• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41 
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45 
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48 
49 /*
50  * The timezone where the local system is located.  Used as a default by some
51  * programs who obtain this value by using gettimeofday.
52  */
53 struct timezone sys_tz;
54 
55 EXPORT_SYMBOL(sys_tz);
56 
57 #ifdef __ARCH_WANT_SYS_TIME
58 
59 /*
60  * sys_time() can be implemented in user-level using
61  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
62  * why not move it into the appropriate arch directory (for those
63  * architectures that need it).
64  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67 	time_t i = get_seconds();
68 
69 	if (tloc) {
70 		if (put_user(i,tloc))
71 			return -EFAULT;
72 	}
73 	force_successful_syscall_return();
74 	return i;
75 }
76 
77 /*
78  * sys_stime() can be implemented in user-level using
79  * sys_settimeofday().  Is this for backwards compatibility?  If so,
80  * why not move it into the appropriate arch directory (for those
81  * architectures that need it).
82  */
83 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86 	struct timespec tv;
87 	int err;
88 
89 	if (get_user(tv.tv_sec, tptr))
90 		return -EFAULT;
91 
92 	tv.tv_nsec = 0;
93 
94 	err = security_settime(&tv, NULL);
95 	if (err)
96 		return err;
97 
98 	do_settimeofday(&tv);
99 	return 0;
100 }
101 
102 #endif /* __ARCH_WANT_SYS_TIME */
103 
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106 
107 /* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time,compat_time_t __user *,tloc)108 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109 {
110 	struct timeval tv;
111 	compat_time_t i;
112 
113 	do_gettimeofday(&tv);
114 	i = tv.tv_sec;
115 
116 	if (tloc) {
117 		if (put_user(i,tloc))
118 			return -EFAULT;
119 	}
120 	force_successful_syscall_return();
121 	return i;
122 }
123 
COMPAT_SYSCALL_DEFINE1(stime,compat_time_t __user *,tptr)124 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
125 {
126 	struct timespec tv;
127 	int err;
128 
129 	if (get_user(tv.tv_sec, tptr))
130 		return -EFAULT;
131 
132 	tv.tv_nsec = 0;
133 
134 	err = security_settime(&tv, NULL);
135 	if (err)
136 		return err;
137 
138 	do_settimeofday(&tv);
139 	return 0;
140 }
141 
142 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143 #endif
144 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)145 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
146 		struct timezone __user *, tz)
147 {
148 	if (likely(tv != NULL)) {
149 		struct timeval ktv;
150 		do_gettimeofday(&ktv);
151 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
152 			return -EFAULT;
153 	}
154 	if (unlikely(tz != NULL)) {
155 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156 			return -EFAULT;
157 	}
158 	return 0;
159 }
160 
161 /*
162  * Indicates if there is an offset between the system clock and the hardware
163  * clock/persistent clock/rtc.
164  */
165 int persistent_clock_is_local;
166 
167 /*
168  * Adjust the time obtained from the CMOS to be UTC time instead of
169  * local time.
170  *
171  * This is ugly, but preferable to the alternatives.  Otherwise we
172  * would either need to write a program to do it in /etc/rc (and risk
173  * confusion if the program gets run more than once; it would also be
174  * hard to make the program warp the clock precisely n hours)  or
175  * compile in the timezone information into the kernel.  Bad, bad....
176  *
177  *						- TYT, 1992-01-01
178  *
179  * The best thing to do is to keep the CMOS clock in universal time (UTC)
180  * as real UNIX machines always do it. This avoids all headaches about
181  * daylight saving times and warping kernel clocks.
