1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48
49 /*
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
52 */
53 struct timezone sys_tz;
54
55 EXPORT_SYMBOL(sys_tz);
56
57 #ifdef __ARCH_WANT_SYS_TIME
58
59 /*
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
64 */
SYSCALL_DEFINE1(time,time_t __user *,tloc)65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67 time_t i = get_seconds();
68
69 if (tloc) {
70 if (put_user(i,tloc))
71 return -EFAULT;
72 }
73 force_successful_syscall_return();
74 return i;
75 }
76
77 /*
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
82 */
83
SYSCALL_DEFINE1(stime,time_t __user *,tptr)84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86 struct timespec tv;
87 int err;
88
89 if (get_user(tv.tv_sec, tptr))
90 return -EFAULT;
91
92 tv.tv_nsec = 0;
93
94 err = security_settime(&tv, NULL);
95 if (err)
96 return err;
97
98 do_settimeofday(&tv);
99 return 0;
100 }
101
102 #endif /* __ARCH_WANT_SYS_TIME */
103
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107 /* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time,compat_time_t __user *,tloc)108 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109 {
110 struct timeval tv;
111 compat_time_t i;
112
113 do_gettimeofday(&tv);
114 i = tv.tv_sec;
115
116 if (tloc) {
117 if (put_user(i,tloc))
118 return -EFAULT;
119 }
120 force_successful_syscall_return();
121 return i;
122 }
123
COMPAT_SYSCALL_DEFINE1(stime,compat_time_t __user *,tptr)124 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
125 {
126 struct timespec tv;
127 int err;
128
129 if (get_user(tv.tv_sec, tptr))
130 return -EFAULT;
131
132 tv.tv_nsec = 0;
133
134 err = security_settime(&tv, NULL);
135 if (err)
136 return err;
137
138 do_settimeofday(&tv);
139 return 0;
140 }
141
142 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143 #endif
144
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)145 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
146 struct timezone __user *, tz)
147 {
148 if (likely(tv != NULL)) {
149 struct timeval ktv;
150 do_gettimeofday(&ktv);
151 if (copy_to_user(tv, &ktv, sizeof(ktv)))
152 return -EFAULT;
153 }
154 if (unlikely(tz != NULL)) {
155 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156 return -EFAULT;
157 }
158 return 0;
159 }
160
161 /*
162 * Indicates if there is an offset between the system clock and the hardware
163 * clock/persistent clock/rtc.
164 */
165 int persistent_clock_is_local;
166
167 /*
168 * Adjust the time obtained from the CMOS to be UTC time instead of
169 * local time.
170 *
171 * This is ugly, but preferable to the alternatives. Otherwise we
172 * would either need to write a program to do it in /etc/rc (and risk
173 * confusion if the program gets run more than once; it would also be
174 * hard to make the program warp the clock precisely n hours) or
175 * compile in the timezone information into the kernel. Bad, bad....
176 *
177 * - TYT, 1992-01-01
178 *
179 * The best thing to do is to keep the CMOS clock in universal time (UTC)
180 * as real UNIX machines always do it. This avoids all headaches about
181 * daylight saving times and warping kernel clocks.
182 */
warp_clock(void)183 static inline void warp_clock(void)
184 {
185 if (sys_tz.tz_minuteswest != 0) {
186 struct timespec adjust;
187
188 persistent_clock_is_local = 1;
189 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
190 adjust.tv_nsec = 0;
191 timekeeping_inject_offset(&adjust);
192 }
193 }
194
195 /*
196 * In case for some reason the CMOS clock has not already been running
197 * in UTC, but in some local time: The first time we set the timezone,
198 * we will warp the clock so that it is ticking UTC time instead of
199 * local time. Presumably, if someone is setting the timezone then we
200 * are running in an environment where the programs understand about
201 * timezones. This should be done at boot time in the /etc/rc script,
202 * as soon as possible, so that the clock can be set right. Otherwise,
203 * various programs will get confused when the clock gets warped.
