• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
30 
31 #include <asm/irq_regs.h>
32 
33 #include "tick-internal.h"
34 
35 #include <trace/events/timer.h>
36 
37 /*
38  * Per-CPU nohz control structure
39  */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41 
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 	return &per_cpu(tick_cpu_sched, cpu);
45 }
46 
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49  * The time, when the last jiffy update happened. Protected by jiffies_lock.
50  */
51 static ktime_t last_jiffies_update;
52 
53 /*
54  * Must be called with interrupts disabled !
55  */
tick_do_update_jiffies64(ktime_t now)56 static void tick_do_update_jiffies64(ktime_t now)
57 {
58 	unsigned long ticks = 0;
59 	ktime_t delta;
60 
61 	/*
62 	 * Do a quick check without holding jiffies_lock:
63 	 * The READ_ONCE() pairs with two updates done later in this function.
64 	 */
65 	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
66 	if (delta < tick_period)
67 		return;
68 
69 	/* Reevaluate with jiffies_lock held */
70 	write_seqlock(&jiffies_lock);
71 
72 	delta = ktime_sub(now, last_jiffies_update);
73 	if (delta >= tick_period) {
74 
75 		delta = ktime_sub(delta, tick_period);
76 		/* Pairs with the lockless read in this function. */
77 		WRITE_ONCE(last_jiffies_update,
78 			   ktime_add(last_jiffies_update, tick_period));
79 
80 		/* Slow path for long timeouts */
81 		if (unlikely(delta >= tick_period)) {
82 			s64 incr = ktime_to_ns(tick_period);
83 
84 			ticks = ktime_divns(delta, incr);
85 
86 			/* Pairs with the lockless read in this function. */
87 			WRITE_ONCE(last_jiffies_update,
88 				   ktime_add_ns(last_jiffies_update,
89 						incr * ticks));
90 		}
91 		do_timer(++ticks);
92 
93 		/* Keep the tick_next_period variable up to date */
94 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
95 	} else {
96 		write_sequnlock(&jiffies_lock);
97 		return;
98 	}
99 	write_sequnlock(&jiffies_lock);
100 	update_wall_time();
101 }
102 
103 /*
104  * Initialize and return retrieve the jiffies update.
105  */
tick_init_jiffy_update(void)106 static ktime_t tick_init_jiffy_update(void)
107 {
108 	ktime_t period;
109 
110 	write_seqlock(&jiffies_lock);
111 	/* Did we start the jiffies update yet ? */
112 	if (last_jiffies_update == 0)
113 		last_jiffies_update = tick_next_period;
114 	period = last_jiffies_update;
115 	write_sequnlock(&jiffies_lock);
116 	return period;
117 }
118 
119 
tick_sched_do_timer(ktime_t now)120 static void tick_sched_do_timer(ktime_t now)
121 {
122 	int cpu = smp_processor_id();
123 
124 #ifdef CONFIG_NO_HZ_COMMON
125 	/*
126 	 * Check if the do_timer duty was dropped. We don't care about
127 	 * concurrency: This happens only when the CPU in charge went
128 	 * into a long sleep. If two CPUs happen to assign themselves to
129 	 * this duty, then the jiffies update is still serialized by
130 	 * jiffies_lock.
131 	 */
132 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
133 	    && !tick_nohz_full_cpu(cpu))
134 		tick_do_timer_cpu = cpu;
135 #endif
136 
137 	/* Check, if the jiffies need an update */
138 	if (tick_do_timer_cpu == cpu)
139 		tick_do_update_jiffies64(now);
140 }
141 
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)142 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
143 {
144 #ifdef CONFIG_NO_HZ_COMMON
145 	/*
146 	 * When we are idle and the tick is stopped, we have to touch
147 	 * the watchdog as we might not schedule for a really long
148 	 * time. This happens on complete idle SMP systems while
149 	 * waiting on the login prompt. We also increment the "start of
150 	 * idle" jiffy stamp so the idle accounting adjustment we do
151 	 * when we go busy again does not account too much ticks.
152 	 */
153 	if (ts->tick_stopped) {
154 		touch_softlockup_watchdog_sched();
155 		if (is_idle_task(current))
156 			ts->idle_jiffies++;
157 		/*
158 		 * In case the current tick fired too early past its expected
159 		 * expiration, make sure we don't bypass the next clock reprogramming
160 		 * to the same deadline.
