &&
243 hrtimer_check_target(timer, new_base)) {
244 raw_spin_unlock(&new_base->cpu_base->lock);
245 raw_spin_lock(&base->cpu_base->lock);
246 new_cpu_base = this_cpu_base;
247 timer->base = base;
248 goto again;
249 }
250 timer->base = new_base;
251 } else {
252 if (new_cpu_base != this_cpu_base &&
253 hrtimer_check_target(timer, new_base)) {
254 new_cpu_base = this_cpu_base;
255 goto again;
256 }
257 }
258 return new_base;
259 }
260
261 #else /* CONFIG_SMP */
262
263 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 struct hrtimer_clock_base *base = timer->base;
267
268 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269
270 return base;
271 }
272
273 # define switch_hrtimer_base(t, b, p) (b)
274
275 #endif /* !CONFIG_SMP */
276
277 /*
278 * Functions for the union type storage format of ktime_t which are
279 * too large for inlining:
280 */
281 #if BITS_PER_LONG < 64
282 /*
283 * Divide a ktime value by a nanosecond value
284 */
__ktime_divns(const ktime_t kt,s64 div)285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 int sft = 0;
288 s64 dclc;
289 u64 tmp;
290
291 dclc = ktime_to_ns(kt);
292 tmp = dclc < 0 ? -dclc : dclc;
293
294 /* Make sure the divisor is less than 2^32: */
295 while (div >> 32) {
296 sft++;
297 div >>= 1;
298 }
299 tmp >>= sft;
300 do_div(tmp, (unsigned long) div);
301 return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305
306 /*
307 * Add two ktime values and do a safety check for overflow:
308 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 ktime_t res = ktime_add_unsafe(lhs, rhs);
312
313 /*
314 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 * return to user space in a timespec:
316 */
317 if (res < 0 || res < lhs || res < rhs)
318 res = ktime_set(KTIME_SEC_MAX, 0);
319
320 return res;
321 }
322
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326
327 static struct debug_obj_descr hrtimer_debug_descr;
328
hrtimer_debug_hint(void * addr)329 static void *hrtimer_debug_hint(void *addr)
330 {
331 return ((struct hrtimer *) addr)->function;
332 }
333
334 /*
335 * fixup_init is called when:
336 * - an active object is initialized
337 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 struct hrtimer *timer = addr;
341
342 switch (state) {
343 case ODEBUG_STATE_ACTIVE:
344 hrtimer_cancel(timer);
345 debug_object_init(timer, &hrtimer_debug_descr);
346 return true;
347 default:
348 return false;
349 }
350 }
351
352 /*
353 * fixup_activate is called when:
354 * - an active object is activated
355 * - an unknown non-static object is activated
356 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 switch (state) {
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
362
363 default:
364 return false;
365 }
366 }
367
368 /*
369 * fixup_free is called when:
370 * - an active object is freed
371 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 struct hrtimer *timer = addr;
375
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 hrtimer_cancel(timer);
379 debug_object_free(timer, &hrtimer_debug_descr);
380 return true;
381 default:
382 return false;
383 }
384 }
385
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 .name = "hrtimer",
388 .debug_hint = hrtimer_debug_hint,
389 .fixup_init = hrtimer_fixup_init,
390 .fixup_activate = hrtimer_fixup_activate,
391 .fixup_free = hrtimer_fixup_free,
392 };
393
debug_hrtimer_init(struct hrtimer * timer)394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 debug_object_init(timer, &hrtimer_debug_descr);
397 }
398
debug_hrtimer_activate(struct hrtimer * timer)399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403
debug_hrtimer_deactivate(struct hrtimer * timer)404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408
debug_hrtimer_free(struct hrtimer * timer)409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 debug_object_free(timer, &hrtimer_debug_descr);
412 }
413
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 enum hrtimer_mode mode);
416
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 enum hrtimer_mode mode)
419 {
420 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 __hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424
destroy_hrtimer_on_stack(struct hrtimer * timer)425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430
431 #else
debug_hrtimer_init(struct hrtimer * timer)432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436
437 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 enum hrtimer_mode mode)
440 {
441 debug_hrtimer_init(timer);
442 trace_hrtimer_init(timer, clockid, mode);
443 }
444
debug_activate(struct hrtimer * timer)445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 debug_hrtimer_activate(timer);
448 trace_hrtimer_start(timer);
449 }
450
debug_deactivate(struct hrtimer * timer)451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 debug_hrtimer_deactivate(timer);
454 trace_hrtimer_cancel(timer);
455 }
456
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
hrtimer_update_next_timer(struct hrtimer_cpu_base * cpu_base,struct hrtimer * timer)458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 cpu_base->next_timer = timer;
463 #endif
464 }
465
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude)466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base,
467 const struct hrtimer *exclude)
468 {
469 struct hrtimer_clock_base *base = cpu_base->clock_base;
470 unsigned int active = cpu_base->active_bases;
471 ktime_t expires, expires_next = KTIME_MAX;
472
473 hrtimer_update_next_timer(cpu_base, NULL);
474 for (; active; base++, active >>= 1) {
475 struct timerqueue_node *next;
476 struct hrtimer *timer;
477
478 if (!(active & 0x01))
479 continue;
480
481 next = timerqueue_getnext(&base->active);
482 timer = container_of(next, struct hrtimer, node);
483 if (timer == exclude) {
484 /* Get to the next timer in the queue. */
485 struct rb_node *rbn = rb_next(&next->node);
486
487 next = rb_entry_safe(rbn, struct timerqueue_node, node);
488 if (!next)
489 continue;
490
491 timer = container_of(next, struct hrtimer, node);
492 }
493 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
494 if (expires < expires_next) {
495 expires_next = expires;
496
497 /* Skip cpu_base update if a timer is being excluded. */
498 if (exclude)
499 continue;
500
501 hrtimer_update_next_timer(cpu_base, timer);
502 }
503 }
504 /*
505 * clock_was_set() might have changed base->offset of any of
506 * the clock bases so the result might be negative. Fix it up
507 * to prevent a false positive in clockevents_program_event().