204 */
205
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)206 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
207 {
208 static int firsttime = 1;
209 int error = 0;
210
211 if (tv && !timespec64_valid(tv))
212 return -EINVAL;
213
214 error = security_settime64(tv, tz);
215 if (error)
216 return error;
217
218 if (tz) {
219 /* Verify we're witin the +-15 hrs range */
220 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
221 return -EINVAL;
222
223 sys_tz = *tz;
224 update_vsyscall_tz();
225 if (firsttime) {
226 firsttime = 0;
227 if (!tv)
228 warp_clock();
229 }
230 }
231 if (tv)
232 return do_settimeofday64(tv);
233 return 0;
234 }
235
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)236 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
237 struct timezone __user *, tz)
238 {
239 struct timespec64 new_ts;
240 struct timeval user_tv;
241 struct timezone new_tz;
242
243 if (tv) {
244 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
245 return -EFAULT;
246
247 if (!timeval_valid(&user_tv))
248 return -EINVAL;
249
250 new_ts.tv_sec = user_tv.tv_sec;
251 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
252 }
253 if (tz) {
254 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
255 return -EFAULT;
256 }
257
258 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
259 }
260
261 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)262 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
263 struct timezone __user *, tz)
264 {
265 if (tv) {
266 struct timeval ktv;
267
268 do_gettimeofday(&ktv);
269 if (compat_put_timeval(&ktv, tv))
270 return -EFAULT;
271 }
272 if (tz) {
273 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
274 return -EFAULT;
275 }
276
277 return 0;
278 }
279
COMPAT_SYSCALL_DEFINE2(settimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)280 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
281 struct timezone __user *, tz)
282 {
283 struct timespec64 new_ts;
284 struct timeval user_tv;
285 struct timezone new_tz;
286
287 if (tv) {
288 if (compat_get_timeval(&user_tv, tv))
289 return -EFAULT;
290 new_ts.tv_sec = user_tv.tv_sec;
291 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
292 }
293 if (tz) {
294 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
295 return -EFAULT;
296 }
297
298 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
299 }
300 #endif
301
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)302 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
303 {
304 struct timex txc; /* Local copy of parameter */
305 int ret;
306
307 /* Copy the user data space into the kernel copy
308 * structure. But bear in mind that the structures
309 * may change
310 */
311 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
312 return -EFAULT;
313 ret = do_adjtimex(&txc);
314 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
315 }
316
317 #ifdef CONFIG_COMPAT
318
COMPAT_SYSCALL_DEFINE1(adjtimex,struct compat_timex __user *,utp)319 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
320 {
321 struct timex txc;
322 int err, ret;
323
324 err = compat_get_timex(&txc, utp);
325 if (err)
326 return err;
327
328 ret = do_adjtimex(&txc);
329
330 err = compat_put_timex(utp, &txc);
331 if (err)
332 return err;
333
334 return ret;
335 }
336 #endif
337
338 /*
339 * Convert jiffies to milliseconds and back.
340 *
341 * Avoid unnecessary multiplications/divisions in the
342 * two most common HZ cases:
343 */
jiffies_to_msecs(const unsigned long j)344 unsigned int jiffies_to_msecs(const unsigned long j)
345 {
346 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
347 return (MSEC_PER_SEC / HZ) * j;
348 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
349 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
350 #else
351 # if BITS_PER_LONG == 32
352 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
353 HZ_TO_MSEC_SHR32;
354 # else
355 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
356 # endif
357 #endif
358 }
359 EXPORT_SYMBOL(jiffies_to_msecs);
360
jiffies_to_usecs(const unsigned long j)361 unsigned int jiffies_to_usecs(const unsigned long j)
362 {
363 /*
364 * Hz usually doesn't go much further MSEC_PER_SEC.
365 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
366 */
367 BUILD_BUG_ON(HZ > USEC_PER_SEC);
368
369 #if !(USEC_PER_SEC % HZ)
370 return (USEC_PER_SEC / HZ) * j;
371 #else
372 # if BITS_PER_LONG == 32
373 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
374 # else
375 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
376 # endif
377 #endif
378 }
379 EXPORT_SYMBOL(jiffies_to_usecs);
380
381 /**
382 * timespec_trunc - Truncate timespec to a granularity
383 * @t: Timespec
384 * @gran: Granularity in ns.
385 *
386 * Truncate a timespec to a granularity. Always rounds down. gran must
387 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
388 */
timespec_trunc(struct timespec t,unsigned gran)389 struct timespec timespec_trunc(struct timespec t, unsigned gran)
390 {
391 /* Avoid division in the common cases 1 ns and 1 s. */
392 if (gran == 1) {
393 /* nothing */
394 } else if (gran == NSEC_PER_SEC) {
395 t.tv_nsec = 0;
396 } else if (gran > 1 && gran < NSEC_PER_SEC) {
397 t.tv_nsec -= t.tv_nsec % gran;
398 } else {
399 WARN(1, "illegal file time granularity: %u", gran);
400 }
401 return t;
402 }
403 EXPORT_SYMBOL(timespec_trunc);
404
405 /*
406 * mktime64 - Converts date to seconds.