182  */
warp_clock(void)183 static inline void warp_clock(void)
184 {
185 	if (sys_tz.tz_minuteswest != 0) {
186 		struct timespec adjust;
187 
188 		persistent_clock_is_local = 1;
189 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
190 		adjust.tv_nsec = 0;
191 		timekeeping_inject_offset(&adjust);
192 	}
193 }
194 
195 /*
196  * In case for some reason the CMOS clock has not already been running
197  * in UTC, but in some local time: The first time we set the timezone,
198  * we will warp the clock so that it is ticking UTC time instead of
199  * local time. Presumably, if someone is setting the timezone then we
200  * are running in an environment where the programs understand about
201  * timezones. This should be done at boot time in the /etc/rc script,
202  * as soon as possible, so that the clock can be set right. Otherwise,
203  * various programs will get confused when the clock gets warped.
204  */
205 
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)206 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
207 {
208 	static int firsttime = 1;
209 	int error = 0;
210 
211 	if (tv && !timespec64_valid(tv))
212 		return -EINVAL;
213 
214 	error = security_settime64(tv, tz);
215 	if (error)
216 		return error;
217 
218 	if (tz) {
219 		/* Verify we're witin the +-15 hrs range */
220 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
221 			return -EINVAL;
222 
223 		sys_tz = *tz;
224 		update_vsyscall_tz();
225 		if (firsttime) {
226 			firsttime = 0;
227 			if (!tv)
228 				warp_clock();
229 		}
230 	}
231 	if (tv)
232 		return do_settimeofday64(tv);
233 	return 0;
234 }
235 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)236 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
237 		struct timezone __user *, tz)
238 {
239 	struct timespec64 new_ts;
240 	struct timeval user_tv;
241 	struct timezone new_tz;
242 
243 	if (tv) {
244 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
245 			return -EFAULT;
246 
247 		if (!timeval_valid(&user_tv))
248 			return -EINVAL;
249 
250 		new_ts.tv_sec = user_tv.tv_sec;
251 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
252 	}
253 	if (tz) {
254 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
255 			return -EFAULT;
256 	}
257 
258 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
259 }
260 
261 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)262 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
263 		       struct timezone __user *, tz)
264 {
265 	if (tv) {
266 		struct timeval ktv;
267 
268 		do_gettimeofday(&ktv);
269 		if (compat_put_timeval(&ktv, tv))
270 			return -EFAULT;
271 	}
272 	if (tz) {
273 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
274 			return -EFAULT;
275 	}
276 
277 	return 0;
278 }
279 
COMPAT_SYSCALL_DEFINE2(settimeofday,struct compat_timeval __user *,tv,struct timezone __user *,tz)280 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
281 		       struct timezone __user *, tz)
282 {
283 	struct timespec64 new_ts;
284 	struct timeval user_tv;
285 	struct timezone new_tz;
286 
287 	if (tv) {
288 		if (compat_get_timeval(&user_tv, tv))
289 			return -EFAULT;
290 		new_ts.tv_sec = user_tv.tv_sec;
291 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
292 	}
293 	if (tz) {
294 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
295 			return -EFAULT;
296 	}
297 
298 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
299 }
300 #endif
301 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)302 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
303 {
304 	struct timex txc;		/* Local copy of parameter */
305 	int ret;
306 
307 	/* Copy the user data space into the kernel copy
308 	 * structure. But bear in mind that the structures
309 	 * may change
310 	 */
311 	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
312 		return -EFAULT;
313 	ret = do_adjtimex(&txc);
314 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
315 }
316 
317 #ifdef CONFIG_COMPAT
318 
COMPAT_SYSCALL_DEFINE1(adjtimex,struct compat_timex __user *,utp)319 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
320 {
321 	struct timex txc;
322 	int err, ret;
323 
324 	err = compat_get_timex(&txc, utp);
325 	if (err)
326 		return err;
327 
328 	ret = do_adjtimex(&txc);
329 
330 	err = compat_put_timex(utp, &txc);
331 	if (err)
332 		return err;
333 
334 	return ret;
335 }
336 #endif
337 
338 /*
339  * Convert jiffies to milliseconds and back.
