1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <net/fib_notifier.h>
85 #include <trace/events/fib.h>
86 #include "fib_lookup.h"
87
call_fib_entry_notifier(struct notifier_block * nb,struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_info * fi,u8 tos,u8 type,u32 tb_id)88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
89 enum fib_event_type event_type, u32 dst,
90 int dst_len, struct fib_info *fi,
91 u8 tos, u8 type, u32 tb_id)
92 {
93 struct fib_entry_notifier_info info = {
94 .dst = dst,
95 .dst_len = dst_len,
96 .fi = fi,
97 .tos = tos,
98 .type = type,
99 .tb_id = tb_id,
100 };
101 return call_fib4_notifier(nb, net, event_type, &info.info);
102 }
103
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_info * fi,u8 tos,u8 type,u32 tb_id)104 static int call_fib_entry_notifiers(struct net *net,
105 enum fib_event_type event_type, u32 dst,
106 int dst_len, struct fib_info *fi,
107 u8 tos, u8 type, u32 tb_id)
108 {
109 struct fib_entry_notifier_info info = {
110 .dst = dst,
111 .dst_len = dst_len,
112 .fi = fi,
113 .tos = tos,
114 .type = type,
115 .tb_id = tb_id,
116 };
117 return call_fib4_notifiers(net, event_type, &info.info);
118 }
119
120 #define MAX_STAT_DEPTH 32
121
122 #define KEYLENGTH (8*sizeof(t_key))
123 #define KEY_MAX ((t_key)~0)
124
125 typedef unsigned int t_key;
126
127 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
128 #define IS_TNODE(n) ((n)->bits)
129 #define IS_LEAF(n) (!(n)->bits)
130
131 struct key_vector {
132 t_key key;
133 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
134 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
135 unsigned char slen;
136 union {
137 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
138 struct hlist_head leaf;
139 /* This array is valid if (pos | bits) > 0 (TNODE) */
140 struct key_vector __rcu *tnode[0];
141 };
142 };
143
144 struct tnode {
145 struct rcu_head rcu;
146 t_key empty_children; /* KEYLENGTH bits needed */
147 t_key full_children; /* KEYLENGTH bits needed */
148 struct key_vector __rcu *parent;
149 struct key_vector kv[1];
150 #define tn_bits kv[0].bits
151 };
152
153 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
154 #define LEAF_SIZE TNODE_SIZE(1)
155
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 struct trie_use_stats {
158 unsigned int gets;
159 unsigned int backtrack;
160 unsigned int semantic_match_passed;
161 unsigned int semantic_match_miss;
162 unsigned int null_node_hit;
163 unsigned int resize_node_skipped;
164 };
165 #endif
166
167 struct trie_stat {
168 unsigned int totdepth;
169 unsigned int maxdepth;
170 unsigned int tnodes;
171 unsigned int leaves;
172 unsigned int nullpointers;
173 unsigned int prefixes;
174 unsigned int nodesizes[MAX_STAT_DEPTH];
175 };
176
177 struct trie {
178 struct key_vector kv[1];
179 #ifdef CONFIG_IP_FIB_TRIE_STATS
180 struct trie_use_stats __percpu *stats;
181 #endif
182 };
183
184 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
185 static size_t tnode_free_size;
186
187 /*
188 * synchronize_rcu after call_rcu for that many pages; it should be especially
189 * useful before resizing the root node with PREEMPT_NONE configs; the value was
190 * obtained experimentally, aiming to avoid visible slowdown.
191 */
192 static const int sync_pages = 128;
193
194 static struct kmem_cache *fn_alias_kmem __read_mostly;
195 static struct kmem_cache *trie_leaf_kmem __read_mostly;
196
tn_info(struct key_vector * kv)197 static inline struct tnode *tn_info(struct key_vector *kv)
198 {
199 return container_of(kv, struct tnode, kv[0]);
200 }
201
202 /* caller must hold RTNL */
203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
205
206 /* caller must hold RCU read lock or RTNL */
207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
209
210 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)211 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
212 {
213 if (n)
214 rcu_assign_pointer(tn_info(n)->parent, tp);
215 }
216
217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
218
219 /* This provides us with the number of children in this node, in the case of a
220 * leaf this will return 0 meaning none of the children are accessible.
221 */
child_length(const struct key_vector * tn)222 static inline unsigned long child_length(const struct key_vector *tn)
223 {
224 return (1ul << tn->bits) & ~(1ul);
225 }
226
227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
228
get_index(t_key key,struct key_vector * kv)229 static inline unsigned long get_index(t_key key, struct key_vector *kv)
230 {
231 unsigned long index = key ^ kv->key;
232
233 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
234 return 0;
235
236 return index >> kv->pos;
237 }
238
239 /* To understand this stuff, an understanding of keys and all their bits is
240 * necessary. Every node in the trie has a key associated with it, but not
241 * all of the bits in that key are significant.
242 *
243 * Consider a node 'n' and its parent 'tp'.
244 *
245 * If n is a leaf, every bit in its key is significant. Its presence is
246 * necessitated by path compression, since during a tree traversal (when
247 * searching for a leaf - unless we are doing an insertion) we will completely
248 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
249 * a potentially successful search, that we have indeed been walking the
250 * correct key path.
251 *
252 * Note that we can never "miss" the correct key in the tree if present by
253 * following the wrong path. Path compression ensures that segments of the key
254 * that are the same for all keys with a given prefix are skipped, but the
255 * skipped part *is* identical for each node in the subtrie below the skipped
256 * bit! trie_insert() in this implementation takes care of that.
257 *
258 * if n is an internal node - a 'tnode' here, the various parts of its key
259 * have many different meanings.
260 *
261 * Example:
262 * _________________________________________________________________
263 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
264 * -----------------------------------------------------------------
265 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
266 *
267 * _________________________________________________________________
268 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
269 * -----------------------------------------------------------------
270 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
271 *
272 * tp->pos = 22
273 * tp->bits = 3
274 * n->pos = 13
275 * n->bits = 4
276 *
277 * First, let's just ignore the bits that come before the parent tp, that is
278 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
279 * point we do not use them for anything.
280 *
281 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
282 * index into the parent's child array. That is, they will be used to find
283 * 'n' among tp's children.
284 *
285 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
286 * for the node n.
287 *
288 * All the bits we have seen so far are significant to the node n. The rest
289 * of the bits are really not needed or indeed known in n->key.
290 *
291 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
292 * n's child array, and will of course be different for each child.
293 *
294 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
295 * at this point.
