1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched/signal.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/sched/nohz.h>
44 #include <linux/sched/debug.h>
45 #include <linux/slab.h>
46 #include <linux/compat.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
52 #include <asm/io.h>
53
54 #include "tick-internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
58
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61 EXPORT_SYMBOL(jiffies_64);
62
63 /*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158 /*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164 /* Size of each clock level */
165 #define LVL_BITS 6
166 #define LVL_SIZE (1UL << LVL_BITS)
167 #define LVL_MASK (LVL_SIZE - 1)
168 #define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170 /* Level depth */
171 #if HZ > 100
172 # define LVL_DEPTH 9
173 # else
174 # define LVL_DEPTH 8
175 #endif
176
177 /* The cutoff (max. capacity of the wheel) */
178 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181 /*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187 #ifdef CONFIG_NO_HZ_COMMON
188 # define NR_BASES 2
189 # define BASE_STD 0
190 # define BASE_DEF 1
191 #else
192 # define NR_BASES 1
193 # define BASE_STD 0
194 # define BASE_DEF 0
195 #endif
196
197 struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
200 unsigned long clk;
201 unsigned long next_expiry;
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
205 bool is_idle;
206 bool must_forward_clk;
207 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
208 struct hlist_head vectors[WHEEL_SIZE];
209 } ____cacheline_aligned;
210
211 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
212
213 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214 unsigned int sysctl_timer_migration = 1;
215
timers_update_migration(bool update_nohz)216 void timers_update_migration(bool update_nohz)
217 {
218 bool on = sysctl_timer_migration && tick_nohz_active;
219 unsigned int cpu;
220
221 /* Avoid the loop, if nothing to update */
222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
223 return;
224
225 for_each_possible_cpu(cpu) {
226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
229 if (!update_nohz)
230 continue;
231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
233 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
234 }
235 }
236
timer_migration_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)237 int timer_migration_handler(struct ctl_table *table, int write,
238 void __user *buffer, size_t *lenp,
239 loff_t *ppos)
240 {
241 static DEFINE_MUTEX(mutex);
242 int ret;
243
244 mutex_lock(&mutex);
245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246 if (!ret && write)
247 timers_update_migration(false);
248 mutex_unlock(&mutex);
249 return ret;
250 }
251 #endif
252
round_jiffies_common(unsigned long j,int cpu,bool force_up)253 static unsigned long round_jiffies_common(unsigned long j, int cpu,
254 bool force_up)
255 {
256 int rem;
257 unsigned long original = j;
258
259 /*
260 * We don't want all cpus firing their timers at once hitting the
261 * same lock or cachelines, so we skew each extra cpu with an extra
262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * already did this.
264 * The skew is done by adding 3*cpunr, then round, then subtract this
265 * extra offset again.
266 */
267 j += cpu * 3;
268
269 rem = j % HZ;
270
271 /*
272 * If the target jiffie is just after a whole second (which can happen
273 * due to delays of the timer irq, long irq off times etc etc) then
274 * we should round down to the whole second, not up. Use 1/4th second
275 * as cutoff for this rounding as an extreme upper bound for this.
276 * But never round down if @force_up is set.
277 */
278 if (rem < HZ/4 && !force_up) /* round down */
279 j = j - rem;
280 else /* round up */
281 j = j - rem + HZ;
282
283 /* now that we have rounded, subtract the extra skew again */
284 j -= cpu * 3;
285
286 /*
287 * Make sure j is still in the future. Otherwise return the
288 * unmodified value.
289 */
290 return time_is_after_jiffies(j) ? j : original;
291 }
292
293 /**
294 * __round_jiffies - function to round jiffies to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 * @cpu: the processor number on which the timeout will happen
297 *
298 * __round_jiffies() rounds an absolute time in the future (in jiffies)
299 * up or down to (approximately) full seconds. This is useful for timers
300 * for which the exact time they fire does not matter too much, as long as
301 * they fire approximately every X seconds.
302 *
303 * By rounding these timers to whole seconds, all such timers will fire
304 * at the same time, rather than at various times spread out. The goal
305 * of this is to have the CPU wake up less, which saves power.
306 *
307 * The exact rounding is skewed for each processor to avoid all
308 * processors firing at the exact same time, which could lead
309 * to lock contention or spurious cache line bouncing.
310 *
311 * The return value is the rounded version of the @j parameter.
312 */
__round_jiffies(unsigned long j,int cpu)313 unsigned long __round_jiffies(unsigned long j, int cpu)
314 {
315 return round_jiffies_common(j, cpu, false);
316 }
317 EXPORT_SYMBOL_GPL(__round_jiffies);
318
319 /**
320 * __round_jiffies_relative - function to round jiffies to a full second
321 * @j: the time in (relative) jiffies that should be rounded
322 * @cpu: the processor number on which the timeout will happen
323 *
324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
325 * up or down to (approximately) full seconds. This is useful for timers
326 * for which the exact time they fire does not matter too much, as long as
327 * they fire approximately every X seconds.
328 *
329 * By rounding these timers to whole seconds, all such timers will fire
330 * at the same time, rather than at various times spread out. The goal
331 * of this is to have the CPU wake up less, which saves power.
332 *
333 * The exact rounding is skewed for each processor to avoid all
334 * processors firing at the exact same time, which could lead
335 * to lock contention or spurious cache line bouncing.
336 *
337 * The return value is the rounded version of the @j parameter.
338 */
__round_jiffies_relative(unsigned long j,int cpu)339 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
340 {
341 unsigned long j0 = jiffies;
342
343 /* Use j0 because jiffies might change while we run */
344 return round_jiffies_common(j + j0, cpu, false) - j0;
345 }
346 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
347
348 /**
349 * round_jiffies - function to round jiffies to a full second
350 * @j: the time in (absolute) jiffies that should be rounded
351 *
352 * round_jiffies() rounds an absolute time in the future (in jiffies)
353 * up or down to (approximately) full seconds. This is useful for timers
354 * for which the exact time they fire does not matter too much, as long as
355 * they fire approximately every X seconds.
356 *
357 * By rounding these timers to whole seconds, all such timers will fire
358 * at the same time, rather than at various times spread out. The goal
359 * of this is to have the CPU wake up less, which saves power.
360 *
361 * The return value is the rounded version of the @j parameter.
362 */
round_jiffies(unsigned long j)363 unsigned long round_jiffies(unsigned long j)
364 {
365 return round_jiffies_common(j, raw_smp_processor_id(), false);
366 }
367 EXPORT_SYMBOL_GPL(round_jiffies);
368
369 /**
370 * round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
372 *
373 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
round_jiffies_relative(unsigned long j)384 unsigned long round_jiffies_relative(unsigned long j)
385 {
386 return __round_jiffies_relative(j, raw_smp_processor_id());
387 }
388 EXPORT_SYMBOL_GPL(round_jiffies_relative);
389
390 /**
391 * __round_jiffies_up - function to round jiffies up to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
394 *
395 * This is the same as __round_jiffies() except that it will never
396 * round down. This is useful for timeouts for which the exact time
397 * of firing does not matter too much, as long as they don't fire too
398 * early.