161 		 */
162 		ts->next_tick = 0;
163 	}
164 #endif
165 	update_process_times(user_mode(regs));
166 	profile_tick(CPU_PROFILING);
167 }
168 #endif
169 
170 #ifdef CONFIG_NO_HZ_FULL
171 cpumask_var_t tick_nohz_full_mask;
172 cpumask_var_t housekeeping_mask;
173 bool tick_nohz_full_running;
174 static atomic_t tick_dep_mask;
175 
check_tick_dependency(atomic_t * dep)176 static bool check_tick_dependency(atomic_t *dep)
177 {
178 	int val = atomic_read(dep);
179 
180 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
181 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
182 		return true;
183 	}
184 
185 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
186 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
187 		return true;
188 	}
189 
190 	if (val & TICK_DEP_MASK_SCHED) {
191 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
192 		return true;
193 	}
194 
195 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
196 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
197 		return true;
198 	}
199 
200 	return false;
201 }
202 
can_stop_full_tick(int cpu,struct tick_sched * ts)203 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
204 {
205 	WARN_ON_ONCE(!irqs_disabled());
206 
207 	if (unlikely(!cpu_online(cpu)))
208 		return false;
209 
210 	if (check_tick_dependency(&tick_dep_mask))
211 		return false;
212 
213 	if (check_tick_dependency(&ts->tick_dep_mask))
214 		return false;
215 
216 	if (check_tick_dependency(&current->tick_dep_mask))
217 		return false;
218 
219 	if (check_tick_dependency(&current->signal->tick_dep_mask))
220 		return false;
221 
222 	return true;
223 }
224 
nohz_full_kick_func(struct irq_work * work)225 static void nohz_full_kick_func(struct irq_work *work)
226 {
227 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
228 }
229 
230 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
231 	.func = nohz_full_kick_func,
232 };
233 
234 /*
235  * Kick this CPU if it's full dynticks in order to force it to
236  * re-evaluate its dependency on the tick and restart it if necessary.
237  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
238  * is NMI safe.
239  */
tick_nohz_full_kick(void)240 static void tick_nohz_full_kick(void)
241 {
242 	if (!tick_nohz_full_cpu(smp_processor_id()))
243 		return;
244 
245 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
246 }
247 
248 /*
249  * Kick the CPU if it's full dynticks in order to force it to
250  * re-evaluate its dependency on the tick and restart it if necessary.
251  */
tick_nohz_full_kick_cpu(int cpu)252 void tick_nohz_full_kick_cpu(int cpu)
253 {
254 	if (!tick_nohz_full_cpu(cpu))
255 		return;
256 
257 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
258 }
259 
260 /*
261  * Kick all full dynticks CPUs in order to force these to re-evaluate
262  * their dependency on the tick and restart it if necessary.
263  */
tick_nohz_full_kick_all(void)264 static void tick_nohz_full_kick_all(void)
265 {
266 	int cpu;
267 
268 	if (!tick_nohz_full_running)
269 		return;
270 
271 	preempt_disable();
272 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
273 		tick_nohz_full_kick_cpu(cpu);
274 	preempt_enable();
275 }
276 
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)277 static void tick_nohz_dep_set_all(atomic_t *dep,
278 				  enum tick_dep_bits bit)
279 {
280 	int prev;
281 
282 	prev = atomic_fetch_or(BIT(bit), dep);
283 	if (!prev)
284 		tick_nohz_full_kick_all();
285 }
286 
287 /*
288  * Set a global tick dependency. Used by perf events that rely on freq and
289  * by unstable clock.
290  */
tick_nohz_dep_set(enum tick_dep_bits bit)291 void tick_nohz_dep_set(enum tick_dep_bits bit)
292 {
293 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
294 }
295 
tick_nohz_dep_clear(enum tick_dep_bits bit)296 void tick_nohz_dep_clear(enum tick_dep_bits bit)
297 {
298 	atomic_andnot(BIT(bit), &tick_dep_mask);
299 }
300 
301 /*
302  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
303  * manage events throttling.
304  */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)305 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
306 {
307 	int prev;
308 	struct tick_sched *ts;
309 
310 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
311 
312 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
313 	if (!prev) {
314 		preempt_disable();
315 		/* Perf needs local kick that is NMI safe */
316 		if (cpu == smp_processor_id()) {
317 			tick_nohz_full_kick();
318 		} else {
319 			/* Remote irq work not NMI-safe */
320 			if (!WARN_ON_ONCE(in_nmi()))
321 				tick_nohz_full_kick_cpu(cpu);
322 		}
323 		preempt_enable();
324 	}
325 }
326 
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)327 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
328 {
329 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
330 
331 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
332 }
333 
334 /*
335  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
336  * per task timers.
337  */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)338 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
339 {
340 	/*
341 	 * We could optimize this with just kicking the target running the task
342 	 * if that noise matters for nohz full users.
343 	 */
344 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
345 }
346 
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)347 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
348 {
349 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
350 }
351 
352 /*
353  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
354  * per process timers.
355  */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)356 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
357 {
358 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
359 }
360 
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)361 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
362 {
363 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
364 }
365 
366 /*
367  * Re-evaluate the need for the tick as we switch the current task.
368  * It might need the tick due to per task/process properties:
369  * perf events, posix CPU timers, ...
370  */
__tick_nohz_task_switch(void)371 void __tick_nohz_task_switch(void)
372 {
373 	unsigned long flags;
374 	struct tick_sched *ts;
375 
376 	local_irq_save(flags);
377 
378 	if (!tick_nohz_full_cpu(smp_processor_id()))
379 		goto out;
380 
381 	ts = this_cpu_ptr(&tick_cpu_sched);
382 
383 	if (ts->tick_stopped) {
384 		if (atomic_read(&current->tick_dep_mask) ||
385 		    atomic_read(&current->signal->tick_dep_mask))
386 			tick_nohz_full_kick();
387 	}
388 out:
389 	local_irq_restore(flags);
390 }
391 
392 /* Parse the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(char * str)393 static int __init tick_nohz_full_setup(char *str)
394 {
395 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
396 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
397 		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
398 		free_bootmem_cpumask_var(tick_nohz_full_mask);
399 		return 1;
400 	}
401 	tick_nohz_full_running = true;
402 
403 	return 1;
404 }
405 __setup("nohz_full=", tick_nohz_full_setup);
406 
tick_nohz_cpu_down(unsigned int cpu)407 static int tick_nohz_cpu_down(unsigned int cpu)
408 {
409 	/*
410 	 * The boot CPU handles housekeeping duty (unbound timers,
411 	 * workqueues, timekeeping, ...) on behalf of full dynticks
412 	 * CPUs. It must remain online when nohz full is enabled.
