1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57
58 /*
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
65 */
66
67 /*
68 * Lets keep our timers in a slab cache :-)
69 */
70 static struct kmem_cache *posix_timers_cache;
71
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78
79 /*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87
88 /*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91 #ifndef ENOTSUP
92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
93 #else
94 # define ENANOSLEEP_NOTSUP ENOTSUP
95 #endif
96
97 /*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106 /*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
109 * clocks.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
121 *
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136 #define lock_timer(tid, flags) \
137 ({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140 })
141
hash(struct signal_struct * sig,unsigned int nr)142 static int hash(struct signal_struct *sig, unsigned int nr)
143 {
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145 }
146
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)147 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150 {
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158 }
159
posix_timer_by_id(timer_t id)160 static struct k_itimer *posix_timer_by_id(timer_t id)
161 {
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166 }
167
posix_timer_add(struct k_itimer * timer)168 static int posix_timer_add(struct k_itimer *timer)
169 {
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190 }
191
unlock_timer(struct k_itimer * timr,unsigned long flags)192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193 {
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195 }
196
197 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec64 * tp)198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199 {
200 ktime_get_real_ts64(tp);
201 return 0;
202 }
203
204 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 const struct timespec64 *tp)
207 {
208 return do_sys_settimeofday64(tp, NULL);
209 }
210
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213 {
214 return do_adjtimex(t);
215 }
216
217 /*
218 * Get monotonic time for posix timers
219 */
posix_ktime_get_ts(clockid_t which_clock,struct timespec64 * tp)220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221 {
222 ktime_get_ts64(tp);
223 return 0;
224 }
225
226 /*
227 * Get monotonic-raw time for posix timers
228 */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 getrawmonotonic64(tp);
232 return 0;
233 }
234
235
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 *tp = current_kernel_time64();
239 return 0;
240 }
241
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 struct timespec64 *tp)
244 {
245 *tp = get_monotonic_coarse64();
246 return 0;
247 }
248
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250 {
251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
252 return 0;
253 }
254
posix_get_boottime(const clockid_t which_clock,struct timespec64 * tp)255 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
256 {
257 get_monotonic_boottime64(tp);
258 return 0;
259 }
260
posix_get_tai(clockid_t which_clock,struct timespec64 * tp)261 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
262 {
263 timekeeping_clocktai64(tp);
264 return 0;
265 }
266
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)267 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
268 {
269 tp->tv_sec = 0;
270 tp->tv_nsec = hrtimer_resolution;
271 return 0;
272 }
273
274 /*
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
276 */
init_posix_timers(void)277 static __init int init_posix_timers(void)
278 {
279 posix_timers_cache = kmem_cache_create("posix_timers_cache",
280 sizeof (struct k_itimer), 0, SLAB_PANIC,
281 NULL);
282 return 0;
283 }
284 __initcall(init_posix_timers);
285
286 /*
287 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288 * are of type int. Clamp the overrun value to INT_MAX
289 */
timer_overrun_to_int(struct k_itimer * timr,int baseval)290 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
291 {
292 s64 sum = timr->it_overrun_last + (s64)baseval;
293
294 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
295 }
296
common_hrtimer_rearm(struct k_itimer * timr)297 static void common_hrtimer_rearm(struct k_itimer *timr)
298 {
299 struct hrtimer *timer = &timr->it.real.timer;
300
301 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
302 timr->it_interval);
303 hrtimer_restart(timer);
304 }
305
306 /*
307 * This function is exported for use by the signal deliver code. It is
308 * called just prior to the info block being released and passes that
309 * block to us. It's function is to update the overrun entry AND to
310 * restart the timer. It should only be called if the timer is to be
311 * restarted (i.e. we have flagged this in the sys_private entry of the
312 * info block).
313 *
314 * To protect against the timer going away while the interrupt is queued,
315 * we require that the it_requeue_pending flag be set.
316 */
posixtimer_rearm(struct siginfo * info)317 void posixtimer_rearm(struct siginfo *info)
318 {
319 struct k_itimer *timr;
320 unsigned long flags;
321
322 timr = lock_timer(info->si_tid, &flags);
323 if (!timr)
324 return;
325
326 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
327 timr->kclock->timer_rearm(timr);
328
329 timr->it_active = 1;
330 timr->it_overrun_last = timr->it_overrun;
331 timr->it_overrun = -1LL;
332 ++timr->it_requeue_pending;
333
334 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
335 }
336
337 unlock_timer(timr, flags);
338 }
339
posix_timer_event(struct k_itimer * timr,int si_private)340 int posix_timer_event(struct k_itimer *timr, int si_private)
341 {
342 struct task_struct *task;
343 int shared, ret = -1;
344 /*
345 * FIXME: if ->sigq is queued we can race with
346 * dequeue_signal()->posixtimer_rearm().