399 */
__round_jiffies_up(unsigned long j,int cpu)400 unsigned long __round_jiffies_up(unsigned long j, int cpu)
401 {
402 return round_jiffies_common(j, cpu, true);
403 }
404 EXPORT_SYMBOL_GPL(__round_jiffies_up);
405
406 /**
407 * __round_jiffies_up_relative - function to round jiffies up to a full second
408 * @j: the time in (relative) jiffies that should be rounded
409 * @cpu: the processor number on which the timeout will happen
410 *
411 * This is the same as __round_jiffies_relative() except that it will never
412 * round down. This is useful for timeouts for which the exact time
413 * of firing does not matter too much, as long as they don't fire too
414 * early.
415 */
__round_jiffies_up_relative(unsigned long j,int cpu)416 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
417 {
418 unsigned long j0 = jiffies;
419
420 /* Use j0 because jiffies might change while we run */
421 return round_jiffies_common(j + j0, cpu, true) - j0;
422 }
423 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
424
425 /**
426 * round_jiffies_up - function to round jiffies up to a full second
427 * @j: the time in (absolute) jiffies that should be rounded
428 *
429 * This is the same as round_jiffies() except that it will never
430 * round down. This is useful for timeouts for which the exact time
431 * of firing does not matter too much, as long as they don't fire too
432 * early.
433 */
round_jiffies_up(unsigned long j)434 unsigned long round_jiffies_up(unsigned long j)
435 {
436 return round_jiffies_common(j, raw_smp_processor_id(), true);
437 }
438 EXPORT_SYMBOL_GPL(round_jiffies_up);
439
440 /**
441 * round_jiffies_up_relative - function to round jiffies up to a full second
442 * @j: the time in (relative) jiffies that should be rounded
443 *
444 * This is the same as round_jiffies_relative() except that it will never
445 * round down. This is useful for timeouts for which the exact time
446 * of firing does not matter too much, as long as they don't fire too
447 * early.
448 */
round_jiffies_up_relative(unsigned long j)449 unsigned long round_jiffies_up_relative(unsigned long j)
450 {
451 return __round_jiffies_up_relative(j, raw_smp_processor_id());
452 }
453 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
454
455
timer_get_idx(struct timer_list * timer)456 static inline unsigned int timer_get_idx(struct timer_list *timer)
457 {
458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
459 }
460
timer_set_idx(struct timer_list * timer,unsigned int idx)461 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
462 {
463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
464 idx << TIMER_ARRAYSHIFT;
465 }
466
467 /*
468 * Helper function to calculate the array index for a given expiry
469 * time.
470 */
calc_index(unsigned expires,unsigned lvl)471 static inline unsigned calc_index(unsigned expires, unsigned lvl)
472 {
473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
474 return LVL_OFFS(lvl) + (expires & LVL_MASK);
475 }
476
calc_wheel_index(unsigned long expires,unsigned long clk)477 static int calc_wheel_index(unsigned long expires, unsigned long clk)
478 {
479 unsigned long delta = expires - clk;
480 unsigned int idx;
481
482 if (delta < LVL_START(1)) {
483 idx = calc_index(expires, 0);
484 } else if (delta < LVL_START(2)) {
485 idx = calc_index(expires, 1);
486 } else if (delta < LVL_START(3)) {
487 idx = calc_index(expires, 2);
488 } else if (delta < LVL_START(4)) {
489 idx = calc_index(expires, 3);
490 } else if (delta < LVL_START(5)) {
491 idx = calc_index(expires, 4);
492 } else if (delta < LVL_START(6)) {
493 idx = calc_index(expires, 5);
494 } else if (delta < LVL_START(7)) {
495 idx = calc_index(expires, 6);
496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 idx = calc_index(expires, 7);
498 } else if ((long) delta < 0) {
499 idx = clk & LVL_MASK;
500 } else {
501 /*
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
504 */
505 if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 expires = WHEEL_TIMEOUT_MAX;
507
508 idx = calc_index(expires, LVL_DEPTH - 1);
509 }
510 return idx;
511 }
512
513 /*
514 * Enqueue the timer into the hash bucket, mark it pending in
515 * the bitmap and store the index in the timer flags.
516 */
enqueue_timer(struct timer_base * base,struct timer_list * timer,unsigned int idx)517 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
518 unsigned int idx)
519 {
520 hlist_add_head(&timer->entry, base->vectors + idx);
521 __set_bit(idx, base->pending_map);
522 timer_set_idx(timer, idx);
523 }
524
525 static void
__internal_add_timer(struct timer_base * base,struct timer_list * timer)526 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
527 {
528 unsigned int idx;
529
530 idx = calc_wheel_index(timer->expires, base->clk);
531 enqueue_timer(base, timer, idx);
532 }
533
534 static void
trigger_dyntick_cpu(struct timer_base * base,struct timer_list * timer)535 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
536 {
537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
538 return;
539
540 /*
541 * TODO: This wants some optimizing similar to the code below, but we
542 * will do that when we switch from push to pull for deferrable timers.
543 */
544 if (timer->flags & TIMER_DEFERRABLE) {
545 if (tick_nohz_full_cpu(base->cpu))
546 wake_up_nohz_cpu(base->cpu);
547 return;
548 }
549
550 /*
551 * We might have to IPI the remote CPU if the base is idle and the
552 * timer is not deferrable. If the other CPU is on the way to idle
553 * then it can't set base->is_idle as we hold the base lock:
554 */
555 if (!base->is_idle)
556 return;
557
558 /* Check whether this is the new first expiring timer: */
559 if (time_after_eq(timer->expires, base->next_expiry))
560 return;
561
562 /*
563 * Set the next expiry time and kick the CPU so it can reevaluate the
564 * wheel:
565 */
566 base->next_expiry = timer->expires;
567 wake_up_nohz_cpu(base->cpu);
568 }
569
570 static void
internal_add_timer(struct timer_base * base,struct timer_list * timer)571 internal_add_timer(struct timer_base *base, struct timer_list *timer)
572 {
573 __internal_add_timer(base, timer);
574 trigger_dyntick_cpu(base, timer);
575 }
576
577 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578
579 static struct debug_obj_descr timer_debug_descr;
580
timer_debug_hint(void * addr)581 static void *timer_debug_hint(void *addr)
582 {
583 return ((struct timer_list *) addr)->function;
584 }
585
timer_is_static_object(void * addr)586 static bool timer_is_static_object(void *addr)
587 {
588 struct timer_list *timer = addr;
589
590 return (timer->entry.pprev == NULL &&
591 timer->entry.next == TIMER_ENTRY_STATIC);
592 }
593
594 /*
595 * fixup_init is called when:
596 * - an active object is initialized
597 */
timer_fixup_init(void * addr,enum debug_obj_state state)598 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
599 {
600 struct timer_list *timer = addr;
601
602 switch (state) {
603 case ODEBUG_STATE_ACTIVE:
604 del_timer_sync(timer);
605 debug_object_init(timer, &timer_debug_descr);
606 return true;
607 default:
608 return false;
609 }
610 }
611
612 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)613 static void stub_timer(unsigned long data)
614 {
615 WARN_ON(1);
616 }
617
618 /*
619 * fixup_activate is called when:
620 * - an active object is activated
621 * - an unknown non-static object is activated
622 */
timer_fixup_activate(void * addr,enum debug_obj_state state)623 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
624 {
625 struct timer_list *timer = addr;
626
627 switch (state) {
628 case ODEBUG_STATE_NOTAVAILABLE:
629 setup_timer(timer, stub_timer, 0);
