• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5 
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 
18 #include "posix-timers.h"
19 
20 static void posix_cpu_timer_rearm(struct k_itimer *timer);
21 
22 /*
23  * Called after updating RLIMIT_CPU to run cpu timer and update
24  * tsk->signal->cputime_expires expiration cache if necessary. Needs
25  * siglock protection since other code may update expiration cache as
26  * well.
27  */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)28 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
29 {
30 	u64 nsecs = rlim_new * NSEC_PER_SEC;
31 
32 	spin_lock_irq(&task->sighand->siglock);
33 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
34 	spin_unlock_irq(&task->sighand->siglock);
35 }
36 
check_clock(const clockid_t which_clock)37 static int check_clock(const clockid_t which_clock)
38 {
39 	int error = 0;
40 	struct task_struct *p;
41 	const pid_t pid = CPUCLOCK_PID(which_clock);
42 
43 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
44 		return -EINVAL;
45 
46 	if (pid == 0)
47 		return 0;
48 
49 	rcu_read_lock();
50 	p = find_task_by_vpid(pid);
51 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
52 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
53 		error = -EINVAL;
54 	}
55 	rcu_read_unlock();
56 
57 	return error;
58 }
59 
60 /*
61  * Update expiry time from increment, and increase overrun count,
62  * given the current clock sample.
63  */
bump_cpu_timer(struct k_itimer * timer,u64 now)64 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
65 {
66 	int i;
67 	u64 delta, incr;
68 
69 	if (timer->it.cpu.incr == 0)
70 		return;
71 
72 	if (now < timer->it.cpu.expires)
73 		return;
74 
75 	incr = timer->it.cpu.incr;
76 	delta = now + incr - timer->it.cpu.expires;
77 
78 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
79 	for (i = 0; incr < delta - incr; i++)
80 		incr = incr << 1;
81 
82 	for (; i >= 0; incr >>= 1, i--) {
83 		if (delta < incr)
84 			continue;
85 
86 		timer->it.cpu.expires += incr;
87 		timer->it_overrun += 1LL << i;
88 		delta -= incr;
89 	}
90 }
91 
92 /**
93  * task_cputime_zero - Check a task_cputime struct for all zero fields.
94  *
95  * @cputime:	The struct to compare.
96  *
97  * Checks @cputime to see if all fields are zero.  Returns true if all fields
98  * are zero, false if any field is nonzero.
99  */
task_cputime_zero(const struct task_cputime * cputime)100 static inline int task_cputime_zero(const struct task_cputime *cputime)
101 {
102 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
103 		return 1;
104 	return 0;
105 }
106 
prof_ticks(struct task_struct * p)107 static inline u64 prof_ticks(struct task_struct *p)
108 {
109 	u64 utime, stime;
110 
111 	task_cputime(p, &utime, &stime);
112 
113 	return utime + stime;
114 }
virt_ticks(struct task_struct * p)115 static inline u64 virt_ticks(struct task_struct *p)
116 {
117 	u64 utime, stime;
118 
119 	task_cputime(p, &utime, &stime);
120 
121 	return utime;
122 }
123 
124 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)125 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
126 {
127 	int error = check_clock(which_clock);
128 	if (!error) {
129 		tp->tv_sec = 0;
130 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
131 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
132 			/*
133 			 * If sched_clock is using a cycle counter, we
134 			 * don't have any idea of its true resolution
135 			 * exported, but it is much more than 1s/HZ.
136 			 */
137 			tp->tv_nsec = 1;
138 		}
139 	}
140 	return error;
141 }
142 
143 static int
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec64 * tp)144 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
145 {
146 	/*
147 	 * You can never reset a CPU clock, but we check for other errors
148 	 * in the call before failing with EPERM.
149 	 */
150 	int error = check_clock(which_clock);
151 	if (error == 0) {
152 		error = -EPERM;
153 	}
154 	return error;
155 }
156 
157 
158 /*
159  * Sample a per-thread clock for the given task.
160  */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,u64 * sample)161 static int cpu_clock_sample(const clockid_t which_clock,
162 			    struct task_struct *p, u64 *sample)
163 {
164 	switch (CPUCLOCK_WHICH(which_clock)) {
165 	default:
166 		return -EINVAL;
167 	case CPUCLOCK_PROF:
168 		*sample = prof_ticks(p);
169 		break;
170 	case CPUCLOCK_VIRT:
171 		*sample = virt_ticks(p);
172 		break;
173 	case CPUCLOCK_SCHED:
174 		*sample = task_sched_runtime(p);
175 		break;
176 	}
177 	return 0;
178 }
179 
180 /*
181  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182  * to avoid race conditions with concurrent updates to cputime.
183  */
__update_gt_cputime(atomic64_t * cputime,u64 sum_cputime)184 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
185 {
186 	u64 curr_cputime;
187 retry:
188 	curr_cputime = atomic64_read(cputime);
189 	if (sum_cputime > curr_cputime) {
190 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
191 			goto retry;
192 	}
193 }
194 
update_gt_cputime(struct task_cputime_atomic * cputime_atomic,struct task_cputime * sum)195 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
196 {
197 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
198 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
199 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
200 }
201 
202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
sample_cputime_atomic(struct task_cputime * times,struct task_cputime_atomic * atomic_times)203 static inline void sample_cputime_atomic(struct task_cputime *times,
204 					 struct task_cputime_atomic *atomic_times)
205 {
206 	times->utime = atomic64_read(&atomic_times->utime);
207 	times->stime = atomic64_read(&atomic_times->stime);
208 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
209 }
210 
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 	struct task_cputime sum;
215 
216 	/* Check if cputimer isn't running. This is accessed without locking. */
217 	if (!READ_ONCE(cputimer->running)) {
218 		/*
219 		 * The POSIX timer interface allows for absolute time expiry
220 		 * values through the TIMER_ABSTIME flag, therefore we have
221 		 * to synchronize the timer to the clock every time we start it.