413 	 */
414 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
415 		return -EBUSY;
416 	return 0;
417 }
418 
tick_nohz_init_all(void)419 static int tick_nohz_init_all(void)
420 {
421 	int err = -1;
422 
423 #ifdef CONFIG_NO_HZ_FULL_ALL
424 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
425 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
426 		return err;
427 	}
428 	err = 0;
429 	cpumask_setall(tick_nohz_full_mask);
430 	tick_nohz_full_running = true;
431 #endif
432 	return err;
433 }
434 
tick_nohz_init(void)435 void __init tick_nohz_init(void)
436 {
437 	int cpu, ret;
438 
439 	if (!tick_nohz_full_running) {
440 		if (tick_nohz_init_all() < 0)
441 			return;
442 	}
443 
444 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
445 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
446 		cpumask_clear(tick_nohz_full_mask);
447 		tick_nohz_full_running = false;
448 		return;
449 	}
450 
451 	/*
452 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
453 	 * locking contexts. But then we need irq work to raise its own
454 	 * interrupts to avoid circular dependency on the tick
455 	 */
456 	if (!arch_irq_work_has_interrupt()) {
457 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
458 		cpumask_clear(tick_nohz_full_mask);
459 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
460 		tick_nohz_full_running = false;
461 		return;
462 	}
463 
464 	cpu = smp_processor_id();
465 
466 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
467 		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
468 			cpu);
469 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
470 	}
471 
472 	cpumask_andnot(housekeeping_mask,
473 		       cpu_possible_mask, tick_nohz_full_mask);
474 
475 	for_each_cpu(cpu, tick_nohz_full_mask)
476 		context_tracking_cpu_set(cpu);
477 
478 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
479 					"kernel/nohz:predown", NULL,
480 					tick_nohz_cpu_down);
481 	WARN_ON(ret < 0);
482 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
483 		cpumask_pr_args(tick_nohz_full_mask));
484 
485 	/*
486 	 * We need at least one CPU to handle housekeeping work such
487 	 * as timekeeping, unbound timers, workqueues, ...
488 	 */
489 	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
490 }
491 #endif
492 
493 /*
494  * NOHZ - aka dynamic tick functionality
495  */
496 #ifdef CONFIG_NO_HZ_COMMON
497 /*
498  * NO HZ enabled ?
499  */
500 bool tick_nohz_enabled __read_mostly  = true;
501 unsigned long tick_nohz_active  __read_mostly;
502 /*
503  * Enable / Disable tickless mode
504  */
setup_tick_nohz(char * str)505 static int __init setup_tick_nohz(char *str)
506 {
507 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
508 }
509 
510 __setup("nohz=", setup_tick_nohz);
511 
tick_nohz_tick_stopped(void)512 int tick_nohz_tick_stopped(void)
513 {
514 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
515 }
516 
517 /**
518  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
519  *
520  * Called from interrupt entry when the CPU was idle
521  *
522  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
523  * must be updated. Otherwise an interrupt handler could use a stale jiffy
524  * value. We do this unconditionally on any CPU, as we don't know whether the
525  * CPU, which has the update task assigned is in a long sleep.
526  */
tick_nohz_update_jiffies(ktime_t now)527 static void tick_nohz_update_jiffies(ktime_t now)
528 {
529 	unsigned long flags;
530 
531 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
532 
533 	local_irq_save(flags);
534 	tick_do_update_jiffies64(now);
535 	local_irq_restore(flags);
536 
537 	touch_softlockup_watchdog_sched();
538 }
539 
540 /*
541  * Updates the per-CPU time idle statistics counters
542  */
543 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)544 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
545 {
546 	ktime_t delta;
547 
548 	if (ts->idle_active) {
549 		delta = ktime_sub(now, ts->idle_entrytime);
550 		if (nr_iowait_cpu(cpu) > 0)
551 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
552 		else
553 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
554 		ts->idle_entrytime = now;
555 	}
556 
557 	if (last_update_time)
558 		*last_update_time = ktime_to_us(now);
559 
560 }
561 
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)562 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
563 {
564 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
565 	ts->idle_active = 0;
566 
567 	sched_clock_idle_wakeup_event();
568 }
569 
tick_nohz_start_idle(struct tick_sched * ts)570 static void tick_nohz_start_idle(struct tick_sched *ts)
571 {
572 	ts->idle_entrytime = ktime_get();
573 	ts->idle_active = 1;
574 	sched_clock_idle_sleep_event();
575 }
576 
577 /**
578  * get_cpu_idle_time_us - get the total idle time of a CPU
579  * @cpu: CPU number to query
580  * @last_update_time: variable to store update time in. Do not update
581  * counters if NULL.
582  *
583  * Return the cumulative idle time (since boot) for a given
584  * CPU, in microseconds.
