• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/math64.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 
26 /*
27  * NTP timekeeping variables:
28  *
29  * Note: All of the NTP state is protected by the timekeeping locks.
30  */
31 
32 
33 /* USER_HZ period (usecs): */
34 unsigned long			tick_usec = USER_TICK_USEC;
35 
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long			tick_nsec;
38 
39 static u64			tick_length;
40 static u64			tick_length_base;
41 
42 #define SECS_PER_DAY		86400
43 #define MAX_TICKADJ		500LL		/* usecs */
44 #define MAX_TICKADJ_SCALED \
45 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET		100000
47 
48 /*
49  * phase-lock loop variables
50  */
51 
52 /*
53  * clock synchronization status
54  *
55  * (TIME_ERROR prevents overwriting the CMOS clock)
56  */
57 static int			time_state = TIME_OK;
58 
59 /* clock status bits:							*/
60 static int			time_status = STA_UNSYNC;
61 
62 /* time adjustment (nsecs):						*/
63 static s64			time_offset;
64 
65 /* pll time constant:							*/
66 static long			time_constant = 2;
67 
68 /* maximum error (usecs):						*/
69 static long			time_maxerror = NTP_PHASE_LIMIT;
70 
71 /* estimated error (usecs):						*/
72 static long			time_esterror = NTP_PHASE_LIMIT;
73 
74 /* frequency offset (scaled nsecs/secs):				*/
75 static s64			time_freq;
76 
77 /* time at last adjustment (secs):					*/
78 static time64_t		time_reftime;
79 
80 static long			time_adjust;
81 
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83 static s64			ntp_tick_adj;
84 
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t			ntp_next_leap_sec = TIME64_MAX;
87 
88 #ifdef CONFIG_NTP_PPS
89 
90 /*
91  * The following variables are used when a pulse-per-second (PPS) signal
92  * is available. They establish the engineering parameters of the clock
93  * discipline loop when controlled by the PPS signal.
94  */
95 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
96 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100 				   increase pps_shift or consecutive bad
101 				   intervals to decrease it */
102 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103 
104 static int pps_valid;		/* signal watchdog counter */
105 static long pps_tf[3];		/* phase median filter */
106 static long pps_jitter;		/* current jitter (ns) */
107 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108 static int pps_shift;		/* current interval duration (s) (shift) */
109 static int pps_intcnt;		/* interval counter */
110 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111 static long pps_stabil;		/* current stability (scaled ns/s) */
112 
113 /*
114  * PPS signal quality monitors
115  */
116 static long pps_calcnt;		/* calibration intervals */
117 static long pps_jitcnt;		/* jitter limit exceeded */
118 static long pps_stbcnt;		/* stability limit exceeded */
119 static long pps_errcnt;		/* calibration errors */
120 
121 
122 /* PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
ntp_offset_chunk(s64 offset)125 static inline s64 ntp_offset_chunk(s64 offset)
126 {
127 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 		return offset;
129 	else
130 		return shift_right(offset, SHIFT_PLL + time_constant);
131 }
132 
pps_reset_freq_interval(void)133 static inline void pps_reset_freq_interval(void)
134 {
135 	/* the PPS calibration interval may end
136 	   surprisingly early */
137 	pps_shift = PPS_INTMIN;
138 	pps_intcnt = 0;
139 }
140 
141 /**
142  * pps_clear - Clears the PPS state variables
143  */
pps_clear(void)144 static inline void pps_clear(void)
145 {
146 	pps_reset_freq_interval();
147 	pps_tf[0] = 0;
148 	pps_tf[1] = 0;
149 	pps_tf[2] = 0;
150 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 	pps_freq = 0;
152 }
153 
154 /* Decrease pps_valid to indicate that another second has passed since
155  * the last PPS signal. When it reaches 0, indicate that PPS signal is
156  * missing.