407 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
408 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
409 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
410 *
411 * [For the Julian calendar (which was used in Russia before 1917,
412 * Britain & colonies before 1752, anywhere else before 1582,
413 * and is still in use by some communities) leave out the
414 * -year/100+year/400 terms, and add 10.]
415 *
416 * This algorithm was first published by Gauss (I think).
417 *
418 * A leap second can be indicated by calling this function with sec as
419 * 60 (allowable under ISO 8601). The leap second is treated the same
420 * as the following second since they don't exist in UNIX time.
421 *
422 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
423 * tomorrow - (allowable under ISO 8601) is supported.
424 */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)425 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
426 const unsigned int day, const unsigned int hour,
427 const unsigned int min, const unsigned int sec)
428 {
429 unsigned int mon = mon0, year = year0;
430
431 /* 1..12 -> 11,12,1..10 */
432 if (0 >= (int) (mon -= 2)) {
433 mon += 12; /* Puts Feb last since it has leap day */
434 year -= 1;
435 }
436
437 return ((((time64_t)
438 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
439 year*365 - 719499
440 )*24 + hour /* now have hours - midnight tomorrow handled here */
441 )*60 + min /* now have minutes */
442 )*60 + sec; /* finally seconds */
443 }
444 EXPORT_SYMBOL(mktime64);
445
446 /**
447 * set_normalized_timespec - set timespec sec and nsec parts and normalize
448 *
449 * @ts: pointer to timespec variable to be set
450 * @sec: seconds to set
451 * @nsec: nanoseconds to set
452 *
453 * Set seconds and nanoseconds field of a timespec variable and
454 * normalize to the timespec storage format
455 *
456 * Note: The tv_nsec part is always in the range of
457 * 0 <= tv_nsec < NSEC_PER_SEC
458 * For negative values only the tv_sec field is negative !
459 */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)460 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
461 {
462 while (nsec >= NSEC_PER_SEC) {
463 /*
464 * The following asm() prevents the compiler from
465 * optimising this loop into a modulo operation. See
466 * also __iter_div_u64_rem() in include/linux/time.h
467 */
468 asm("" : "+rm"(nsec));
469 nsec -= NSEC_PER_SEC;
470 ++sec;
471 }
472 while (nsec < 0) {
473 asm("" : "+rm"(nsec));
474 nsec += NSEC_PER_SEC;
475 --sec;
476 }
477 ts->tv_sec = sec;
478 ts->tv_nsec = nsec;
479 }
480 EXPORT_SYMBOL(set_normalized_timespec);
481
482 /**
483 * ns_to_timespec - Convert nanoseconds to timespec
484 * @nsec: the nanoseconds value to be converted
485 *
486 * Returns the timespec representation of the nsec parameter.
487 */
ns_to_timespec(const s64 nsec)488 struct timespec ns_to_timespec(const s64 nsec)
489 {
490 struct timespec ts;
491 s32 rem;
492
493 if (!nsec)
494 return (struct timespec) {0, 0};
495
496 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
497 if (unlikely(rem < 0)) {
498 ts.tv_sec--;
499 rem += NSEC_PER_SEC;
500 }
501 ts.tv_nsec = rem;
502
503 return ts;
504 }
505 EXPORT_SYMBOL(ns_to_timespec);
506
507 /**
508 * ns_to_timeval - Convert nanoseconds to timeval
509 * @nsec: the nanoseconds value to be converted
510 *
511 * Returns the timeval representation of the nsec parameter.
512 */
ns_to_timeval(const s64 nsec)513 struct timeval ns_to_timeval(const s64 nsec)
514 {
515 struct timespec ts = ns_to_timespec(nsec);
516 struct timeval tv;
517
518 tv.tv_sec = ts.tv_sec;
519 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
520
521 return tv;
522 }
523 EXPORT_SYMBOL(ns_to_timeval);
524
525 #if BITS_PER_LONG == 32
526 /**
527 * set_normalized_timespec - set timespec sec and nsec parts and normalize
528 *
529 * @ts: pointer to timespec variable to be set
530 * @sec: seconds to set
531 * @nsec: nanoseconds to set
532 *
533 * Set seconds and nanoseconds field of a timespec variable and
534 * normalize to the timespec storage format
535 *
536 * Note: The tv_nsec part is always in the range of
537 * 0 <= tv_nsec < NSEC_PER_SEC
538 * For negative values only the tv_sec field is negative !