222 		 */
223 		thread_group_cputime(tsk, &sum);
224 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
225 
226 		/*
227 		 * We're setting cputimer->running without a lock. Ensure
228 		 * this only gets written to in one operation. We set
229 		 * running after update_gt_cputime() as a small optimization,
230 		 * but barriers are not required because update_gt_cputime()
231 		 * can handle concurrent updates.
232 		 */
233 		WRITE_ONCE(cputimer->running, true);
234 	}
235 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
236 }
237 
238 /*
239  * Sample a process (thread group) clock for the given group_leader task.
240  * Must be called with task sighand lock held for safe while_each_thread()
241  * traversal.
242  */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,u64 * sample)243 static int cpu_clock_sample_group(const clockid_t which_clock,
244 				  struct task_struct *p,
245 				  u64 *sample)
246 {
247 	struct task_cputime cputime;
248 
249 	switch (CPUCLOCK_WHICH(which_clock)) {
250 	default:
251 		return -EINVAL;
252 	case CPUCLOCK_PROF:
253 		thread_group_cputime(p, &cputime);
254 		*sample = cputime.utime + cputime.stime;
255 		break;
256 	case CPUCLOCK_VIRT:
257 		thread_group_cputime(p, &cputime);
258 		*sample = cputime.utime;
259 		break;
260 	case CPUCLOCK_SCHED:
261 		thread_group_cputime(p, &cputime);
262 		*sample = cputime.sum_exec_runtime;
263 		break;
264 	}
265 	return 0;
266 }
267 
posix_cpu_clock_get_task(struct task_struct * tsk,const clockid_t which_clock,struct timespec64 * tp)268 static int posix_cpu_clock_get_task(struct task_struct *tsk,
269 				    const clockid_t which_clock,
270 				    struct timespec64 *tp)
271 {
272 	int err = -EINVAL;
273 	u64 rtn;
274 
275 	if (CPUCLOCK_PERTHREAD(which_clock)) {
276 		if (same_thread_group(tsk, current))
277 			err = cpu_clock_sample(which_clock, tsk, &rtn);
278 	} else {
279 		if (tsk == current || thread_group_leader(tsk))
280 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
281 	}
282 
283 	if (!err)
284 		*tp = ns_to_timespec64(rtn);
285 
286 	return err;
287 }
288 
289 
posix_cpu_clock_get(const clockid_t which_clock,struct timespec64 * tp)290 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
291 {
292 	const pid_t pid = CPUCLOCK_PID(which_clock);
293 	int err = -EINVAL;
294 
295 	if (pid == 0) {
296 		/*
297 		 * Special case constant value for our own clocks.
298 		 * We don't have to do any lookup to find ourselves.
299 		 */
300 		err = posix_cpu_clock_get_task(current, which_clock, tp);
301 	} else {
302 		/*
303 		 * Find the given PID, and validate that the caller
304 		 * should be able to see it.
305 		 */
306 		struct task_struct *p;
307 		rcu_read_lock();
308 		p = find_task_by_vpid(pid);
309 		if (p)
310 			err = posix_cpu_clock_get_task(p, which_clock, tp);
311 		rcu_read_unlock();
312 	}
313 
314 	return err;
315 }
316 
317 /*
318  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320  * new timer already all-zeros initialized.
321  */
posix_cpu_timer_create(struct k_itimer * new_timer)322 static int posix_cpu_timer_create(struct k_itimer *new_timer)
323 {
324 	int ret = 0;
325 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326 	struct task_struct *p;
327 
328 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329 		return -EINVAL;
330 
331 	new_timer->kclock = &clock_posix_cpu;
332 
333 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
334 
335 	rcu_read_lock();
336 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337 		if (pid == 0) {
338 			p = current;
339 		} else {
340 			p = find_task_by_vpid(pid);
341 			if (p && !same_thread_group(p, current))
342 				p = NULL;
343 		}
344 	} else {
345 		if (pid == 0) {
346 			p = current->group_leader;
347 		} else {
348 			p = find_task_by_vpid(pid);
349 			if (p && !has_group_leader_pid(p))
350 				p = NULL;
351 		}
352 	}
353 	new_timer->it.cpu.task = p;
354 	if (p) {
355 		get_task_struct(p);
356 	} else {
357 		ret = -EINVAL;
358 	}
359 	rcu_read_unlock();
360 
361 	return ret;
362 }
363 
364 /*
365  * Clean up a CPU-clock timer that is about to be destroyed.
366  * This is called from timer deletion with the timer already locked.
367  * If we return TIMER_RETRY, it's necessary to release the timer's lock
368  * and try again.  (This happens when the timer is in the middle of firing.)
369  */
posix_cpu_timer_del(struct k_itimer * timer)370 static int posix_cpu_timer_del(struct k_itimer *timer)
371 {
372 	int ret = 0;
373 	unsigned long flags;
374 	struct sighand_struct *sighand;
375 	struct task_struct *p = timer->it.cpu.task;
376 
377 	WARN_ON_ONCE(p == NULL);
378 
379 	/*
380 	 * Protect against sighand release/switch in exit/exec and process/
381 	 * thread timer list entry concurrent read/writes.
382 	 */
383 	sighand = lock_task_sighand(p, &flags);
384 	if (unlikely(sighand == NULL)) {
385 		/*
386 		 * We raced with the reaping of the task.
387 		 * The deletion should have cleared us off the list.