157  */
pps_dec_valid(void)158 static inline void pps_dec_valid(void)
159 {
160 	if (pps_valid > 0)
161 		pps_valid--;
162 	else {
163 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 				 STA_PPSWANDER | STA_PPSERROR);
165 		pps_clear();
166 	}
167 }
168 
pps_set_freq(s64 freq)169 static inline void pps_set_freq(s64 freq)
170 {
171 	pps_freq = freq;
172 }
173 
is_error_status(int status)174 static inline int is_error_status(int status)
175 {
176 	return (status & (STA_UNSYNC|STA_CLOCKERR))
177 		/* PPS signal lost when either PPS time or
178 		 * PPS frequency synchronization requested
179 		 */
180 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181 			&& !(status & STA_PPSSIGNAL))
182 		/* PPS jitter exceeded when
183 		 * PPS time synchronization requested */
184 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185 			== (STA_PPSTIME|STA_PPSJITTER))
186 		/* PPS wander exceeded or calibration error when
187 		 * PPS frequency synchronization requested
188 		 */
189 		|| ((status & STA_PPSFREQ)
190 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191 }
192 
pps_fill_timex(struct timex * txc)193 static inline void pps_fill_timex(struct timex *txc)
194 {
195 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 	txc->jitter	   = pps_jitter;
198 	if (!(time_status & STA_NANO))
199 		txc->jitter /= NSEC_PER_USEC;
200 	txc->shift	   = pps_shift;
201 	txc->stabil	   = pps_stabil;
202 	txc->jitcnt	   = pps_jitcnt;
203 	txc->calcnt	   = pps_calcnt;
204 	txc->errcnt	   = pps_errcnt;
205 	txc->stbcnt	   = pps_stbcnt;
206 }
207 
208 #else /* !CONFIG_NTP_PPS */
209 
ntp_offset_chunk(s64 offset)210 static inline s64 ntp_offset_chunk(s64 offset)
211 {
212 	return shift_right(offset, SHIFT_PLL + time_constant);
213 }
214 
pps_reset_freq_interval(void)215 static inline void pps_reset_freq_interval(void) {}
pps_clear(void)216 static inline void pps_clear(void) {}
pps_dec_valid(void)217 static inline void pps_dec_valid(void) {}
pps_set_freq(s64 freq)218 static inline void pps_set_freq(s64 freq) {}
219 
is_error_status(int status)220 static inline int is_error_status(int status)
221 {
222 	return status & (STA_UNSYNC|STA_CLOCKERR);
223 }
224 
pps_fill_timex(struct timex * txc)225 static inline void pps_fill_timex(struct timex *txc)
226 {
227 	/* PPS is not implemented, so these are zero */
228 	txc->ppsfreq	   = 0;
229 	txc->jitter	   = 0;
230 	txc->shift	   = 0;
231 	txc->stabil	   = 0;
232 	txc->jitcnt	   = 0;
233 	txc->calcnt	   = 0;
234 	txc->errcnt	   = 0;
235 	txc->stbcnt	   = 0;
236 }
237 
238 #endif /* CONFIG_NTP_PPS */
239 
240 
241 /**
242  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243  *
244  */
ntp_synced(void)245 static inline int ntp_synced(void)
246 {
247 	return !(time_status & STA_UNSYNC);
248 }
249 
250 
251 /*
252  * NTP methods:
253  */
254 
255 /*
256  * Update (tick_length, tick_length_base, tick_nsec), based
257  * on (tick_usec, ntp_tick_adj, time_freq):
258  */
ntp_update_frequency(void)259 static void ntp_update_frequency(void)
260 {
261 	u64 second_length;
262 	u64 new_base;
263 
264 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 						<< NTP_SCALE_SHIFT;
266 
267 	second_length		+= ntp_tick_adj;
268 	second_length		+= time_freq;
269 
270 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272 
273 	/*
274 	 * Don't wait for the next second_overflow, apply
275 	 * the change to the tick length immediately:
276 	 */
277 	tick_length		+= new_base - tick_length_base;
278 	tick_length_base	 = new_base;
279 }
280 
ntp_update_offset_fll(s64 offset64,long secs)281 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 {
283 	time_status &= ~STA_MODE;
284 
285 	if (secs < MINSEC)
286 		return 0;
287 
288 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 		return 0;
290 
291 	time_status |= STA_MODE;
292 
293 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 }
295 
ntp_update_offset(long offset)296 static void ntp_update_offset(long offset)
297 {
298 	s64 freq_adj;
299 	s64 offset64;
300 	long secs;
301 
302 	if (!(time_status & STA_PLL))
303 		return;
304 
305 	if (!(time_status & STA_NANO)) {
306 		/* Make sure the multiplication below won't overflow */
307 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308 		offset *= NSEC_PER_USEC;
309 	}
310 
311 	/*
312 	 * Scale the phase adjustment and
313 	 * clamp to the operating range.