340  *
341  * Avoid unnecessary multiplications/divisions in the
342  * two most common HZ cases:
343  */
jiffies_to_msecs(const unsigned long j)344 unsigned int jiffies_to_msecs(const unsigned long j)
345 {
346 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
347 	return (MSEC_PER_SEC / HZ) * j;
348 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
349 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
350 #else
351 # if BITS_PER_LONG == 32
352 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
353 	       HZ_TO_MSEC_SHR32;
354 # else
355 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
356 # endif
357 #endif
358 }
359 EXPORT_SYMBOL(jiffies_to_msecs);
360 
jiffies_to_usecs(const unsigned long j)361 unsigned int jiffies_to_usecs(const unsigned long j)
362 {
363 	/*
364 	 * Hz usually doesn't go much further MSEC_PER_SEC.
365 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
366 	 */
367 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
368 
369 #if !(USEC_PER_SEC % HZ)
370 	return (USEC_PER_SEC / HZ) * j;
371 #else
372 # if BITS_PER_LONG == 32
373 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
374 # else
375 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
376 # endif
377 #endif
378 }
379 EXPORT_SYMBOL(jiffies_to_usecs);
380 
381 /**
382  * timespec_trunc - Truncate timespec to a granularity
383  * @t: Timespec
384  * @gran: Granularity in ns.
385  *
386  * Truncate a timespec to a granularity. Always rounds down. gran must
387  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
388  */
timespec_trunc(struct timespec t,unsigned gran)389 struct timespec timespec_trunc(struct timespec t, unsigned gran)
390 {
391 	/* Avoid division in the common cases 1 ns and 1 s. */
392 	if (gran == 1) {
393 		/* nothing */
394 	} else if (gran == NSEC_PER_SEC) {
395 		t.tv_nsec = 0;
396 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
397 		t.tv_nsec -= t.tv_nsec % gran;
398 	} else {
399 		WARN(1, "illegal file time granularity: %u", gran);
400 	}
401 	return t;
402 }
403 EXPORT_SYMBOL(timespec_trunc);
404 
405 /*
406  * mktime64 - Converts date to seconds.
407  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
408  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
409  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
410  *
411  * [For the Julian calendar (which was used in Russia before 1917,
412  * Britain & colonies before 1752, anywhere else before 1582,
413  * and is still in use by some communities) leave out the
414  * -year/100+year/400 terms, and add 10.]
415  *
416  * This algorithm was first published by Gauss (I think).
417  *
418  * A leap second can be indicated by calling this function with sec as
419  * 60 (allowable under ISO 8601).  The leap second is treated the same
420  * as the following second since they don't exist in UNIX time.
421  *
422  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
423  * tomorrow - (allowable under ISO 8601) is supported.
424  */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)425 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
426 		const unsigned int day, const unsigned int hour,
427 		const unsigned int min, const unsigned int sec)
428 {
429 	unsigned int mon = mon0, year = year0;
430 
431 	/* 1..12 -> 11,12,1..10 */
432 	if (0 >= (int) (mon -= 2)) {
433 		mon += 12;	/* Puts Feb last since it has leap day */
434 		year -= 1;
435 	}
436 
437 	return ((((time64_t)
438 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
439 		  year*365 - 719499
440 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
441 	  )*60 + min /* now have minutes */
442 	)*60 + sec; /* finally seconds */
443 }
444 EXPORT_SYMBOL(mktime64);
445 
446 /**
447  * set_normalized_timespec - set timespec sec and nsec parts and normalize
448  *
449  * @ts:		pointer to timespec variable to be set
450  * @sec:	seconds to set
451  * @nsec:	nanoseconds to set
452  *
453  * Set seconds and nanoseconds field of a timespec variable and
454  * normalize to the timespec storage format
455  *
456  * Note: The tv_nsec part is always in the range of
457  *	0 <= tv_nsec < NSEC_PER_SEC
458  * For negative values only the tv_sec field is negative !