508 */
509 if (expires_next < 0)
510 expires_next = 0;
511 return expires_next;
512 }
513 #endif
514
hrtimer_update_base(struct hrtimer_cpu_base * base)515 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
516 {
517 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
518 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
519 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
520
521 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
522 offs_real, offs_boot, offs_tai);
523 }
524
525 /* High resolution timer related functions */
526 #ifdef CONFIG_HIGH_RES_TIMERS
527
528 /*
529 * High resolution timer enabled ?
530 */
531 static bool hrtimer_hres_enabled __read_mostly = true;
532 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
533 EXPORT_SYMBOL_GPL(hrtimer_resolution);
534
535 /*
536 * Enable / Disable high resolution mode
537 */
setup_hrtimer_hres(char * str)538 static int __init setup_hrtimer_hres(char *str)
539 {
540 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
541 }
542
543 __setup("highres=", setup_hrtimer_hres);
544
545 /*
546 * hrtimer_high_res_enabled - query, if the highres mode is enabled
547 */
hrtimer_is_hres_enabled(void)548 static inline int hrtimer_is_hres_enabled(void)
549 {
550 return hrtimer_hres_enabled;
551 }
552
553 /*
554 * Is the high resolution mode active ?
555 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)556 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
557 {
558 return cpu_base->hres_active;
559 }
560
hrtimer_hres_active(void)561 static inline int hrtimer_hres_active(void)
562 {
563 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
564 }
565
566 /*
567 * Reprogram the event source with checking both queues for the
568 * next event
569 * Called with interrupts disabled and base->lock held
570 */
571 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)572 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
573 {
574 ktime_t expires_next;
575
576 if (!cpu_base->hres_active)
577 return;
578
579 expires_next = __hrtimer_get_next_event(cpu_base, NULL);
580
581 if (skip_equal && expires_next == cpu_base->expires_next)
582 return;
583
584 cpu_base->expires_next = expires_next;
585
586 /*
587 * If a hang was detected in the last timer interrupt then we
588 * leave the hang delay active in the hardware. We want the
589 * system to make progress. That also prevents the following
590 * scenario:
591 * T1 expires 50ms from now
592 * T2 expires 5s from now
593 *
594 * T1 is removed, so this code is called and would reprogram
595 * the hardware to 5s from now. Any hrtimer_start after that
596 * will not reprogram the hardware due to hang_detected being
597 * set. So we'd effectivly block all timers until the T2 event
598 * fires.
599 */
600 if (cpu_base->hang_detected)
601 return;
602
603 tick_program_event(cpu_base->expires_next, 1);
604 }
605
606 /*
607 * When a timer is enqueued and expires earlier than the already enqueued
608 * timers, we have to check, whether it expires earlier than the timer for
609 * which the clock event device was armed.
610 *
611 * Called with interrupts disabled and base->cpu_base.lock held
612 */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)613 static void hrtimer_reprogram(struct hrtimer *timer,
614 struct hrtimer_clock_base *base)
615 {
616 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
617 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
618
619 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
620
621 /*
622 * If the timer is not on the current cpu, we cannot reprogram
623 * the other cpus clock event device.
624 */
625 if (base->cpu_base != cpu_base)
626 return;
627
628 /*
629 * If the hrtimer interrupt is running, then it will
630 * reevaluate the clock bases and reprogram the clock event
631 * device. The callbacks are always executed in hard interrupt
632 * context so we don't need an extra check for a running
633 * callback.
634 */
635 if (cpu_base->in_hrtirq)
636 return;
637
638 /*
639 * CLOCK_REALTIME timer might be requested with an absolute
640 * expiry time which is less than base->offset. Set it to 0.
641 */
642 if (expires < 0)
643 expires = 0;
644
645 if (expires >= cpu_base->expires_next)
646 return;
647
648 /* Update the pointer to the next expiring timer */
649 cpu_base->next_timer = timer;
650
651 /*
652 * If a hang was detected in the last timer interrupt then we
653 * do not schedule a timer which is earlier than the expiry
654 * which we enforced in the hang detection. We want the system
655 * to make progress.
656 */
657 if (cpu_base->hang_detected)
658 return;
659
660 /*
661 * Program the timer hardware. We enforce the expiry for
662 * events which are already in the past.
663 */
664 cpu_base->expires_next = expires;
665 tick_program_event(expires, 1);
666 }
667
668 /*
669 * Initialize the high resolution related parts of cpu_base
670 */
hrtimer_init_hres(struct hrtimer_cpu_base * base)671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
672 {
673 base->expires_next = KTIME_MAX;
674 base->hang_detected = 0;
675 base->hres_active = 0;
676 base->next_timer = NULL;
677 }
678
679 /*
680 * Retrigger next event is called after clock was set
681 *
682 * Called with interrupts disabled via on_each_cpu()
683 */
retrigger_next_event(void * arg)684 static void retrigger_next_event(void *arg)
685 {
686 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
687
688 if (!base->hres_active)
689 return;
690
691 raw_spin_lock(&base->lock);
692 hrtimer_update_base(base);
693 hrtimer_force_reprogram(base, 0);
694 raw_spin_unlock(&base->lock);
695 }
696
697 /*
698 * Switch to high resolution mode
699 */
hrtimer_switch_to_hres(void)700 static void hrtimer_switch_to_hres(void)
701 {
702 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703
704 if (tick_init_highres()) {
705 printk(KERN_WARNING "Could not switch to high resolution "
706 "mode on CPU %d\n", base->cpu);
707 return;
708 }
709 base->hres_active = 1;
710 hrtimer_resolution = HIGH_RES_NSEC;
711
712 tick_setup_sched_timer();
713 /* "Retrigger" the interrupt to get things going */
714 retrigger_next_event(NULL);
715 }
716
clock_was_set_work(struct work_struct * work)717 static void clock_was_set_work(struct work_struct *work)
718 {
719 clock_was_set();
720 }
721
722 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
723
724 /*
725 * Called from timekeeping and resume code to reprogram the hrtimer
726 * interrupt device on all cpus.