347 *
348 * If dequeue_signal() sees the "right" value of
349 * si_sys_private it calls posixtimer_rearm().
350 * We re-queue ->sigq and drop ->it_lock().
351 * posixtimer_rearm() locks the timer
352 * and re-schedules it while ->sigq is pending.
353 * Not really bad, but not that we want.
354 */
355 timr->sigq->info.si_sys_private = si_private;
356
357 rcu_read_lock();
358 task = pid_task(timr->it_pid, PIDTYPE_PID);
359 if (task) {
360 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
361 ret = send_sigqueue(timr->sigq, task, shared);
362 }
363 rcu_read_unlock();
364 /* If we failed to send the signal the timer stops. */
365 return ret > 0;
366 }
367
368 /*
369 * This function gets called when a POSIX.1b interval timer expires. It
370 * is used as a callback from the kernel internal timer. The
371 * run_timer_list code ALWAYS calls with interrupts on.
372
373 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374 */
posix_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 struct k_itimer *timr;
378 unsigned long flags;
379 int si_private = 0;
380 enum hrtimer_restart ret = HRTIMER_NORESTART;
381
382 timr = container_of(timer, struct k_itimer, it.real.timer);
383 spin_lock_irqsave(&timr->it_lock, flags);
384
385 timr->it_active = 0;
386 if (timr->it_interval != 0)
387 si_private = ++timr->it_requeue_pending;
388
389 if (posix_timer_event(timr, si_private)) {
390 /*
391 * signal was not sent because of sig_ignor
392 * we will not get a call back to restart it AND
393 * it should be restarted.
394 */
395 if (timr->it_interval != 0) {
396 ktime_t now = hrtimer_cb_get_time(timer);
397
398 /*
399 * FIXME: What we really want, is to stop this
400 * timer completely and restart it in case the
401 * SIG_IGN is removed. This is a non trivial
402 * change which involves sighand locking
403 * (sigh !), which we don't want to do late in
404 * the release cycle.
405 *
406 * For now we just let timers with an interval
407 * less than a jiffie expire every jiffie to
408 * avoid softirq starvation in case of SIG_IGN
409 * and a very small interval, which would put
410 * the timer right back on the softirq pending
411 * list. By moving now ahead of time we trick
412 * hrtimer_forward() to expire the timer
413 * later, while we still maintain the overrun
414 * accuracy, but have some inconsistency in
415 * the timer_gettime() case. This is at least
416 * better than a starved softirq. A more
417 * complex fix which solves also another related
418 * inconsistency is already in the pipeline.
419 */
420 #ifdef CONFIG_HIGH_RES_TIMERS
421 {
422 ktime_t kj = NSEC_PER_SEC / HZ;
423
424 if (timr->it_interval < kj)
425 now = ktime_add(now, kj);
426 }
427 #endif
428 timr->it_overrun += hrtimer_forward(timer, now,
429 timr->it_interval);
430 ret = HRTIMER_RESTART;
431 ++timr->it_requeue_pending;
432 timr->it_active = 1;
433 }
434 }
435
436 unlock_timer(timr, flags);
437 return ret;
438 }
439
good_sigevent(sigevent_t * event)440 static struct pid *good_sigevent(sigevent_t * event)
441 {
442 struct task_struct *rtn = current->group_leader;
443
444 switch (event->sigev_notify) {
445 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
446 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
447 if (!rtn || !same_thread_group(rtn, current))
448 return NULL;
449 /* FALLTHRU */
450 case SIGEV_SIGNAL:
451 case SIGEV_THREAD:
452 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
453 return NULL;
454 /* FALLTHRU */
455 case SIGEV_NONE:
456 return task_pid(rtn);
457 default:
458 return NULL;
459 }
460 }
461
alloc_posix_timer(void)462 static struct k_itimer * alloc_posix_timer(void)
463 {
464 struct k_itimer *tmr;
465 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
466 if (!tmr)
467 return tmr;
468 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
469 kmem_cache_free(posix_timers_cache, tmr);
470 return NULL;
471 }
472 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
473 return tmr;
474 }
475
k_itimer_rcu_free(struct rcu_head * head)476 static void k_itimer_rcu_free(struct rcu_head *head)
477 {
478 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
479
480 kmem_cache_free(posix_timers_cache, tmr);
481 }
482
483 #define IT_ID_SET 1
484 #define IT_ID_NOT_SET 0
release_posix_timer(struct k_itimer * tmr,int it_id_set)485 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
486 {
487 if (it_id_set) {
488 unsigned long flags;