314 	 */
315 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316 
317 	/*
318 	 * Select how the frequency is to be controlled
319 	 * and in which mode (PLL or FLL).
320 	 */
321 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322 	if (unlikely(time_status & STA_FREQHOLD))
323 		secs = 0;
324 
325 	time_reftime = __ktime_get_real_seconds();
326 
327 	offset64    = offset;
328 	freq_adj    = ntp_update_offset_fll(offset64, secs);
329 
330 	/*
331 	 * Clamp update interval to reduce PLL gain with low
332 	 * sampling rate (e.g. intermittent network connection)
333 	 * to avoid instability.
334 	 */
335 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 
338 	freq_adj    += (offset64 * secs) <<
339 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 
341 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 
343 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344 
345 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346 }
347 
348 /**
349  * ntp_clear - Clears the NTP state variables
350  */
ntp_clear(void)351 void ntp_clear(void)
352 {
353 	time_adjust	= 0;		/* stop active adjtime() */
354 	time_status	|= STA_UNSYNC;
355 	time_maxerror	= NTP_PHASE_LIMIT;
356 	time_esterror	= NTP_PHASE_LIMIT;
357 
358 	ntp_update_frequency();
359 
360 	tick_length	= tick_length_base;
361 	time_offset	= 0;
362 
363 	ntp_next_leap_sec = TIME64_MAX;
364 	/* Clear PPS state variables */
365 	pps_clear();
366 }
367 
368 
ntp_tick_length(void)369 u64 ntp_tick_length(void)
370 {
371 	return tick_length;
372 }
373 
374 /**
375  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376  *
377  * Provides the time of the next leapsecond against CLOCK_REALTIME in
378  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379  */
ntp_get_next_leap(void)380 ktime_t ntp_get_next_leap(void)
381 {
382 	ktime_t ret;
383 
384 	if ((time_state == TIME_INS) && (time_status & STA_INS))
385 		return ktime_set(ntp_next_leap_sec, 0);
386 	ret = KTIME_MAX;
387 	return ret;
388 }
389 
390 /*
391  * this routine handles the overflow of the microsecond field
392  *
393  * The tricky bits of code to handle the accurate clock support
394  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395  * They were originally developed for SUN and DEC kernels.
396  * All the kudos should go to Dave for this stuff.
397  *
398  * Also handles leap second processing, and returns leap offset
399  */
second_overflow(time64_t secs)400 int second_overflow(time64_t secs)
401 {
402 	s64 delta;
403 	int leap = 0;
404 	s32 rem;
405 
406 	/*
407 	 * Leap second processing. If in leap-insert state at the end of the
408 	 * day, the system clock is set back one second; if in leap-delete
409 	 * state, the system clock is set ahead one second.