727 */
clock_was_set_delayed(void)728 void clock_was_set_delayed(void)
729 {
730 schedule_work(&hrtimer_work);
731 }
732
733 #else
734
__hrtimer_hres_active(struct hrtimer_cpu_base * b)735 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
hrtimer_hres_active(void)736 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)737 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)738 static inline void hrtimer_switch_to_hres(void) { }
739 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)740 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)741 static inline int hrtimer_reprogram(struct hrtimer *timer,
742 struct hrtimer_clock_base *base)
743 {
744 return 0;
745 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)746 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)747 static inline void retrigger_next_event(void *arg) { }
748
749 #endif /* CONFIG_HIGH_RES_TIMERS */
750
751 /*
752 * Clock realtime was set
753 *
754 * Change the offset of the realtime clock vs. the monotonic
755 * clock.
756 *
757 * We might have to reprogram the high resolution timer interrupt. On
758 * SMP we call the architecture specific code to retrigger _all_ high
759 * resolution timer interrupts. On UP we just disable interrupts and
760 * call the high resolution interrupt code.
761 */
clock_was_set(void)762 void clock_was_set(void)
763 {
764 #ifdef CONFIG_HIGH_RES_TIMERS
765 /* Retrigger the CPU local events everywhere */
766 on_each_cpu(retrigger_next_event, NULL, 1);
767 #endif
768 timerfd_clock_was_set();
769 }
770
771 /*
772 * During resume we might have to reprogram the high resolution timer
773 * interrupt on all online CPUs. However, all other CPUs will be
774 * stopped with IRQs interrupts disabled so the clock_was_set() call
775 * must be deferred.
776 */
hrtimers_resume(void)777 void hrtimers_resume(void)
778 {
779 WARN_ONCE(!irqs_disabled(),
780 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
781
782 /* Retrigger on the local CPU */
783 retrigger_next_event(NULL);
784 /* And schedule a retrigger for all others */
785 clock_was_set_delayed();
786 }
787
788 /*
789 * Counterpart to lock_hrtimer_base above:
790 */
791 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)792 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
793 {
794 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
795 }
796
797 /**
798 * hrtimer_forward - forward the timer expiry
799 * @timer: hrtimer to forward
800 * @now: forward past this time
801 * @interval: the interval to forward
802 *
803 * Forward the timer expiry so it will expire in the future.
804 * Returns the number of overruns.
805 *
806 * Can be safely called from the callback function of @timer. If
807 * called from other contexts @timer must neither be enqueued nor
808 * running the callback and the caller needs to take care of
809 * serialization.
810 *
811 * Note: This only updates the timer expiry value and does not requeue
812 * the timer.
813 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)814 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
815 {
816 u64 orun = 1;
817 ktime_t delta;
818
819 delta = ktime_sub(now, hrtimer_get_expires(timer));
820
821 if (delta < 0)
822 return 0;
823
824 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
825 return 0;
826
827 if (interval < hrtimer_resolution)
828 interval = hrtimer_resolution;
829
830 if (unlikely(delta >= interval)) {
831 s64 incr = ktime_to_ns(interval);
832
833 orun = ktime_divns(delta, incr);
834 hrtimer_add_expires_ns(timer, incr * orun);
835 if (hrtimer_get_expires_tv64(timer) > now)
836 return orun;
837 /*
838 * This (and the ktime_add() below) is the
839 * correction for exact:
840 */
841 orun++;
842 }
843 hrtimer_add_expires(timer, interval);
844
845 return orun;
846 }
847 EXPORT_SYMBOL_GPL(hrtimer_forward);
848
849 /*
850 * enqueue_hrtimer - internal function to (re)start a timer
851 *
852 * The timer is inserted in expiry order. Insertion into the
853 * red black tree is O(log(n)). Must hold the base lock.
854 *
855 * Returns 1 when the new timer is the leftmost timer in the tree.
856 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)857 static int enqueue_hrtimer(struct hrtimer *timer,
858 struct hrtimer_clock_base *base)
859 {
860 debug_activate(timer);
861
862 base->cpu_base->active_bases |= 1 << base->index;
863
864 /* Pairs with the lockless read in hrtimer_is_queued() */
865 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
866
867 return timerqueue_add(&base->active, &timer->node);
868 }
869
870 /*
871 * __remove_hrtimer - internal function to remove a timer
872 *
873 * Caller must hold the base lock.
874 *
875 * High resolution timer mode reprograms the clock event device when the
876 * timer is the one which expires next. The caller can disable this by setting
877 * reprogram to zero. This is useful, when the context does a reprogramming
878 * anyway (e.g. timer interrupt)
879 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)880 static void __remove_hrtimer(struct hrtimer *timer,
881 struct hrtimer_clock_base *base,
882 u8 newstate, int reprogram)
883 {
884 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
885 u8 state = timer->state;
886
887 /* Pairs with the lockless read in hrtimer_is_queued() */
888 WRITE_ONCE(timer->state, newstate);
889 if (!(state & HRTIMER_STATE_ENQUEUED))
890 return;
891
892 if (!timerqueue_del(&base->active, &timer->node))
893 cpu_base->active_bases &= ~(1 << base->index);
894
895 #ifdef CONFIG_HIGH_RES_TIMERS
896 /*
897 * Note: If reprogram is false we do not update
898 * cpu_base->next_timer. This happens when we remove the first
899 * timer on a remote cpu. No harm as we never dereference
900 * cpu_base->next_timer. So the worst thing what can happen is
901 * an superflous call to hrtimer_force_reprogram() on the
902 * remote cpu later on if the same timer gets enqueued again.