388 		 */
389 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
390 	} else {
391 		if (timer->it.cpu.firing)
392 			ret = TIMER_RETRY;
393 		else
394 			list_del(&timer->it.cpu.entry);
395 
396 		unlock_task_sighand(p, &flags);
397 	}
398 
399 	if (!ret)
400 		put_task_struct(p);
401 
402 	return ret;
403 }
404 
cleanup_timers_list(struct list_head * head)405 static void cleanup_timers_list(struct list_head *head)
406 {
407 	struct cpu_timer_list *timer, *next;
408 
409 	list_for_each_entry_safe(timer, next, head, entry)
410 		list_del_init(&timer->entry);
411 }
412 
413 /*
414  * Clean out CPU timers still ticking when a thread exited.  The task
415  * pointer is cleared, and the expiry time is replaced with the residual
416  * time for later timer_gettime calls to return.
417  * This must be called with the siglock held.
418  */
cleanup_timers(struct list_head * head)419 static void cleanup_timers(struct list_head *head)
420 {
421 	cleanup_timers_list(head);
422 	cleanup_timers_list(++head);
423 	cleanup_timers_list(++head);
424 }
425 
426 /*
427  * These are both called with the siglock held, when the current thread
428  * is being reaped.  When the final (leader) thread in the group is reaped,
429  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
430  */
posix_cpu_timers_exit(struct task_struct * tsk)431 void posix_cpu_timers_exit(struct task_struct *tsk)
432 {
433 	cleanup_timers(tsk->cpu_timers);
434 }
posix_cpu_timers_exit_group(struct task_struct * tsk)435 void posix_cpu_timers_exit_group(struct task_struct *tsk)
436 {
437 	cleanup_timers(tsk->signal->cpu_timers);
438 }
439 
expires_gt(u64 expires,u64 new_exp)440 static inline int expires_gt(u64 expires, u64 new_exp)
441 {
442 	return expires == 0 || expires > new_exp;
443 }
444 
445 /*
446  * Insert the timer on the appropriate list before any timers that
447  * expire later.  This must be called with the sighand lock held.
448  */
arm_timer(struct k_itimer * timer)449 static void arm_timer(struct k_itimer *timer)
450 {
451 	struct task_struct *p = timer->it.cpu.task;
452 	struct list_head *head, *listpos;
453 	struct task_cputime *cputime_expires;
454 	struct cpu_timer_list *const nt = &timer->it.cpu;
455 	struct cpu_timer_list *next;
456 
457 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
458 		head = p->cpu_timers;
459 		cputime_expires = &p->cputime_expires;
460 	} else {
461 		head = p->signal->cpu_timers;
462 		cputime_expires = &p->signal->cputime_expires;
463 	}
464 	head += CPUCLOCK_WHICH(timer->it_clock);
465 
466 	listpos = head;
467 	list_for_each_entry(next, head, entry) {
468 		if (nt->expires < next->expires)
469 			break;
470 		listpos = &next->entry;
471 	}
472 	list_add(&nt->entry, listpos);
473 
474 	if (listpos == head) {
475 		u64 exp = nt->expires;
476 
477 		/*
478 		 * We are the new earliest-expiring POSIX 1.b timer, hence
479 		 * need to update expiration cache. Take into account that
480 		 * for process timers we share expiration cache with itimers
481 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
482 		 */
483 
484 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
485 		case CPUCLOCK_PROF:
486 			if (expires_gt(cputime_expires->prof_exp, exp))
487 				cputime_expires->prof_exp = exp;
488 			break;
489 		case CPUCLOCK_VIRT:
490 			if (expires_gt(cputime_expires->virt_exp, exp))
491 				cputime_expires->virt_exp = exp;
492 			break;
493 		case CPUCLOCK_SCHED:
494 			if (expires_gt(cputime_expires->sched_exp, exp))
495 				cputime_expires->sched_exp = exp;
496 			break;
497 		}
498 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
499 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
500 		else
501 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
502 	}
503 }
504 
505 /*
506  * The timer is locked, fire it and arrange for its reload.
507  */
cpu_timer_fire(struct k_itimer * timer)508 static void cpu_timer_fire(struct k_itimer *timer)
509 {
510 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
511 		/*
512 		 * User don't want any signal.
513 		 */
514 		timer->it.cpu.expires = 0;
515 	} else if (unlikely(timer->sigq == NULL)) {
516 		/*
517 		 * This a special case for clock_nanosleep,
518 		 * not a normal timer from sys_timer_create.
519 		 */
520 		wake_up_process(timer->it_process);
521 		timer->it.cpu.expires = 0;
522 	} else if (timer->it.cpu.incr == 0) {
523 		/*
524 		 * One-shot timer.  Clear it as soon as it's fired.
525 		 */
526 		posix_timer_event(timer, 0);
527 		timer->it.cpu.expires = 0;
528 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
529 		/*
530 		 * The signal did not get queued because the signal
531 		 * was ignored, so we won't get any callback to
532 		 * reload the timer.  But we need to keep it
533 		 * ticking in case the signal is deliverable next time.
534 		 */
535 		posix_cpu_timer_rearm(timer);
536 		++timer->it_requeue_pending;
537 	}
538 }
539 
540 /*
541  * Sample a process (thread group) timer for the given group_leader task.
542  * Must be called with task sighand lock held for safe while_each_thread()
543  * traversal.
544  */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,u64 * sample)545 static int cpu_timer_sample_group(const clockid_t which_clock,
546 				  struct task_struct *p, u64 *sample)
547 {
548 	struct task_cputime cputime;
549 
550 	thread_group_cputimer(p, &cputime);
551 	switch (CPUCLOCK_WHICH(which_clock)) {
552 	default:
553 		return -EINVAL;
554 	case CPUCLOCK_PROF:
555 		*sample = cputime.utime + cputime.stime;
556 		break;
557 	case CPUCLOCK_VIRT:
558 		*sample = cputime.utime;
559 		break;
560 	case CPUCLOCK_SCHED:
561 		*sample = cputime.sum_exec_runtime;
562 		break;
563 	}
564 	return 0;
565 }
566 
567 /*
568  * Guts of sys_timer_settime for CPU timers.