630 return true;
631
632 case ODEBUG_STATE_ACTIVE:
633 WARN_ON(1);
634
635 default:
636 return false;
637 }
638 }
639
640 /*
641 * fixup_free is called when:
642 * - an active object is freed
643 */
timer_fixup_free(void * addr,enum debug_obj_state state)644 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
645 {
646 struct timer_list *timer = addr;
647
648 switch (state) {
649 case ODEBUG_STATE_ACTIVE:
650 del_timer_sync(timer);
651 debug_object_free(timer, &timer_debug_descr);
652 return true;
653 default:
654 return false;
655 }
656 }
657
658 /*
659 * fixup_assert_init is called when:
660 * - an untracked/uninit-ed object is found
661 */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)662 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
663 {
664 struct timer_list *timer = addr;
665
666 switch (state) {
667 case ODEBUG_STATE_NOTAVAILABLE:
668 setup_timer(timer, stub_timer, 0);
669 return true;
670 default:
671 return false;
672 }
673 }
674
675 static struct debug_obj_descr timer_debug_descr = {
676 .name = "timer_list",
677 .debug_hint = timer_debug_hint,
678 .is_static_object = timer_is_static_object,
679 .fixup_init = timer_fixup_init,
680 .fixup_activate = timer_fixup_activate,
681 .fixup_free = timer_fixup_free,
682 .fixup_assert_init = timer_fixup_assert_init,
683 };
684
debug_timer_init(struct timer_list * timer)685 static inline void debug_timer_init(struct timer_list *timer)
686 {
687 debug_object_init(timer, &timer_debug_descr);
688 }
689
debug_timer_activate(struct timer_list * timer)690 static inline void debug_timer_activate(struct timer_list *timer)
691 {
692 debug_object_activate(timer, &timer_debug_descr);
693 }
694
debug_timer_deactivate(struct timer_list * timer)695 static inline void debug_timer_deactivate(struct timer_list *timer)
696 {
697 debug_object_deactivate(timer, &timer_debug_descr);
698 }
699
debug_timer_free(struct timer_list * timer)700 static inline void debug_timer_free(struct timer_list *timer)
701 {
702 debug_object_free(timer, &timer_debug_descr);
703 }
704
debug_timer_assert_init(struct timer_list * timer)705 static inline void debug_timer_assert_init(struct timer_list *timer)
706 {
707 debug_object_assert_init(timer, &timer_debug_descr);
708 }
709
710 static void do_init_timer(struct timer_list *timer, unsigned int flags,
711 const char *name, struct lock_class_key *key);
712
init_timer_on_stack_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)713 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
714 const char *name, struct lock_class_key *key)
715 {
716 debug_object_init_on_stack(timer, &timer_debug_descr);
717 do_init_timer(timer, flags, name, key);
718 }
719 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
720
destroy_timer_on_stack(struct timer_list * timer)721 void destroy_timer_on_stack(struct timer_list *timer)
722 {
723 debug_object_free(timer, &timer_debug_descr);
724 }
725 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
726
727 #else
debug_timer_init(struct timer_list * timer)728 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)729 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)730 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)731 static inline void debug_timer_assert_init(struct timer_list *timer) { }
732 #endif
733
debug_init(struct timer_list * timer)734 static inline void debug_init(struct timer_list *timer)
735 {
736 debug_timer_init(timer);
737 trace_timer_init(timer);
738 }
739
740 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)741 debug_activate(struct timer_list *timer, unsigned long expires)
742 {
743 debug_timer_activate(timer);
744 trace_timer_start(timer, expires, timer->flags);
745 }
746
debug_deactivate(struct timer_list * timer)747 static inline void debug_deactivate(struct timer_list *timer)
748 {
749 debug_timer_deactivate(timer);
750 trace_timer_cancel(timer);
751 }
752
debug_assert_init(struct timer_list * timer)753 static inline void debug_assert_init(struct timer_list *timer)
754 {
755 debug_timer_assert_init(timer);
756 }
757
do_init_timer(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)758 static void do_init_timer(struct timer_list *timer, unsigned int flags,
759 const char *name, struct lock_class_key *key)
760 {
761 timer->entry.pprev = NULL;
762 timer->flags = flags | raw_smp_processor_id();
763 lockdep_init_map(&timer->lockdep_map, name, key, 0);
764 }
765
766 /**
767 * init_timer_key - initialize a timer
768 * @timer: the timer to be initialized
769 * @flags: timer flags
770 * @name: name of the timer
771 * @key: lockdep class key of the fake lock used for tracking timer
772 * sync lock dependencies
773 *
774 * init_timer_key() must be done to a timer prior calling *any* of the
775 * other timer functions.
776 */
init_timer_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)777 void init_timer_key(struct timer_list *timer, unsigned int flags,
778 const char *name, struct lock_class_key *key)
779 {
780 debug_init(timer);
781 do_init_timer(timer, flags, name, key);
782 }
783 EXPORT_SYMBOL(init_timer_key);
784
detach_timer(struct timer_list * timer,bool clear_pending)785 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
786 {
787 struct hlist_node *entry = &timer->entry;
788
789 debug_deactivate(timer);
790
791 __hlist_del(entry);
792 if (clear_pending)
793 entry->pprev = NULL;
794 entry->next = LIST_POISON2;
795 }
796
detach_if_pending(struct timer_list * timer,struct timer_base * base,bool clear_pending)797 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
798 bool clear_pending)
799 {
800 unsigned idx = timer_get_idx(timer);
801
802 if (!timer_pending(timer))
803 return 0;
804
805 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
806 __clear_bit(idx, base->pending_map);
807
808 detach_timer(timer, clear_pending);
809 return 1;
810 }
811
get_timer_cpu_base(u32 tflags,u32 cpu)812 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
813 {
814 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
815
816 /*
817 * If the timer is deferrable and NO_HZ_COMMON is set then we need
818 * to use the deferrable base.
819 */
820 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
821 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
822 return base;
823 }
824
get_timer_this_cpu_base(u32 tflags)825 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
826 {
827 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
828
829 /*
830 * If the timer is deferrable and NO_HZ_COMMON is set then we need
831 * to use the deferrable base.
832 */
833 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
834 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
835 return base;
836 }
837
get_timer_base(u32 tflags)838 static inline struct timer_base *get_timer_base(u32 tflags)
839 {
840 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
841 }
842
843 #ifdef CONFIG_NO_HZ_COMMON
844 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)845 get_target_base(struct timer_base *base, unsigned tflags)
846 {
847 #ifdef CONFIG_SMP
848 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
849 return get_timer_this_cpu_base(tflags);
850 return get_timer_cpu_base(tflags, get_nohz_timer_target());
851 #else
852 return get_timer_this_cpu_base(tflags);
853 #endif
854 }
855
forward_timer_base(struct timer_base * base)856 static inline void forward_timer_base(struct timer_base *base)
857 {
858 unsigned long jnow;
859
860 /*
861 * We only forward the base when we are idle or have just come out of
862 * idle (must_forward_clk logic), and have a delta between base clock
863 * and jiffies. In the common case, run_timers will take care of it.