489 spin_lock_irqsave(&hash_lock, flags);
490 hlist_del_rcu(&tmr->t_hash);
491 spin_unlock_irqrestore(&hash_lock, flags);
492 }
493 put_pid(tmr->it_pid);
494 sigqueue_free(tmr->sigq);
495 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
496 }
497
common_timer_create(struct k_itimer * new_timer)498 static int common_timer_create(struct k_itimer *new_timer)
499 {
500 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
501 return 0;
502 }
503
504 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)505 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
506 timer_t __user *created_timer_id)
507 {
508 const struct k_clock *kc = clockid_to_kclock(which_clock);
509 struct k_itimer *new_timer;
510 int error, new_timer_id;
511 int it_id_set = IT_ID_NOT_SET;
512
513 if (!kc)
514 return -EINVAL;
515 if (!kc->timer_create)
516 return -EOPNOTSUPP;
517
518 new_timer = alloc_posix_timer();
519 if (unlikely(!new_timer))
520 return -EAGAIN;
521
522 spin_lock_init(&new_timer->it_lock);
523 new_timer_id = posix_timer_add(new_timer);
524 if (new_timer_id < 0) {
525 error = new_timer_id;
526 goto out;
527 }
528
529 it_id_set = IT_ID_SET;
530 new_timer->it_id = (timer_t) new_timer_id;
531 new_timer->it_clock = which_clock;
532 new_timer->kclock = kc;
533 new_timer->it_overrun = -1LL;
534
535 if (event) {
536 rcu_read_lock();
537 new_timer->it_pid = get_pid(good_sigevent(event));
538 rcu_read_unlock();
539 if (!new_timer->it_pid) {
540 error = -EINVAL;
541 goto out;
542 }
543 new_timer->it_sigev_notify = event->sigev_notify;
544 new_timer->sigq->info.si_signo = event->sigev_signo;
545 new_timer->sigq->info.si_value = event->sigev_value;
546 } else {
547 new_timer->it_sigev_notify = SIGEV_SIGNAL;
548 new_timer->sigq->info.si_signo = SIGALRM;
549 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
550 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
551 new_timer->it_pid = get_pid(task_tgid(current));
552 }
553
554 new_timer->sigq->info.si_tid = new_timer->it_id;
555 new_timer->sigq->info.si_code = SI_TIMER;
556
557 if (copy_to_user(created_timer_id,
558 &new_timer_id, sizeof (new_timer_id))) {
559 error = -EFAULT;
560 goto out;
561 }
562
563 error = kc->timer_create(new_timer);
564 if (error)
565 goto out;
566
567 spin_lock_irq(¤t->sighand->siglock);
568 new_timer->it_signal = current->signal;
569 list_add(&new_timer->list, ¤t->signal->posix_timers);
570 spin_unlock_irq(¤t->sighand->siglock);
571
572 return 0;
573 /*
574 * In the case of the timer belonging to another task, after
575 * the task is unlocked, the timer is owned by the other task
576 * and may cease to exist at any time. Don't use or modify
577 * new_timer after the unlock call.
578 */
579 out:
580 release_posix_timer(new_timer, it_id_set);
581 return error;
582 }
583
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)584 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
585 struct sigevent __user *, timer_event_spec,
586 timer_t __user *, created_timer_id)
587 {
588 if (timer_event_spec) {
589 sigevent_t event;
590
591 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
592 return -EFAULT;
593 return do_timer_create(which_clock, &event, created_timer_id);
594 }
595 return do_timer_create(which_clock, NULL, created_timer_id);
596 }
597
598 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)599 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
600 struct compat_sigevent __user *, timer_event_spec,
601 timer_t __user *, created_timer_id)
602 {
603 if (timer_event_spec) {
604 sigevent_t event;
605
606 if (get_compat_sigevent(&event, timer_event_spec))
607 return -EFAULT;
608 return do_timer_create(which_clock, &event, created_timer_id);
609 }
610 return do_timer_create(which_clock, NULL, created_timer_id);
611 }
612 #endif
613
614 /*
615 * Locking issues: We need to protect the result of the id look up until
616 * we get the timer locked down so it is not deleted under us. The
617 * removal is done under the idr spinlock so we use that here to bridge
618 * the find to the timer lock. To avoid a dead lock, the timer id MUST
619 * be release with out holding the timer lock.
620 */
__lock_timer(timer_t timer_id,unsigned long * flags)621 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
622 {
623 struct k_itimer *timr;
624
625 /*
626 * timer_t could be any type >= int and we want to make sure any
627 * @timer_id outside positive int range fails lookup.