569  * This is called with the timer locked and interrupts disabled.
570  * If we return TIMER_RETRY, it's necessary to release the timer's lock
571  * and try again.  (This happens when the timer is in the middle of firing.)
572  */
posix_cpu_timer_set(struct k_itimer * timer,int timer_flags,struct itimerspec64 * new,struct itimerspec64 * old)573 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
574 			       struct itimerspec64 *new, struct itimerspec64 *old)
575 {
576 	unsigned long flags;
577 	struct sighand_struct *sighand;
578 	struct task_struct *p = timer->it.cpu.task;
579 	u64 old_expires, new_expires, old_incr, val;
580 	int ret;
581 
582 	WARN_ON_ONCE(p == NULL);
583 
584 	/*
585 	 * Use the to_ktime conversion because that clamps the maximum
586 	 * value to KTIME_MAX and avoid multiplication overflows.
587 	 */
588 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
589 
590 	/*
591 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
592 	 * and p->signal->cpu_timers read/write in arm_timer()
593 	 */
594 	sighand = lock_task_sighand(p, &flags);
595 	/*
596 	 * If p has just been reaped, we can no
597 	 * longer get any information about it at all.
598 	 */
599 	if (unlikely(sighand == NULL)) {
600 		return -ESRCH;
601 	}
602 
603 	/*
604 	 * Disarm any old timer after extracting its expiry time.
605 	 */
606 	WARN_ON_ONCE(!irqs_disabled());
607 
608 	ret = 0;
609 	old_incr = timer->it.cpu.incr;
610 	old_expires = timer->it.cpu.expires;
611 	if (unlikely(timer->it.cpu.firing)) {
612 		timer->it.cpu.firing = -1;
613 		ret = TIMER_RETRY;
614 	} else
615 		list_del_init(&timer->it.cpu.entry);
616 
617 	/*
618 	 * We need to sample the current value to convert the new
619 	 * value from to relative and absolute, and to convert the
620 	 * old value from absolute to relative.  To set a process
621 	 * timer, we need a sample to balance the thread expiry
622 	 * times (in arm_timer).  With an absolute time, we must
623 	 * check if it's already passed.  In short, we need a sample.
624 	 */
625 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626 		cpu_clock_sample(timer->it_clock, p, &val);
627 	} else {
628 		cpu_timer_sample_group(timer->it_clock, p, &val);
629 	}
630 
631 	if (old) {
632 		if (old_expires == 0) {
633 			old->it_value.tv_sec = 0;
634 			old->it_value.tv_nsec = 0;
635 		} else {
636 			/*
637 			 * Update the timer in case it has
638 			 * overrun already.  If it has,
639 			 * we'll report it as having overrun
640 			 * and with the next reloaded timer
641 			 * already ticking, though we are
642 			 * swallowing that pending
643 			 * notification here to install the
644 			 * new setting.
645 			 */
646 			bump_cpu_timer(timer, val);
647 			if (val < timer->it.cpu.expires) {
648 				old_expires = timer->it.cpu.expires - val;
649 				old->it_value = ns_to_timespec64(old_expires);
650 			} else {
651 				old->it_value.tv_nsec = 1;
652 				old->it_value.tv_sec = 0;
653 			}
654 		}
655 	}
656 
657 	if (unlikely(ret)) {
658 		/*
659 		 * We are colliding with the timer actually firing.
660 		 * Punt after filling in the timer's old value, and
661 		 * disable this firing since we are already reporting
662 		 * it as an overrun (thanks to bump_cpu_timer above).
663 		 */
664 		unlock_task_sighand(p, &flags);
665 		goto out;
666 	}
667 
668 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669 		new_expires += val;
670 	}
671 
672 	/*
673 	 * Install the new expiry time (or zero).
674 	 * For a timer with no notification action, we don't actually
675 	 * arm the timer (we'll just fake it for timer_gettime).
676 	 */
677 	timer->it.cpu.expires = new_expires;
678 	if (new_expires != 0 && val < new_expires) {
679 		arm_timer(timer);
680 	}
681 
682 	unlock_task_sighand(p, &flags);
683 	/*
684 	 * Install the new reload setting, and
685 	 * set up the signal and overrun bookkeeping.
686 	 */
687 	timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688 	timer->it_interval = ns_to_ktime(timer->it.cpu.incr);
689 
690 	/*
691 	 * This acts as a modification timestamp for the timer,
692 	 * so any automatic reload attempt will punt on seeing
693 	 * that we have reset the timer manually.
694 	 */
695 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
696 		~REQUEUE_PENDING;
697 	timer->it_overrun_last = 0;
698 	timer->it_overrun = -1;
699 
700 	if (new_expires != 0 && !(val < new_expires)) {
701 		/*
702 		 * The designated time already passed, so we notify
703 		 * immediately, even if the thread never runs to
704 		 * accumulate more time on this clock.
705 		 */
706 		cpu_timer_fire(timer);
707 	}
708 
709 	ret = 0;
710  out:
711 	if (old)
712 		old->it_interval = ns_to_timespec64(old_incr);
713 
714 	return ret;
715 }
716 
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec64 * itp)717 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
718 {
719 	u64 now;
720 	struct task_struct *p = timer->it.cpu.task;
721 
722 	WARN_ON_ONCE(p == NULL);
723 
724 	/*
725 	 * Easy part: convert the reload time.