296 */
297
298 static const int halve_threshold = 25;
299 static const int inflate_threshold = 50;
300 static const int halve_threshold_root = 15;
301 static const int inflate_threshold_root = 30;
302
__alias_free_mem(struct rcu_head * head)303 static void __alias_free_mem(struct rcu_head *head)
304 {
305 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
306 kmem_cache_free(fn_alias_kmem, fa);
307 }
308
alias_free_mem_rcu(struct fib_alias * fa)309 static inline void alias_free_mem_rcu(struct fib_alias *fa)
310 {
311 call_rcu(&fa->rcu, __alias_free_mem);
312 }
313
314 #define TNODE_KMALLOC_MAX \
315 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316 #define TNODE_VMALLOC_MAX \
317 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
318
__node_free_rcu(struct rcu_head * head)319 static void __node_free_rcu(struct rcu_head *head)
320 {
321 struct tnode *n = container_of(head, struct tnode, rcu);
322
323 if (!n->tn_bits)
324 kmem_cache_free(trie_leaf_kmem, n);
325 else
326 kvfree(n);
327 }
328
329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
330
tnode_alloc(int bits)331 static struct tnode *tnode_alloc(int bits)
332 {
333 size_t size;
334
335 /* verify bits is within bounds */
336 if (bits > TNODE_VMALLOC_MAX)
337 return NULL;
338
339 /* determine size and verify it is non-zero and didn't overflow */
340 size = TNODE_SIZE(1ul << bits);
341
342 if (size <= PAGE_SIZE)
343 return kzalloc(size, GFP_KERNEL);
344 else
345 return vzalloc(size);
346 }
347
empty_child_inc(struct key_vector * n)348 static inline void empty_child_inc(struct key_vector *n)
349 {
350 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
351 }
352
empty_child_dec(struct key_vector * n)353 static inline void empty_child_dec(struct key_vector *n)
354 {
355 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
356 }
357
leaf_new(t_key key,struct fib_alias * fa)358 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
359 {
360 struct key_vector *l;
361 struct tnode *kv;
362
363 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
364 if (!kv)
365 return NULL;
366
367 /* initialize key vector */
368 l = kv->kv;
369 l->key = key;
370 l->pos = 0;
371 l->bits = 0;
372 l->slen = fa->fa_slen;
373
374 /* link leaf to fib alias */
375 INIT_HLIST_HEAD(&l->leaf);
376 hlist_add_head(&fa->fa_list, &l->leaf);
377
378 return l;
379 }
380
tnode_new(t_key key,int pos,int bits)381 static struct key_vector *tnode_new(t_key key, int pos, int bits)
382 {
383 unsigned int shift = pos + bits;
384 struct key_vector *tn;
385 struct tnode *tnode;
386
387 /* verify bits and pos their msb bits clear and values are valid */
388 BUG_ON(!bits || (shift > KEYLENGTH));
389
390 tnode = tnode_alloc(bits);
391 if (!tnode)
392 return NULL;
393
394 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
395 sizeof(struct key_vector *) << bits);
396
397 if (bits == KEYLENGTH)
398 tnode->full_children = 1;
399 else
400 tnode->empty_children = 1ul << bits;
401
402 tn = tnode->kv;
403 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
404 tn->pos = pos;
405 tn->bits = bits;
406 tn->slen = pos;
407
408 return tn;
409 }
410
411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
412 * and no bits are skipped. See discussion in dyntree paper p. 6
413 */
tnode_full(struct key_vector * tn,struct key_vector * n)414 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
415 {
416 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
417 }
418
419 /* Add a child at position i overwriting the old value.
420 * Update the value of full_children and empty_children.
421 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)422 static void put_child(struct key_vector *tn, unsigned long i,
423 struct key_vector *n)
424 {
425 struct key_vector *chi = get_child(tn, i);
426 int isfull, wasfull;
427
428 BUG_ON(i >= child_length(tn));
429
430 /* update emptyChildren, overflow into fullChildren */
431 if (!n && chi)
432 empty_child_inc(tn);
433 if (n && !chi)
434 empty_child_dec(tn);
435
436 /* update fullChildren */
437 wasfull = tnode_full(tn, chi);
438 isfull = tnode_full(tn, n);
439
440 if (wasfull && !isfull)
441 tn_info(tn)->full_children--;
442 else if (!wasfull && isfull)
443 tn_info(tn)->full_children++;
444
445 if (n && (tn->slen < n->slen))
446 tn->slen = n->slen;
447
448 rcu_assign_pointer(tn->tnode[i], n);
449 }
450
update_children(struct key_vector * tn)451 static void update_children(struct key_vector *tn)
452 {
453 unsigned long i;
454
455 /* update all of the child parent pointers */
456 for (i = child_length(tn); i;) {
457 struct key_vector *inode = get_child(tn, --i);
458
459 if (!inode)
460 continue;
461
462 /* Either update the children of a tnode that
463 * already belongs to us or update the child
464 * to point to ourselves.
465 */
466 if (node_parent(inode) == tn)
467 update_children(inode);
468 else
469 node_set_parent(inode, tn);
470 }
471 }
472
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)473 static inline void put_child_root(struct key_vector *tp, t_key key,
474 struct key_vector *n)
475 {
476 if (IS_TRIE(tp))
477 rcu_assign_pointer(tp->tnode[0], n);
478 else
479 put_child(tp, get_index(key, tp), n);
480 }
481
tnode_free_init(struct key_vector * tn)482 static inline void tnode_free_init(struct key_vector *tn)
483 {
484 tn_info(tn)->rcu.next = NULL;
485 }
486
tnode_free_append(struct key_vector * tn,struct key_vector * n)487 static inline void tnode_free_append(struct key_vector *tn,
488 struct key_vector *n)
489 {
490 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
491 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
492 }
493
tnode_free(struct key_vector * tn)494 static void tnode_free(struct key_vector *tn)
495 {
496 struct callback_head *head = &tn_info(tn)->rcu;
497
498 while (head) {
499 head = head->next;
500 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
501 node_free(tn);
502
503 tn = container_of(head, struct tnode, rcu)->kv;
504 }
505
506 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
507 tnode_free_size = 0;
508 synchronize_rcu();
509 }
510 }
511
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)512 static struct key_vector *replace(struct trie *t,
513 struct key_vector *oldtnode,
514 struct key_vector *tn)
515 {
516 struct key_vector *tp = node_parent(oldtnode);
517 unsigned long i;
518
519 /* setup the parent pointer out of and back into this node */
520 NODE_INIT_PARENT(tn, tp);
521 put_child_root(tp, tn->key, tn);
522
523 /* update all of the child parent pointers */
524 update_children(tn);
525
526 /* all pointers should be clean so we are done */
527 tnode_free(oldtnode);
528
529 /* resize children now that oldtnode is freed */
530 for (i = child_length(tn); i;) {
531 struct key_vector *inode = get_child(tn, --i);
532
533 /* resize child node */
534 if (tnode_full(tn, inode))
535 tn = resize(t, inode);
536 }
537
538 return tp;
539 }
540
inflate(struct trie * t,struct key_vector * oldtnode)541 static struct key_vector *inflate(struct trie *t,
542 struct key_vector *oldtnode)
543 {
544 struct key_vector *tn;
545 unsigned long i;
546 t_key m;
547
548 pr_debug("In inflate\n");
549
550 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
551 if (!tn)
552 goto notnode;
553
554 /* prepare oldtnode to be freed */
555 tnode_free_init(oldtnode);
556
557 /* Assemble all of the pointers in our cluster, in this case that
558 * represents all of the pointers out of our allocated nodes that
559 * point to existing tnodes and the links between our allocated
560 * nodes.
561 */
562 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
563 struct key_vector *inode = get_child(oldtnode, --i);
564 struct key_vector *node0, *node1;
565 unsigned long j, k;
566
567 /* An empty child */
568 if (!inode)
569 continue;
570
571 /* A leaf or an internal node with skipped bits */
572 if (!tnode_full(oldtnode, inode)) {
573 put_child(tn, get_index(inode->key, tn), inode);
574 continue;
575 }
576
577 /* drop the node in the old tnode free list */
578 tnode_free_append(oldtnode, inode);
579
580 /* An internal node with two children */
581 if (inode->bits == 1) {
582 put_child(tn, 2 * i + 1, get_child(inode, 1));
583 put_child(tn, 2 * i, get_child(inode, 0));
584 continue;
585 }
586
587 /* We will replace this node 'inode' with two new
588 * ones, 'node0' and 'node1', each with half of the
589 * original children. The two new nodes will have
590 * a position one bit further down the key and this
591 * means that the "significant" part of their keys
592 * (see the discussion near the top of this file)
593 * will differ by one bit, which will be "0" in
594 * node0's key and "1" in node1's key. Since we are
595 * moving the key position by one step, the bit that
596 * we are moving away from - the bit at position
597 * (tn->pos) - is the one that will differ between
598 * node0 and node1. So... we synthesize that bit in the
599 * two new keys.