864 */
865 if (likely(!base->must_forward_clk))
866 return;
867
868 jnow = READ_ONCE(jiffies);
869 base->must_forward_clk = base->is_idle;
870 if ((long)(jnow - base->clk) < 2)
871 return;
872
873 /*
874 * If the next expiry value is > jiffies, then we fast forward to
875 * jiffies otherwise we forward to the next expiry value.
876 */
877 if (time_after(base->next_expiry, jnow))
878 base->clk = jnow;
879 else
880 base->clk = base->next_expiry;
881 }
882 #else
883 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)884 get_target_base(struct timer_base *base, unsigned tflags)
885 {
886 return get_timer_this_cpu_base(tflags);
887 }
888
forward_timer_base(struct timer_base * base)889 static inline void forward_timer_base(struct timer_base *base) { }
890 #endif
891
892
893 /*
894 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
895 * that all timers which are tied to this base are locked, and the base itself
896 * is locked too.
897 *
898 * So __run_timers/migrate_timers can safely modify all timers which could
899 * be found in the base->vectors array.
900 *
901 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
902 * to wait until the migration is done.
903 */
lock_timer_base(struct timer_list * timer,unsigned long * flags)904 static struct timer_base *lock_timer_base(struct timer_list *timer,
905 unsigned long *flags)
906 __acquires(timer->base->lock)
907 {
908 for (;;) {
909 struct timer_base *base;
910 u32 tf;
911
912 /*
913 * We need to use READ_ONCE() here, otherwise the compiler
914 * might re-read @tf between the check for TIMER_MIGRATING
915 * and spin_lock().
916 */
917 tf = READ_ONCE(timer->flags);
918
919 if (!(tf & TIMER_MIGRATING)) {
920 base = get_timer_base(tf);
921 raw_spin_lock_irqsave(&base->lock, *flags);
922 if (timer->flags == tf)
923 return base;
924 raw_spin_unlock_irqrestore(&base->lock, *flags);
925 }
926 cpu_relax();
927 }
928 }
929
930 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only)931 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
932 {
933 struct timer_base *base, *new_base;
934 unsigned int idx = UINT_MAX;
935 unsigned long clk = 0, flags;
936 int ret = 0;
937
938 BUG_ON(!timer->function);
939
940 /*
941 * This is a common optimization triggered by the networking code - if
942 * the timer is re-modified to have the same timeout or ends up in the
943 * same array bucket then just return:
944 */
945 if (timer_pending(timer)) {
946 /*
947 * The downside of this optimization is that it can result in
948 * larger granularity than you would get from adding a new
949 * timer with this expiry.
950 */
951 if (timer->expires == expires)
952 return 1;
953
954 /*
955 * We lock timer base and calculate the bucket index right
956 * here. If the timer ends up in the same bucket, then we
957 * just update the expiry time and avoid the whole
958 * dequeue/enqueue dance.
959 */
960 base = lock_timer_base(timer, &flags);
961 forward_timer_base(base);
962
963 clk = base->clk;
964 idx = calc_wheel_index(expires, clk);
965
966 /*
967 * Retrieve and compare the array index of the pending
968 * timer. If it matches set the expiry to the new value so a
969 * subsequent call will exit in the expires check above.
970 */
971 if (idx == timer_get_idx(timer)) {
972 timer->expires = expires;
973 ret = 1;
974 goto out_unlock;
975 }
976 } else {
977 base = lock_timer_base(timer, &flags);
978 forward_timer_base(base);
979 }
980
981 ret = detach_if_pending(timer, base, false);
982 if (!ret && pending_only)
983 goto out_unlock;
984
985 new_base = get_target_base(base, timer->flags);
986
987 if (base != new_base) {
988 /*
989 * We are trying to schedule the timer on the new base.
990 * However we can't change timer's base while it is running,
991 * otherwise del_timer_sync() can't detect that the timer's
992 * handler yet has not finished. This also guarantees that the
993 * timer is serialized wrt itself.
994 */
995 if (likely(base->running_timer != timer)) {
996 /* See the comment in lock_timer_base() */
997 timer->flags |= TIMER_MIGRATING;
998
999 raw_spin_unlock(&base->lock);
1000 base = new_base;
1001 raw_spin_lock(&base->lock);
1002 WRITE_ONCE(timer->flags,
1003 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1004 forward_timer_base(base);
1005 }
1006 }
1007
1008 debug_activate(timer, expires);
1009
1010 timer->expires = expires;
1011 /*
1012 * If 'idx' was calculated above and the base time did not advance
1013 * between calculating 'idx' and possibly switching the base, only
1014 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1015 * we need to (re)calculate the wheel index via
1016 * internal_add_timer().
1017 */
1018 if (idx != UINT_MAX && clk == base->clk) {
1019 enqueue_timer(base, timer, idx);
1020 trigger_dyntick_cpu(base, timer);
1021 } else {
1022 internal_add_timer(base, timer);
1023 }
1024
1025 out_unlock:
1026 raw_spin_unlock_irqrestore(&base->lock, flags);
1027
1028 return ret;
1029 }
1030
1031 /**
1032 * mod_timer_pending - modify a pending timer's timeout
1033 * @timer: the pending timer to be modified
1034 * @expires: new timeout in jiffies
1035 *
1036 * mod_timer_pending() is the same for pending timers as mod_timer(),
1037 * but will not re-activate and modify already deleted timers.
1038 *
1039 * It is useful for unserialized use of timers.
1040 */
mod_timer_pending(struct timer_list * timer,unsigned long expires)1041 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1042 {
1043 return __mod_timer(timer, expires, true);
1044 }
1045 EXPORT_SYMBOL(mod_timer_pending);
1046
1047 /**
1048 * mod_timer - modify a timer's timeout
1049 * @timer: the timer to be modified
1050 * @expires: new timeout in jiffies
1051 *
1052 * mod_timer() is a more efficient way to update the expire field of an
1053 * active timer (if the timer is inactive it will be activated)
1054 *
1055 * mod_timer(timer, expires) is equivalent to:
1056 *
1057 * del_timer(timer); timer->expires = expires; add_timer(timer);
1058 *
1059 * Note that if there are multiple unserialized concurrent users of the
1060 * same timer, then mod_timer() is the only safe way to modify the timeout,
1061 * since add_timer() cannot modify an already running timer.
1062 *
1063 * The function returns whether it has modified a pending timer or not.
1064 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1065 * active timer returns 1.)
1066 */
mod_timer(struct timer_list * timer,unsigned long expires)1067 int mod_timer(struct timer_list *timer, unsigned long expires)
1068 {
1069 return __mod_timer(timer, expires, false);
1070 }
1071 EXPORT_SYMBOL(mod_timer);
1072
1073 /**
1074 * add_timer - start a timer
1075 * @timer: the timer to be added
1076 *
1077 * The kernel will do a ->function(->data) callback from the
1078 * timer interrupt at the ->expires point in the future. The
1079 * current time is 'jiffies'.
1080 *
1081 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1082 * fields must be set prior calling this function.
1083 *
1084 * Timers with an ->expires field in the past will be executed in the next
1085 * timer tick.