726 	 */
727 	itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
728 
729 	if (!timer->it.cpu.expires)
730 		return;
731 
732 	/*
733 	 * Sample the clock to take the difference with the expiry time.
734 	 */
735 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
736 		cpu_clock_sample(timer->it_clock, p, &now);
737 	} else {
738 		struct sighand_struct *sighand;
739 		unsigned long flags;
740 
741 		/*
742 		 * Protect against sighand release/switch in exit/exec and
743 		 * also make timer sampling safe if it ends up calling
744 		 * thread_group_cputime().
745 		 */
746 		sighand = lock_task_sighand(p, &flags);
747 		if (unlikely(sighand == NULL)) {
748 			/*
749 			 * The process has been reaped.
750 			 * We can't even collect a sample any more.
751 			 * Call the timer disarmed, nothing else to do.
752 			 */
753 			timer->it.cpu.expires = 0;
754 			return;
755 		} else {
756 			cpu_timer_sample_group(timer->it_clock, p, &now);
757 			unlock_task_sighand(p, &flags);
758 		}
759 	}
760 
761 	if (now < timer->it.cpu.expires) {
762 		itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
763 	} else {
764 		/*
765 		 * The timer should have expired already, but the firing
766 		 * hasn't taken place yet.  Say it's just about to expire.
767 		 */
768 		itp->it_value.tv_nsec = 1;
769 		itp->it_value.tv_sec = 0;
770 	}
771 }
772 
773 static unsigned long long
check_timers_list(struct list_head * timers,struct list_head * firing,unsigned long long curr)774 check_timers_list(struct list_head *timers,
775 		  struct list_head *firing,
776 		  unsigned long long curr)
777 {
778 	int maxfire = 20;
779 
780 	while (!list_empty(timers)) {
781 		struct cpu_timer_list *t;
782 
783 		t = list_first_entry(timers, struct cpu_timer_list, entry);
784 
785 		if (!--maxfire || curr < t->expires)
786 			return t->expires;
787 
788 		t->firing = 1;
789 		list_move_tail(&t->entry, firing);
790 	}
791 
792 	return 0;
793 }
794 
795 /*
796  * Check for any per-thread CPU timers that have fired and move them off
797  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
798  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
799  */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)800 static void check_thread_timers(struct task_struct *tsk,
801 				struct list_head *firing)
802 {
803 	struct list_head *timers = tsk->cpu_timers;
804 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
805 	u64 expires;
806 	unsigned long soft;
807 
808 	/*
809 	 * If cputime_expires is zero, then there are no active
810 	 * per thread CPU timers.
811 	 */
812 	if (task_cputime_zero(&tsk->cputime_expires))
813 		return;
814 
815 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
816 	tsk_expires->prof_exp = expires;
817 
818 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
819 	tsk_expires->virt_exp = expires;
820 
821 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
822 						   tsk->se.sum_exec_runtime);
823 
824 	/*
825 	 * Check for the special case thread timers.
826 	 */
827 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
828 	if (soft != RLIM_INFINITY) {
829 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
830 
831 		if (hard != RLIM_INFINITY &&
832 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
833 			/*
834 			 * At the hard limit, we just die.
835 			 * No need to calculate anything else now.
836 			 */
837 			if (print_fatal_signals) {
838 				pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839 					tsk->comm, task_pid_nr(tsk));
840 			}
841 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
842 			return;
843 		}
844 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
845 			/*
846 			 * At the soft limit, send a SIGXCPU every second.
847 			 */
848 			if (soft < hard) {
849 				soft += USEC_PER_SEC;
850 				tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
851 					soft;
852 			}
853 			if (print_fatal_signals) {
854 				pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
855 					tsk->comm, task_pid_nr(tsk));
856 			}
857 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
858 		}
859 	}
860 	if (task_cputime_zero(tsk_expires))
861 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
862 }
863 
stop_process_timers(struct signal_struct * sig)864 static inline void stop_process_timers(struct signal_struct *sig)
865 {
866 	struct thread_group_cputimer *cputimer = &sig->cputimer;
867 
868 	/* Turn off cputimer->running. This is done without locking. */
869 	WRITE_ONCE(cputimer->running, false);
870 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
871 }
872 
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,u64 * expires,u64 cur_time,int signo)873 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
874 			     u64 *expires, u64 cur_time, int signo)
875 {
876 	if (!it->expires)
877 		return;
878 
879 	if (cur_time >= it->expires) {
880 		if (it->incr)
881 			it->expires += it->incr;
882 		else
883 			it->expires = 0;
884 
885 		trace_itimer_expire(signo == SIGPROF ?
886 				    ITIMER_PROF : ITIMER_VIRTUAL,
887 				    tsk->signal->leader_pid, cur_time);
888 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
889 	}
890 
891 	if (it->expires && (!*expires || it->expires < *expires))
892 		*expires = it->expires;
893 }
894 
895 /*
896  * Check for any per-thread CPU timers that have fired and move them
897  * off the tsk->*_timers list onto the firing list.  Per-thread timers
898  * have already been taken off.
899  */
check_process_timers(struct task_struct * tsk,struct list_head * firing)900 static void check_process_timers(struct task_struct *tsk,
901 				 struct list_head *firing)
902 {
903 	struct signal_struct *const sig = tsk->signal;
904 	u64 utime, ptime, virt_expires, prof_expires;
905 	u64 sum_sched_runtime, sched_expires;
906 	struct list_head *timers = sig->cpu_timers;
907 	struct task_cputime cputime;
908 	unsigned long soft;
909 
910 	/*
911 	 * If cputimer is not running, then there are no active
912 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
913 	 */
914 	if (!READ_ONCE(tsk->signal->cputimer.running))
915 		return;
916 
917         /*
918 	 * Signify that a thread is checking for process timers.