585  *
586  * This time is measured via accounting rather than sampling,
587  * and is as accurate as ktime_get() is.
588  *
589  * This function returns -1 if NOHZ is not enabled.
590  */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)591 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
592 {
593 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
594 	ktime_t now, idle;
595 
596 	if (!tick_nohz_active)
597 		return -1;
598 
599 	now = ktime_get();
600 	if (last_update_time) {
601 		update_ts_time_stats(cpu, ts, now, last_update_time);
602 		idle = ts->idle_sleeptime;
603 	} else {
604 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
605 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
606 
607 			idle = ktime_add(ts->idle_sleeptime, delta);
608 		} else {
609 			idle = ts->idle_sleeptime;
610 		}
611 	}
612 
613 	return ktime_to_us(idle);
614 
615 }
616 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
617 
618 /**
619  * get_cpu_iowait_time_us - get the total iowait time of a CPU
620  * @cpu: CPU number to query
621  * @last_update_time: variable to store update time in. Do not update
622  * counters if NULL.
623  *
624  * Return the cumulative iowait time (since boot) for a given
625  * CPU, in microseconds.
626  *
627  * This time is measured via accounting rather than sampling,
628  * and is as accurate as ktime_get() is.
629  *
630  * This function returns -1 if NOHZ is not enabled.
631  */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)632 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
633 {
634 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
635 	ktime_t now, iowait;
636 
637 	if (!tick_nohz_active)
638 		return -1;
639 
640 	now = ktime_get();
641 	if (last_update_time) {
642 		update_ts_time_stats(cpu, ts, now, last_update_time);
643 		iowait = ts->iowait_sleeptime;
644 	} else {
645 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
646 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
647 
648 			iowait = ktime_add(ts->iowait_sleeptime, delta);
649 		} else {
650 			iowait = ts->iowait_sleeptime;
651 		}
652 	}
653 
654 	return ktime_to_us(iowait);
655 }
656 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
657 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)658 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
659 {
660 	hrtimer_cancel(&ts->sched_timer);
661 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
662 
663 	/* Forward the time to expire in the future */
664 	hrtimer_forward(&ts->sched_timer, now, tick_period);
665 
666 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
667 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
668 	else
669 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
670 
671 	/*
672 	 * Reset to make sure next tick stop doesn't get fooled by past
673 	 * cached clock deadline.
674 	 */
675 	ts->next_tick = 0;
676 }
677 
local_timer_softirq_pending(void)678 static inline bool local_timer_softirq_pending(void)
679 {
680 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
681 }
682 
tick_nohz_next_event(struct tick_sched * ts,int cpu)683 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
684 {
685 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
686 	unsigned long seq, basejiff;
687 
688 	/* Read jiffies and the time when jiffies were updated last */
689 	do {
690 		seq = read_seqbegin(&jiffies_lock);
691 		basemono = last_jiffies_update;
692 		basejiff = jiffies;
693 	} while (read_seqretry(&jiffies_lock, seq));
694 	ts->last_jiffies = basejiff;
695 	ts->timer_expires_base = basemono;
696 
697 	/*
698 	 * Keep the periodic tick, when RCU, architecture or irq_work
699 	 * requests it.
700 	 * Aside of that check whether the local timer softirq is
701 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
702 	 * because there is an already expired timer, so it will request
703 	 * immeditate expiry, which rearms the hardware timer with a
704 	 * minimal delta which brings us back to this place
705 	 * immediately. Lather, rinse and repeat...
706 	 */
707 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
708 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
709 		next_tick = basemono + TICK_NSEC;
710 	} else {
711 		/*
712 		 * Get the next pending timer. If high resolution
713 		 * timers are enabled this only takes the timer wheel
714 		 * timers into account. If high resolution timers are
715 		 * disabled this also looks at the next expiring
716 		 * hrtimer.
717 		 */
718 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
719 		ts->next_timer = next_tmr;
720 		/* Take the next rcu event into account */
721 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
722 	}
723 
724 	/*
725 	 * If the tick is due in the next period, keep it ticking or
726 	 * force prod the timer.
727 	 */
728 	delta = next_tick - basemono;
729 	if (delta <= (u64)TICK_NSEC) {
730 		/*
731 		 * Tell the timer code that the base is not idle, i.e. undo
732 		 * the effect of get_next_timer_interrupt():
733 		 */
734 		timer_clear_idle();
735 		/*
736 		 * We've not stopped the tick yet, and there's a timer in the
737 		 * next period, so no point in stopping it either, bail.
738 		 */
739 		if (!ts->tick_stopped) {
740 			ts->timer_expires = 0;
741 			goto out;
742 		}
743 	}
744 
745 	/*
746 	 * If this CPU is the one which had the do_timer() duty last, we limit
747 	 * the sleep time to the timekeeping max_deferment value.
748 	 * Otherwise we can sleep as long as we want.