1086 */
add_timer(struct timer_list * timer)1087 void add_timer(struct timer_list *timer)
1088 {
1089 BUG_ON(timer_pending(timer));
1090 mod_timer(timer, timer->expires);
1091 }
1092 EXPORT_SYMBOL(add_timer);
1093
1094 /**
1095 * add_timer_on - start a timer on a particular CPU
1096 * @timer: the timer to be added
1097 * @cpu: the CPU to start it on
1098 *
1099 * This is not very scalable on SMP. Double adds are not possible.
1100 */
add_timer_on(struct timer_list * timer,int cpu)1101 void add_timer_on(struct timer_list *timer, int cpu)
1102 {
1103 struct timer_base *new_base, *base;
1104 unsigned long flags;
1105
1106 BUG_ON(timer_pending(timer) || !timer->function);
1107
1108 new_base = get_timer_cpu_base(timer->flags, cpu);
1109
1110 /*
1111 * If @timer was on a different CPU, it should be migrated with the
1112 * old base locked to prevent other operations proceeding with the
1113 * wrong base locked. See lock_timer_base().
1114 */
1115 base = lock_timer_base(timer, &flags);
1116 if (base != new_base) {
1117 timer->flags |= TIMER_MIGRATING;
1118
1119 raw_spin_unlock(&base->lock);
1120 base = new_base;
1121 raw_spin_lock(&base->lock);
1122 WRITE_ONCE(timer->flags,
1123 (timer->flags & ~TIMER_BASEMASK) | cpu);
1124 }
1125 forward_timer_base(base);
1126
1127 debug_activate(timer, timer->expires);
1128 internal_add_timer(base, timer);
1129 raw_spin_unlock_irqrestore(&base->lock, flags);
1130 }
1131 EXPORT_SYMBOL_GPL(add_timer_on);
1132
1133 /**
1134 * del_timer - deactivate a timer.
1135 * @timer: the timer to be deactivated
1136 *
1137 * del_timer() deactivates a timer - this works on both active and inactive
1138 * timers.
1139 *
1140 * The function returns whether it has deactivated a pending timer or not.
1141 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1142 * active timer returns 1.)
1143 */
del_timer(struct timer_list * timer)1144 int del_timer(struct timer_list *timer)
1145 {
1146 struct timer_base *base;
1147 unsigned long flags;
1148 int ret = 0;
1149
1150 debug_assert_init(timer);
1151
1152 if (timer_pending(timer)) {
1153 base = lock_timer_base(timer, &flags);
1154 ret = detach_if_pending(timer, base, true);
1155 raw_spin_unlock_irqrestore(&base->lock, flags);
1156 }
1157
1158 return ret;
1159 }
1160 EXPORT_SYMBOL(del_timer);
1161
1162 /**
1163 * try_to_del_timer_sync - Try to deactivate a timer
1164 * @timer: timer to delete
1165 *
1166 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1167 * exit the timer is not queued and the handler is not running on any CPU.
1168 */
try_to_del_timer_sync(struct timer_list * timer)1169 int try_to_del_timer_sync(struct timer_list *timer)
1170 {
1171 struct timer_base *base;
1172 unsigned long flags;
1173 int ret = -1;
1174
1175 debug_assert_init(timer);
1176
1177 base = lock_timer_base(timer, &flags);
1178
1179 if (base->running_timer != timer)
1180 ret = detach_if_pending(timer, base, true);
1181
1182 raw_spin_unlock_irqrestore(&base->lock, flags);
1183
1184 return ret;
1185 }
1186 EXPORT_SYMBOL(try_to_del_timer_sync);
1187
1188 #ifdef CONFIG_SMP
1189 /**
1190 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1191 * @timer: the timer to be deactivated
1192 *
1193 * This function only differs from del_timer() on SMP: besides deactivating
1194 * the timer it also makes sure the handler has finished executing on other
1195 * CPUs.
1196 *
1197 * Synchronization rules: Callers must prevent restarting of the timer,
1198 * otherwise this function is meaningless. It must not be called from
1199 * interrupt contexts unless the timer is an irqsafe one. The caller must
1200 * not hold locks which would prevent completion of the timer's
1201 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1202 * timer is not queued and the handler is not running on any CPU.
1203 *
1204 * Note: For !irqsafe timers, you must not hold locks that are held in
1205 * interrupt context while calling this function. Even if the lock has
1206 * nothing to do with the timer in question. Here's why:
1207 *
1208 * CPU0 CPU1
1209 * ---- ----
1210 * <SOFTIRQ>
1211 * call_timer_fn();
1212 * base->running_timer = mytimer;
1213 * spin_lock_irq(somelock);
1214 * <IRQ>
1215 * spin_lock(somelock);
1216 * del_timer_sync(mytimer);
1217 * while (base->running_timer == mytimer);
1218 *
1219 * Now del_timer_sync() will never return and never release somelock.
1220 * The interrupt on the other CPU is waiting to grab somelock but
1221 * it has interrupted the softirq that CPU0 is waiting to finish.
1222 *
1223 * The function returns whether it has deactivated a pending timer or not.
1224 */
del_timer_sync(struct timer_list * timer)1225 int del_timer_sync(struct timer_list *timer)
1226 {
1227 #ifdef CONFIG_LOCKDEP
1228 unsigned long flags;
1229
1230 /*
1231 * If lockdep gives a backtrace here, please reference
1232 * the synchronization rules above.
1233 */
1234 local_irq_save(flags);
1235 lock_map_acquire(&timer->lockdep_map);
1236 lock_map_release(&timer->lockdep_map);
1237 local_irq_restore(flags);
1238 #endif
1239 /*
1240 * don't use it in hardirq context, because it
1241 * could lead to deadlock.
1242 */
1243 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1244 for (;;) {
1245 int ret = try_to_del_timer_sync(timer);
1246 if (ret >= 0)
1247 return ret;
1248 cpu_relax();
1249 }
1250 }
1251 EXPORT_SYMBOL(del_timer_sync);
1252 #endif
1253
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1254 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1255 unsigned long data)
1256 {
1257 int count = preempt_count();
1258
1259 #ifdef CONFIG_LOCKDEP
1260 /*
1261 * It is permissible to free the timer from inside the
1262 * function that is called from it, this we need to take into
1263 * account for lockdep too. To avoid bogus "held lock freed"
1264 * warnings as well as problems when looking into
1265 * timer->lockdep_map, make a copy and use that here.
1266 */
1267 struct lockdep_map lockdep_map;
1268
1269 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1270 #endif
1271 /*
1272 * Couple the lock chain with the lock chain at
1273 * del_timer_sync() by acquiring the lock_map around the fn()
1274 * call here and in del_timer_sync().
1275 */
1276 lock_map_acquire(&lockdep_map);
1277
1278 trace_timer_expire_entry(timer);
1279 fn(data);
1280 trace_timer_expire_exit(timer);
1281
1282 lock_map_release(&lockdep_map);
1283
1284 if (count != preempt_count()) {
1285 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1286 fn, count, preempt_count());
1287 /*
1288 * Restore the preempt count. That gives us a decent
1289 * chance to survive and extract information. If the
1290 * callback kept a lock held, bad luck, but not worse
1291 * than the BUG() we had.