919 	 * Write access to this field is protected by the sighand lock.
920 	 */
921 	sig->cputimer.checking_timer = true;
922 
923 	/*
924 	 * Collect the current process totals.
925 	 */
926 	thread_group_cputimer(tsk, &cputime);
927 	utime = cputime.utime;
928 	ptime = utime + cputime.stime;
929 	sum_sched_runtime = cputime.sum_exec_runtime;
930 
931 	prof_expires = check_timers_list(timers, firing, ptime);
932 	virt_expires = check_timers_list(++timers, firing, utime);
933 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
934 
935 	/*
936 	 * Check for the special case process timers.
937 	 */
938 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
939 			 SIGPROF);
940 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
941 			 SIGVTALRM);
942 	soft = task_rlimit(tsk, RLIMIT_CPU);
943 	if (soft != RLIM_INFINITY) {
944 		unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
945 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
946 		u64 x;
947 		if (psecs >= hard) {
948 			/*
949 			 * At the hard limit, we just die.
950 			 * No need to calculate anything else now.
951 			 */
952 			if (print_fatal_signals) {
953 				pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954 					tsk->comm, task_pid_nr(tsk));
955 			}
956 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
957 			return;
958 		}
959 		if (psecs >= soft) {
960 			/*
961 			 * At the soft limit, send a SIGXCPU every second.
962 			 */
963 			if (print_fatal_signals) {
964 				pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965 					tsk->comm, task_pid_nr(tsk));
966 			}
967 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
968 			if (soft < hard) {
969 				soft++;
970 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
971 			}
972 		}
973 		x = soft * NSEC_PER_SEC;
974 		if (!prof_expires || x < prof_expires)
975 			prof_expires = x;
976 	}
977 
978 	sig->cputime_expires.prof_exp = prof_expires;
979 	sig->cputime_expires.virt_exp = virt_expires;
980 	sig->cputime_expires.sched_exp = sched_expires;
981 	if (task_cputime_zero(&sig->cputime_expires))
982 		stop_process_timers(sig);
983 
984 	sig->cputimer.checking_timer = false;
985 }
986 
987 /*
988  * This is called from the signal code (via posixtimer_rearm)
989  * when the last timer signal was delivered and we have to reload the timer.
990  */
posix_cpu_timer_rearm(struct k_itimer * timer)991 static void posix_cpu_timer_rearm(struct k_itimer *timer)
992 {
993 	struct sighand_struct *sighand;
994 	unsigned long flags;
995 	struct task_struct *p = timer->it.cpu.task;
996 	u64 now;
997 
998 	WARN_ON_ONCE(p == NULL);
999 
1000 	/*
1001 	 * Fetch the current sample and update the timer's expiry time.
1002 	 */
1003 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004 		cpu_clock_sample(timer->it_clock, p, &now);
1005 		bump_cpu_timer(timer, now);
1006 		if (unlikely(p->exit_state))
1007 			return;
1008 
1009 		/* Protect timer list r/w in arm_timer() */
1010 		sighand = lock_task_sighand(p, &flags);
1011 		if (!sighand)
1012 			return;
1013 	} else {
1014 		/*
1015 		 * Protect arm_timer() and timer sampling in case of call to
1016 		 * thread_group_cputime().
1017 		 */
1018 		sighand = lock_task_sighand(p, &flags);
1019 		if (unlikely(sighand == NULL)) {
1020 			/*
1021 			 * The process has been reaped.
1022 			 * We can't even collect a sample any more.
1023 			 */
1024 			timer->it.cpu.expires = 0;
1025 			return;
1026 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027 			/* If the process is dying, no need to rearm */
1028 			goto unlock;
1029 		}
1030 		cpu_timer_sample_group(timer->it_clock, p, &now);
1031 		bump_cpu_timer(timer, now);
1032 		/* Leave the sighand locked for the call below.  */
1033 	}
1034 
1035 	/*
1036 	 * Now re-arm for the new expiry time.
1037 	 */
1038 	WARN_ON_ONCE(!irqs_disabled());
1039 	arm_timer(timer);
1040 unlock:
1041 	unlock_task_sighand(p, &flags);
1042 }
1043 
1044 /**
1045  * task_cputime_expired - Compare two task_cputime entities.
1046  *
1047  * @sample:	The task_cputime structure to be checked for expiration.
1048  * @expires:	Expiration times, against which @sample will be checked.
1049  *
1050  * Checks @sample against @expires to see if any field of @sample has expired.
1051  * Returns true if any field of the former is greater than the corresponding
1052  * field of the latter if the latter field is set.  Otherwise returns false.
1053  */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1054 static inline int task_cputime_expired(const struct task_cputime *sample,
1055 					const struct task_cputime *expires)
1056 {
1057 	if (expires->utime && sample->utime >= expires->utime)
1058 		return 1;
1059 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060 		return 1;
1061 	if (expires->sum_exec_runtime != 0 &&
1062 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 /**
1068  * fastpath_timer_check - POSIX CPU timers fast path.
1069  *
1070  * @tsk:	The task (thread) being checked.
1071  *
1072  * Check the task and thread group timers.  If both are zero (there are no
1073  * timers set) return false.  Otherwise snapshot the task and thread group
1074  * timers and compare them with the corresponding expiration times.  Return
1075  * true if a timer has expired, else return false.