749 	 */
750 	delta = timekeeping_max_deferment();
751 	if (cpu != tick_do_timer_cpu &&
752 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
753 		delta = KTIME_MAX;
754 
755 #ifdef CONFIG_NO_HZ_FULL
756 	/* Limit the tick delta to the maximum scheduler deferment */
757 	if (!ts->inidle)
758 		delta = min(delta, scheduler_tick_max_deferment());
759 #endif
760 
761 	/* Calculate the next expiry time */
762 	if (delta < (KTIME_MAX - basemono))
763 		expires = basemono + delta;
764 	else
765 		expires = KTIME_MAX;
766 
767 	ts->timer_expires = min_t(u64, expires, next_tick);
768 
769 out:
770 	return ts->timer_expires;
771 }
772 
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)773 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
774 {
775 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
776 	u64 basemono = ts->timer_expires_base;
777 	u64 expires = ts->timer_expires;
778 	ktime_t tick = expires;
779 
780 	/* Make sure we won't be trying to stop it twice in a row. */
781 	ts->timer_expires_base = 0;
782 
783 	/*
784 	 * If this CPU is the one which updates jiffies, then give up
785 	 * the assignment and let it be taken by the CPU which runs
786 	 * the tick timer next, which might be this CPU as well. If we
787 	 * don't drop this here the jiffies might be stale and
788 	 * do_timer() never invoked. Keep track of the fact that it
789 	 * was the one which had the do_timer() duty last.
790 	 */
791 	if (cpu == tick_do_timer_cpu) {
792 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
793 		ts->do_timer_last = 1;
794 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
795 		ts->do_timer_last = 0;
796 	}
797 
798 	/* Skip reprogram of event if its not changed */
799 	if (ts->tick_stopped && (expires == ts->next_tick)) {
800 		/* Sanity check: make sure clockevent is actually programmed */
801 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
802 			return;
803 
804 		WARN_ON_ONCE(1);
805 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
806 			    basemono, ts->next_tick, dev->next_event,
807 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
808 	}
809 
810 	/*
811 	 * nohz_stop_sched_tick can be called several times before
812 	 * the nohz_restart_sched_tick is called. This happens when
813 	 * interrupts arrive which do not cause a reschedule. In the
814 	 * first call we save the current tick time, so we can restart
815 	 * the scheduler tick in nohz_restart_sched_tick.
816 	 */
817 	if (!ts->tick_stopped) {
818 		calc_load_nohz_start();
819 		cpu_load_update_nohz_start();
820 
821 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
822 		ts->tick_stopped = 1;
823 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
824 	}
825 
826 	ts->next_tick = tick;
827 
828 	/*
829 	 * If the expiration time == KTIME_MAX, then we simply stop
830 	 * the tick timer.
831 	 */
832 	if (unlikely(expires == KTIME_MAX)) {
833 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
834 			hrtimer_cancel(&ts->sched_timer);
835 		return;
836 	}
837 
838 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
839 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
840 	} else {
841 		hrtimer_set_expires(&ts->sched_timer, tick);
842 		tick_program_event(tick, 1);
843 	}
844 }
845 
tick_nohz_retain_tick(struct tick_sched * ts)846 static void tick_nohz_retain_tick(struct tick_sched *ts)
847 {
848 	ts->timer_expires_base = 0;
849 }
850 
851 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)852 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
853 {
854 	if (tick_nohz_next_event(ts, cpu))
855 		tick_nohz_stop_tick(ts, cpu);
856 	else
857 		tick_nohz_retain_tick(ts);
858 }
859 #endif /* CONFIG_NO_HZ_FULL */
860 
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)861 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
862 {
863 	/* Update jiffies first */
864 	tick_do_update_jiffies64(now);
865 	cpu_load_update_nohz_stop();
866 
867 	/*
868 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
869 	 * the clock forward checks in the enqueue path:
870 	 */
871 	timer_clear_idle();
872 
873 	calc_load_nohz_stop();
874 	touch_softlockup_watchdog_sched();
875 	/*
876 	 * Cancel the scheduled timer and restore the tick
877 	 */
878 	ts->tick_stopped  = 0;
879 	ts->idle_exittime = now;
880 
881 	tick_nohz_restart(ts, now);
882 }
883 
tick_nohz_full_update_tick(struct tick_sched * ts)884 static void tick_nohz_full_update_tick(struct tick_sched *ts)
885 {
886 #ifdef CONFIG_NO_HZ_FULL
887 	int cpu = smp_processor_id();
888 
889 	if (!tick_nohz_full_cpu(cpu))
890 		return;
891 
892 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
893 		return;
894 
895 	if (can_stop_full_tick(cpu, ts))
896 		tick_nohz_stop_sched_tick(ts, cpu);
897 	else if (ts->tick_stopped)
898 		tick_nohz_restart_sched_tick(ts, ktime_get());
899 #endif
900 }
901 
can_stop_idle_tick(int cpu,struct tick_sched * ts)902 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
903 {
904 	/*
905 	 * If this CPU is offline and it is the one which updates
906 	 * jiffies, then give up the assignment and let it be taken by
907 	 * the CPU which runs the tick timer next. If we don't drop
908 	 * this here the jiffies might be stale and do_timer() never
909 	 * invoked.
910 	 */
911 	if (unlikely(!cpu_online(cpu))) {
912 		if (cpu == tick_do_timer_cpu)
913 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
914 		/*
915 		 * Make sure the CPU doesn't get fooled by obsolete tick
916 		 * deadline if it comes back online later.