903 */
904 if (reprogram && timer == cpu_base->next_timer)
905 hrtimer_force_reprogram(cpu_base, 1);
906 #endif
907 }
908
909 /*
910 * remove hrtimer, called with base lock held
911 */
912 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart)913 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
914 {
915 u8 state = timer->state;
916
917 if (state & HRTIMER_STATE_ENQUEUED) {
918 int reprogram;
919
920 /*
921 * Remove the timer and force reprogramming when high
922 * resolution mode is active and the timer is on the current
923 * CPU. If we remove a timer on another CPU, reprogramming is
924 * skipped. The interrupt event on this CPU is fired and
925 * reprogramming happens in the interrupt handler. This is a
926 * rare case and less expensive than a smp call.
927 */
928 debug_deactivate(timer);
929 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
930
931 if (!restart)
932 state = HRTIMER_STATE_INACTIVE;
933
934 __remove_hrtimer(timer, base, state, reprogram);
935 return 1;
936 }
937 return 0;
938 }
939
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)940 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
941 const enum hrtimer_mode mode)
942 {
943 #ifdef CONFIG_TIME_LOW_RES
944 /*
945 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
946 * granular time values. For relative timers we add hrtimer_resolution
947 * (i.e. one jiffie) to prevent short timeouts.
948 */
949 timer->is_rel = mode & HRTIMER_MODE_REL;
950 if (timer->is_rel)
951 tim = ktime_add_safe(tim, hrtimer_resolution);
952 #endif
953 return tim;
954 }
955
956 /**
957 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
958 * @timer: the timer to be added
959 * @tim: expiry time
960 * @delta_ns: "slack" range for the timer
961 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
962 * relative (HRTIMER_MODE_REL)
963 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)964 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
965 u64 delta_ns, const enum hrtimer_mode mode)
966 {
967 struct hrtimer_clock_base *base, *new_base;
968 unsigned long flags;
969 int leftmost;
970
971 base = lock_hrtimer_base(timer, &flags);
972
973 /* Remove an active timer from the queue: */
974 remove_hrtimer(timer, base, true);
975
976 if (mode & HRTIMER_MODE_REL)
977 tim = ktime_add_safe(tim, base->get_time());
978
979 tim = hrtimer_update_lowres(timer, tim, mode);
980
981 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
982
983 /* Switch the timer base, if necessary: */
984 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
985
986 leftmost = enqueue_hrtimer(timer, new_base);
987 if (!leftmost)
988 goto unlock;
989
990 if (!hrtimer_is_hres_active(timer)) {
991 /*
992 * Kick to reschedule the next tick to handle the new timer
993 * on dynticks target.
994 */
995 if (new_base->cpu_base->nohz_active)
996 wake_up_nohz_cpu(new_base->cpu_base->cpu);
997 } else {
998 hrtimer_reprogram(timer, new_base);
999 }
1000 unlock:
1001 unlock_hrtimer_base(timer, &flags);
1002 }
1003 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1004
1005 /**
1006 * hrtimer_try_to_cancel - try to deactivate a timer
1007 * @timer: hrtimer to stop
1008 *
1009 * Returns:
1010 * 0 when the timer was not active
1011 * 1 when the timer was active
1012 * -1 when the timer is currently executing the callback function and
1013 * cannot be stopped
1014 */
hrtimer_try_to_cancel(struct hrtimer * timer)1015 int hrtimer_try_to_cancel(struct hrtimer *timer)
1016 {
1017 struct hrtimer_clock_base *base;
1018 unsigned long flags;
1019 int ret = -1;
1020
1021 /*
1022 * Check lockless first. If the timer is not active (neither
1023 * enqueued nor running the callback, nothing to do here. The
1024 * base lock does not serialize against a concurrent enqueue,
1025 * so we can avoid taking it.
1026 */
1027 if (!hrtimer_active(timer))
1028 return 0;
1029
1030 base = lock_hrtimer_base(timer, &flags);
1031
1032 if (!hrtimer_callback_running(timer))
1033 ret = remove_hrtimer(timer, base, false);
1034
1035 unlock_hrtimer_base(timer, &flags);
1036
1037 return ret;
1038
1039 }
1040 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1041
1042 /**
1043 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1044 * @timer: the timer to be cancelled
1045 *
1046 * Returns:
1047 * 0 when the timer was not active
1048 * 1 when the timer was active
1049 */
hrtimer_cancel(struct hrtimer * timer)1050 int hrtimer_cancel(struct hrtimer *timer)
1051 {
1052 for (;;) {
1053 int ret = hrtimer_try_to_cancel(timer);
1054
1055 if (ret >= 0)
1056 return ret;
1057 cpu_relax();
1058 }
1059 }
1060 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1061
1062 /**
1063 * hrtimer_get_remaining - get remaining time for the timer
1064 * @timer: the timer to read
1065 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1066 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1067 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1068 {
1069 unsigned long flags;
1070 ktime_t rem;
1071
1072 lock_hrtimer_base(timer, &flags);
1073 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1074 rem = hrtimer_expires_remaining_adjusted(timer);
1075 else
1076 rem = hrtimer_expires_remaining(timer);
1077 unlock_hrtimer_base(timer, &flags);
1078
1079 return rem;
1080 }
1081 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1082
1083 #ifdef CONFIG_NO_HZ_COMMON
1084 /**
1085 * hrtimer_get_next_event - get the time until next expiry event
1086 *
1087 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1088 */
hrtimer_get_next_event(void)1089 u64 hrtimer_get_next_event(void)
1090 {
1091 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1092 u64 expires = KTIME_MAX;
1093 unsigned long flags;
1094
1095 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1096
1097 if (!__hrtimer_hres_active(cpu_base))
1098 expires = __hrtimer_get_next_event(cpu_base, NULL);
1099
1100 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1101
1102 return expires;
1103 }
1104
1105 /**
1106 * hrtimer_next_event_without - time until next expiry event w/o one timer
1107 * @exclude: timer to exclude
1108 *
1109 * Returns the next expiry time over all timers except for the @exclude one or
1110 * KTIME_MAX if none of them is pending.