1076  */
fastpath_timer_check(struct task_struct * tsk)1077 static inline int fastpath_timer_check(struct task_struct *tsk)
1078 {
1079 	struct signal_struct *sig;
1080 
1081 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1082 		struct task_cputime task_sample;
1083 
1084 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087 			return 1;
1088 	}
1089 
1090 	sig = tsk->signal;
1091 	/*
1092 	 * Check if thread group timers expired when the cputimer is
1093 	 * running and no other thread in the group is already checking
1094 	 * for thread group cputimers. These fields are read without the
1095 	 * sighand lock. However, this is fine because this is meant to
1096 	 * be a fastpath heuristic to determine whether we should try to
1097 	 * acquire the sighand lock to check/handle timers.
1098 	 *
1099 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1100 	 * set but the current thread doesn't see the change yet, we'll wait
1101 	 * until the next thread in the group gets a scheduler interrupt to
1102 	 * handle the timer. This isn't an issue in practice because these
1103 	 * types of delays with signals actually getting sent are expected.
1104 	 */
1105 	if (READ_ONCE(sig->cputimer.running) &&
1106 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1107 		struct task_cputime group_sample;
1108 
1109 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1110 
1111 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112 			return 1;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 /*
1119  * This is called from the timer interrupt handler.  The irq handler has
1120  * already updated our counts.  We need to check if any timers fire now.
1121  * Interrupts are disabled.
1122  */
run_posix_cpu_timers(struct task_struct * tsk)1123 void run_posix_cpu_timers(struct task_struct *tsk)
1124 {
1125 	LIST_HEAD(firing);
1126 	struct k_itimer *timer, *next;
1127 	unsigned long flags;
1128 
1129 	WARN_ON_ONCE(!irqs_disabled());
1130 
1131 	/*
1132 	 * The fast path checks that there are no expired thread or thread
1133 	 * group timers.  If that's so, just return.
1134 	 */
1135 	if (!fastpath_timer_check(tsk))
1136 		return;
1137 
1138 	if (!lock_task_sighand(tsk, &flags))
1139 		return;
1140 	/*
1141 	 * Here we take off tsk->signal->cpu_timers[N] and
1142 	 * tsk->cpu_timers[N] all the timers that are firing, and
1143 	 * put them on the firing list.
1144 	 */
1145 	check_thread_timers(tsk, &firing);
1146 
1147 	check_process_timers(tsk, &firing);
1148 
1149 	/*
1150 	 * We must release these locks before taking any timer's lock.
1151 	 * There is a potential race with timer deletion here, as the
1152 	 * siglock now protects our private firing list.  We have set
1153 	 * the firing flag in each timer, so that a deletion attempt
1154 	 * that gets the timer lock before we do will give it up and
1155 	 * spin until we've taken care of that timer below.
1156 	 */
1157 	unlock_task_sighand(tsk, &flags);
1158 
1159 	/*
1160 	 * Now that all the timers on our list have the firing flag,
1161 	 * no one will touch their list entries but us.  We'll take
1162 	 * each timer's lock before clearing its firing flag, so no
1163 	 * timer call will interfere.
1164 	 */
1165 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166 		int cpu_firing;
1167 
1168 		spin_lock(&timer->it_lock);
1169 		list_del_init(&timer->it.cpu.entry);
1170 		cpu_firing = timer->it.cpu.firing;
1171 		timer->it.cpu.firing = 0;
1172 		/*
1173 		 * The firing flag is -1 if we collided with a reset
1174 		 * of the timer, which already reported this
1175 		 * almost-firing as an overrun.  So don't generate an event.
1176 		 */
1177 		if (likely(cpu_firing >= 0))
1178 			cpu_timer_fire(timer);
1179 		spin_unlock(&timer->it_lock);
1180 	}
1181 }
1182 
1183 /*
1184  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185  * The tsk->sighand->siglock must be held by the caller.
1186  */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,u64 * newval,u64 * oldval)1187 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188 			   u64 *newval, u64 *oldval)
1189 {
1190 	u64 now;
1191 
1192 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193 	cpu_timer_sample_group(clock_idx, tsk, &now);
1194 
1195 	if (oldval) {
1196 		/*
1197 		 * We are setting itimer. The *oldval is absolute and we update
1198 		 * it to be relative, *newval argument is relative and we update
1199 		 * it to be absolute.
1200 		 */
1201 		if (*oldval) {
1202 			if (*oldval <= now) {
1203 				/* Just about to fire. */
1204 				*oldval = TICK_NSEC;
1205 			} else {
1206 				*oldval -= now;
1207 			}
1208 		}
1209 
1210 		if (!*newval)
1211 			return;
1212 		*newval += now;
1213 	}
1214 
1215 	/*
1216 	 * Update expiration cache if we are the earliest timer, or eventually
1217 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218 	 */
1219 	switch (clock_idx) {
1220 	case CPUCLOCK_PROF:
1221 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222 			tsk->signal->cputime_expires.prof_exp = *newval;
1223 		break;
1224 	case CPUCLOCK_VIRT:
1225 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226 			tsk->signal->cputime_expires.virt_exp = *newval;
1227 		break;
1228 	}
1229 
1230 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1231 }
1232 
do_cpu_nanosleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1233 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234 			    const struct timespec64 *rqtp)
1235 {
1236 	struct itimerspec64 it;
1237 	struct k_itimer timer;
1238 	u64 expires;
1239 	int error;
1240 
1241 	/*
1242 	 * Set up a temporary timer and then wait for it to go off.