628 */
629 if ((unsigned long long)timer_id > INT_MAX)
630 return NULL;
631
632 rcu_read_lock();
633 timr = posix_timer_by_id(timer_id);
634 if (timr) {
635 spin_lock_irqsave(&timr->it_lock, *flags);
636 if (timr->it_signal == current->signal) {
637 rcu_read_unlock();
638 return timr;
639 }
640 spin_unlock_irqrestore(&timr->it_lock, *flags);
641 }
642 rcu_read_unlock();
643
644 return NULL;
645 }
646
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)647 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
648 {
649 struct hrtimer *timer = &timr->it.real.timer;
650
651 return __hrtimer_expires_remaining_adjusted(timer, now);
652 }
653
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)654 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
655 {
656 struct hrtimer *timer = &timr->it.real.timer;
657
658 return hrtimer_forward(timer, now, timr->it_interval);
659 }
660
661 /*
662 * Get the time remaining on a POSIX.1b interval timer. This function
663 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
664 * mess with irq.
665 *
666 * We have a couple of messes to clean up here. First there is the case
667 * of a timer that has a requeue pending. These timers should appear to
668 * be in the timer list with an expiry as if we were to requeue them
669 * now.
670 *
671 * The second issue is the SIGEV_NONE timer which may be active but is
672 * not really ever put in the timer list (to save system resources).
673 * This timer may be expired, and if so, we will do it here. Otherwise
674 * it is the same as a requeue pending timer WRT to what we should
675 * report.
676 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)677 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
678 {
679 const struct k_clock *kc = timr->kclock;
680 ktime_t now, remaining, iv;
681 struct timespec64 ts64;
682 bool sig_none;
683
684 sig_none = timr->it_sigev_notify == SIGEV_NONE;
685 iv = timr->it_interval;
686
687 /* interval timer ? */
688 if (iv) {
689 cur_setting->it_interval = ktime_to_timespec64(iv);
690 } else if (!timr->it_active) {
691 /*
692 * SIGEV_NONE oneshot timers are never queued. Check them
693 * below.
694 */
695 if (!sig_none)
696 return;
697 }
698
699 /*
700 * The timespec64 based conversion is suboptimal, but it's not
701 * worth to implement yet another callback.
702 */
703 kc->clock_get(timr->it_clock, &ts64);
704 now = timespec64_to_ktime(ts64);
705
706 /*
707 * When a requeue is pending or this is a SIGEV_NONE timer move the
708 * expiry time forward by intervals, so expiry is > now.
709 */
710 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
711 timr->it_overrun += kc->timer_forward(timr, now);
712
713 remaining = kc->timer_remaining(timr, now);
714 /* Return 0 only, when the timer is expired and not pending */
715 if (remaining <= 0) {
716 /*
717 * A single shot SIGEV_NONE timer must return 0, when
718 * it is expired !
719 */
720 if (!sig_none)
721 cur_setting->it_value.tv_nsec = 1;
722 } else {
723 cur_setting->it_value = ktime_to_timespec64(remaining);
724 }
725 }
726
727 /* Get the time remaining on a POSIX.1b interval timer. */
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)728 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
729 {
730 struct k_itimer *timr;
731 const struct k_clock *kc;
732 unsigned long flags;
733 int ret = 0;
734
735 timr = lock_timer(timer_id, &flags);
736 if (!timr)
737 return -EINVAL;
738
739 memset(setting, 0, sizeof(*setting));
740 kc = timr->kclock;
741 if (WARN_ON_ONCE(!kc || !kc->timer_get))
742 ret = -EINVAL;
743 else
744 kc->timer_get(timr, setting);
745
746 unlock_timer(timr, flags);
747 return ret;
748 }
749
750 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)751 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
752 struct itimerspec __user *, setting)
753 {
754 struct itimerspec64 cur_setting;
755
756 int ret = do_timer_gettime(timer_id, &cur_setting);
757 if (!ret) {
758 if (put_itimerspec64(&cur_setting, setting))
759 ret = -EFAULT;
760 }
761 return ret;
762 }
763
764 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct compat_itimerspec __user *,setting)765 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
766 struct compat_itimerspec __user *, setting)
767 {
768 struct itimerspec64 cur_setting;
769
770 int ret = do_timer_gettime(timer_id, &cur_setting);
771 if (!ret) {
772 if (put_compat_itimerspec64(&cur_setting, setting))
773 ret = -EFAULT;
774 }
775 return ret;
776 }
777 #endif
778
779 /*
780 * Get the number of overruns of a POSIX.1b interval timer. This is to
781 * be the overrun of the timer last delivered. At the same time we are
782 * accumulating overruns on the next timer. The overrun is frozen when
783 * the signal is delivered, either at the notify time (if the info block
784 * is not queued) or at the actual delivery time (as we are informed by
785 * the call back to posixtimer_rearm(). So all we need to do is
786 * to pick up the frozen overrun.