1292 */
1293 preempt_count_set(count);
1294 }
1295 }
1296
expire_timers(struct timer_base * base,struct hlist_head * head)1297 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1298 {
1299 while (!hlist_empty(head)) {
1300 struct timer_list *timer;
1301 void (*fn)(unsigned long);
1302 unsigned long data;
1303
1304 timer = hlist_entry(head->first, struct timer_list, entry);
1305
1306 base->running_timer = timer;
1307 detach_timer(timer, true);
1308
1309 fn = timer->function;
1310 data = timer->data;
1311
1312 if (timer->flags & TIMER_IRQSAFE) {
1313 raw_spin_unlock(&base->lock);
1314 call_timer_fn(timer, fn, data);
1315 raw_spin_lock(&base->lock);
1316 } else {
1317 raw_spin_unlock_irq(&base->lock);
1318 call_timer_fn(timer, fn, data);
1319 raw_spin_lock_irq(&base->lock);
1320 }
1321 }
1322 }
1323
__collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1324 static int __collect_expired_timers(struct timer_base *base,
1325 struct hlist_head *heads)
1326 {
1327 unsigned long clk = base->clk;
1328 struct hlist_head *vec;
1329 int i, levels = 0;
1330 unsigned int idx;
1331
1332 for (i = 0; i < LVL_DEPTH; i++) {
1333 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1334
1335 if (__test_and_clear_bit(idx, base->pending_map)) {
1336 vec = base->vectors + idx;
1337 hlist_move_list(vec, heads++);
1338 levels++;
1339 }
1340 /* Is it time to look at the next level? */
1341 if (clk & LVL_CLK_MASK)
1342 break;
1343 /* Shift clock for the next level granularity */
1344 clk >>= LVL_CLK_SHIFT;
1345 }
1346 return levels;
1347 }
1348
1349 #ifdef CONFIG_NO_HZ_COMMON
1350 /*
1351 * Find the next pending bucket of a level. Search from level start (@offset)
1352 * + @clk upwards and if nothing there, search from start of the level
1353 * (@offset) up to @offset + clk.
1354 */
next_pending_bucket(struct timer_base * base,unsigned offset,unsigned clk)1355 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1356 unsigned clk)
1357 {
1358 unsigned pos, start = offset + clk;
1359 unsigned end = offset + LVL_SIZE;
1360
1361 pos = find_next_bit(base->pending_map, end, start);
1362 if (pos < end)
1363 return pos - start;
1364
1365 pos = find_next_bit(base->pending_map, start, offset);
1366 return pos < start ? pos + LVL_SIZE - start : -1;
1367 }
1368
1369 /*
1370 * Search the first expiring timer in the various clock levels. Caller must
1371 * hold base->lock.
1372 */
__next_timer_interrupt(struct timer_base * base)1373 static unsigned long __next_timer_interrupt(struct timer_base *base)
1374 {
1375 unsigned long clk, next, adj;
1376 unsigned lvl, offset = 0;
1377
1378 next = base->clk + NEXT_TIMER_MAX_DELTA;
1379 clk = base->clk;
1380 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1381 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1382
1383 if (pos >= 0) {
1384 unsigned long tmp = clk + (unsigned long) pos;
1385
1386 tmp <<= LVL_SHIFT(lvl);
1387 if (time_before(tmp, next))
1388 next = tmp;
1389 }
1390 /*
1391 * Clock for the next level. If the current level clock lower
1392 * bits are zero, we look at the next level as is. If not we
1393 * need to advance it by one because that's going to be the
1394 * next expiring bucket in that level. base->clk is the next
1395 * expiring jiffie. So in case of:
1396 *
1397 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1398 * 0 0 0 0 0 0
1399 *
1400 * we have to look at all levels @index 0. With
1401 *
1402 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1403 * 0 0 0 0 0 2
1404 *
1405 * LVL0 has the next expiring bucket @index 2. The upper
1406 * levels have the next expiring bucket @index 1.
1407 *
1408 * In case that the propagation wraps the next level the same
1409 * rules apply:
1410 *
1411 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1412 * 0 0 0 0 F 2
1413 *
1414 * So after looking at LVL0 we get:
1415 *
1416 * LVL5 LVL4 LVL3 LVL2 LVL1
1417 * 0 0 0 1 0
1418 *
1419 * So no propagation from LVL1 to LVL2 because that happened
1420 * with the add already, but then we need to propagate further
1421 * from LVL2 to LVL3.
1422 *
1423 * So the simple check whether the lower bits of the current
1424 * level are 0 or not is sufficient for all cases.
1425 */
1426 adj = clk & LVL_CLK_MASK ? 1 : 0;
1427 clk >>= LVL_CLK_SHIFT;
1428 clk += adj;
1429 }
1430 return next;
1431 }
1432
1433 /*
1434 * Check, if the next hrtimer event is before the next timer wheel
1435 * event:
1436 */
cmp_next_hrtimer_event(u64 basem,u64 expires)1437 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1438 {
1439 u64 nextevt = hrtimer_get_next_event();
1440
1441 /*
1442 * If high resolution timers are enabled
1443 * hrtimer_get_next_event() returns KTIME_MAX.
1444 */
1445 if (expires <= nextevt)
1446 return expires;
1447
1448 /*
1449 * If the next timer is already expired, return the tick base
1450 * time so the tick is fired immediately.
1451 */
1452 if (nextevt <= basem)
1453 return basem;
1454
1455 /*
1456 * Round up to the next jiffie. High resolution timers are
1457 * off, so the hrtimers are expired in the tick and we need to
1458 * make sure that this tick really expires the timer to avoid
1459 * a ping pong of the nohz stop code.
1460 *
1461 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1462 */
1463 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1464 }
1465
1466 /**
1467 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1468 * @basej: base time jiffies
1469 * @basem: base time clock monotonic
1470 *
1471 * Returns the tick aligned clock monotonic time of the next pending
1472 * timer or KTIME_MAX if no timer is pending.
1473 */
get_next_timer_interrupt(unsigned long basej,u64 basem)1474 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1475 {
1476 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1477 u64 expires = KTIME_MAX;
1478 unsigned long nextevt;
1479 bool is_max_delta;
1480
1481 /*
1482 * Pretend that there is no timer pending if the cpu is offline.
1483 * Possible pending timers will be migrated later to an active cpu.
1484 */
1485 if (cpu_is_offline(smp_processor_id()))
1486 return expires;
1487
1488 raw_spin_lock(&base->lock);
1489 nextevt = __next_timer_interrupt(base);
1490 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1491 base->next_expiry = nextevt;
1492 /*
1493 * We have a fresh next event. Check whether we can forward the
1494 * base. We can only do that when @basej is past base->clk
1495 * otherwise we might rewind base->clk.
1496 */
1497 if (time_after(basej, base->clk)) {
1498 if (time_after(nextevt, basej))
1499 base->clk = basej;
1500 else if (time_after(nextevt, base->clk))
1501 base->clk = nextevt;
1502 }
1503
1504 if (time_before_eq(nextevt, basej)) {
1505 expires = basem;
1506 base->is_idle = false;
1507 } else {
1508 if (!is_max_delta)
1509 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1510 /*
1511 * If we expect to sleep more than a tick, mark the base idle.