459  */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)460 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
461 {
462 	while (nsec >= NSEC_PER_SEC) {
463 		/*
464 		 * The following asm() prevents the compiler from
465 		 * optimising this loop into a modulo operation. See
466 		 * also __iter_div_u64_rem() in include/linux/time.h
467 		 */
468 		asm("" : "+rm"(nsec));
469 		nsec -= NSEC_PER_SEC;
470 		++sec;
471 	}
472 	while (nsec < 0) {
473 		asm("" : "+rm"(nsec));
474 		nsec += NSEC_PER_SEC;
475 		--sec;
476 	}
477 	ts->tv_sec = sec;
478 	ts->tv_nsec = nsec;
479 }
480 EXPORT_SYMBOL(set_normalized_timespec);
481 
482 /**
483  * ns_to_timespec - Convert nanoseconds to timespec
484  * @nsec:       the nanoseconds value to be converted
485  *
486  * Returns the timespec representation of the nsec parameter.
487  */
ns_to_timespec(const s64 nsec)488 struct timespec ns_to_timespec(const s64 nsec)
489 {
490 	struct timespec ts;
491 	s32 rem;
492 
493 	if (!nsec)
494 		return (struct timespec) {0, 0};
495 
496 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
497 	if (unlikely(rem < 0)) {
498 		ts.tv_sec--;
499 		rem += NSEC_PER_SEC;
500 	}
501 	ts.tv_nsec = rem;
502 
503 	return ts;
504 }
505 EXPORT_SYMBOL(ns_to_timespec);
506 
507 /**
508  * ns_to_timeval - Convert nanoseconds to timeval
509  * @nsec:       the nanoseconds value to be converted
510  *
511  * Returns the timeval representation of the nsec parameter.
512  */
ns_to_timeval(const s64 nsec)513 struct timeval ns_to_timeval(const s64 nsec)
514 {
515 	struct timespec ts = ns_to_timespec(nsec);
516 	struct timeval tv;
517 
518 	tv.tv_sec = ts.tv_sec;
519 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
520 
521 	return tv;
522 }
523 EXPORT_SYMBOL(ns_to_timeval);
524 
525 #if BITS_PER_LONG == 32
526 /**
527  * set_normalized_timespec - set timespec sec and nsec parts and normalize
528  *
529  * @ts:		pointer to timespec variable to be set
530  * @sec:	seconds to set
531  * @nsec:	nanoseconds to set
532  *
533  * Set seconds and nanoseconds field of a timespec variable and
534  * normalize to the timespec storage format
535  *
536  * Note: The tv_nsec part is always in the range of
537  *	0 <= tv_nsec < NSEC_PER_SEC
538  * For negative values only the tv_sec field is negative !
539  */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)540 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
541 {
542 	while (nsec >= NSEC_PER_SEC) {
543 		/*
544 		 * The following asm() prevents the compiler from
545 		 * optimising this loop into a modulo operation. See
546 		 * also __iter_div_u64_rem() in include/linux/time.h
547 		 */
548 		asm("" : "+rm"(nsec));
549 		nsec -= NSEC_PER_SEC;
550 		++sec;
551 	}
552 	while (nsec < 0) {
553 		asm("" : "+rm"(nsec));
554 		nsec += NSEC_PER_SEC;
555 		--sec;
556 	}
557 	ts->tv_sec = sec;
558 	ts->tv_nsec = nsec;
559 }
560 EXPORT_SYMBOL(set_normalized_timespec64);
561 
562 /**
563  * ns_to_timespec64 - Convert nanoseconds to timespec64
564  * @nsec:       the nanoseconds value to be converted
565  *
566  * Returns the timespec64 representation of the nsec parameter.