410 	 */
411 	switch (time_state) {
412 	case TIME_OK:
413 		if (time_status & STA_INS) {
414 			time_state = TIME_INS;
415 			div_s64_rem(secs, SECS_PER_DAY, &rem);
416 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417 		} else if (time_status & STA_DEL) {
418 			time_state = TIME_DEL;
419 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 		}
422 		break;
423 	case TIME_INS:
424 		if (!(time_status & STA_INS)) {
425 			ntp_next_leap_sec = TIME64_MAX;
426 			time_state = TIME_OK;
427 		} else if (secs == ntp_next_leap_sec) {
428 			leap = -1;
429 			time_state = TIME_OOP;
430 			printk(KERN_NOTICE
431 				"Clock: inserting leap second 23:59:60 UTC\n");
432 		}
433 		break;
434 	case TIME_DEL:
435 		if (!(time_status & STA_DEL)) {
436 			ntp_next_leap_sec = TIME64_MAX;
437 			time_state = TIME_OK;
438 		} else if (secs == ntp_next_leap_sec) {
439 			leap = 1;
440 			ntp_next_leap_sec = TIME64_MAX;
441 			time_state = TIME_WAIT;
442 			printk(KERN_NOTICE
443 				"Clock: deleting leap second 23:59:59 UTC\n");
444 		}
445 		break;
446 	case TIME_OOP:
447 		ntp_next_leap_sec = TIME64_MAX;
448 		time_state = TIME_WAIT;
449 		break;
450 	case TIME_WAIT:
451 		if (!(time_status & (STA_INS | STA_DEL)))
452 			time_state = TIME_OK;
453 		break;
454 	}
455 
456 
457 	/* Bump the maxerror field */
458 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 	if (time_maxerror > NTP_PHASE_LIMIT) {
460 		time_maxerror = NTP_PHASE_LIMIT;
461 		time_status |= STA_UNSYNC;
462 	}
463 
464 	/* Compute the phase adjustment for the next second */
465 	tick_length	 = tick_length_base;
466 
467 	delta		 = ntp_offset_chunk(time_offset);
468 	time_offset	-= delta;
469 	tick_length	+= delta;
470 
471 	/* Check PPS signal */
472 	pps_dec_valid();
473 
474 	if (!time_adjust)
475 		goto out;
476 
477 	if (time_adjust > MAX_TICKADJ) {
478 		time_adjust -= MAX_TICKADJ;
479 		tick_length += MAX_TICKADJ_SCALED;
480 		goto out;
481 	}
482 
483 	if (time_adjust < -MAX_TICKADJ) {
484 		time_adjust += MAX_TICKADJ;
485 		tick_length -= MAX_TICKADJ_SCALED;
486 		goto out;
487 	}
488 
489 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 							 << NTP_SCALE_SHIFT;
491 	time_adjust = 0;
492 
493 out:
494 	return leap;
495 }
496 
497 #ifdef CONFIG_GENERIC_CMOS_UPDATE
update_persistent_clock(struct timespec now)498 int __weak update_persistent_clock(struct timespec now)
499 {
500 	return -ENODEV;
501 }
502 
update_persistent_clock64(struct timespec64 now64)503 int __weak update_persistent_clock64(struct timespec64 now64)
504 {
505 	struct timespec now;
506 
507 	now = timespec64_to_timespec(now64);
508 	return update_persistent_clock(now);
509 }
510 #endif
511 
512 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
513 static void sync_cmos_clock(struct work_struct *work);
514 
515 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
516 
sync_cmos_clock(struct work_struct * work)517 static void sync_cmos_clock(struct work_struct *work)
518 {
519 	struct timespec64 now;
520 	struct timespec64 next;
521 	int fail = 1;
522 
523 	/*
524 	 * If we have an externally synchronized Linux clock, then update
525 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
526 	 * called as close as possible to 500 ms before the new second starts.
527 	 * This code is run on a timer.  If the clock is set, that timer
528 	 * may not expire at the correct time.  Thus, we adjust...
529 	 * We want the clock to be within a couple of ticks from the target.
530 	 */
531 	if (!ntp_synced()) {
532 		/*
533 		 * Not synced, exit, do not restart a timer (if one is
534 		 * running, let it run out).