787 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)788 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
789 {
790 struct k_itimer *timr;
791 int overrun;
792 unsigned long flags;
793
794 timr = lock_timer(timer_id, &flags);
795 if (!timr)
796 return -EINVAL;
797
798 overrun = timer_overrun_to_int(timr, 0);
799 unlock_timer(timr, flags);
800
801 return overrun;
802 }
803
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)804 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
805 bool absolute, bool sigev_none)
806 {
807 struct hrtimer *timer = &timr->it.real.timer;
808 enum hrtimer_mode mode;
809
810 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
811 /*
812 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
813 * clock modifications, so they become CLOCK_MONOTONIC based under the
814 * hood. See hrtimer_init(). Update timr->kclock, so the generic
815 * functions which use timr->kclock->clock_get() work.
816 *
817 * Note: it_clock stays unmodified, because the next timer_set() might
818 * use ABSTIME, so it needs to switch back.
819 */
820 if (timr->it_clock == CLOCK_REALTIME)
821 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
822
823 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
824 timr->it.real.timer.function = posix_timer_fn;
825
826 if (!absolute)
827 expires = ktime_add_safe(expires, timer->base->get_time());
828 hrtimer_set_expires(timer, expires);
829
830 if (!sigev_none)
831 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
832 }
833
common_hrtimer_try_to_cancel(struct k_itimer * timr)834 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
835 {
836 return hrtimer_try_to_cancel(&timr->it.real.timer);
837 }
838
839 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)840 int common_timer_set(struct k_itimer *timr, int flags,
841 struct itimerspec64 *new_setting,
842 struct itimerspec64 *old_setting)
843 {
844 const struct k_clock *kc = timr->kclock;
845 bool sigev_none;
846 ktime_t expires;
847
848 if (old_setting)
849 common_timer_get(timr, old_setting);
850
851 /* Prevent rearming by clearing the interval */
852 timr->it_interval = 0;
853 /*
854 * Careful here. On SMP systems the timer expiry function could be
855 * active and spinning on timr->it_lock.
856 */
857 if (kc->timer_try_to_cancel(timr) < 0)
858 return TIMER_RETRY;
859
860 timr->it_active = 0;
861 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
862 ~REQUEUE_PENDING;
863 timr->it_overrun_last = 0;
864
865 /* Switch off the timer when it_value is zero */
866 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
867 return 0;
868
869 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
870 expires = timespec64_to_ktime(new_setting->it_value);
871 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
872
873 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
874 timr->it_active = !sigev_none;
875 return 0;
876 }
877
do_timer_settime(timer_t timer_id,int flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)878 static int do_timer_settime(timer_t timer_id, int flags,
879 struct itimerspec64 *new_spec64,
880 struct itimerspec64 *old_spec64)
881 {
882 const struct k_clock *kc;
883 struct k_itimer *timr;
884 unsigned long flag;
885 int error = 0;
886
887 if (!timespec64_valid(&new_spec64->it_interval) ||
888 !timespec64_valid(&new_spec64->it_value))
889 return -EINVAL;
890
891 if (old_spec64)
892 memset(old_spec64, 0, sizeof(*old_spec64));
893 retry:
894 timr = lock_timer(timer_id, &flag);
895 if (!timr)
896 return -EINVAL;
897
898 kc = timr->kclock;
899 if (WARN_ON_ONCE(!kc || !kc->timer_set))
900 error = -EINVAL;
901 else
902 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
903
904 unlock_timer(timr, flag);
905 if (error == TIMER_RETRY) {
906 old_spec64 = NULL; // We already got the old time...