917 		 */
918 		ts->next_tick = 0;
919 		return false;
920 	}
921 
922 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
923 		return false;
924 
925 	if (need_resched())
926 		return false;
927 
928 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
929 		static int ratelimit;
930 
931 		if (ratelimit < 10 && !in_softirq() &&
932 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
933 			pr_warn("NOHZ: local_softirq_pending %02x\n",
934 				(unsigned int) local_softirq_pending());
935 			ratelimit++;
936 		}
937 		return false;
938 	}
939 
940 	if (tick_nohz_full_enabled()) {
941 		/*
942 		 * Keep the tick alive to guarantee timekeeping progression
943 		 * if there are full dynticks CPUs around
944 		 */
945 		if (tick_do_timer_cpu == cpu)
946 			return false;
947 		/*
948 		 * Boot safety: make sure the timekeeping duty has been
949 		 * assigned before entering dyntick-idle mode,
950 		 */
951 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
952 			return false;
953 	}
954 
955 	return true;
956 }
957 
__tick_nohz_idle_stop_tick(struct tick_sched * ts)958 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
959 {
960 	ktime_t expires;
961 	int cpu = smp_processor_id();
962 
963 	/*
964 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
965 	 * tick timer expiration time is known already.
966 	 */
967 	if (ts->timer_expires_base)
968 		expires = ts->timer_expires;
969 	else if (can_stop_idle_tick(cpu, ts))
970 		expires = tick_nohz_next_event(ts, cpu);
971 	else
972 		return;
973 
974 	ts->idle_calls++;
975 
976 	if (expires > 0LL) {
977 		int was_stopped = ts->tick_stopped;
978 
979 		tick_nohz_stop_tick(ts, cpu);
980 
981 		ts->idle_sleeps++;
982 		ts->idle_expires = expires;
983 
984 		if (!was_stopped && ts->tick_stopped) {
985 			ts->idle_jiffies = ts->last_jiffies;
986 			nohz_balance_enter_idle(cpu);
987 		}
988 	} else {
989 		tick_nohz_retain_tick(ts);
990 	}
991 }
992 
993 /**
994  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
995  *
996  * When the next event is more than a tick into the future, stop the idle tick
997  */
tick_nohz_idle_stop_tick(void)998 void tick_nohz_idle_stop_tick(void)
999 {
1000 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1001 }
1002 
tick_nohz_idle_retain_tick(void)1003 void tick_nohz_idle_retain_tick(void)
1004 {
1005 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1006 	/*
1007 	 * Undo the effect of get_next_timer_interrupt() called from
1008 	 * tick_nohz_next_event().
1009 	 */
1010 	timer_clear_idle();
1011 }
1012 
1013 /**
1014  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1015  *
1016  * Called when we start the idle loop.
1017  */
tick_nohz_idle_enter(void)1018 void tick_nohz_idle_enter(void)
1019 {
1020 	struct tick_sched *ts;
1021 
1022 	WARN_ON_ONCE(irqs_disabled());
1023 
1024 	/*
1025 	 * Update the idle state in the scheduler domain hierarchy
1026 	 * when tick_nohz_stop_tick() is called from the idle loop.
1027 	 * State will be updated to busy during the first busy tick after
1028 	 * exiting idle.
1029 	 */
1030 	set_cpu_sd_state_idle();
1031 
1032 	local_irq_disable();
1033 
1034 	ts = this_cpu_ptr(&tick_cpu_sched);
1035 
1036 	WARN_ON_ONCE(ts->timer_expires_base);
1037 
1038 	ts->inidle = 1;
1039 	tick_nohz_start_idle(ts);
1040 
1041 	local_irq_enable();
1042 }
1043 
1044 /**
1045  * tick_nohz_irq_exit - update next tick event from interrupt exit
1046  *
1047  * When an interrupt fires while we are idle and it doesn't cause
1048  * a reschedule, it may still add, modify or delete a timer, enqueue
1049  * an RCU callback, etc...
1050  * So we need to re-calculate and reprogram the next tick event.
1051  */
tick_nohz_irq_exit(void)1052 void tick_nohz_irq_exit(void)
1053 {
1054 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055 
1056 	if (ts->inidle)
1057 		tick_nohz_start_idle(ts);
1058 	else
1059 		tick_nohz_full_update_tick(ts);
1060 }
1061 
1062 /**
1063  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1064  */
tick_nohz_idle_got_tick(void)1065 bool tick_nohz_idle_got_tick(void)
1066 {
1067 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1068 
1069 	if (ts->inidle > 1) {
1070 		ts->inidle = 1;
1071 		return true;
1072 	}
1073 	return false;
1074 }
1075 
1076 /**
1077  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1078  * @delta_next: duration until the next event if the tick cannot be stopped
1079  *
1080  * Called from power state control code with interrupts disabled
1081  */
tick_nohz_get_sleep_length(ktime_t * delta_next)1082 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1083 {
1084 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1085 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1086 	int cpu = smp_processor_id();
1087 	/*
1088 	 * The idle entry time is expected to be a sufficient approximation of
1089 	 * the current time at this point.
1090 	 */
1091 	ktime_t now = ts->idle_entrytime;
1092 	ktime_t next_event;
1093 
1094 	WARN_ON_ONCE(!ts->inidle);
1095 
1096 	*delta_next = ktime_sub(dev->next_event, now);
1097 
1098 	if (!can_stop_idle_tick(cpu, ts))
1099 		return *delta_next;
1100 
1101 	next_event = tick_nohz_next_event(ts, cpu);
1102 	if (!next_event)
1103 		return *delta_next;
1104 
1105 	/*
1106 	 * If the next highres timer to expire is earlier than next_event, the
1107 	 * idle governor needs to know that.