1512 * Also the tick is stopped so any added timer must forward
1513 * the base clk itself to keep granularity small. This idle
1514 * logic is only maintained for the BASE_STD base, deferrable
1515 * timers may still see large granularity skew (by design).
1516 */
1517 if ((expires - basem) > TICK_NSEC) {
1518 base->must_forward_clk = true;
1519 base->is_idle = true;
1520 }
1521 }
1522 raw_spin_unlock(&base->lock);
1523
1524 return cmp_next_hrtimer_event(basem, expires);
1525 }
1526
1527 /**
1528 * timer_clear_idle - Clear the idle state of the timer base
1529 *
1530 * Called with interrupts disabled
1531 */
timer_clear_idle(void)1532 void timer_clear_idle(void)
1533 {
1534 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1535
1536 /*
1537 * We do this unlocked. The worst outcome is a remote enqueue sending
1538 * a pointless IPI, but taking the lock would just make the window for
1539 * sending the IPI a few instructions smaller for the cost of taking
1540 * the lock in the exit from idle path.
1541 */
1542 base->is_idle = false;
1543 }
1544
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1545 static int collect_expired_timers(struct timer_base *base,
1546 struct hlist_head *heads)
1547 {
1548 unsigned long now = READ_ONCE(jiffies);
1549
1550 /*
1551 * NOHZ optimization. After a long idle sleep we need to forward the
1552 * base to current jiffies. Avoid a loop by searching the bitfield for
1553 * the next expiring timer.
1554 */
1555 if ((long)(now - base->clk) > 2) {
1556 unsigned long next = __next_timer_interrupt(base);
1557
1558 /*
1559 * If the next timer is ahead of time forward to current
1560 * jiffies, otherwise forward to the next expiry time:
1561 */
1562 if (time_after(next, now)) {
1563 /* The call site will increment clock! */
1564 base->clk = now - 1;
1565 return 0;
1566 }
1567 base->clk = next;
1568 }
1569 return __collect_expired_timers(base, heads);
1570 }
1571 #else
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1572 static inline int collect_expired_timers(struct timer_base *base,
1573 struct hlist_head *heads)
1574 {
1575 return __collect_expired_timers(base, heads);
1576 }
1577 #endif
1578
1579 /*
1580 * Called from the timer interrupt handler to charge one tick to the current
1581 * process. user_tick is 1 if the tick is user time, 0 for system.
1582 */
update_process_times(int user_tick)1583 void update_process_times(int user_tick)
1584 {
1585 struct task_struct *p = current;
1586
1587 /* Note: this timer irq context must be accounted for as well. */
1588 account_process_tick(p, user_tick);
1589 run_local_timers();
1590 rcu_check_callbacks(user_tick);
1591 #ifdef CONFIG_IRQ_WORK
1592 if (in_irq())
1593 irq_work_tick();
1594 #endif
1595 scheduler_tick();
1596 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1597 run_posix_cpu_timers(p);
1598 }
1599
1600 /**
1601 * __run_timers - run all expired timers (if any) on this CPU.
1602 * @base: the timer vector to be processed.
1603 */
__run_timers(struct timer_base * base)1604 static inline void __run_timers(struct timer_base *base)
1605 {
1606 struct hlist_head heads[LVL_DEPTH];
1607 int levels;
1608
1609 if (!time_after_eq(jiffies, base->clk))
1610 return;
1611
1612 raw_spin_lock_irq(&base->lock);
1613
1614 /*
1615 * timer_base::must_forward_clk must be cleared before running
1616 * timers so that any timer functions that call mod_timer() will
1617 * not try to forward the base. Idle tracking / clock forwarding
1618 * logic is only used with BASE_STD timers.
1619 *
1620 * The must_forward_clk flag is cleared unconditionally also for
1621 * the deferrable base. The deferrable base is not affected by idle
1622 * tracking and never forwarded, so clearing the flag is a NOOP.
1623 *
1624 * The fact that the deferrable base is never forwarded can cause
1625 * large variations in granularity for deferrable timers, but they
1626 * can be deferred for long periods due to idle anyway.
1627 */
1628 base->must_forward_clk = false;
1629
1630 while (time_after_eq(jiffies, base->clk)) {
1631
1632 levels = collect_expired_timers(base, heads);
1633 base->clk++;
1634
1635 while (levels--)
1636 expire_timers(base, heads + levels);
1637 }
1638 base->running_timer = NULL;
1639 raw_spin_unlock_irq(&base->lock);
1640 }
1641
1642 /*
1643 * This function runs timers and the timer-tq in bottom half context.
1644 */
run_timer_softirq(struct softirq_action * h)1645 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1646 {
1647 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1648
1649 __run_timers(base);
1650 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1651 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1652 }
1653
1654 /*
1655 * Called by the local, per-CPU timer interrupt on SMP.
1656 */
run_local_timers(void)1657 void run_local_timers(void)
1658 {
1659 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1660
1661 hrtimer_run_queues();
1662 /* Raise the softirq only if required. */
1663 if (time_before(jiffies, base->clk)) {
1664 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1665 return;
1666 /* CPU is awake, so check the deferrable base. */
1667 base++;
1668 if (time_before(jiffies, base->clk))
1669 return;
1670 }
1671 raise_softirq(TIMER_SOFTIRQ);
1672 }
1673
process_timeout(unsigned long __data)1674 static void process_timeout(unsigned long __data)
1675 {
1676 wake_up_process((struct task_struct *)__data);
1677 }
1678
1679 /**
1680 * schedule_timeout - sleep until timeout
1681 * @timeout: timeout value in jiffies
1682 *
1683 * Make the current task sleep until @timeout jiffies have
1684 * elapsed. The routine will return immediately unless
1685 * the current task state has been set (see set_current_state()).
1686 *
1687 * You can set the task state as follows -
1688 *
1689 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1690 * pass before the routine returns unless the current task is explicitly
1691 * woken up, (e.g. by wake_up_process())".
1692 *
1693 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1694 * delivered to the current task or the current task is explicitly woken
1695 * up.
1696 *
1697 * The current task state is guaranteed to be TASK_RUNNING when this
1698 * routine returns.
1699 *
1700 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1701 * the CPU away without a bound on the timeout. In this case the return
1702 * value will be %MAX_SCHEDULE_TIMEOUT.
1703 *
1704 * Returns 0 when the timer has expired otherwise the remaining time in
1705 * jiffies will be returned. In all cases the return value is guaranteed
1706 * to be non-negative.
1707 */
schedule_timeout(signed long timeout)1708 signed long __sched schedule_timeout(signed long timeout)
1709 {
1710 struct timer_list timer;
1711 unsigned long expire;
1712
1713 switch (timeout)
1714 {
1715 case MAX_SCHEDULE_TIMEOUT:
1716 /*
1717 * These two special cases are useful to be comfortable
1718 * in the caller. Nothing more. We could take
1719 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1720 * but I' d like to return a valid offset (>=0) to allow
1721 * the caller to do everything it want with the retval.
1722 */
1723 schedule();
1724 goto out;
1725 default:
1726 /*
1727 * Another bit of PARANOID. Note that the retval will be
1728 * 0 since no piece of kernel is supposed to do a check
1729 * for a negative retval of schedule_timeout() (since it
1730 * should never happens anyway). You just have the printk()
1731 * that will tell you if something is gone wrong and where.