539 */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)540 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
541 {
542 while (nsec >= NSEC_PER_SEC) {
543 /*
544 * The following asm() prevents the compiler from
545 * optimising this loop into a modulo operation. See
546 * also __iter_div_u64_rem() in include/linux/time.h
547 */
548 asm("" : "+rm"(nsec));
549 nsec -= NSEC_PER_SEC;
550 ++sec;
551 }
552 while (nsec < 0) {
553 asm("" : "+rm"(nsec));
554 nsec += NSEC_PER_SEC;
555 --sec;
556 }
557 ts->tv_sec = sec;
558 ts->tv_nsec = nsec;
559 }
560 EXPORT_SYMBOL(set_normalized_timespec64);
561
562 /**
563 * ns_to_timespec64 - Convert nanoseconds to timespec64
564 * @nsec: the nanoseconds value to be converted
565 *
566 * Returns the timespec64 representation of the nsec parameter.
567 */
ns_to_timespec64(const s64 nsec)568 struct timespec64 ns_to_timespec64(const s64 nsec)
569 {
570 struct timespec64 ts;
571 s32 rem;
572
573 if (!nsec)
574 return (struct timespec64) {0, 0};
575
576 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
577 if (unlikely(rem < 0)) {
578 ts.tv_sec--;
579 rem += NSEC_PER_SEC;
580 }
581 ts.tv_nsec = rem;
582
583 return ts;
584 }
585 EXPORT_SYMBOL(ns_to_timespec64);
586 #endif
587 /**
588 * msecs_to_jiffies: - convert milliseconds to jiffies
589 * @m: time in milliseconds
590 *
591 * conversion is done as follows:
592 *
593 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
594 *
595 * - 'too large' values [that would result in larger than
596 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
597 *
598 * - all other values are converted to jiffies by either multiplying
599 * the input value by a factor or dividing it with a factor and
600 * handling any 32-bit overflows.
601 * for the details see __msecs_to_jiffies()
602 *
603 * msecs_to_jiffies() checks for the passed in value being a constant
604 * via __builtin_constant_p() allowing gcc to eliminate most of the
605 * code, __msecs_to_jiffies() is called if the value passed does not
606 * allow constant folding and the actual conversion must be done at
607 * runtime.
608 * the _msecs_to_jiffies helpers are the HZ dependent conversion
609 * routines found in include/linux/jiffies.h
610 */
__msecs_to_jiffies(const unsigned int m)611 unsigned long __msecs_to_jiffies(const unsigned int m)
612 {
613 /*
614 * Negative value, means infinite timeout:
615 */
616 if ((int)m < 0)
617 return MAX_JIFFY_OFFSET;
618 return _msecs_to_jiffies(m);
619 }
620 EXPORT_SYMBOL(__msecs_to_jiffies);
621
__usecs_to_jiffies(const unsigned int u)622 unsigned long __usecs_to_jiffies(const unsigned int u)
623 {
624 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
625 return MAX_JIFFY_OFFSET;
626 return _usecs_to_jiffies(u);
627 }
628 EXPORT_SYMBOL(__usecs_to_jiffies);
629
630 /*
631 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
632 * that a remainder subtract here would not do the right thing as the
633 * resolution values don't fall on second boundries. I.e. the line:
634 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
635 * Note that due to the small error in the multiplier here, this
636 * rounding is incorrect for sufficiently large values of tv_nsec, but
637 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
638 * OK.
639 *
640 * Rather, we just shift the bits off the right.
641 *
642 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
643 * value to a scaled second value.
644 */
645 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)646 __timespec64_to_jiffies(u64 sec, long nsec)
647 {
648 nsec = nsec + TICK_NSEC - 1;
649
650 if (sec >= MAX_SEC_IN_JIFFIES){
651 sec = MAX_SEC_IN_JIFFIES;
652 nsec = 0;
653 }
654 return ((sec * SEC_CONVERSION) +
655 (((u64)nsec * NSEC_CONVERSION) >>
656 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
657
658 }
659
660 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)661 __timespec_to_jiffies(unsigned long sec, long nsec)
662 {
663 return __timespec64_to_jiffies((u64)sec, nsec);
664 }
665
666 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)667 timespec64_to_jiffies(const struct timespec64 *value)
668 {
669 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
670 }
671 EXPORT_SYMBOL(timespec64_to_jiffies);
672
673 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)674 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
675 {
676 /*
677 * Convert jiffies to nanoseconds and separate with
678 * one divide.