600 */
601 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
602 if (!node1)
603 goto nomem;
604 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
605
606 tnode_free_append(tn, node1);
607 if (!node0)
608 goto nomem;
609 tnode_free_append(tn, node0);
610
611 /* populate child pointers in new nodes */
612 for (k = child_length(inode), j = k / 2; j;) {
613 put_child(node1, --j, get_child(inode, --k));
614 put_child(node0, j, get_child(inode, j));
615 put_child(node1, --j, get_child(inode, --k));
616 put_child(node0, j, get_child(inode, j));
617 }
618
619 /* link new nodes to parent */
620 NODE_INIT_PARENT(node1, tn);
621 NODE_INIT_PARENT(node0, tn);
622
623 /* link parent to nodes */
624 put_child(tn, 2 * i + 1, node1);
625 put_child(tn, 2 * i, node0);
626 }
627
628 /* setup the parent pointers into and out of this node */
629 return replace(t, oldtnode, tn);
630 nomem:
631 /* all pointers should be clean so we are done */
632 tnode_free(tn);
633 notnode:
634 return NULL;
635 }
636
halve(struct trie * t,struct key_vector * oldtnode)637 static struct key_vector *halve(struct trie *t,
638 struct key_vector *oldtnode)
639 {
640 struct key_vector *tn;
641 unsigned long i;
642
643 pr_debug("In halve\n");
644
645 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
646 if (!tn)
647 goto notnode;
648
649 /* prepare oldtnode to be freed */
650 tnode_free_init(oldtnode);
651
652 /* Assemble all of the pointers in our cluster, in this case that
653 * represents all of the pointers out of our allocated nodes that
654 * point to existing tnodes and the links between our allocated
655 * nodes.
656 */
657 for (i = child_length(oldtnode); i;) {
658 struct key_vector *node1 = get_child(oldtnode, --i);
659 struct key_vector *node0 = get_child(oldtnode, --i);
660 struct key_vector *inode;
661
662 /* At least one of the children is empty */
663 if (!node1 || !node0) {
664 put_child(tn, i / 2, node1 ? : node0);
665 continue;
666 }
667
668 /* Two nonempty children */
669 inode = tnode_new(node0->key, oldtnode->pos, 1);
670 if (!inode)
671 goto nomem;
672 tnode_free_append(tn, inode);
673
674 /* initialize pointers out of node */
675 put_child(inode, 1, node1);
676 put_child(inode, 0, node0);
677 NODE_INIT_PARENT(inode, tn);
678
679 /* link parent to node */
680 put_child(tn, i / 2, inode);
681 }
682
683 /* setup the parent pointers into and out of this node */
684 return replace(t, oldtnode, tn);
685 nomem:
686 /* all pointers should be clean so we are done */
687 tnode_free(tn);
688 notnode:
689 return NULL;
690 }
691
collapse(struct trie * t,struct key_vector * oldtnode)692 static struct key_vector *collapse(struct trie *t,
693 struct key_vector *oldtnode)
694 {
695 struct key_vector *n, *tp;
696 unsigned long i;
697
698 /* scan the tnode looking for that one child that might still exist */
699 for (n = NULL, i = child_length(oldtnode); !n && i;)
700 n = get_child(oldtnode, --i);
701
702 /* compress one level */
703 tp = node_parent(oldtnode);
704 put_child_root(tp, oldtnode->key, n);
705 node_set_parent(n, tp);
706
707 /* drop dead node */
708 node_free(oldtnode);
709
710 return tp;
711 }
712
update_suffix(struct key_vector * tn)713 static unsigned char update_suffix(struct key_vector *tn)
714 {
715 unsigned char slen = tn->pos;
716 unsigned long stride, i;
717 unsigned char slen_max;
718
719 /* only vector 0 can have a suffix length greater than or equal to
720 * tn->pos + tn->bits, the second highest node will have a suffix
721 * length at most of tn->pos + tn->bits - 1
722 */
723 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
724
725 /* search though the list of children looking for nodes that might
726 * have a suffix greater than the one we currently have. This is
727 * why we start with a stride of 2 since a stride of 1 would
728 * represent the nodes with suffix length equal to tn->pos
729 */
730 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
731 struct key_vector *n = get_child(tn, i);
732
733 if (!n || (n->slen <= slen))
734 continue;
735
736 /* update stride and slen based on new value */
737 stride <<= (n->slen - slen);
738 slen = n->slen;
739 i &= ~(stride - 1);
740
741 /* stop searching if we have hit the maximum possible value */
742 if (slen >= slen_max)
743 break;
744 }
745
746 tn->slen = slen;
747
748 return slen;
749 }
750
751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
752 * the Helsinki University of Technology and Matti Tikkanen of Nokia
753 * Telecommunications, page 6:
754 * "A node is doubled if the ratio of non-empty children to all
755 * children in the *doubled* node is at least 'high'."
756 *
757 * 'high' in this instance is the variable 'inflate_threshold'. It
758 * is expressed as a percentage, so we multiply it with
759 * child_length() and instead of multiplying by 2 (since the
760 * child array will be doubled by inflate()) and multiplying
761 * the left-hand side by 100 (to handle the percentage thing) we
762 * multiply the left-hand side by 50.
763 *
764 * The left-hand side may look a bit weird: child_length(tn)
765 * - tn->empty_children is of course the number of non-null children
766 * in the current node. tn->full_children is the number of "full"
767 * children, that is non-null tnodes with a skip value of 0.
768 * All of those will be doubled in the resulting inflated tnode, so
769 * we just count them one extra time here.
770 *
771 * A clearer way to write this would be:
772 *
773 * to_be_doubled = tn->full_children;
774 * not_to_be_doubled = child_length(tn) - tn->empty_children -
775 * tn->full_children;
776 *
777 * new_child_length = child_length(tn) * 2;
778 *
779 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
780 * new_child_length;
781 * if (new_fill_factor >= inflate_threshold)
782 *
783 * ...and so on, tho it would mess up the while () loop.
784 *
785 * anyway,
786 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
787 * inflate_threshold
788 *
789 * avoid a division:
790 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
791 * inflate_threshold * new_child_length
792 *
793 * expand not_to_be_doubled and to_be_doubled, and shorten:
794 * 100 * (child_length(tn) - tn->empty_children +
795 * tn->full_children) >= inflate_threshold * new_child_length
796 *
797 * expand new_child_length:
798 * 100 * (child_length(tn) - tn->empty_children +
799 * tn->full_children) >=
800 * inflate_threshold * child_length(tn) * 2
801 *
802 * shorten again:
803 * 50 * (tn->full_children + child_length(tn) -
804 * tn->empty_children) >= inflate_threshold *
805 * child_length(tn)
806 *
807 */
should_inflate(struct key_vector * tp,struct key_vector * tn)808 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
809 {
810 unsigned long used = child_length(tn);
811 unsigned long threshold = used;
812
813 /* Keep root node larger */
814 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
815 used -= tn_info(tn)->empty_children;
816 used += tn_info(tn)->full_children;
817
818 /* if bits == KEYLENGTH then pos = 0, and will fail below */
819
820 return (used > 1) && tn->pos && ((50 * used) >= threshold);
821 }
822
should_halve(struct key_vector * tp,struct key_vector * tn)823 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
824 {
825 unsigned long used = child_length(tn);
826 unsigned long threshold = used;
827
828 /* Keep root node larger */
829 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
830 used -= tn_info(tn)->empty_children;
831
832 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
833
834 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
835 }
836
should_collapse(struct key_vector * tn)837 static inline bool should_collapse(struct key_vector *tn)
838 {
839 unsigned long used = child_length(tn);
840
841 used -= tn_info(tn)->empty_children;
842
843 /* account for bits == KEYLENGTH case */
844 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
845 used -= KEY_MAX;
846
847 /* One child or none, time to drop us from the trie */
848 return used < 2;
849 }
850
851 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)852 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
853 {
854 #ifdef CONFIG_IP_FIB_TRIE_STATS
855 struct trie_use_stats __percpu *stats = t->stats;
856 #endif
857 struct key_vector *tp = node_parent(tn);
858 unsigned long cindex = get_index(tn->key, tp);
859 int max_work = MAX_WORK;
860
861 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
862 tn, inflate_threshold, halve_threshold);
863
864 /* track the tnode via the pointer from the parent instead of
865 * doing it ourselves. This way we can let RCU fully do its
866 * thing without us interfering
867 */
868 BUG_ON(tn != get_child(tp, cindex));
869
870 /* Double as long as the resulting node has a number of
871 * nonempty nodes that are above the threshold.