1108 	 */
1109 	next_event = min_t(u64, next_event,
1110 			   hrtimer_next_event_without(&ts->sched_timer));
1111 
1112 	return ktime_sub(next_event, now);
1113 }
1114 
1115 /**
1116  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1117  * for a particular CPU.
1118  *
1119  * Called from the schedutil frequency scaling governor in scheduler context.
1120  */
tick_nohz_get_idle_calls_cpu(int cpu)1121 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1122 {
1123 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1124 
1125 	return ts->idle_calls;
1126 }
1127 
1128 /**
1129  * tick_nohz_get_idle_calls - return the current idle calls counter value
1130  *
1131  * Called from the schedutil frequency scaling governor in scheduler context.
1132  */
tick_nohz_get_idle_calls(void)1133 unsigned long tick_nohz_get_idle_calls(void)
1134 {
1135 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1136 
1137 	return ts->idle_calls;
1138 }
1139 
tick_nohz_account_idle_ticks(struct tick_sched * ts)1140 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1141 {
1142 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1143 	unsigned long ticks;
1144 
1145 	if (vtime_accounting_cpu_enabled())
1146 		return;
1147 	/*
1148 	 * We stopped the tick in idle. Update process times would miss the
1149 	 * time we slept as update_process_times does only a 1 tick
1150 	 * accounting. Enforce that this is accounted to idle !
1151 	 */
1152 	ticks = jiffies - ts->idle_jiffies;
1153 	/*
1154 	 * We might be one off. Do not randomly account a huge number of ticks!
1155 	 */
1156 	if (ticks && ticks < LONG_MAX)
1157 		account_idle_ticks(ticks);
1158 #endif
1159 }
1160 
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1161 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1162 {
1163 	tick_nohz_restart_sched_tick(ts, now);
1164 	tick_nohz_account_idle_ticks(ts);
1165 }
1166 
tick_nohz_idle_restart_tick(void)1167 void tick_nohz_idle_restart_tick(void)
1168 {
1169 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1170 
1171 	if (ts->tick_stopped)
1172 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1173 }
1174 
1175 /**
1176  * tick_nohz_idle_exit - restart the idle tick from the idle task
1177  *
1178  * Restart the idle tick when the CPU is woken up from idle
1179  * This also exit the RCU extended quiescent state. The CPU
1180  * can use RCU again after this function is called.
1181  */
tick_nohz_idle_exit(void)1182 void tick_nohz_idle_exit(void)
1183 {
1184 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185 	ktime_t now;
1186 
1187 	local_irq_disable();
1188 
1189 	WARN_ON_ONCE(!ts->inidle);
1190 	WARN_ON_ONCE(ts->timer_expires_base);
1191 
1192 	ts->inidle = 0;
1193 
1194 	if (ts->idle_active || ts->tick_stopped)
1195 		now = ktime_get();
1196 
1197 	if (ts->idle_active)
1198 		tick_nohz_stop_idle(ts, now);
1199 
1200 	if (ts->tick_stopped)
1201 		__tick_nohz_idle_restart_tick(ts, now);
1202 
1203 	local_irq_enable();
1204 }
1205 
1206 /*
1207  * The nohz low res interrupt handler
1208  */
tick_nohz_handler(struct clock_event_device * dev)1209 static void tick_nohz_handler(struct clock_event_device *dev)
1210 {
1211 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1212 	struct pt_regs *regs = get_irq_regs();
1213 	ktime_t now = ktime_get();
1214 
1215 	if (ts->inidle)
1216 		ts->inidle = 2;
1217 
1218 	dev->next_event = KTIME_MAX;
1219 
1220 	tick_sched_do_timer(now);
1221 	tick_sched_handle(ts, regs);
1222 
1223 	/* No need to reprogram if we are running tickless  */
1224 	if (unlikely(ts->tick_stopped))
1225 		return;
1226 
1227 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1228 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1229 }
1230 
tick_nohz_activate(struct tick_sched * ts,int mode)1231 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1232 {
1233 	if (!tick_nohz_enabled)
1234 		return;
1235 	ts->nohz_mode = mode;
1236 	/* One update is enough */
1237 	if (!test_and_set_bit(0, &tick_nohz_active))
1238 		timers_update_migration(true);
1239 }
1240 
1241 /**
1242  * tick_nohz_switch_to_nohz - switch to nohz mode
1243  */
tick_nohz_switch_to_nohz(void)1244 static void tick_nohz_switch_to_nohz(void)
1245 {
1246 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1247 	ktime_t next;
1248 
1249 	if (!tick_nohz_enabled)
1250 		return;
1251 
1252 	if (tick_switch_to_oneshot(tick_nohz_handler))
1253 		return;
1254 
1255 	/*
1256 	 * Recycle the hrtimer in ts, so we can share the
1257 	 * hrtimer_forward with the highres code.