535 		 */
536 		return;
537 	}
538 
539 	getnstimeofday64(&now);
540 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
541 		struct timespec64 adjust = now;
542 
543 		fail = -ENODEV;
544 		if (persistent_clock_is_local)
545 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
546 #ifdef CONFIG_GENERIC_CMOS_UPDATE
547 		fail = update_persistent_clock64(adjust);
548 #endif
549 
550 #ifdef CONFIG_RTC_SYSTOHC
551 		if (fail == -ENODEV)
552 			fail = rtc_set_ntp_time(adjust);
553 #endif
554 	}
555 
556 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
557 	if (next.tv_nsec <= 0)
558 		next.tv_nsec += NSEC_PER_SEC;
559 
560 	if (!fail || fail == -ENODEV)
561 		next.tv_sec = 659;
562 	else
563 		next.tv_sec = 0;
564 
565 	if (next.tv_nsec >= NSEC_PER_SEC) {
566 		next.tv_sec++;
567 		next.tv_nsec -= NSEC_PER_SEC;
568 	}
569 	queue_delayed_work(system_power_efficient_wq,
570 			   &sync_cmos_work, timespec64_to_jiffies(&next));
571 }
572 
ntp_notify_cmos_timer(void)573 void ntp_notify_cmos_timer(void)
574 {
575 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
576 }
577 
578 #else
ntp_notify_cmos_timer(void)579 void ntp_notify_cmos_timer(void) { }
580 #endif
581 
582 
583 /*
584  * Propagate a new txc->status value into the NTP state:
585  */
process_adj_status(struct timex * txc,struct timespec64 * ts)586 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
587 {
588 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
589 		time_state = TIME_OK;
590 		time_status = STA_UNSYNC;
591 		ntp_next_leap_sec = TIME64_MAX;
592 		/* restart PPS frequency calibration */
593 		pps_reset_freq_interval();
594 	}
595 
596 	/*
597 	 * If we turn on PLL adjustments then reset the
598 	 * reference time to current time.
599 	 */
600 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
601 		time_reftime = __ktime_get_real_seconds();
602 
603 	/* only set allowed bits */
604 	time_status &= STA_RONLY;
605 	time_status |= txc->status & ~STA_RONLY;
606 }
607 
608 
process_adjtimex_modes(struct timex * txc,struct timespec64 * ts,s32 * time_tai)609 static inline void process_adjtimex_modes(struct timex *txc,
610 						struct timespec64 *ts,
611 						s32 *time_tai)
612 {
613 	if (txc->modes & ADJ_STATUS)
614 		process_adj_status(txc, ts);
615 
616 	if (txc->modes & ADJ_NANO)
617 		time_status |= STA_NANO;
618 
619 	if (txc->modes & ADJ_MICRO)
620 		time_status &= ~STA_NANO;
621 
622 	if (txc->modes & ADJ_FREQUENCY) {
623 		time_freq = txc->freq * PPM_SCALE;
624 		time_freq = min(time_freq, MAXFREQ_SCALED);
625 		time_freq = max(time_freq, -MAXFREQ_SCALED);
626 		/* update pps_freq */
627 		pps_set_freq(time_freq);
628 	}
629 
630 	if (txc->modes & ADJ_MAXERROR)
631 		time_maxerror = txc->maxerror;
632 
633 	if (txc->modes & ADJ_ESTERROR)
634 		time_esterror = txc->esterror;
635 
636 	if (txc->modes & ADJ_TIMECONST) {
637 		time_constant = txc->constant;
638 		if (!(time_status & STA_NANO))
639 			time_constant += 4;
640 		time_constant = min(time_constant, (long)MAXTC);
641 		time_constant = max(time_constant, 0l);
642 	}
643 
644 	if (txc->modes & ADJ_TAI &&
645 			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
646 		*time_tai = txc->constant;
647 
648 	if (txc->modes & ADJ_OFFSET)
649 		ntp_update_offset(txc->offset);
650 
651 	if (txc->modes & ADJ_TICK)
652 		tick_usec = txc->tick;
653 
654 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
655 		ntp_update_frequency();
656 }
657 
658 
659 
660 /**
661  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
662  */
ntp_validate_timex(struct timex * txc)663 int ntp_validate_timex(struct timex *txc)
664 {
665 	if (txc->modes & ADJ_ADJTIME) {
666 		/* singleshot must not be used with any other mode bits */
667 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
668 			return -EINVAL;
669 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
670 		    !capable(CAP_SYS_TIME))
671 			return -EPERM;
672 	} else {
673 		/* In order to modify anything, you gotta be super-user! */
674 		 if (txc->modes && !capable(CAP_SYS_TIME))
675 			return -EPERM;
676 		/*
677 		 * if the quartz is off by more than 10% then
678 		 * something is VERY wrong!