872 */
873 while (should_inflate(tp, tn) && max_work) {
874 tp = inflate(t, tn);
875 if (!tp) {
876 #ifdef CONFIG_IP_FIB_TRIE_STATS
877 this_cpu_inc(stats->resize_node_skipped);
878 #endif
879 break;
880 }
881
882 max_work--;
883 tn = get_child(tp, cindex);
884 }
885
886 /* update parent in case inflate failed */
887 tp = node_parent(tn);
888
889 /* Return if at least one inflate is run */
890 if (max_work != MAX_WORK)
891 return tp;
892
893 /* Halve as long as the number of empty children in this
894 * node is above threshold.
895 */
896 while (should_halve(tp, tn) && max_work) {
897 tp = halve(t, tn);
898 if (!tp) {
899 #ifdef CONFIG_IP_FIB_TRIE_STATS
900 this_cpu_inc(stats->resize_node_skipped);
901 #endif
902 break;
903 }
904
905 max_work--;
906 tn = get_child(tp, cindex);
907 }
908
909 /* Only one child remains */
910 if (should_collapse(tn))
911 return collapse(t, tn);
912
913 /* update parent in case halve failed */
914 return node_parent(tn);
915 }
916
node_pull_suffix(struct key_vector * tn,unsigned char slen)917 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
918 {
919 unsigned char node_slen = tn->slen;
920
921 while ((node_slen > tn->pos) && (node_slen > slen)) {
922 slen = update_suffix(tn);
923 if (node_slen == slen)
924 break;
925
926 tn = node_parent(tn);
927 node_slen = tn->slen;
928 }
929 }
930
node_push_suffix(struct key_vector * tn,unsigned char slen)931 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
932 {
933 while (tn->slen < slen) {
934 tn->slen = slen;
935 tn = node_parent(tn);
936 }
937 }
938
939 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)940 static struct key_vector *fib_find_node(struct trie *t,
941 struct key_vector **tp, u32 key)
942 {
943 struct key_vector *pn, *n = t->kv;
944 unsigned long index = 0;
945
946 do {
947 pn = n;
948 n = get_child_rcu(n, index);
949
950 if (!n)
951 break;
952
953 index = get_cindex(key, n);
954
955 /* This bit of code is a bit tricky but it combines multiple
956 * checks into a single check. The prefix consists of the
957 * prefix plus zeros for the bits in the cindex. The index
958 * is the difference between the key and this value. From
959 * this we can actually derive several pieces of data.
960 * if (index >= (1ul << bits))
961 * we have a mismatch in skip bits and failed
962 * else
963 * we know the value is cindex
964 *
965 * This check is safe even if bits == KEYLENGTH due to the
966 * fact that we can only allocate a node with 32 bits if a
967 * long is greater than 32 bits.
968 */
969 if (index >= (1ul << n->bits)) {
970 n = NULL;
971 break;
972 }
973
974 /* keep searching until we find a perfect match leaf or NULL */
975 } while (IS_TNODE(n));
976
977 *tp = pn;
978
979 return n;
980 }
981
982 /* Return the first fib alias matching TOS with
983 * priority less than or equal to PRIO.
984 */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id)985 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
986 u8 tos, u32 prio, u32 tb_id)
987 {
988 struct fib_alias *fa;
989
990 if (!fah)
991 return NULL;
992
993 hlist_for_each_entry(fa, fah, fa_list) {
994 if (fa->fa_slen < slen)
995 continue;
996 if (fa->fa_slen != slen)
997 break;
998 if (fa->tb_id > tb_id)
999 continue;
1000 if (fa->tb_id != tb_id)
1001 break;
1002 if (fa->fa_tos > tos)
1003 continue;
1004 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1005 return fa;
1006 }
1007
1008 return NULL;
1009 }
1010
trie_rebalance(struct trie * t,struct key_vector * tn)1011 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1012 {
1013 while (!IS_TRIE(tn))
1014 tn = resize(t, tn);
1015 }
1016
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1017 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1018 struct fib_alias *new, t_key key)
1019 {
1020 struct key_vector *n, *l;
1021
1022 l = leaf_new(key, new);
1023 if (!l)
1024 goto noleaf;
1025
1026 /* retrieve child from parent node */
1027 n = get_child(tp, get_index(key, tp));
1028
1029 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1030 *
1031 * Add a new tnode here
1032 * first tnode need some special handling
1033 * leaves us in position for handling as case 3
1034 */
1035 if (n) {
1036 struct key_vector *tn;
1037
1038 tn = tnode_new(key, __fls(key ^ n->key), 1);
1039 if (!tn)
1040 goto notnode;
1041
1042 /* initialize routes out of node */
1043 NODE_INIT_PARENT(tn, tp);
1044 put_child(tn, get_index(key, tn) ^ 1, n);
1045
1046 /* start adding routes into the node */
1047 put_child_root(tp, key, tn);
1048 node_set_parent(n, tn);
1049
1050 /* parent now has a NULL spot where the leaf can go */
1051 tp = tn;
1052 }
1053
1054 /* Case 3: n is NULL, and will just insert a new leaf */
1055 node_push_suffix(tp, new->fa_slen);
1056 NODE_INIT_PARENT(l, tp);
1057 put_child_root(tp, key, l);
1058 trie_rebalance(t, tp);
1059
1060 return 0;
1061 notnode:
1062 node_free(l);
1063 noleaf:
1064 return -ENOMEM;
1065 }
1066
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 struct key_vector *l, struct fib_alias *new,
1069 struct fib_alias *fa, t_key key)
1070 {
1071 if (!l)
1072 return fib_insert_node(t, tp, new, key);
1073
1074 if (fa) {
1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076 } else {
1077 struct fib_alias *last;
1078
1079 hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 if (new->fa_slen < last->fa_slen)
1081 break;
1082 if ((new->fa_slen == last->fa_slen) &&
1083 (new->tb_id > last->tb_id))
1084 break;
1085 fa = last;
1086 }
1087
1088 if (fa)
1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 else
1091 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092 }
1093
1094 /* if we added to the tail node then we need to update slen */
1095 if (l->slen < new->fa_slen) {
1096 l->slen = new->fa_slen;
1097 node_push_suffix(tp, new->fa_slen);
1098 }
1099
1100 return 0;
1101 }
1102
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104 {
1105 if (plen > KEYLENGTH) {
1106 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107 return false;
1108 }
1109
1110 if ((plen < KEYLENGTH) && (key << plen)) {
1111 NL_SET_ERR_MSG(extack,
1112 "Invalid prefix for given prefix length");
1113 return false;
1114 }
1115
1116 return true;
1117 }
1118
1119 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1120 int fib_table_insert(struct net *net, struct fib_table *tb,
1121 struct fib_config *cfg, struct netlink_ext_ack *extack)
1122 {
1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124 struct trie *t = (struct trie *)tb->tb_data;
1125 struct fib_alias *fa, *new_fa;
1126 struct key_vector *l, *tp;
1127 u16 nlflags = NLM_F_EXCL;
1128 struct fib_info *fi;
1129 u8 plen = cfg->fc_dst_len;
1130 u8 slen = KEYLENGTH - plen;
1131 u8 tos = cfg->fc_tos;
1132 u32 key;
1133 int err;
1134
1135 key = ntohl(cfg->fc_dst);
1136
1137 if (!fib_valid_key_len(key, plen, extack))
1138 return -EINVAL;
1139
1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
1142 fi = fib_create_info(cfg, extack);
1143 if (IS_ERR(fi)) {
1144 err = PTR_ERR(fi);
1145 goto err;
1146 }
1147
1148 l = fib_find_node(t, &tp, key);
1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 tb->tb_id) : NULL;
1151
1152 /* Now fa, if non-NULL, points to the first fib alias
1153 * with the same keys [prefix,tos,priority], if such key already
1154 * exists or to the node before which we will insert new one.