1732 */
1733 if (timeout < 0) {
1734 printk(KERN_ERR "schedule_timeout: wrong timeout "
1735 "value %lx\n", timeout);
1736 dump_stack();
1737 current->state = TASK_RUNNING;
1738 goto out;
1739 }
1740 }
1741
1742 expire = timeout + jiffies;
1743
1744 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1745 __mod_timer(&timer, expire, false);
1746 schedule();
1747 del_singleshot_timer_sync(&timer);
1748
1749 /* Remove the timer from the object tracker */
1750 destroy_timer_on_stack(&timer);
1751
1752 timeout = expire - jiffies;
1753
1754 out:
1755 return timeout < 0 ? 0 : timeout;
1756 }
1757 EXPORT_SYMBOL(schedule_timeout);
1758
1759 /*
1760 * We can use __set_current_state() here because schedule_timeout() calls
1761 * schedule() unconditionally.
1762 */
schedule_timeout_interruptible(signed long timeout)1763 signed long __sched schedule_timeout_interruptible(signed long timeout)
1764 {
1765 __set_current_state(TASK_INTERRUPTIBLE);
1766 return schedule_timeout(timeout);
1767 }
1768 EXPORT_SYMBOL(schedule_timeout_interruptible);
1769
schedule_timeout_killable(signed long timeout)1770 signed long __sched schedule_timeout_killable(signed long timeout)
1771 {
1772 __set_current_state(TASK_KILLABLE);
1773 return schedule_timeout(timeout);
1774 }
1775 EXPORT_SYMBOL(schedule_timeout_killable);
1776
schedule_timeout_uninterruptible(signed long timeout)1777 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1778 {
1779 __set_current_state(TASK_UNINTERRUPTIBLE);
1780 return schedule_timeout(timeout);
1781 }
1782 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1783
1784 /*
1785 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1786 * to load average.
1787 */
schedule_timeout_idle(signed long timeout)1788 signed long __sched schedule_timeout_idle(signed long timeout)
1789 {
1790 __set_current_state(TASK_IDLE);
1791 return schedule_timeout(timeout);
1792 }
1793 EXPORT_SYMBOL(schedule_timeout_idle);
1794
1795 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct timer_base * new_base,struct hlist_head * head)1796 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1797 {
1798 struct timer_list *timer;
1799 int cpu = new_base->cpu;
1800
1801 while (!hlist_empty(head)) {
1802 timer = hlist_entry(head->first, struct timer_list, entry);
1803 detach_timer(timer, false);
1804 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1805 internal_add_timer(new_base, timer);
1806 }
1807 }
1808
timers_prepare_cpu(unsigned int cpu)1809 int timers_prepare_cpu(unsigned int cpu)
1810 {
1811 struct timer_base *base;
1812 int b;
1813
1814 for (b = 0; b < NR_BASES; b++) {
1815 base = per_cpu_ptr(&timer_bases[b], cpu);
1816 base->clk = jiffies;
1817 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1818 base->is_idle = false;
1819 base->must_forward_clk = true;
1820 }
1821 return 0;
1822 }
1823
timers_dead_cpu(unsigned int cpu)1824 int timers_dead_cpu(unsigned int cpu)
1825 {
1826 struct timer_base *old_base;
1827 struct timer_base *new_base;
1828 int b, i;
1829
1830 BUG_ON(cpu_online(cpu));
1831
1832 for (b = 0; b < NR_BASES; b++) {
1833 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1834 new_base = get_cpu_ptr(&timer_bases[b]);
1835 /*
1836 * The caller is globally serialized and nobody else
1837 * takes two locks at once, deadlock is not possible.
1838 */
1839 raw_spin_lock_irq(&new_base->lock);
1840 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1841
1842 /*
1843 * The current CPUs base clock might be stale. Update it
1844 * before moving the timers over.
1845 */
1846 forward_timer_base(new_base);
1847
1848 BUG_ON(old_base->running_timer);
1849
1850 for (i = 0; i < WHEEL_SIZE; i++)
1851 migrate_timer_list(new_base, old_base->vectors + i);
1852
1853 raw_spin_unlock(&old_base->lock);
1854 raw_spin_unlock_irq(&new_base->lock);
1855 put_cpu_ptr(&timer_bases);
1856 }
1857 return 0;
1858 }
1859
1860 #endif /* CONFIG_HOTPLUG_CPU */
1861
init_timer_cpu(int cpu)1862 static void __init init_timer_cpu(int cpu)
1863 {
1864 struct timer_base *base;
1865 int i;
1866
1867 for (i = 0; i < NR_BASES; i++) {
1868 base = per_cpu_ptr(&timer_bases[i], cpu);
1869 base->cpu = cpu;
1870 raw_spin_lock_init(&base->lock);
1871 base->clk = jiffies;
1872 }
1873 }
1874
init_timer_cpus(void)1875 static void __init init_timer_cpus(void)
1876 {
1877 int cpu;
1878
1879 for_each_possible_cpu(cpu)
1880 init_timer_cpu(cpu);
1881 }
1882
init_timers(void)1883 void __init init_timers(void)
1884 {
1885 init_timer_cpus();
1886 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1887 }
1888
1889 /**
1890 * msleep - sleep safely even with waitqueue interruptions
1891 * @msecs: Time in milliseconds to sleep for
1892 */
msleep(unsigned int msecs)1893 void msleep(unsigned int msecs)
1894 {
1895 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1896
1897 while (timeout)
1898 timeout = schedule_timeout_uninterruptible(timeout);
1899 }
1900
1901 EXPORT_SYMBOL(msleep);
1902
1903 /**
1904 * msleep_interruptible - sleep waiting for signals
1905 * @msecs: Time in milliseconds to sleep for
1906 */
msleep_interruptible(unsigned int msecs)1907 unsigned long msleep_interruptible(unsigned int msecs)
1908 {
1909 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1910
1911 while (timeout && !signal_pending(current))
1912 timeout = schedule_timeout_interruptible(timeout);
1913 return jiffies_to_msecs(timeout);
1914 }
1915
1916 EXPORT_SYMBOL(msleep_interruptible);
1917
1918 /**
1919 * usleep_range - Sleep for an approximate time
1920 * @min: Minimum time in usecs to sleep
1921 * @max: Maximum time in usecs to sleep
1922 *
1923 * In non-atomic context where the exact wakeup time is flexible, use
1924 * usleep_range() instead of udelay(). The sleep improves responsiveness
1925 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1926 * power usage by allowing hrtimers to take advantage of an already-
1927 * scheduled interrupt instead of scheduling a new one just for this sleep.
1928 */
usleep_range(unsigned long min,unsigned long max)1929 void __sched usleep_range(unsigned long min, unsigned long max)
1930 {
1931 ktime_t exp = ktime_add_us(ktime_get(), min);
1932 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1933
1934 for (;;) {
1935 __set_current_state(TASK_UNINTERRUPTIBLE);
1936 /* Do not return before the requested sleep time has elapsed */
1937 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1938 break;
1939 }
1940 }
1941 EXPORT_SYMBOL(usleep_range);
1942