1111 */
hrtimer_next_event_without(const struct hrtimer * exclude)1112 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1113 {
1114 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1115 u64 expires = KTIME_MAX;
1116 unsigned long flags;
1117
1118 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1119
1120 if (__hrtimer_hres_active(cpu_base))
1121 expires = __hrtimer_get_next_event(cpu_base, exclude);
1122
1123 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1124
1125 return expires;
1126 }
1127 #endif
1128
hrtimer_clockid_to_base(clockid_t clock_id)1129 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1130 {
1131 if (likely(clock_id < MAX_CLOCKS)) {
1132 int base = hrtimer_clock_to_base_table[clock_id];
1133
1134 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1135 return base;
1136 }
1137 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1138 return HRTIMER_BASE_MONOTONIC;
1139 }
1140
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1141 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1142 enum hrtimer_mode mode)
1143 {
1144 struct hrtimer_cpu_base *cpu_base;
1145 int base;
1146
1147 memset(timer, 0, sizeof(struct hrtimer));
1148
1149 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1150
1151 /*
1152 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1153 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1154 * ensure POSIX compliance.
1155 */
1156 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1157 clock_id = CLOCK_MONOTONIC;
1158
1159 base = hrtimer_clockid_to_base(clock_id);
1160 timer->base = &cpu_base->clock_base[base];
1161 timerqueue_init(&timer->node);
1162 }
1163
1164 /**
1165 * hrtimer_init - initialize a timer to the given clock
1166 * @timer: the timer to be initialized
1167 * @clock_id: the clock to be used
1168 * @mode: timer mode abs/rel
1169 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1170 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1171 enum hrtimer_mode mode)
1172 {
1173 debug_init(timer, clock_id, mode);
1174 __hrtimer_init(timer, clock_id, mode);
1175 }
1176 EXPORT_SYMBOL_GPL(hrtimer_init);
1177
1178 /*
1179 * A timer is active, when it is enqueued into the rbtree or the
1180 * callback function is running or it's in the state of being migrated
1181 * to another cpu.
1182 *
1183 * It is important for this function to not return a false negative.
1184 */
hrtimer_active(const struct hrtimer * timer)1185 bool hrtimer_active(const struct hrtimer *timer)
1186 {
1187 struct hrtimer_cpu_base *cpu_base;
1188 unsigned int seq;
1189
1190 do {
1191 cpu_base = READ_ONCE(timer->base->cpu_base);
1192 seq = raw_read_seqcount_begin(&cpu_base->seq);
1193
1194 if (timer->state != HRTIMER_STATE_INACTIVE ||
1195 cpu_base->running == timer)
1196 return true;
1197
1198 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1199 cpu_base != READ_ONCE(timer->base->cpu_base));
1200
1201 return false;
1202 }
1203 EXPORT_SYMBOL_GPL(hrtimer_active);
1204
1205 /*
1206 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1207 * distinct sections:
1208 *
1209 * - queued: the timer is queued
1210 * - callback: the timer is being ran
1211 * - post: the timer is inactive or (re)queued
1212 *
1213 * On the read side we ensure we observe timer->state and cpu_base->running
1214 * from the same section, if anything changed while we looked at it, we retry.
1215 * This includes timer->base changing because sequence numbers alone are
1216 * insufficient for that.
1217 *
1218 * The sequence numbers are required because otherwise we could still observe
1219 * a false negative if the read side got smeared over multiple consequtive
1220 * __run_hrtimer() invocations.
1221 */
1222
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now)1223 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1224 struct hrtimer_clock_base *base,
1225 struct hrtimer *timer, ktime_t *now)
1226 {
1227 enum hrtimer_restart (*fn)(struct hrtimer *);
1228 int restart;
1229
1230 lockdep_assert_held(&cpu_base->lock);
1231
1232 debug_deactivate(timer);
1233 cpu_base->running = timer;
1234
1235 /*
1236 * Separate the ->running assignment from the ->state assignment.
1237 *
1238 * As with a regular write barrier, this ensures the read side in
1239 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1240 * timer->state == INACTIVE.
1241 */
1242 raw_write_seqcount_barrier(&cpu_base->seq);
1243
1244 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1245 fn = timer->function;
1246
1247 /*
1248 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1249 * timer is restarted with a period then it becomes an absolute
1250 * timer. If its not restarted it does not matter.
1251 */
1252 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1253 timer->is_rel = false;
1254
1255 /*
1256 * Because we run timers from hardirq context, there is no chance
1257 * they get migrated to another cpu, therefore its safe to unlock
1258 * the timer base.
1259 */
1260 raw_spin_unlock(&cpu_base->lock);
1261 trace_hrtimer_expire_entry(timer, now);
1262 restart = fn(timer);
1263 trace_hrtimer_expire_exit(timer);
1264 raw_spin_lock(&cpu_base->lock);
1265
1266 /*
1267 * Note: We clear the running state after enqueue_hrtimer and
1268 * we do not reprogram the event hardware. Happens either in
1269 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1270 *
1271 * Note: Because we dropped the cpu_base->lock above,
1272 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1273 * for us already.
1274 */
1275 if (restart != HRTIMER_NORESTART &&
1276 !(timer->state & HRTIMER_STATE_ENQUEUED))
1277 enqueue_hrtimer(timer, base);
1278
1279 /*
1280 * Separate the ->running assignment from the ->state assignment.
1281 *
1282 * As with a regular write barrier, this ensures the read side in
1283 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1284 * timer->state == INACTIVE.