1155 *
1156 * If fa is NULL, we will need to allocate a new one and
1157 * insert to the tail of the section matching the suffix length
1158 * of the new alias.
1159 */
1160
1161 if (fa && fa->fa_tos == tos &&
1162 fa->fa_info->fib_priority == fi->fib_priority) {
1163 struct fib_alias *fa_first, *fa_match;
1164
1165 err = -EEXIST;
1166 if (cfg->fc_nlflags & NLM_F_EXCL)
1167 goto out;
1168
1169 nlflags &= ~NLM_F_EXCL;
1170
1171 /* We have 2 goals:
1172 * 1. Find exact match for type, scope, fib_info to avoid
1173 * duplicate routes
1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 */
1176 fa_match = NULL;
1177 fa_first = fa;
1178 hlist_for_each_entry_from(fa, fa_list) {
1179 if ((fa->fa_slen != slen) ||
1180 (fa->tb_id != tb->tb_id) ||
1181 (fa->fa_tos != tos))
1182 break;
1183 if (fa->fa_info->fib_priority != fi->fib_priority)
1184 break;
1185 if (fa->fa_type == cfg->fc_type &&
1186 fa->fa_info == fi) {
1187 fa_match = fa;
1188 break;
1189 }
1190 }
1191
1192 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 struct fib_info *fi_drop;
1194 u8 state;
1195
1196 nlflags |= NLM_F_REPLACE;
1197 fa = fa_first;
1198 if (fa_match) {
1199 if (fa == fa_match)
1200 err = 0;
1201 goto out;
1202 }
1203 err = -ENOBUFS;
1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 if (!new_fa)
1206 goto out;
1207
1208 fi_drop = fa->fa_info;
1209 new_fa->fa_tos = fa->fa_tos;
1210 new_fa->fa_info = fi;
1211 new_fa->fa_type = cfg->fc_type;
1212 state = fa->fa_state;
1213 new_fa->fa_state = state & ~FA_S_ACCESSED;
1214 new_fa->fa_slen = fa->fa_slen;
1215 new_fa->tb_id = tb->tb_id;
1216 new_fa->fa_default = -1;
1217
1218 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1219 key, plen, fi,
1220 new_fa->fa_tos, cfg->fc_type,
1221 tb->tb_id);
1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1223 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1224
1225 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1226
1227 alias_free_mem_rcu(fa);
1228
1229 fib_release_info(fi_drop);
1230 if (state & FA_S_ACCESSED)
1231 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1232
1233 goto succeeded;
1234 }
1235 /* Error if we find a perfect match which
1236 * uses the same scope, type, and nexthop
1237 * information.
1238 */
1239 if (fa_match)
1240 goto out;
1241
1242 if (cfg->fc_nlflags & NLM_F_APPEND) {
1243 event = FIB_EVENT_ENTRY_APPEND;
1244 nlflags |= NLM_F_APPEND;
1245 } else {
1246 fa = fa_first;
1247 }
1248 }
1249 err = -ENOENT;
1250 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1251 goto out;
1252
1253 nlflags |= NLM_F_CREATE;
1254 err = -ENOBUFS;
1255 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1256 if (!new_fa)
1257 goto out;
1258
1259 new_fa->fa_info = fi;
1260 new_fa->fa_tos = tos;
1261 new_fa->fa_type = cfg->fc_type;
1262 new_fa->fa_state = 0;
1263 new_fa->fa_slen = slen;
1264 new_fa->tb_id = tb->tb_id;
1265 new_fa->fa_default = -1;
1266
1267 /* Insert new entry to the list. */
1268 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1269 if (err)
1270 goto out_free_new_fa;
1271
1272 if (!plen)
1273 tb->tb_num_default++;
1274
1275 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1276 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1277 tb->tb_id);
1278 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1279 &cfg->fc_nlinfo, nlflags);
1280 succeeded:
1281 return 0;
1282
1283 out_free_new_fa:
1284 kmem_cache_free(fn_alias_kmem, new_fa);
1285 out:
1286 fib_release_info(fi);
1287 err:
1288 return err;
1289 }
1290
prefix_mismatch(t_key key,struct key_vector * n)1291 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1292 {
1293 t_key prefix = n->key;
1294
1295 return (key ^ prefix) & (prefix | -prefix);
1296 }
1297
1298 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1299 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1300 struct fib_result *res, int fib_flags)
1301 {
1302 struct trie *t = (struct trie *) tb->tb_data;
1303 #ifdef CONFIG_IP_FIB_TRIE_STATS
1304 struct trie_use_stats __percpu *stats = t->stats;
1305 #endif
1306 const t_key key = ntohl(flp->daddr);
1307 struct key_vector *n, *pn;
1308 struct fib_alias *fa;
1309 unsigned long index;
1310 t_key cindex;
1311
1312 trace_fib_table_lookup(tb->tb_id, flp);
1313
1314 pn = t->kv;
1315 cindex = 0;
1316
1317 n = get_child_rcu(pn, cindex);
1318 if (!n)
1319 return -EAGAIN;
1320
1321 #ifdef CONFIG_IP_FIB_TRIE_STATS
1322 this_cpu_inc(stats->gets);
1323 #endif
1324
1325 /* Step 1: Travel to the longest prefix match in the trie */
1326 for (;;) {
1327 index = get_cindex(key, n);
1328
1329 /* This bit of code is a bit tricky but it combines multiple
1330 * checks into a single check. The prefix consists of the
1331 * prefix plus zeros for the "bits" in the prefix. The index
1332 * is the difference between the key and this value. From
1333 * this we can actually derive several pieces of data.
1334 * if (index >= (1ul << bits))
1335 * we have a mismatch in skip bits and failed
1336 * else
1337 * we know the value is cindex
1338 *
1339 * This check is safe even if bits == KEYLENGTH due to the
1340 * fact that we can only allocate a node with 32 bits if a
1341 * long is greater than 32 bits.
1342 */
1343 if (index >= (1ul << n->bits))
1344 break;
1345
1346 /* we have found a leaf. Prefixes have already been compared */
1347 if (IS_LEAF(n))
1348 goto found;
1349
1350 /* only record pn and cindex if we are going to be chopping
1351 * bits later. Otherwise we are just wasting cycles.
1352 */
1353 if (n->slen > n->pos) {
1354 pn = n;
1355 cindex = index;
1356 }
1357
1358 n = get_child_rcu(n, index);
1359 if (unlikely(!n))
1360 goto backtrace;
1361 }
1362
1363 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1364 for (;;) {
1365 /* record the pointer where our next node pointer is stored */
1366 struct key_vector __rcu **cptr = n->tnode;
1367
1368 /* This test verifies that none of the bits that differ
1369 * between the key and the prefix exist in the region of
1370 * the lsb and higher in the prefix.