679 		 */
680 		if (txc->modes & ADJ_TICK &&
681 		    (txc->tick <  900000/USER_HZ ||
682 		     txc->tick > 1100000/USER_HZ))
683 			return -EINVAL;
684 	}
685 
686 	if (txc->modes & ADJ_SETOFFSET) {
687 		/* In order to inject time, you gotta be super-user! */
688 		if (!capable(CAP_SYS_TIME))
689 			return -EPERM;
690 
691 		if (txc->modes & ADJ_NANO) {
692 			struct timespec ts;
693 
694 			ts.tv_sec = txc->time.tv_sec;
695 			ts.tv_nsec = txc->time.tv_usec;
696 			if (!timespec_inject_offset_valid(&ts))
697 				return -EINVAL;
698 
699 		} else {
700 			if (!timeval_inject_offset_valid(&txc->time))
701 				return -EINVAL;
702 		}
703 	}
704 
705 	/*
706 	 * Check for potential multiplication overflows that can
707 	 * only happen on 64-bit systems:
708 	 */
709 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
710 		if (LLONG_MIN / PPM_SCALE > txc->freq)
711 			return -EINVAL;
712 		if (LLONG_MAX / PPM_SCALE < txc->freq)
713 			return -EINVAL;
714 	}
715 
716 	return 0;
717 }
718 
719 
720 /*
721  * adjtimex mainly allows reading (and writing, if superuser) of
722  * kernel time-keeping variables. used by xntpd.
723  */
__do_adjtimex(struct timex * txc,struct timespec64 * ts,s32 * time_tai)724 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
725 {
726 	int result;
727 
728 	if (txc->modes & ADJ_ADJTIME) {
729 		long save_adjust = time_adjust;
730 
731 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
732 			/* adjtime() is independent from ntp_adjtime() */
733 			time_adjust = txc->offset;
734 			ntp_update_frequency();
735 		}
736 		txc->offset = save_adjust;
737 	} else {
738 
739 		/* If there are input parameters, then process them: */
740 		if (txc->modes)
741 			process_adjtimex_modes(txc, ts, time_tai);
742 
743 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
744 				  NTP_SCALE_SHIFT);
745 		if (!(time_status & STA_NANO))
746 			txc->offset /= NSEC_PER_USEC;
747 	}
748 
749 	result = time_state;	/* mostly `TIME_OK' */
750 	/* check for errors */
751 	if (is_error_status(time_status))
752 		result = TIME_ERROR;
753 
754 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
755 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
756 	txc->maxerror	   = time_maxerror;
757 	txc->esterror	   = time_esterror;
758 	txc->status	   = time_status;
759 	txc->constant	   = time_constant;
760 	txc->precision	   = 1;
761 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
762 	txc->tick	   = tick_usec;
763 	txc->tai	   = *time_tai;
764 
765 	/* fill PPS status fields */
766 	pps_fill_timex(txc);
767 
768 	txc->time.tv_sec = (time_t)ts->tv_sec;
769 	txc->time.tv_usec = ts->tv_nsec;
770 	if (!(time_status & STA_NANO))
771 		txc->time.tv_usec /= NSEC_PER_USEC;
772 
773 	/* Handle leapsec adjustments */
774 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
775 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
776 			result = TIME_OOP;
777 			txc->tai++;
778 			txc->time.tv_sec--;
779 		}
780 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
781 			result = TIME_WAIT;
782 			txc->tai--;
783 			txc->time.tv_sec++;
784 		}
785 		if ((time_state == TIME_OOP) &&
786 					(ts->tv_sec == ntp_next_leap_sec)) {
787 			result = TIME_WAIT;
788 		}
789 	}
790 
791 	return result;
792 }
793 