567  */
ns_to_timespec64(const s64 nsec)568 struct timespec64 ns_to_timespec64(const s64 nsec)
569 {
570 	struct timespec64 ts;
571 	s32 rem;
572 
573 	if (!nsec)
574 		return (struct timespec64) {0, 0};
575 
576 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
577 	if (unlikely(rem < 0)) {
578 		ts.tv_sec--;
579 		rem += NSEC_PER_SEC;
580 	}
581 	ts.tv_nsec = rem;
582 
583 	return ts;
584 }
585 EXPORT_SYMBOL(ns_to_timespec64);
586 #endif
587 /**
588  * msecs_to_jiffies: - convert milliseconds to jiffies
589  * @m:	time in milliseconds
590  *
591  * conversion is done as follows:
592  *
593  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
594  *
595  * - 'too large' values [that would result in larger than
596  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
597  *
598  * - all other values are converted to jiffies by either multiplying
599  *   the input value by a factor or dividing it with a factor and
600  *   handling any 32-bit overflows.
601  *   for the details see __msecs_to_jiffies()
602  *
603  * msecs_to_jiffies() checks for the passed in value being a constant
604  * via __builtin_constant_p() allowing gcc to eliminate most of the
605  * code, __msecs_to_jiffies() is called if the value passed does not
606  * allow constant folding and the actual conversion must be done at
607  * runtime.
608  * the _msecs_to_jiffies helpers are the HZ dependent conversion
609  * routines found in include/linux/jiffies.h
610  */
__msecs_to_jiffies(const unsigned int m)611 unsigned long __msecs_to_jiffies(const unsigned int m)
612 {
613 	/*
614 	 * Negative value, means infinite timeout:
615 	 */
616 	if ((int)m < 0)
617 		return MAX_JIFFY_OFFSET;
618 	return _msecs_to_jiffies(m);
619 }
620 EXPORT_SYMBOL(__msecs_to_jiffies);
621 
__usecs_to_jiffies(const unsigned int u)622 unsigned long __usecs_to_jiffies(const unsigned int u)
623 {
624 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
625 		return MAX_JIFFY_OFFSET;
626 	return _usecs_to_jiffies(u);
627 }
628 EXPORT_SYMBOL(__usecs_to_jiffies);
629 
630 /*
631  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
632  * that a remainder subtract here would not do the right thing as the
633  * resolution values don't fall on second boundries.  I.e. the line:
634  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
635  * Note that due to the small error in the multiplier here, this
636  * rounding is incorrect for sufficiently large values of tv_nsec, but
637  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
638  * OK.
639  *
640  * Rather, we just shift the bits off the right.
641  *
642  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
643  * value to a scaled second value.
644  */
645 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)646 __timespec64_to_jiffies(u64 sec, long nsec)
647 {
648 	nsec = nsec + TICK_NSEC - 1;
649 
650 	if (sec >= MAX_SEC_IN_JIFFIES){
651 		sec = MAX_SEC_IN_JIFFIES;
652 		nsec = 0;
653 	}
654 	return ((sec * SEC_CONVERSION) +
655 		(((u64)nsec * NSEC_CONVERSION) >>
656 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
657 
658 }
659 
660 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)661 __timespec_to_jiffies(unsigned long sec, long nsec)
662 {
663 	return __timespec64_to_jiffies((u64)sec, nsec);
664 }
665 
666 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)667 timespec64_to_jiffies(const struct timespec64 *value)
668 {
669 	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
670 }
671 EXPORT_SYMBOL(timespec64_to_jiffies);
672 
673 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)674 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
675 {
676 	/*
677 	 * Convert jiffies to nanoseconds and separate with
678 	 * one divide.
679 	 */
680 	u32 rem;
681 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
682 				    NSEC_PER_SEC, &rem);
683 	value->tv_nsec = rem;
684 }
685 EXPORT_SYMBOL(jiffies_to_timespec64);
686 
687 /*
688  * We could use a similar algorithm to timespec_to_jiffies (with a
689  * different multiplier for usec instead of nsec). But this has a
690  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
691  * usec value, since it's not necessarily integral.
692  *
693  * We could instead round in the intermediate scaled representation
694  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
695  * perilous: the scaling introduces a small positive error, which
696  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
697  * units to the intermediate before shifting) leads to accidental
698  * overflow and overestimates.