1371 */
1372 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1373 goto backtrace;
1374
1375 /* exit out and process leaf */
1376 if (unlikely(IS_LEAF(n)))
1377 break;
1378
1379 /* Don't bother recording parent info. Since we are in
1380 * prefix match mode we will have to come back to wherever
1381 * we started this traversal anyway
1382 */
1383
1384 while ((n = rcu_dereference(*cptr)) == NULL) {
1385 backtrace:
1386 #ifdef CONFIG_IP_FIB_TRIE_STATS
1387 if (!n)
1388 this_cpu_inc(stats->null_node_hit);
1389 #endif
1390 /* If we are at cindex 0 there are no more bits for
1391 * us to strip at this level so we must ascend back
1392 * up one level to see if there are any more bits to
1393 * be stripped there.
1394 */
1395 while (!cindex) {
1396 t_key pkey = pn->key;
1397
1398 /* If we don't have a parent then there is
1399 * nothing for us to do as we do not have any
1400 * further nodes to parse.
1401 */
1402 if (IS_TRIE(pn))
1403 return -EAGAIN;
1404 #ifdef CONFIG_IP_FIB_TRIE_STATS
1405 this_cpu_inc(stats->backtrack);
1406 #endif
1407 /* Get Child's index */
1408 pn = node_parent_rcu(pn);
1409 cindex = get_index(pkey, pn);
1410 }
1411
1412 /* strip the least significant bit from the cindex */
1413 cindex &= cindex - 1;
1414
1415 /* grab pointer for next child node */
1416 cptr = &pn->tnode[cindex];
1417 }
1418 }
1419
1420 found:
1421 /* this line carries forward the xor from earlier in the function */
1422 index = key ^ n->key;
1423
1424 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1425 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1426 struct fib_info *fi = fa->fa_info;
1427 int nhsel, err;
1428
1429 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1430 if (index >= (1ul << fa->fa_slen))
1431 continue;
1432 }
1433 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1434 continue;
1435 if (fi->fib_dead)
1436 continue;
1437 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1438 continue;
1439 fib_alias_accessed(fa);
1440 err = fib_props[fa->fa_type].error;
1441 if (unlikely(err < 0)) {
1442 #ifdef CONFIG_IP_FIB_TRIE_STATS
1443 this_cpu_inc(stats->semantic_match_passed);
1444 #endif
1445 return err;
1446 }
1447 if (fi->fib_flags & RTNH_F_DEAD)
1448 continue;
1449 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1450 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1451 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1452
1453 if (nh->nh_flags & RTNH_F_DEAD)
1454 continue;
1455 if (in_dev &&
1456 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1457 nh->nh_flags & RTNH_F_LINKDOWN &&
1458 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1459 continue;
1460 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1461 if (flp->flowi4_oif &&
1462 flp->flowi4_oif != nh->nh_oif)
1463 continue;
1464 }
1465
1466 if (!(fib_flags & FIB_LOOKUP_NOREF))
1467 refcount_inc(&fi->fib_clntref);
1468
1469 res->prefix = htonl(n->key);
1470 res->prefixlen = KEYLENGTH - fa->fa_slen;
1471 res->nh_sel = nhsel;
1472 res->type = fa->fa_type;
1473 res->scope = fi->fib_scope;
1474 res->fi = fi;
1475 res->table = tb;
1476 res->fa_head = &n->leaf;
1477 #ifdef CONFIG_IP_FIB_TRIE_STATS
1478 this_cpu_inc(stats->semantic_match_passed);
1479 #endif
1480 trace_fib_table_lookup_nh(nh);
1481
1482 return err;
1483 }
1484 }
1485 #ifdef CONFIG_IP_FIB_TRIE_STATS
1486 this_cpu_inc(stats->semantic_match_miss);
1487 #endif
1488 goto backtrace;
1489 }
1490 EXPORT_SYMBOL_GPL(fib_table_lookup);
1491
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1492 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1493 struct key_vector *l, struct fib_alias *old)
1494 {
1495 /* record the location of the previous list_info entry */
1496 struct hlist_node **pprev = old->fa_list.pprev;
1497 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1498
1499 /* remove the fib_alias from the list */
1500 hlist_del_rcu(&old->fa_list);
1501
1502 /* if we emptied the list this leaf will be freed and we can sort
1503 * out parent suffix lengths as a part of trie_rebalance
1504 */
1505 if (hlist_empty(&l->leaf)) {
1506 if (tp->slen == l->slen)
1507 node_pull_suffix(tp, tp->pos);
1508 put_child_root(tp, l->key, NULL);
1509 node_free(l);
1510 trie_rebalance(t, tp);
1511 return;
1512 }
1513
1514 /* only access fa if it is pointing at the last valid hlist_node */
1515 if (*pprev)
1516 return;
1517
1518 /* update the trie with the latest suffix length */
1519 l->slen = fa->fa_slen;
1520 node_pull_suffix(tp, fa->fa_slen);
1521 }
1522
1523 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1524 int fib_table_delete(struct net *net, struct fib_table *tb,
1525 struct fib_config *cfg, struct netlink_ext_ack *extack)
1526 {
1527 struct trie *t = (struct trie *) tb->tb_data;
1528 struct fib_alias *fa, *fa_to_delete;
1529 struct key_vector *l, *tp;
1530 u8 plen = cfg->fc_dst_len;
1531 u8 slen = KEYLENGTH - plen;
1532 u8 tos = cfg->fc_tos;
1533 u32 key;
1534
1535 key = ntohl(cfg->fc_dst);
1536
1537 if (!fib_valid_key_len(key, plen, extack))
1538 return -EINVAL;
1539
1540 l = fib_find_node(t, &tp, key);
1541 if (!l)
1542 return -ESRCH;
1543
1544 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1545 if (!fa)
1546 return -ESRCH;
1547
1548 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1549
1550 fa_to_delete = NULL;
1551 hlist_for_each_entry_from(fa, fa_list) {
1552 struct fib_info *fi = fa->fa_info;
1553
1554 if ((fa->fa_slen != slen) ||
1555 (fa->tb_id != tb->tb_id) ||
1556 (fa->fa_tos != tos))
1557 break;
1558
1559 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1560 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1561 fa->fa_info->fib_scope == cfg->fc_scope) &&
1562 (!cfg->fc_prefsrc ||
1563 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1564 (!cfg->fc_protocol ||
1565 fi->fib_protocol == cfg->fc_protocol) &&
1566 fib_nh_match(cfg, fi, extack) == 0 &&
1567 fib_metrics_match(cfg, fi)) {
1568 fa_to_delete = fa;
1569 break;
1570 }
1571 }
1572
1573 if (!fa_to_delete)
1574 return -ESRCH;
1575
1576 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1577 fa_to_delete->fa_info, tos,
1578 fa_to_delete->fa_type, tb->tb_id);
1579 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1580 &cfg->fc_nlinfo, 0);
1581
1582 if (!plen)
1583 tb->tb_num_default--;
1584
1585 fib_remove_alias(t, tp, l, fa_to_delete);
1586
1587 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1588 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1589
1590 fib_release_info(fa_to_delete->fa_info);
1591 alias_free_mem_rcu(fa_to_delete);
1592 return 0;
1593 }
1594
1595 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1596 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1597 {
1598 struct key_vector *pn, *n = *tn;
1599 unsigned long cindex;
1600
1601 /* this loop is meant to try and find the key in the trie */
1602 do {
1603 /* record parent and next child index */
1604 pn = n;
1605 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1606
1607 if (cindex >> pn->bits)
1608 break;
1609
1610 /* descend into the next child */
1611 n = get_child_rcu(pn, cindex++);
1612 if (!n)
1613 break;
1614
1615 /* guarantee forward progress on the keys */
1616 if (IS_LEAF(n) && (n->key >= key))
1617 goto found;
1618 } while (IS_TNODE(n));
1619
1620 /* this loop will search for the next leaf with a greater key */
1621 while (!IS_TRIE(pn)) {
1622 /* if we exhausted the parent node we will need to climb */
1623 if (cindex >= (1ul << pn->bits)) {