794 #ifdef	CONFIG_NTP_PPS
795 
796 /* actually struct pps_normtime is good old struct timespec, but it is
797  * semantically different (and it is the reason why it was invented):
798  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
799  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
800 struct pps_normtime {
801 	s64		sec;	/* seconds */
802 	long		nsec;	/* nanoseconds */
803 };
804 
805 /* normalize the timestamp so that nsec is in the
806    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
pps_normalize_ts(struct timespec64 ts)807 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
808 {
809 	struct pps_normtime norm = {
810 		.sec = ts.tv_sec,
811 		.nsec = ts.tv_nsec
812 	};
813 
814 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
815 		norm.nsec -= NSEC_PER_SEC;
816 		norm.sec++;
817 	}
818 
819 	return norm;
820 }
821 
822 /* get current phase correction and jitter */
pps_phase_filter_get(long * jitter)823 static inline long pps_phase_filter_get(long *jitter)
824 {
825 	*jitter = pps_tf[0] - pps_tf[1];
826 	if (*jitter < 0)
827 		*jitter = -*jitter;
828 
829 	/* TODO: test various filters */
830 	return pps_tf[0];
831 }
832 
833 /* add the sample to the phase filter */
pps_phase_filter_add(long err)834 static inline void pps_phase_filter_add(long err)
835 {
836 	pps_tf[2] = pps_tf[1];
837 	pps_tf[1] = pps_tf[0];
838 	pps_tf[0] = err;
839 }
840 
841 /* decrease frequency calibration interval length.
842  * It is halved after four consecutive unstable intervals.
843  */
pps_dec_freq_interval(void)844 static inline void pps_dec_freq_interval(void)
845 {
846 	if (--pps_intcnt <= -PPS_INTCOUNT) {
847 		pps_intcnt = -PPS_INTCOUNT;
848 		if (pps_shift > PPS_INTMIN) {
849 			pps_shift--;
850 			pps_intcnt = 0;
851 		}
852 	}
853 }
854 
855 /* increase frequency calibration interval length.
856  * It is doubled after four consecutive stable intervals.
857  */
pps_inc_freq_interval(void)858 static inline void pps_inc_freq_interval(void)
859 {
860 	if (++pps_intcnt >= PPS_INTCOUNT) {
861 		pps_intcnt = PPS_INTCOUNT;
862 		if (pps_shift < PPS_INTMAX) {
863 			pps_shift++;
864 			pps_intcnt = 0;
865 		}
866 	}
867 }
868 
869 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
870  * timestamps
871  *
872  * At the end of the calibration interval the difference between the
873  * first and last MONOTONIC_RAW clock timestamps divided by the length
874  * of the interval becomes the frequency update. If the interval was
875  * too long, the data are discarded.
876  * Returns the difference between old and new frequency values.
877  */
hardpps_update_freq(struct pps_normtime freq_norm)878 static long hardpps_update_freq(struct pps_normtime freq_norm)
879 {
880 	long delta, delta_mod;
881 	s64 ftemp;
882 
883 	/* check if the frequency interval was too long */
884 	if (freq_norm.sec > (2 << pps_shift)) {
885 		time_status |= STA_PPSERROR;
886 		pps_errcnt++;
887 		pps_dec_freq_interval();
888 		printk_deferred(KERN_ERR
889 			"hardpps: PPSERROR: interval too long - %lld s\n",
890 			freq_norm.sec);
891 		return 0;
892 	}
893 
894 	/* here the raw frequency offset and wander (stability) is
895 	 * calculated. If the wander is less than the wander threshold
896 	 * the interval is increased; otherwise it is decreased.