1285 */
1286 raw_write_seqcount_barrier(&cpu_base->seq);
1287
1288 WARN_ON_ONCE(cpu_base->running != timer);
1289 cpu_base->running = NULL;
1290 }
1291
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now)1292 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1293 {
1294 struct hrtimer_clock_base *base = cpu_base->clock_base;
1295 unsigned int active = cpu_base->active_bases;
1296
1297 for (; active; base++, active >>= 1) {
1298 struct timerqueue_node *node;
1299 ktime_t basenow;
1300
1301 if (!(active & 0x01))
1302 continue;
1303
1304 basenow = ktime_add(now, base->offset);
1305
1306 while ((node = timerqueue_getnext(&base->active))) {
1307 struct hrtimer *timer;
1308
1309 timer = container_of(node, struct hrtimer, node);
1310
1311 /*
1312 * The immediate goal for using the softexpires is
1313 * minimizing wakeups, not running timers at the
1314 * earliest interrupt after their soft expiration.
1315 * This allows us to avoid using a Priority Search
1316 * Tree, which can answer a stabbing querry for
1317 * overlapping intervals and instead use the simple
1318 * BST we already have.
1319 * We don't add extra wakeups by delaying timers that
1320 * are right-of a not yet expired timer, because that
1321 * timer will have to trigger a wakeup anyway.
1322 */
1323 if (basenow < hrtimer_get_softexpires_tv64(timer))
1324 break;
1325
1326 __run_hrtimer(cpu_base, base, timer, &basenow);
1327 }
1328 }
1329 }
1330
1331 #ifdef CONFIG_HIGH_RES_TIMERS
1332
1333 /*
1334 * High resolution timer interrupt
1335 * Called with interrupts disabled
1336 */
hrtimer_interrupt(struct clock_event_device * dev)1337 void hrtimer_interrupt(struct clock_event_device *dev)
1338 {
1339 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1340 ktime_t expires_next, now, entry_time, delta;
1341 int retries = 0;
1342
1343 BUG_ON(!cpu_base->hres_active);
1344 cpu_base->nr_events++;
1345 dev->next_event = KTIME_MAX;
1346
1347 raw_spin_lock(&cpu_base->lock);
1348 entry_time = now = hrtimer_update_base(cpu_base);
1349 retry:
1350 cpu_base->in_hrtirq = 1;
1351 /*
1352 * We set expires_next to KTIME_MAX here with cpu_base->lock
1353 * held to prevent that a timer is enqueued in our queue via
1354 * the migration code. This does not affect enqueueing of
1355 * timers which run their callback and need to be requeued on
1356 * this CPU.
1357 */
1358 cpu_base->expires_next = KTIME_MAX;
1359
1360 __hrtimer_run_queues(cpu_base, now);
1361
1362 /* Reevaluate the clock bases for the next expiry */
1363 expires_next = __hrtimer_get_next_event(cpu_base, NULL);
1364 /*
1365 * Store the new expiry value so the migration code can verify
1366 * against it.
1367 */
1368 cpu_base->expires_next = expires_next;
1369 cpu_base->in_hrtirq = 0;
1370 raw_spin_unlock(&cpu_base->lock);
1371
1372 /* Reprogramming necessary ? */
1373 if (!tick_program_event(expires_next, 0)) {
1374 cpu_base->hang_detected = 0;
1375 return;
1376 }
1377
1378 /*
1379 * The next timer was already expired due to:
1380 * - tracing
1381 * - long lasting callbacks
1382 * - being scheduled away when running in a VM
1383 *
1384 * We need to prevent that we loop forever in the hrtimer
1385 * interrupt routine. We give it 3 attempts to avoid
1386 * overreacting on some spurious event.
1387 *
1388 * Acquire base lock for updating the offsets and retrieving
1389 * the current time.
1390 */
1391 raw_spin_lock(&cpu_base->lock);
1392 now = hrtimer_update_base(cpu_base);
1393 cpu_base->nr_retries++;
1394 if (++retries < 3)
1395 goto retry;
1396 /*
1397 * Give the system a chance to do something else than looping
1398 * here. We stored the entry time, so we know exactly how long
1399 * we spent here. We schedule the next event this amount of
1400 * time away.
1401 */
1402 cpu_base->nr_hangs++;
1403 cpu_base->hang_detected = 1;
1404 raw_spin_unlock(&cpu_base->lock);
1405 delta = ktime_sub(now, entry_time);
1406 if ((unsigned int)delta > cpu_base->max_hang_time)
1407 cpu_base->max_hang_time = (unsigned int) delta;
1408 /*
1409 * Limit it to a sensible value as we enforce a longer
1410 * delay. Give the CPU at least 100ms to catch up.
1411 */
1412 if (delta > 100 * NSEC_PER_MSEC)
1413 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1414 else
1415 expires_next = ktime_add(now, delta);
1416 tick_program_event(expires_next, 1);
1417 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1418 ktime_to_ns(delta));
1419 }
1420
1421 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1422 static inline void __hrtimer_peek_ahead_timers(void)
1423 {
1424 struct tick_device *td;
1425
1426 if (!hrtimer_hres_active())
1427 return;
1428
1429 td = this_cpu_ptr(&tick_cpu_device);
1430 if (td && td->evtdev)
1431 hrtimer_interrupt(td->evtdev);
1432 }
1433
1434 #else /* CONFIG_HIGH_RES_TIMERS */
1435
__hrtimer_peek_ahead_timers(void)1436 static inline void __hrtimer_peek_ahead_timers(void) { }
1437
1438 #endif /* !CONFIG_HIGH_RES_TIMERS */
1439
1440 /*
1441 * Called from run_local_timers in hardirq context every jiffy
1442 */
hrtimer_run_queues(void)1443 void hrtimer_run_queues(void)
1444 {
1445 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1446 ktime_t now;
1447
1448 if (__hrtimer_hres_active(cpu_base))
1449 return;
1450
1451 /*
1452 * This _is_ ugly: We have to check periodically, whether we
1453 * can switch to highres and / or nohz mode. The clocksource
1454 * switch happens with xtime_lock held. Notification from
1455 * there only sets the check bit in the tick_oneshot code,
1456 * otherwise we might deadlock vs. xtime_lock.