1624 t_key pkey = pn->key;
1625
1626 pn = node_parent_rcu(pn);
1627 cindex = get_index(pkey, pn) + 1;
1628 continue;
1629 }
1630
1631 /* grab the next available node */
1632 n = get_child_rcu(pn, cindex++);
1633 if (!n)
1634 continue;
1635
1636 /* no need to compare keys since we bumped the index */
1637 if (IS_LEAF(n))
1638 goto found;
1639
1640 /* Rescan start scanning in new node */
1641 pn = n;
1642 cindex = 0;
1643 }
1644
1645 *tn = pn;
1646 return NULL; /* Root of trie */
1647 found:
1648 /* if we are at the limit for keys just return NULL for the tnode */
1649 *tn = pn;
1650 return n;
1651 }
1652
fib_trie_free(struct fib_table * tb)1653 static void fib_trie_free(struct fib_table *tb)
1654 {
1655 struct trie *t = (struct trie *)tb->tb_data;
1656 struct key_vector *pn = t->kv;
1657 unsigned long cindex = 1;
1658 struct hlist_node *tmp;
1659 struct fib_alias *fa;
1660
1661 /* walk trie in reverse order and free everything */
1662 for (;;) {
1663 struct key_vector *n;
1664
1665 if (!(cindex--)) {
1666 t_key pkey = pn->key;
1667
1668 if (IS_TRIE(pn))
1669 break;
1670
1671 n = pn;
1672 pn = node_parent(pn);
1673
1674 /* drop emptied tnode */
1675 put_child_root(pn, n->key, NULL);
1676 node_free(n);
1677
1678 cindex = get_index(pkey, pn);
1679
1680 continue;
1681 }
1682
1683 /* grab the next available node */
1684 n = get_child(pn, cindex);
1685 if (!n)
1686 continue;
1687
1688 if (IS_TNODE(n)) {
1689 /* record pn and cindex for leaf walking */
1690 pn = n;
1691 cindex = 1ul << n->bits;
1692
1693 continue;
1694 }
1695
1696 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1697 hlist_del_rcu(&fa->fa_list);
1698 alias_free_mem_rcu(fa);
1699 }
1700
1701 put_child_root(pn, n->key, NULL);
1702 node_free(n);
1703 }
1704
1705 #ifdef CONFIG_IP_FIB_TRIE_STATS
1706 free_percpu(t->stats);
1707 #endif
1708 kfree(tb);
1709 }
1710
fib_trie_unmerge(struct fib_table * oldtb)1711 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1712 {
1713 struct trie *ot = (struct trie *)oldtb->tb_data;
1714 struct key_vector *l, *tp = ot->kv;
1715 struct fib_table *local_tb;
1716 struct fib_alias *fa;
1717 struct trie *lt;
1718 t_key key = 0;
1719
1720 if (oldtb->tb_data == oldtb->__data)
1721 return oldtb;
1722
1723 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1724 if (!local_tb)
1725 return NULL;
1726
1727 lt = (struct trie *)local_tb->tb_data;
1728
1729 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1730 struct key_vector *local_l = NULL, *local_tp;
1731
1732 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1733 struct fib_alias *new_fa;
1734
1735 if (local_tb->tb_id != fa->tb_id)
1736 continue;
1737
1738 /* clone fa for new local table */
1739 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1740 if (!new_fa)
1741 goto out;
1742
1743 memcpy(new_fa, fa, sizeof(*fa));
1744
1745 /* insert clone into table */
1746 if (!local_l)
1747 local_l = fib_find_node(lt, &local_tp, l->key);
1748
1749 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1750 NULL, l->key)) {
1751 kmem_cache_free(fn_alias_kmem, new_fa);
1752 goto out;
1753 }
1754 }
1755
1756 /* stop loop if key wrapped back to 0 */
1757 key = l->key + 1;
1758 if (key < l->key)
1759 break;
1760 }
1761
1762 return local_tb;
1763 out:
1764 fib_trie_free(local_tb);
1765
1766 return NULL;
1767 }
1768
1769 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1770 void fib_table_flush_external(struct fib_table *tb)
1771 {
1772 struct trie *t = (struct trie *)tb->tb_data;
1773 struct key_vector *pn = t->kv;
1774 unsigned long cindex = 1;
1775 struct hlist_node *tmp;
1776 struct fib_alias *fa;
1777
1778 /* walk trie in reverse order */
1779 for (;;) {
1780 unsigned char slen = 0;
1781 struct key_vector *n;
1782
1783 if (!(cindex--)) {
1784 t_key pkey = pn->key;
1785
1786 /* cannot resize the trie vector */
1787 if (IS_TRIE(pn))
1788 break;
1789
1790 /* update the suffix to address pulled leaves */
1791 if (pn->slen > pn->pos)
1792 update_suffix(pn);
1793
1794 /* resize completed node */
1795 pn = resize(t, pn);
1796 cindex = get_index(pkey, pn);
1797
1798 continue;
1799 }
1800
1801 /* grab the next available node */
1802 n = get_child(pn, cindex);
1803 if (!n)
1804 continue;
1805
1806 if (IS_TNODE(n)) {
1807 /* record pn and cindex for leaf walking */
1808 pn = n;
1809 cindex = 1ul << n->bits;
1810
1811 continue;
1812 }
1813
1814 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1815 /* if alias was cloned to local then we just
1816 * need to remove the local copy from main
1817 */
1818 if (tb->tb_id != fa->tb_id) {
1819 hlist_del_rcu(&fa->fa_list);
1820 alias_free_mem_rcu(fa);
1821 continue;
1822 }
1823
1824 /* record local slen */
1825 slen = fa->fa_slen;
1826 }
1827
1828 /* update leaf slen */
1829 n->slen = slen;
1830
1831 if (hlist_empty(&n->leaf)) {
1832 put_child_root(pn, n->key, NULL);
1833 node_free(n);
1834 }
1835 }
1836 }
1837
1838 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)1839 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1840 {
1841 struct trie *t = (struct trie *)tb->tb_data;
1842 struct key_vector *pn = t->kv;
1843 unsigned long cindex = 1;
1844 struct hlist_node *tmp;
1845 struct fib_alias *fa;
1846 int found = 0;
1847
1848 /* walk trie in reverse order */
1849 for (;;) {
1850 unsigned char slen = 0;
1851 struct key_vector *n;
1852
1853 if (!(cindex--)) {
1854 t_key pkey = pn->key;
1855
1856 /* cannot resize the trie vector */
1857 if (IS_TRIE(pn))
1858 break;
1859
1860 /* update the suffix to address pulled leaves */
1861 if (pn->slen > pn->pos)
1862 update_suffix(pn);
1863
1864 /* resize completed node */
1865 pn = resize(t, pn);
1866 cindex = get_index(pkey, pn);
1867
1868 continue;
1869 }
1870
1871 /* grab the next available node */
1872 n = get_child(pn, cindex);
1873 if (!n)
1874 continue;
1875
1876 if (IS_TNODE(n)) {
1877 /* record pn and cindex for leaf walking */
1878 pn = n;
1879 cindex = 1ul << n->bits;
1880
1881 continue;
1882 }
1883
1884 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1885 struct fib_info *fi = fa->fa_info;
1886
1887 if (!fi || tb->tb_id != fa->tb_id ||
1888 (!(fi->fib_flags & RTNH_F_DEAD) &&
1889 !fib_props[fa->fa_type].error)) {
1890 slen = fa->fa_slen;
1891 continue;
1892 }
1893
1894 /* Do not flush error routes if network namespace is
1895 * not being dismantled
1896 */
1897 if (!flush_all && fib_props[fa->fa_type].error) {
1898 slen = fa->fa_slen;
1899 continue;
1900 }
1901
1902 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1903 n->key,
1904 KEYLENGTH - fa->fa_slen,
1905 fi, fa->fa_tos, fa->fa_type,
1906 tb->tb_id);
1907 hlist_del_rcu(&fa->fa_list);
1908 fib_release_info(fa->fa_info);
1909 alias_free_mem_rcu(fa);
1910 found++;
1911 }
1912
1913 /* update leaf slen */
1914 n->slen = slen;
1915
1916 if (hlist_empty(&n->leaf)) {
1917 put_child_root(pn, n->key, NULL);
1918 node_free(n);
1919 }
1920 }
1921
1922 pr_debug("trie_flush found=%d\n", found);
1923 return found;
1924 }
1925
fib_leaf_notify(struct net * net,struct key_vector * l,struct fib_table * tb,struct notifier_block * nb)1926 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1927 struct fib_table *tb, struct notifier_block *nb)
1928 {
1929 struct fib_alias *fa;
1930
1931 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1932 struct fib_info *fi = fa->fa_info;
1933
1934 if (!fi)
1935 continue;
1936
1937 /* local and main table can share the same trie,
1938 * so don't notify twice for the same entry.