897 	 */
898 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
899 			freq_norm.sec);
900 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
901 	pps_freq = ftemp;
902 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
903 		printk_deferred(KERN_WARNING
904 				"hardpps: PPSWANDER: change=%ld\n", delta);
905 		time_status |= STA_PPSWANDER;
906 		pps_stbcnt++;
907 		pps_dec_freq_interval();
908 	} else {	/* good sample */
909 		pps_inc_freq_interval();
910 	}
911 
912 	/* the stability metric is calculated as the average of recent
913 	 * frequency changes, but is used only for performance
914 	 * monitoring
915 	 */
916 	delta_mod = delta;
917 	if (delta_mod < 0)
918 		delta_mod = -delta_mod;
919 	pps_stabil += (div_s64(((s64)delta_mod) <<
920 				(NTP_SCALE_SHIFT - SHIFT_USEC),
921 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
922 
923 	/* if enabled, the system clock frequency is updated */
924 	if ((time_status & STA_PPSFREQ) != 0 &&
925 	    (time_status & STA_FREQHOLD) == 0) {
926 		time_freq = pps_freq;
927 		ntp_update_frequency();
928 	}
929 
930 	return delta;
931 }
932 
933 /* correct REALTIME clock phase error against PPS signal */
hardpps_update_phase(long error)934 static void hardpps_update_phase(long error)
935 {
936 	long correction = -error;
937 	long jitter;
938 
939 	/* add the sample to the median filter */
940 	pps_phase_filter_add(correction);
941 	correction = pps_phase_filter_get(&jitter);
942 
943 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
944 	 * threshold, the sample is discarded; otherwise, if so enabled,
945 	 * the time offset is updated.
946 	 */
947 	if (jitter > (pps_jitter << PPS_POPCORN)) {
948 		printk_deferred(KERN_WARNING
949 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
950 				jitter, (pps_jitter << PPS_POPCORN));
951 		time_status |= STA_PPSJITTER;
952 		pps_jitcnt++;
953 	} else if (time_status & STA_PPSTIME) {
954 		/* correct the time using the phase offset */
955 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
956 				NTP_INTERVAL_FREQ);
957 		/* cancel running adjtime() */
958 		time_adjust = 0;
959 	}
960 	/* update jitter */
961 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
962 }
963 
964 /*
965  * __hardpps() - discipline CPU clock oscillator to external PPS signal
966  *
967  * This routine is called at each PPS signal arrival in order to
968  * discipline the CPU clock oscillator to the PPS signal. It takes two
969  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
970  * is used to correct clock phase error and the latter is used to
971  * correct the frequency.
972  *
973  * This code is based on David Mills's reference nanokernel
974  * implementation. It was mostly rewritten but keeps the same idea.
975  */
__hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)976 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
977 {
978 	struct pps_normtime pts_norm, freq_norm;
979 
980 	pts_norm = pps_normalize_ts(*phase_ts);
981 
982 	/* clear the error bits, they will be set again if needed */
983 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
984 
985 	/* indicate signal presence */
986 	time_status |= STA_PPSSIGNAL;
987 	pps_valid = PPS_VALID;
988 
989 	/* when called for the first time,
990 	 * just start the frequency interval */
991 	if (unlikely(pps_fbase.tv_sec == 0)) {
992 		pps_fbase = *raw_ts;
993 		return;
994 	}
995 
996 	/* ok, now we have a base for frequency calculation */
997 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
998 
999 	/* check that the signal is in the range
1000 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1001 	if ((freq_norm.sec == 0) ||
1002 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1003 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1004 		time_status |= STA_PPSJITTER;
1005 		/* restart the frequency calibration interval */
1006 		pps_fbase = *raw_ts;
1007 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1008 		return;
1009 	}
1010 
1011 	/* signal is ok */
1012 
1013 	/* check if the current frequency interval is finished */
1014 	if (freq_norm.sec >= (1 << pps_shift)) {
1015 		pps_calcnt++;
1016 		/* restart the frequency calibration interval */
1017 		pps_fbase = *raw_ts;
1018 		hardpps_update_freq(freq_norm);
1019 	}
1020 
1021 	hardpps_update_phase(pts_norm.nsec);
1022 
1023 }
1024 #endif	/* CONFIG_NTP_PPS */
1025 
ntp_tick_adj_setup(char * str)1026 static int __init ntp_tick_adj_setup(char *str)
1027 {
1028 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1029 
1030 	if (rc)
1031 		return rc;
1032 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1033 
1034 	return 1;
1035 }
1036 
1037 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1038 
ntp_init(void)1039 void __init ntp_init(void)
1040 {
1041 	ntp_clear();
1042 }
1043