907 goto retry;
908 }
909
910 return error;
911 }
912
913 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)914 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
915 const struct itimerspec __user *, new_setting,
916 struct itimerspec __user *, old_setting)
917 {
918 struct itimerspec64 new_spec, old_spec;
919 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
920 int error = 0;
921
922 if (!new_setting)
923 return -EINVAL;
924
925 if (get_itimerspec64(&new_spec, new_setting))
926 return -EFAULT;
927
928 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
929 if (!error && old_setting) {
930 if (put_itimerspec64(&old_spec, old_setting))
931 error = -EFAULT;
932 }
933 return error;
934 }
935
936 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,struct compat_itimerspec __user *,new,struct compat_itimerspec __user *,old)937 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
938 struct compat_itimerspec __user *, new,
939 struct compat_itimerspec __user *, old)
940 {
941 struct itimerspec64 new_spec, old_spec;
942 struct itimerspec64 *rtn = old ? &old_spec : NULL;
943 int error = 0;
944
945 if (!new)
946 return -EINVAL;
947 if (get_compat_itimerspec64(&new_spec, new))
948 return -EFAULT;
949
950 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
951 if (!error && old) {
952 if (put_compat_itimerspec64(&old_spec, old))
953 error = -EFAULT;
954 }
955 return error;
956 }
957 #endif
958
common_timer_del(struct k_itimer * timer)959 int common_timer_del(struct k_itimer *timer)
960 {
961 const struct k_clock *kc = timer->kclock;
962
963 timer->it_interval = 0;
964 if (kc->timer_try_to_cancel(timer) < 0)
965 return TIMER_RETRY;
966 timer->it_active = 0;
967 return 0;
968 }
969
timer_delete_hook(struct k_itimer * timer)970 static inline int timer_delete_hook(struct k_itimer *timer)
971 {
972 const struct k_clock *kc = timer->kclock;
973
974 if (WARN_ON_ONCE(!kc || !kc->timer_del))
975 return -EINVAL;
976 return kc->timer_del(timer);
977 }
978
979 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)980 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
981 {
982 struct k_itimer *timer;
983 unsigned long flags;
984
985 retry_delete:
986 timer = lock_timer(timer_id, &flags);
987 if (!timer)
988 return -EINVAL;
989
990 if (timer_delete_hook(timer) == TIMER_RETRY) {
991 unlock_timer(timer, flags);
992 goto retry_delete;
993 }
994
995 spin_lock(¤t->sighand->siglock);
996 list_del(&timer->list);
997 spin_unlock(¤t->sighand->siglock);
998 /*
999 * This keeps any tasks waiting on the spin lock from thinking
1000 * they got something (see the lock code above).
1001 */
1002 timer->it_signal = NULL;
1003
1004 unlock_timer(timer, flags);
1005 release_posix_timer(timer, IT_ID_SET);
1006 return 0;
1007 }
1008
1009 /*
1010 * return timer owned by the process, used by exit_itimers
1011 */
itimer_delete(struct k_itimer * timer)1012 static void itimer_delete(struct k_itimer *timer)
1013 {
1014 unsigned long flags;
1015
1016 retry_delete:
1017 spin_lock_irqsave(&timer->it_lock, flags);
1018
1019 if (timer_delete_hook(timer) == TIMER_RETRY) {
1020 unlock_timer(timer, flags);
1021 goto retry_delete;
1022 }
1023 list_del(&timer->list);
1024 /*
1025 * This keeps any tasks waiting on the spin lock from thinking
1026 * they got something (see the lock code above).
1027 */
1028 timer->it_signal = NULL;
1029
1030 unlock_timer(timer, flags);
1031 release_posix_timer(timer, IT_ID_SET);
1032 }
1033
1034 /*
1035 * This is called by do_exit or de_thread, only when there are no more
1036 * references to the shared signal_struct.
1037 */
exit_itimers(struct signal_struct * sig)1038 void exit_itimers(struct signal_struct *sig)
1039 {
1040 struct k_itimer *tmr;
1041
1042 while (!list_empty(&sig->posix_timers)) {
1043 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1044 itimer_delete(tmr);
1045 }
1046 }
1047
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)1048 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1049 const struct timespec __user *, tp)
1050 {
1051 const struct k_clock *kc = clockid_to_kclock(which_clock);
1052 struct timespec64 new_tp;
1053
1054 if (!kc || !kc->clock_set)
1055 return -EINVAL;
1056
1057 if (get_timespec64(&new_tp, tp))
1058 return -EFAULT;
1059
1060 return kc->clock_set(which_clock, &new_tp);
1061 }
1062
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)1063 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1064 struct timespec __user *,tp)
1065 {
1066 const struct k_clock *kc = clockid_to_kclock(which_clock);
1067 struct timespec64 kernel_tp;
1068 int error;
1069
1070 if (!kc)
1071 return -EINVAL;