679 */
680 u32 rem;
681 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
682 NSEC_PER_SEC, &rem);
683 value->tv_nsec = rem;
684 }
685 EXPORT_SYMBOL(jiffies_to_timespec64);
686
687 /*
688 * We could use a similar algorithm to timespec_to_jiffies (with a
689 * different multiplier for usec instead of nsec). But this has a
690 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
691 * usec value, since it's not necessarily integral.
692 *
693 * We could instead round in the intermediate scaled representation
694 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
695 * perilous: the scaling introduces a small positive error, which
696 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
697 * units to the intermediate before shifting) leads to accidental
698 * overflow and overestimates.
699 *
700 * At the cost of one additional multiplication by a constant, just
701 * use the timespec implementation.
702 */
703 unsigned long
timeval_to_jiffies(const struct timeval * value)704 timeval_to_jiffies(const struct timeval *value)
705 {
706 return __timespec_to_jiffies(value->tv_sec,
707 value->tv_usec * NSEC_PER_USEC);
708 }
709 EXPORT_SYMBOL(timeval_to_jiffies);
710
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)711 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
712 {
713 /*
714 * Convert jiffies to nanoseconds and separate with
715 * one divide.
716 */
717 u32 rem;
718
719 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
720 NSEC_PER_SEC, &rem);
721 value->tv_usec = rem / NSEC_PER_USEC;
722 }
723 EXPORT_SYMBOL(jiffies_to_timeval);
724
725 /*
726 * Convert jiffies/jiffies_64 to clock_t and back.
727 */
jiffies_to_clock_t(unsigned long x)728 clock_t jiffies_to_clock_t(unsigned long x)
729 {
730 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
731 # if HZ < USER_HZ
732 return x * (USER_HZ / HZ);
733 # else
734 return x / (HZ / USER_HZ);
735 # endif
736 #else
737 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
738 #endif
739 }
740 EXPORT_SYMBOL(jiffies_to_clock_t);
741
clock_t_to_jiffies(unsigned long x)742 unsigned long clock_t_to_jiffies(unsigned long x)
743 {
744 #if (HZ % USER_HZ)==0
745 if (x >= ~0UL / (HZ / USER_HZ))
746 return ~0UL;
747 return x * (HZ / USER_HZ);
748 #else
749 /* Don't worry about loss of precision here .. */
750 if (x >= ~0UL / HZ * USER_HZ)
751 return ~0UL;
752
753 /* .. but do try to contain it here */
754 return div_u64((u64)x * HZ, USER_HZ);
755 #endif
756 }
757 EXPORT_SYMBOL(clock_t_to_jiffies);
758
jiffies_64_to_clock_t(u64 x)759 u64 jiffies_64_to_clock_t(u64 x)
760 {
761 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
762 # if HZ < USER_HZ
763 x = div_u64(x * USER_HZ, HZ);
764 # elif HZ > USER_HZ
765 x = div_u64(x, HZ / USER_HZ);
766 # else
767 /* Nothing to do */
768 # endif
769 #else
770 /*
771 * There are better ways that don't overflow early,
772 * but even this doesn't overflow in hundreds of years
773 * in 64 bits, so..
774 */
775 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
776 #endif
777 return x;
778 }
779 EXPORT_SYMBOL(jiffies_64_to_clock_t);
780
nsec_to_clock_t(u64 x)781 u64 nsec_to_clock_t(u64 x)
782 {
783 #if (NSEC_PER_SEC % USER_HZ) == 0
784 return div_u64(x, NSEC_PER_SEC / USER_HZ);
785 #elif (USER_HZ % 512) == 0
786 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
787 #else
788 /*
789 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
790 * overflow after 64.99 years.