1457 */
1458 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1459 hrtimer_switch_to_hres();
1460 return;
1461 }
1462
1463 raw_spin_lock(&cpu_base->lock);
1464 now = hrtimer_update_base(cpu_base);
1465 __hrtimer_run_queues(cpu_base, now);
1466 raw_spin_unlock(&cpu_base->lock);
1467 }
1468
1469 /*
1470 * Sleep related functions:
1471 */
hrtimer_wakeup(struct hrtimer * timer)1472 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1473 {
1474 struct hrtimer_sleeper *t =
1475 container_of(timer, struct hrtimer_sleeper, timer);
1476 struct task_struct *task = t->task;
1477
1478 t->task = NULL;
1479 if (task)
1480 wake_up_process(task);
1481
1482 return HRTIMER_NORESTART;
1483 }
1484
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1485 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1486 {
1487 sl->timer.function = hrtimer_wakeup;
1488 sl->task = task;
1489 }
1490 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1491
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1492 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1493 {
1494 switch(restart->nanosleep.type) {
1495 #ifdef CONFIG_COMPAT
1496 case TT_COMPAT:
1497 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1498 return -EFAULT;
1499 break;
1500 #endif
1501 case TT_NATIVE:
1502 if (put_timespec64(ts, restart->nanosleep.rmtp))
1503 return -EFAULT;
1504 break;
1505 default:
1506 BUG();
1507 }
1508 return -ERESTART_RESTARTBLOCK;
1509 }
1510
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1511 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1512 {
1513 struct restart_block *restart;
1514
1515 hrtimer_init_sleeper(t, current);
1516
1517 do {
1518 set_current_state(TASK_INTERRUPTIBLE);
1519 hrtimer_start_expires(&t->timer, mode);
1520
1521 if (likely(t->task))
1522 freezable_schedule();
1523
1524 hrtimer_cancel(&t->timer);
1525 mode = HRTIMER_MODE_ABS;
1526
1527 } while (t->task && !signal_pending(current));
1528
1529 __set_current_state(TASK_RUNNING);
1530
1531 if (!t->task)
1532 return 0;
1533
1534 restart = ¤t->restart_block;
1535 if (restart->nanosleep.type != TT_NONE) {
1536 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1537 struct timespec64 rmt;
1538
1539 if (rem <= 0)
1540 return 0;
1541 rmt = ktime_to_timespec64(rem);
1542
1543 return nanosleep_copyout(restart, &rmt);
1544 }
1545 return -ERESTART_RESTARTBLOCK;
1546 }
1547
hrtimer_nanosleep_restart(struct restart_block * restart)1548 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1549 {
1550 struct hrtimer_sleeper t;
1551 int ret;
1552
1553 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1554 HRTIMER_MODE_ABS);
1555 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1556
1557 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1558 destroy_hrtimer_on_stack(&t.timer);
1559 return ret;
1560 }
1561
hrtimer_nanosleep(const struct timespec64 * rqtp,const enum hrtimer_mode mode,const clockid_t clockid)1562 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1563 const enum hrtimer_mode mode, const clockid_t clockid)
1564 {
1565 struct restart_block *restart;
1566 struct hrtimer_sleeper t;
1567 int ret = 0;
1568 u64 slack;
1569
1570 slack = current->timer_slack_ns;
1571 if (dl_task(current) || rt_task(current))
1572 slack = 0;
1573
1574 hrtimer_init_on_stack(&t.timer, clockid, mode);
1575 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1576 ret = do_nanosleep(&t, mode);
1577 if (ret != -ERESTART_RESTARTBLOCK)
1578 goto out;
1579
1580 /* Absolute timers do not update the rmtp value and restart: */
1581 if (mode == HRTIMER_MODE_ABS) {
1582 ret = -ERESTARTNOHAND;
1583 goto out;
1584 }
1585
1586 restart = ¤t->restart_block;
1587 restart->fn = hrtimer_nanosleep_restart;
1588 restart->nanosleep.clockid = t.timer.base->clockid;
1589 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1590 out:
1591 destroy_hrtimer_on_stack(&t.timer);
1592 return ret;
1593 }
1594
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1595 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1596 struct timespec __user *, rmtp)
1597 {
1598 struct timespec64 tu;
1599
1600 if (get_timespec64(&tu, rqtp))
1601 return -EFAULT;
1602
1603 if (!timespec64_valid(&tu))
1604 return -EINVAL;
1605
1606 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1607 current->restart_block.nanosleep.rmtp = rmtp;
1608 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1609 }
1610
1611 #ifdef CONFIG_COMPAT
1612
COMPAT_SYSCALL_DEFINE2(nanosleep,struct compat_timespec __user *,rqtp,struct compat_timespec __user *,rmtp)1613 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1614 struct compat_timespec __user *, rmtp)
1615 {
1616 struct timespec64 tu;
1617
1618 if (compat_get_timespec64(&tu, rqtp))
1619 return -EFAULT;
1620
1621 if (!timespec64_valid(&tu))
1622 return -EINVAL;
1623
1624 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1625 current->restart_block.nanosleep.compat_rmtp = rmtp;
1626 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1627 }
1628 #endif
1629
1630 /*
1631 * Functions related to boot-time initialization:
1632 */
hrtimers_prepare_cpu(unsigned int cpu)1633 int hrtimers_prepare_cpu(unsigned int cpu)
1634 {
1635 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1636 int i;
1637
1638 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1639 cpu_base->clock_base[i].cpu_base = cpu_base;
1640 timerqueue_init_head(&cpu_base->clock_base[i].active);
1641 }
1642
1643 cpu_base->active_bases = 0;
1644 cpu_base->cpu = cpu;
1645 hrtimer_init_hres(cpu_base);
1646 return 0;
1647 }
1648
1649 #ifdef CONFIG_HOTPLUG_CPU
1650
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1651 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1652 struct hrtimer_clock_base *new_base)
1653 {
1654 struct hrtimer *timer;
1655 struct timerqueue_node *node;
1656
1657 while ((node = timerqueue_getnext(&old_base->active))) {
1658 timer = container_of(node, struct hrtimer, node);
1659 BUG_ON(hrtimer_callback_running(timer));
1660 debug_deactivate(timer);
1661
1662 /*
1663 * Mark it as ENQUEUED not INACTIVE otherwise the
1664 * timer could be seen as !active and just vanish away
1665 * under us on another CPU
1666 */
1667 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1668 timer->base = new_base;
1669 /*
1670 * Enqueue the timers on the new cpu. This does not
1671 * reprogram the event device in case the timer
1672 * expires before the earliest on this CPU, but we run
1673 * hrtimer_interrupt after we migrated everything to
1674 * sort out already expired timers and reprogram the
1675 * event device.