1072
1073 error = kc->clock_get(which_clock, &kernel_tp);
1074
1075 if (!error && put_timespec64(&kernel_tp, tp))
1076 error = -EFAULT;
1077
1078 return error;
1079 }
1080
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1081 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1082 struct timex __user *, utx)
1083 {
1084 const struct k_clock *kc = clockid_to_kclock(which_clock);
1085 struct timex ktx;
1086 int err;
1087
1088 if (!kc)
1089 return -EINVAL;
1090 if (!kc->clock_adj)
1091 return -EOPNOTSUPP;
1092
1093 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1094 return -EFAULT;
1095
1096 err = kc->clock_adj(which_clock, &ktx);
1097
1098 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1099 return -EFAULT;
1100
1101 return err;
1102 }
1103
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1104 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1105 struct timespec __user *, tp)
1106 {
1107 const struct k_clock *kc = clockid_to_kclock(which_clock);
1108 struct timespec64 rtn_tp;
1109 int error;
1110
1111 if (!kc)
1112 return -EINVAL;
1113
1114 error = kc->clock_getres(which_clock, &rtn_tp);
1115
1116 if (!error && tp && put_timespec64(&rtn_tp, tp))
1117 error = -EFAULT;
1118
1119 return error;
1120 }
1121
1122 #ifdef CONFIG_COMPAT
1123
COMPAT_SYSCALL_DEFINE2(clock_settime,clockid_t,which_clock,struct compat_timespec __user *,tp)1124 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1125 struct compat_timespec __user *, tp)
1126 {
1127 const struct k_clock *kc = clockid_to_kclock(which_clock);
1128 struct timespec64 ts;
1129
1130 if (!kc || !kc->clock_set)
1131 return -EINVAL;
1132
1133 if (compat_get_timespec64(&ts, tp))
1134 return -EFAULT;
1135
1136 return kc->clock_set(which_clock, &ts);
1137 }
1138
COMPAT_SYSCALL_DEFINE2(clock_gettime,clockid_t,which_clock,struct compat_timespec __user *,tp)1139 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1140 struct compat_timespec __user *, tp)
1141 {
1142 const struct k_clock *kc = clockid_to_kclock(which_clock);
1143 struct timespec64 ts;
1144 int err;
1145
1146 if (!kc)
1147 return -EINVAL;
1148
1149 err = kc->clock_get(which_clock, &ts);
1150
1151 if (!err && compat_put_timespec64(&ts, tp))
1152 err = -EFAULT;
1153
1154 return err;
1155 }
1156
COMPAT_SYSCALL_DEFINE2(clock_adjtime,clockid_t,which_clock,struct compat_timex __user *,utp)1157 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1158 struct compat_timex __user *, utp)
1159 {
1160 const struct k_clock *kc = clockid_to_kclock(which_clock);
1161 struct timex ktx;
1162 int err;
1163
1164 if (!kc)
1165 return -EINVAL;
1166 if (!kc->clock_adj)
1167 return -EOPNOTSUPP;
1168
1169 err = compat_get_timex(&ktx, utp);
1170 if (err)
1171 return err;
1172
1173 err = kc->clock_adj(which_clock, &ktx);
1174
1175 if (err >= 0)
1176 err = compat_put_timex(utp, &ktx);
1177
1178 return err;
1179 }
1180
COMPAT_SYSCALL_DEFINE2(clock_getres,clockid_t,which_clock,struct compat_timespec __user *,tp)1181 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1182 struct compat_timespec __user *, tp)
1183 {
1184 const struct k_clock *kc = clockid_to_kclock(which_clock);
1185 struct timespec64 ts;
1186 int err;
1187
1188 if (!kc)
1189 return -EINVAL;
1190
1191 err = kc->clock_getres(which_clock, &ts);
1192 if (!err && tp && compat_put_timespec64(&ts, tp))
1193 return -EFAULT;
1194
1195 return err;
1196 }
1197
1198 #endif
1199
1200 /*
1201 * nanosleep for monotonic and realtime clocks
1202 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1203 static int common_nsleep(const clockid_t which_clock, int flags,
1204 const struct timespec64 *rqtp)
1205 {
1206 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1207 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1208 which_clock);
1209 }
1210
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1211 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1212 const struct timespec __user *, rqtp,
1213 struct timespec __user *, rmtp)
1214 {
1215 const struct k_clock *kc = clockid_to_kclock(which_clock);
1216 struct timespec64 t;
1217
1218 if (!kc)
1219 return -EINVAL;
1220 if (!kc->nsleep)
1221 return -ENANOSLEEP_NOTSUP;
1222
1223 if (get_timespec64(&t, rqtp))
1224 return -EFAULT;
1225
1226 if (!timespec64_valid(&t))
1227 return -EINVAL;
1228 if (flags & TIMER_ABSTIME)
1229 rmtp = NULL;
1230 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1231 current->restart_block.nanosleep.rmtp = rmtp;
1232
1233 return kc->nsleep(which_clock, flags, &t);
1234 }
1235