1243 	 */
1244 	memset(&timer, 0, sizeof timer);
1245 	spin_lock_init(&timer.it_lock);
1246 	timer.it_clock = which_clock;
1247 	timer.it_overrun = -1;
1248 	error = posix_cpu_timer_create(&timer);
1249 	timer.it_process = current;
1250 	if (!error) {
1251 		static struct itimerspec64 zero_it;
1252 		struct restart_block *restart;
1253 
1254 		memset(&it, 0, sizeof(it));
1255 		it.it_value = *rqtp;
1256 
1257 		spin_lock_irq(&timer.it_lock);
1258 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259 		if (error) {
1260 			spin_unlock_irq(&timer.it_lock);
1261 			return error;
1262 		}
1263 
1264 		while (!signal_pending(current)) {
1265 			if (timer.it.cpu.expires == 0) {
1266 				/*
1267 				 * Our timer fired and was reset, below
1268 				 * deletion can not fail.
1269 				 */
1270 				posix_cpu_timer_del(&timer);
1271 				spin_unlock_irq(&timer.it_lock);
1272 				return 0;
1273 			}
1274 
1275 			/*
1276 			 * Block until cpu_timer_fire (or a signal) wakes us.
1277 			 */
1278 			__set_current_state(TASK_INTERRUPTIBLE);
1279 			spin_unlock_irq(&timer.it_lock);
1280 			schedule();
1281 			spin_lock_irq(&timer.it_lock);
1282 		}
1283 
1284 		/*
1285 		 * We were interrupted by a signal.
1286 		 */
1287 		expires = timer.it.cpu.expires;
1288 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289 		if (!error) {
1290 			/*
1291 			 * Timer is now unarmed, deletion can not fail.
1292 			 */
1293 			posix_cpu_timer_del(&timer);
1294 		}
1295 		spin_unlock_irq(&timer.it_lock);
1296 
1297 		while (error == TIMER_RETRY) {
1298 			/*
1299 			 * We need to handle case when timer was or is in the
1300 			 * middle of firing. In other cases we already freed
1301 			 * resources.
1302 			 */
1303 			spin_lock_irq(&timer.it_lock);
1304 			error = posix_cpu_timer_del(&timer);
1305 			spin_unlock_irq(&timer.it_lock);
1306 		}
1307 
1308 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1309 			/*
1310 			 * It actually did fire already.
1311 			 */
1312 			return 0;
1313 		}
1314 
1315 		error = -ERESTART_RESTARTBLOCK;
1316 		/*
1317 		 * Report back to the user the time still remaining.
1318 		 */
1319 		restart = &current->restart_block;
1320 		restart->nanosleep.expires = expires;
1321 		if (restart->nanosleep.type != TT_NONE)
1322 			error = nanosleep_copyout(restart, &it.it_value);
1323 	}
1324 
1325 	return error;
1326 }
1327 
1328 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329 
posix_cpu_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1330 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331 			    const struct timespec64 *rqtp)
1332 {
1333 	struct restart_block *restart_block = &current->restart_block;
1334 	int error;
1335 
1336 	/*
1337 	 * Diagnose required errors first.
1338 	 */
1339 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 	    (CPUCLOCK_PID(which_clock) == 0 ||
1341 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342 		return -EINVAL;
1343 
1344 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1345 
1346 	if (error == -ERESTART_RESTARTBLOCK) {
1347 
1348 		if (flags & TIMER_ABSTIME)
1349 			return -ERESTARTNOHAND;
1350 
1351 		restart_block->fn = posix_cpu_nsleep_restart;
1352 		restart_block->nanosleep.clockid = which_clock;
1353 	}
1354 	return error;
1355 }
1356 
posix_cpu_nsleep_restart(struct restart_block * restart_block)1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358 {
1359 	clockid_t which_clock = restart_block->nanosleep.clockid;
1360 	struct timespec64 t;
1361 
1362 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1363 
1364 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1365 }
1366 
1367 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369 
process_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)1370 static int process_cpu_clock_getres(const clockid_t which_clock,
1371 				    struct timespec64 *tp)
1372 {
1373 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec64 * tp)1375 static int process_cpu_clock_get(const clockid_t which_clock,
1376 				 struct timespec64 *tp)
1377 {
1378 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379 }
process_cpu_timer_create(struct k_itimer * timer)1380 static int process_cpu_timer_create(struct k_itimer *timer)
1381 {
1382 	timer->it_clock = PROCESS_CLOCK;
1383 	return posix_cpu_timer_create(timer);
1384 }
process_cpu_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1385 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386 			      const struct timespec64 *rqtp)
1387 {
1388 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1389 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec64 * tp)1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 				   struct timespec64 *tp)
1392 {
1393 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec64 * tp)1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 				struct timespec64 *tp)
1397 {
1398 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
thread_cpu_timer_create(struct k_itimer * timer)1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402 	timer->it_clock = THREAD_CLOCK;
1403 	return posix_cpu_timer_create(timer);
1404 }
1405 
1406 const struct k_clock clock_posix_cpu = {
1407 	.clock_getres	= posix_cpu_clock_getres,
1408 	.clock_set	= posix_cpu_clock_set,
1409 	.clock_get	= posix_cpu_clock_get,
1410 	.timer_create	= posix_cpu_timer_create,
1411 	.nsleep		= posix_cpu_nsleep,
1412 	.timer_set	= posix_cpu_timer_set,
1413 	.timer_del	= posix_cpu_timer_del,
1414 	.timer_get	= posix_cpu_timer_get,
1415 	.timer_rearm	= posix_cpu_timer_rearm,
1416 };
1417 
1418 const struct k_clock clock_process = {
1419 	.clock_getres	= process_cpu_clock_getres,
1420 	.clock_get	= process_cpu_clock_get,
1421 	.timer_create	= process_cpu_timer_create,
1422 	.nsleep		= process_cpu_nsleep,
1423 };
1424 
1425 const struct k_clock clock_thread = {
1426 	.clock_getres	= thread_cpu_clock_getres,
1427 	.clock_get	= thread_cpu_clock_get,
1428 	.timer_create	= thread_cpu_timer_create,
1429 };
1430