1676 */
1677 enqueue_hrtimer(timer, new_base);
1678 }
1679 }
1680
hrtimers_dead_cpu(unsigned int scpu)1681 int hrtimers_dead_cpu(unsigned int scpu)
1682 {
1683 struct hrtimer_cpu_base *old_base, *new_base;
1684 int i;
1685
1686 BUG_ON(cpu_online(scpu));
1687 tick_cancel_sched_timer(scpu);
1688
1689 local_irq_disable();
1690 old_base = &per_cpu(hrtimer_bases, scpu);
1691 new_base = this_cpu_ptr(&hrtimer_bases);
1692 /*
1693 * The caller is globally serialized and nobody else
1694 * takes two locks at once, deadlock is not possible.
1695 */
1696 raw_spin_lock(&new_base->lock);
1697 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1698
1699 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1700 migrate_hrtimer_list(&old_base->clock_base[i],
1701 &new_base->clock_base[i]);
1702 }
1703
1704 raw_spin_unlock(&old_base->lock);
1705 raw_spin_unlock(&new_base->lock);
1706
1707 /* Check, if we got expired work to do */
1708 __hrtimer_peek_ahead_timers();
1709 local_irq_enable();
1710 return 0;
1711 }
1712
1713 #endif /* CONFIG_HOTPLUG_CPU */
1714
hrtimers_init(void)1715 void __init hrtimers_init(void)
1716 {
1717 hrtimers_prepare_cpu(smp_processor_id());
1718 }
1719
1720 /**
1721 * schedule_hrtimeout_range_clock - sleep until timeout
1722 * @expires: timeout value (ktime_t)
1723 * @delta: slack in expires timeout (ktime_t)
1724 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1725 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1726 */
1727 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,int clock)1728 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1729 const enum hrtimer_mode mode, int clock)
1730 {
1731 struct hrtimer_sleeper t;
1732
1733 /*
1734 * Optimize when a zero timeout value is given. It does not
1735 * matter whether this is an absolute or a relative time.
1736 */
1737 if (expires && *expires == 0) {
1738 __set_current_state(TASK_RUNNING);
1739 return 0;
1740 }
1741
1742 /*
1743 * A NULL parameter means "infinite"
1744 */
1745 if (!expires) {
1746 schedule();
1747 return -EINTR;
1748 }
1749
1750 hrtimer_init_on_stack(&t.timer, clock, mode);
1751 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1752
1753 hrtimer_init_sleeper(&t, current);
1754
1755 hrtimer_start_expires(&t.timer, mode);
1756
1757 if (likely(t.task))
1758 schedule();
1759
1760 hrtimer_cancel(&t.timer);
1761 destroy_hrtimer_on_stack(&t.timer);
1762
1763 __set_current_state(TASK_RUNNING);
1764
1765 return !t.task ? 0 : -EINTR;
1766 }
1767
1768 /**
1769 * schedule_hrtimeout_range - sleep until timeout
1770 * @expires: timeout value (ktime_t)
1771 * @delta: slack in expires timeout (ktime_t)
1772 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1773 *
1774 * Make the current task sleep until the given expiry time has
1775 * elapsed. The routine will return immediately unless
1776 * the current task state has been set (see set_current_state()).
1777 *
1778 * The @delta argument gives the kernel the freedom to schedule the
1779 * actual wakeup to a time that is both power and performance friendly.
1780 * The kernel give the normal best effort behavior for "@expires+@delta",
1781 * but may decide to fire the timer earlier, but no earlier than @expires.
1782 *
1783 * You can set the task state as follows -
1784 *
1785 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1786 * pass before the routine returns unless the current task is explicitly
1787 * woken up, (e.g. by wake_up_process()).
1788 *
1789 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1790 * delivered to the current task or the current task is explicitly woken
1791 * up.
1792 *
1793 * The current task state is guaranteed to be TASK_RUNNING when this
1794 * routine returns.
1795 *
1796 * Returns 0 when the timer has expired. If the task was woken before the
1797 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1798 * by an explicit wakeup, it returns -EINTR.
1799 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)1800 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1801 const enum hrtimer_mode mode)
1802 {
1803 return schedule_hrtimeout_range_clock(expires, delta, mode,
1804 CLOCK_MONOTONIC);
1805 }
1806 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1807
1808 /**
1809 * schedule_hrtimeout - sleep until timeout
1810 * @expires: timeout value (ktime_t)
1811 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812 *
1813 * Make the current task sleep until the given expiry time has
1814 * elapsed. The routine will return immediately unless
1815 * the current task state has been set (see set_current_state()).
1816 *
1817 * You can set the task state as follows -
1818 *
1819 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820 * pass before the routine returns unless the current task is explicitly
1821 * woken up, (e.g. by wake_up_process()).
1822 *
1823 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1824 * delivered to the current task or the current task is explicitly woken
1825 * up.
1826 *
1827 * The current task state is guaranteed to be TASK_RUNNING when this
1828 * routine returns.
1829 *
1830 * Returns 0 when the timer has expired. If the task was woken before the
1831 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1832 * by an explicit wakeup, it returns -EINTR.
1833 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1834 int __sched schedule_hrtimeout(ktime_t *expires,
1835 const enum hrtimer_mode mode)
1836 {
1837 return schedule_hrtimeout_range(expires, 0, mode);
1838 }
1839 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1840