1258 	 */
1259 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1260 	/* Get the next period */
1261 	next = tick_init_jiffy_update();
1262 
1263 	hrtimer_set_expires(&ts->sched_timer, next);
1264 	hrtimer_forward_now(&ts->sched_timer, tick_period);
1265 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1266 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1267 }
1268 
tick_nohz_irq_enter(void)1269 static inline void tick_nohz_irq_enter(void)
1270 {
1271 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272 	ktime_t now;
1273 
1274 	if (!ts->idle_active && !ts->tick_stopped)
1275 		return;
1276 	now = ktime_get();
1277 	if (ts->idle_active)
1278 		tick_nohz_stop_idle(ts, now);
1279 	if (ts->tick_stopped)
1280 		tick_nohz_update_jiffies(now);
1281 }
1282 
1283 #else
1284 
tick_nohz_switch_to_nohz(void)1285 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1286 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1287 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1288 
1289 #endif /* CONFIG_NO_HZ_COMMON */
1290 
1291 /*
1292  * Called from irq_enter to notify about the possible interruption of idle()
1293  */
tick_irq_enter(void)1294 void tick_irq_enter(void)
1295 {
1296 	tick_check_oneshot_broadcast_this_cpu();
1297 	tick_nohz_irq_enter();
1298 }
1299 
1300 /*
1301  * High resolution timer specific code
1302  */
1303 #ifdef CONFIG_HIGH_RES_TIMERS
1304 /*
1305  * We rearm the timer until we get disabled by the idle code.
1306  * Called with interrupts disabled.
1307  */
tick_sched_timer(struct hrtimer * timer)1308 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1309 {
1310 	struct tick_sched *ts =
1311 		container_of(timer, struct tick_sched, sched_timer);
1312 	struct pt_regs *regs = get_irq_regs();
1313 	ktime_t now = ktime_get();
1314 
1315 	if (ts->inidle)
1316 		ts->inidle = 2;
1317 
1318 	tick_sched_do_timer(now);
1319 
1320 	/*
1321 	 * Do not call, when we are not in irq context and have
1322 	 * no valid regs pointer
1323 	 */
1324 	if (regs)
1325 		tick_sched_handle(ts, regs);
1326 	else
1327 		ts->next_tick = 0;
1328 
1329 	/* No need to reprogram if we are in idle or full dynticks mode */
1330 	if (unlikely(ts->tick_stopped))
1331 		return HRTIMER_NORESTART;
1332 
1333 	hrtimer_forward(timer, now, tick_period);
1334 
1335 	return HRTIMER_RESTART;
1336 }
1337 
1338 static int sched_skew_tick;
1339 
skew_tick(char * str)1340 static int __init skew_tick(char *str)
1341 {
1342 	get_option(&str, &sched_skew_tick);
1343 
1344 	return 0;
1345 }
1346 early_param("skew_tick", skew_tick);
1347 
1348 /**
1349  * tick_setup_sched_timer - setup the tick emulation timer
1350  */
tick_setup_sched_timer(void)1351 void tick_setup_sched_timer(void)
1352 {
1353 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1354 	ktime_t now = ktime_get();
1355 
1356 	/*
1357 	 * Emulate tick processing via per-CPU hrtimers:
1358 	 */
1359 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1360 	ts->sched_timer.function = tick_sched_timer;
1361 
1362 	/* Get the next period (per-CPU) */
1363 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1364 
1365 	/* Offset the tick to avert jiffies_lock contention. */
1366 	if (sched_skew_tick) {
1367 		u64 offset = ktime_to_ns(tick_period) >> 1;
1368 		do_div(offset, num_possible_cpus());
1369 		offset *= smp_processor_id();
1370 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1371 	}
1372 
1373 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1374 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1375 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1376 }
1377 #endif /* HIGH_RES_TIMERS */
1378 
1379 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1380 void tick_cancel_sched_timer(int cpu)
1381 {
1382 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1383 
1384 # ifdef CONFIG_HIGH_RES_TIMERS
1385 	if (ts->sched_timer.base)
1386 		hrtimer_cancel(&ts->sched_timer);
1387 # endif
1388 
1389 	memset(ts, 0, sizeof(*ts));
1390 }
1391 #endif
1392 
1393 /**
1394  * Async notification about clocksource changes
1395  */
tick_clock_notify(void)1396 void tick_clock_notify(void)
1397 {
1398 	int cpu;
1399 
1400 	for_each_possible_cpu(cpu)
1401 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1402 }
1403 
1404 /*
1405  * Async notification about clock event changes
1406  */
tick_oneshot_notify(void)1407 void tick_oneshot_notify(void)
1408 {
1409 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1410 
1411 	set_bit(0, &ts->check_clocks);
1412 }
1413 
1414 /**
1415  * Check, if a change happened, which makes oneshot possible.
1416  *
1417  * Called cyclic from the hrtimer softirq (driven by the timer
1418  * softirq) allow_nohz signals, that we can switch into low-res nohz
1419  * mode, because high resolution timers are disabled (either compile
1420  * or runtime). Called with interrupts disabled.
1421  */
tick_check_oneshot_change(int allow_nohz)1422 int tick_check_oneshot_change(int allow_nohz)
1423 {
1424 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1425 
1426 	if (!test_and_clear_bit(0, &ts->check_clocks))
1427 		return 0;
1428 
1429 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1430 		return 0;
1431 
1432 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1433 		return 0;
1434 
1435 	if (!allow_nohz)
1436 		return 1;
1437 
1438 	tick_nohz_switch_to_nohz();
1439 	return 0;
1440 }
1441