699  *
700  * At the cost of one additional multiplication by a constant, just
701  * use the timespec implementation.
702  */
703 unsigned long
timeval_to_jiffies(const struct timeval * value)704 timeval_to_jiffies(const struct timeval *value)
705 {
706 	return __timespec_to_jiffies(value->tv_sec,
707 				     value->tv_usec * NSEC_PER_USEC);
708 }
709 EXPORT_SYMBOL(timeval_to_jiffies);
710 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)711 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
712 {
713 	/*
714 	 * Convert jiffies to nanoseconds and separate with
715 	 * one divide.
716 	 */
717 	u32 rem;
718 
719 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
720 				    NSEC_PER_SEC, &rem);
721 	value->tv_usec = rem / NSEC_PER_USEC;
722 }
723 EXPORT_SYMBOL(jiffies_to_timeval);
724 
725 /*
726  * Convert jiffies/jiffies_64 to clock_t and back.
727  */
jiffies_to_clock_t(unsigned long x)728 clock_t jiffies_to_clock_t(unsigned long x)
729 {
730 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
731 # if HZ < USER_HZ
732 	return x * (USER_HZ / HZ);
733 # else
734 	return x / (HZ / USER_HZ);
735 # endif
736 #else
737 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
738 #endif
739 }
740 EXPORT_SYMBOL(jiffies_to_clock_t);
741 
clock_t_to_jiffies(unsigned long x)742 unsigned long clock_t_to_jiffies(unsigned long x)
743 {
744 #if (HZ % USER_HZ)==0
745 	if (x >= ~0UL / (HZ / USER_HZ))
746 		return ~0UL;
747 	return x * (HZ / USER_HZ);
748 #else
749 	/* Don't worry about loss of precision here .. */
750 	if (x >= ~0UL / HZ * USER_HZ)
751 		return ~0UL;
752 
753 	/* .. but do try to contain it here */
754 	return div_u64((u64)x * HZ, USER_HZ);
755 #endif
756 }
757 EXPORT_SYMBOL(clock_t_to_jiffies);
758 
jiffies_64_to_clock_t(u64 x)759 u64 jiffies_64_to_clock_t(u64 x)
760 {
761 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
762 # if HZ < USER_HZ
763 	x = div_u64(x * USER_HZ, HZ);
764 # elif HZ > USER_HZ
765 	x = div_u64(x, HZ / USER_HZ);
766 # else
767 	/* Nothing to do */
768 # endif
769 #else
770 	/*
771 	 * There are better ways that don't overflow early,
772 	 * but even this doesn't overflow in hundreds of years
773 	 * in 64 bits, so..
774 	 */
775 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
776 #endif
777 	return x;
778 }
779 EXPORT_SYMBOL(jiffies_64_to_clock_t);
780 
nsec_to_clock_t(u64 x)781 u64 nsec_to_clock_t(u64 x)
782 {
783 #if (NSEC_PER_SEC % USER_HZ) == 0
784 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
785 #elif (USER_HZ % 512) == 0
786 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
787 #else
788 	/*
789          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
790          * overflow after 64.99 years.
791          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
792          */
793 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
794 #endif
795 }
796 
jiffies64_to_nsecs(u64 j)797 u64 jiffies64_to_nsecs(u64 j)
798 {
799 #if !(NSEC_PER_SEC % HZ)
800 	return (NSEC_PER_SEC / HZ) * j;
801 # else
802 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
803 #endif
804 }
805 EXPORT_SYMBOL(jiffies64_to_nsecs);
806 
807 /**
808  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
809  *
810  * @n:	nsecs in u64
811  *
812  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
813  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
814  * for scheduler, not for use in device drivers to calculate timeout value.