1236 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(clock_nanosleep,clockid_t,which_clock,int,flags,struct compat_timespec __user *,rqtp,struct compat_timespec __user *,rmtp)1237 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1238 struct compat_timespec __user *, rqtp,
1239 struct compat_timespec __user *, rmtp)
1240 {
1241 const struct k_clock *kc = clockid_to_kclock(which_clock);
1242 struct timespec64 t;
1243
1244 if (!kc)
1245 return -EINVAL;
1246 if (!kc->nsleep)
1247 return -ENANOSLEEP_NOTSUP;
1248
1249 if (compat_get_timespec64(&t, rqtp))
1250 return -EFAULT;
1251
1252 if (!timespec64_valid(&t))
1253 return -EINVAL;
1254 if (flags & TIMER_ABSTIME)
1255 rmtp = NULL;
1256 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1257 current->restart_block.nanosleep.compat_rmtp = rmtp;
1258
1259 return kc->nsleep(which_clock, flags, &t);
1260 }
1261 #endif
1262
1263 static const struct k_clock clock_realtime = {
1264 .clock_getres = posix_get_hrtimer_res,
1265 .clock_get = posix_clock_realtime_get,
1266 .clock_set = posix_clock_realtime_set,
1267 .clock_adj = posix_clock_realtime_adj,
1268 .nsleep = common_nsleep,
1269 .timer_create = common_timer_create,
1270 .timer_set = common_timer_set,
1271 .timer_get = common_timer_get,
1272 .timer_del = common_timer_del,
1273 .timer_rearm = common_hrtimer_rearm,
1274 .timer_forward = common_hrtimer_forward,
1275 .timer_remaining = common_hrtimer_remaining,
1276 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1277 .timer_arm = common_hrtimer_arm,
1278 };
1279
1280 static const struct k_clock clock_monotonic = {
1281 .clock_getres = posix_get_hrtimer_res,
1282 .clock_get = posix_ktime_get_ts,
1283 .nsleep = common_nsleep,
1284 .timer_create = common_timer_create,
1285 .timer_set = common_timer_set,
1286 .timer_get = common_timer_get,
1287 .timer_del = common_timer_del,
1288 .timer_rearm = common_hrtimer_rearm,
1289 .timer_forward = common_hrtimer_forward,
1290 .timer_remaining = common_hrtimer_remaining,
1291 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1292 .timer_arm = common_hrtimer_arm,
1293 };
1294
1295 static const struct k_clock clock_monotonic_raw = {
1296 .clock_getres = posix_get_hrtimer_res,
1297 .clock_get = posix_get_monotonic_raw,
1298 };
1299
1300 static const struct k_clock clock_realtime_coarse = {
1301 .clock_getres = posix_get_coarse_res,
1302 .clock_get = posix_get_realtime_coarse,
1303 };
1304
1305 static const struct k_clock clock_monotonic_coarse = {
1306 .clock_getres = posix_get_coarse_res,
1307 .clock_get = posix_get_monotonic_coarse,
1308 };
1309
1310 static const struct k_clock clock_tai = {
1311 .clock_getres = posix_get_hrtimer_res,
1312 .clock_get = posix_get_tai,
1313 .nsleep = common_nsleep,
1314 .timer_create = common_timer_create,
1315 .timer_set = common_timer_set,
1316 .timer_get = common_timer_get,
1317 .timer_del = common_timer_del,
1318 .timer_rearm = common_hrtimer_rearm,
1319 .timer_forward = common_hrtimer_forward,
1320 .timer_remaining = common_hrtimer_remaining,
1321 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1322 .timer_arm = common_hrtimer_arm,
1323 };
1324
1325 static const struct k_clock clock_boottime = {
1326 .clock_getres = posix_get_hrtimer_res,
1327 .clock_get = posix_get_boottime,
1328 .nsleep = common_nsleep,
1329 .timer_create = common_timer_create,
1330 .timer_set = common_timer_set,
1331 .timer_get = common_timer_get,
1332 .timer_del = common_timer_del,
1333 .timer_rearm = common_hrtimer_rearm,
1334 .timer_forward = common_hrtimer_forward,
1335 .timer_remaining = common_hrtimer_remaining,
1336 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1337 .timer_arm = common_hrtimer_arm,
1338 };
1339
1340 static const struct k_clock * const posix_clocks[] = {
1341 [CLOCK_REALTIME] = &clock_realtime,
1342 [CLOCK_MONOTONIC] = &clock_monotonic,
1343 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1344 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1345 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1346 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1347 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1348 [CLOCK_BOOTTIME] = &clock_boottime,
1349 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1350 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1351 [CLOCK_TAI] = &clock_tai,
1352 };
1353
clockid_to_kclock(const clockid_t id)1354 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1355 {
1356 clockid_t idx = id;
1357
1358 if (id < 0) {
1359 return (id & CLOCKFD_MASK) == CLOCKFD ?
1360 &clock_posix_dynamic : &clock_posix_cpu;
1361 }
1362
1363 if (id >= ARRAY_SIZE(posix_clocks))
1364 return NULL;
1365
1366 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1367 }
1368