791 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
792 */
793 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
794 #endif
795 }
796
jiffies64_to_nsecs(u64 j)797 u64 jiffies64_to_nsecs(u64 j)
798 {
799 #if !(NSEC_PER_SEC % HZ)
800 return (NSEC_PER_SEC / HZ) * j;
801 # else
802 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
803 #endif
804 }
805 EXPORT_SYMBOL(jiffies64_to_nsecs);
806
807 /**
808 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
809 *
810 * @n: nsecs in u64
811 *
812 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
813 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
814 * for scheduler, not for use in device drivers to calculate timeout value.
815 *
816 * note:
817 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
818 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
819 */
nsecs_to_jiffies64(u64 n)820 u64 nsecs_to_jiffies64(u64 n)
821 {
822 #if (NSEC_PER_SEC % HZ) == 0
823 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
824 return div_u64(n, NSEC_PER_SEC / HZ);
825 #elif (HZ % 512) == 0
826 /* overflow after 292 years if HZ = 1024 */
827 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
828 #else
829 /*
830 * Generic case - optimized for cases where HZ is a multiple of 3.
831 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
832 */
833 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
834 #endif
835 }
836 EXPORT_SYMBOL(nsecs_to_jiffies64);
837
838 /**
839 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
840 *
841 * @n: nsecs in u64
842 *
843 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
844 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
845 * for scheduler, not for use in device drivers to calculate timeout value.
846 *
847 * note:
848 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
849 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
850 */
nsecs_to_jiffies(u64 n)851 unsigned long nsecs_to_jiffies(u64 n)
852 {
853 return (unsigned long)nsecs_to_jiffies64(n);
854 }
855 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
856
857 /*
858 * Add two timespec values and do a safety check for overflow.
859 * It's assumed that both values are valid (>= 0)
860 */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)861 struct timespec timespec_add_safe(const struct timespec lhs,
862 const struct timespec rhs)
863 {
864 struct timespec res;
865
866 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
867 lhs.tv_nsec + rhs.tv_nsec);
868
869 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
870 res.tv_sec = TIME_T_MAX;
871
872 return res;
873 }
874
875 /*
876 * Add two timespec64 values and do a safety check for overflow.
877 * It's assumed that both values are valid (>= 0).
878 * And, each timespec64 is in normalized form.
879 */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)880 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
881 const struct timespec64 rhs)
882 {
883 struct timespec64 res;
884
885 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
886 lhs.tv_nsec + rhs.tv_nsec);
887
888 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
889 res.tv_sec = TIME64_MAX;
890 res.tv_nsec = 0;
891 }
892
893 return res;
894 }
895
get_timespec64(struct timespec64 * ts,const struct timespec __user * uts)896 int get_timespec64(struct timespec64 *ts,
897 const struct timespec __user *uts)
898 {
899 struct timespec kts;
900 int ret;
901
902 ret = copy_from_user(&kts, uts, sizeof(kts));
903 if (ret)
904 return -EFAULT;
905
906 ts->tv_sec = kts.tv_sec;
907 ts->tv_nsec = kts.tv_nsec;
908
909 return 0;
910 }
911 EXPORT_SYMBOL_GPL(get_timespec64);
912
put_timespec64(const struct timespec64 * ts,struct timespec __user * uts)913 int put_timespec64(const struct timespec64 *ts,
914 struct timespec __user *uts)
915 {
916 struct timespec kts = {
917 .tv_sec = ts->tv_sec,
918 .tv_nsec = ts->tv_nsec
919 };
920 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
921 }
922 EXPORT_SYMBOL_GPL(put_timespec64);
923
get_itimerspec64(struct itimerspec64 * it,const struct itimerspec __user * uit)924 int get_itimerspec64(struct itimerspec64 *it,
925 const struct itimerspec __user *uit)
926 {
927 int ret;
928
929 ret = get_timespec64(&it->it_interval, &uit->it_interval);
930 if (ret)
931 return ret;
932
933 ret = get_timespec64(&it->it_value, &uit->it_value);
934
935 return ret;
936 }
937 EXPORT_SYMBOL_GPL(get_itimerspec64);
938
put_itimerspec64(const struct itimerspec64 * it,struct itimerspec __user * uit)939 int put_itimerspec64(const struct itimerspec64 *it,
940 struct itimerspec __user *uit)
941 {
942 int ret;
943
944 ret = put_timespec64(&it->it_interval, &uit->it_interval);
945 if (ret)
946 return ret;
947
948 ret = put_timespec64(&it->it_value, &uit->it_value);
949
950 return ret;
951 }
952 EXPORT_SYMBOL_GPL(put_itimerspec64);
953