815  *
816  * note:
817  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
818  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
819  */
nsecs_to_jiffies64(u64 n)820 u64 nsecs_to_jiffies64(u64 n)
821 {
822 #if (NSEC_PER_SEC % HZ) == 0
823 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
824 	return div_u64(n, NSEC_PER_SEC / HZ);
825 #elif (HZ % 512) == 0
826 	/* overflow after 292 years if HZ = 1024 */
827 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
828 #else
829 	/*
830 	 * Generic case - optimized for cases where HZ is a multiple of 3.
831 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
832 	 */
833 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
834 #endif
835 }
836 EXPORT_SYMBOL(nsecs_to_jiffies64);
837 
838 /**
839  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
840  *
841  * @n:	nsecs in u64
842  *
843  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
844  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
845  * for scheduler, not for use in device drivers to calculate timeout value.
846  *
847  * note:
848  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
849  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
850  */
nsecs_to_jiffies(u64 n)851 unsigned long nsecs_to_jiffies(u64 n)
852 {
853 	return (unsigned long)nsecs_to_jiffies64(n);
854 }
855 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
856 
857 /*
858  * Add two timespec values and do a safety check for overflow.
859  * It's assumed that both values are valid (>= 0)
860  */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)861 struct timespec timespec_add_safe(const struct timespec lhs,
862 				  const struct timespec rhs)
863 {
864 	struct timespec res;
865 
866 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
867 				lhs.tv_nsec + rhs.tv_nsec);
868 
869 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
870 		res.tv_sec = TIME_T_MAX;
871 
872 	return res;
873 }
874 
875 /*
876  * Add two timespec64 values and do a safety check for overflow.
877  * It's assumed that both values are valid (>= 0).
878  * And, each timespec64 is in normalized form.
879  */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)880 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
881 				const struct timespec64 rhs)
882 {
883 	struct timespec64 res;
884 
885 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
886 			lhs.tv_nsec + rhs.tv_nsec);
887 
888 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
889 		res.tv_sec = TIME64_MAX;
890 		res.tv_nsec = 0;
891 	}
892 
893 	return res;
894 }
895 
get_timespec64(struct timespec64 * ts,const struct timespec __user * uts)896 int get_timespec64(struct timespec64 *ts,
897 		   const struct timespec __user *uts)
898 {
899 	struct timespec kts;
900 	int ret;
901 
902 	ret = copy_from_user(&kts, uts, sizeof(kts));
903 	if (ret)
904 		return -EFAULT;
905 
906 	ts->tv_sec = kts.tv_sec;
907 	ts->tv_nsec = kts.tv_nsec;
908 
909 	return 0;
910 }
911 EXPORT_SYMBOL_GPL(get_timespec64);
912 
put_timespec64(const struct timespec64 * ts,struct timespec __user * uts)913 int put_timespec64(const struct timespec64 *ts,
914 		   struct timespec __user *uts)
915 {
916 	struct timespec kts = {
917 		.tv_sec = ts->tv_sec,
918 		.tv_nsec = ts->tv_nsec
919 	};
920 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
921 }
922 EXPORT_SYMBOL_GPL(put_timespec64);
923 
get_itimerspec64(struct itimerspec64 * it,const struct itimerspec __user * uit)924 int get_itimerspec64(struct itimerspec64 *it,
925 			const struct itimerspec __user *uit)
926 {
927 	int ret;
928 
929 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
930 	if (ret)
931 		return ret;
932 
933 	ret = get_timespec64(&it->it_value, &uit->it_value);
934 
935 	return ret;
936 }
937 EXPORT_SYMBOL_GPL(get_itimerspec64);
938 
put_itimerspec64(const struct itimerspec64 * it,struct itimerspec __user * uit)939 int put_itimerspec64(const struct itimerspec64 *it,
940 			struct itimerspec __user *uit)
941 {
942 	int ret;
943 
944 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
945 	if (ret)
946 		return ret;
947 
948 	ret = put_timespec64(&it->it_value, &uit->it_value);
949 
950 	return ret;
951 }
952 EXPORT_SYMBOL_GPL(put_itimerspec64);
953