1939 */
1940 if (tb->tb_id != fa->tb_id)
1941 continue;
1942
1943 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1944 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1945 fa->fa_type, fa->tb_id);
1946 }
1947 }
1948
fib_table_notify(struct net * net,struct fib_table * tb,struct notifier_block * nb)1949 static void fib_table_notify(struct net *net, struct fib_table *tb,
1950 struct notifier_block *nb)
1951 {
1952 struct trie *t = (struct trie *)tb->tb_data;
1953 struct key_vector *l, *tp = t->kv;
1954 t_key key = 0;
1955
1956 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1957 fib_leaf_notify(net, l, tb, nb);
1958
1959 key = l->key + 1;
1960 /* stop in case of wrap around */
1961 if (key < l->key)
1962 break;
1963 }
1964 }
1965
fib_notify(struct net * net,struct notifier_block * nb)1966 void fib_notify(struct net *net, struct notifier_block *nb)
1967 {
1968 unsigned int h;
1969
1970 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1971 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1972 struct fib_table *tb;
1973
1974 hlist_for_each_entry_rcu(tb, head, tb_hlist)
1975 fib_table_notify(net, tb, nb);
1976 }
1977 }
1978
__trie_free_rcu(struct rcu_head * head)1979 static void __trie_free_rcu(struct rcu_head *head)
1980 {
1981 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1982 #ifdef CONFIG_IP_FIB_TRIE_STATS
1983 struct trie *t = (struct trie *)tb->tb_data;
1984
1985 if (tb->tb_data == tb->__data)
1986 free_percpu(t->stats);
1987 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1988 kfree(tb);
1989 }
1990
fib_free_table(struct fib_table * tb)1991 void fib_free_table(struct fib_table *tb)
1992 {
1993 call_rcu(&tb->rcu, __trie_free_rcu);
1994 }
1995
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1996 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1997 struct sk_buff *skb, struct netlink_callback *cb)
1998 {
1999 __be32 xkey = htonl(l->key);
2000 struct fib_alias *fa;
2001 int i, s_i;
2002
2003 s_i = cb->args[4];
2004 i = 0;
2005
2006 /* rcu_read_lock is hold by caller */
2007 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2008 int err;
2009
2010 if (i < s_i) {
2011 i++;
2012 continue;
2013 }
2014
2015 if (tb->tb_id != fa->tb_id) {
2016 i++;
2017 continue;
2018 }
2019
2020 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2021 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2022 tb->tb_id, fa->fa_type,
2023 xkey, KEYLENGTH - fa->fa_slen,
2024 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2025 if (err < 0) {
2026 cb->args[4] = i;
2027 return err;
2028 }
2029 i++;
2030 }
2031
2032 cb->args[4] = i;
2033 return skb->len;
2034 }
2035
2036 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)2037 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2038 struct netlink_callback *cb)
2039 {
2040 struct trie *t = (struct trie *)tb->tb_data;
2041 struct key_vector *l, *tp = t->kv;
2042 /* Dump starting at last key.
2043 * Note: 0.0.0.0/0 (ie default) is first key.
2044 */
2045 int count = cb->args[2];
2046 t_key key = cb->args[3];
2047
2048 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2049 int err;
2050
2051 err = fn_trie_dump_leaf(l, tb, skb, cb);
2052 if (err < 0) {
2053 cb->args[3] = key;
2054 cb->args[2] = count;
2055 return err;
2056 }
2057
2058 ++count;
2059 key = l->key + 1;
2060
2061 memset(&cb->args[4], 0,
2062 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2063
2064 /* stop loop if key wrapped back to 0 */
2065 if (key < l->key)
2066 break;
2067 }
2068
2069 cb->args[3] = key;
2070 cb->args[2] = count;
2071
2072 return skb->len;
2073 }
2074
fib_trie_init(void)2075 void __init fib_trie_init(void)
2076 {
2077 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2078 sizeof(struct fib_alias),
2079 0, SLAB_PANIC, NULL);
2080
2081 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2082 LEAF_SIZE,
2083 0, SLAB_PANIC, NULL);
2084 }
2085
fib_trie_table(u32 id,struct fib_table * alias)2086 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2087 {
2088 struct fib_table *tb;
2089 struct trie *t;
2090 size_t sz = sizeof(*tb);
2091
2092 if (!alias)
2093 sz += sizeof(struct trie);
2094
2095 tb = kzalloc(sz, GFP_KERNEL);
2096 if (!tb)
2097 return NULL;
2098
2099 tb->tb_id = id;
2100 tb->tb_num_default = 0;
2101 tb->tb_data = (alias ? alias->__data : tb->__data);
2102
2103 if (alias)
2104 return tb;
2105
2106 t = (struct trie *) tb->tb_data;
2107 t->kv[0].pos = KEYLENGTH;
2108 t->kv[0].slen = KEYLENGTH;
2109 #ifdef CONFIG_IP_FIB_TRIE_STATS
2110 t->stats = alloc_percpu(struct trie_use_stats);
2111 if (!t->stats) {
2112 kfree(tb);
2113 tb = NULL;
2114 }
2115 #endif
2116
2117 return tb;
2118 }
2119
2120 #ifdef CONFIG_PROC_FS
2121 /* Depth first Trie walk iterator */
2122 struct fib_trie_iter {
2123 struct seq_net_private p;
2124 struct fib_table *tb;
2125 struct key_vector *tnode;
2126 unsigned int index;
2127 unsigned int depth;
2128 };
2129
fib_trie_get_next(struct fib_trie_iter * iter)2130 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2131 {
2132 unsigned long cindex = iter->index;
2133 struct key_vector *pn = iter->tnode;
2134 t_key pkey;
2135
2136 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2137 iter->tnode, iter->index, iter->depth);
2138
2139 while (!IS_TRIE(pn)) {
2140 while (cindex < child_length(pn)) {
2141 struct key_vector *n = get_child_rcu(pn, cindex++);
2142
2143 if (!n)
2144 continue;
2145
2146 if (IS_LEAF(n)) {
2147 iter->tnode = pn;
2148 iter->index = cindex;
2149 } else {
2150 /* push down one level */
2151 iter->tnode = n;
2152 iter->index = 0;
2153 ++iter->depth;
2154 }
2155
2156 return n;
2157 }
2158
2159 /* Current node exhausted, pop back up */
2160 pkey = pn->key;
2161 pn = node_parent_rcu(pn);
2162 cindex = get_index(pkey, pn) + 1;
2163 --iter->depth;
2164 }
2165
2166 /* record root node so further searches know we are done */
2167 iter->tnode = pn;
2168 iter->index = 0;
2169
2170 return NULL;
2171 }
2172
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2173 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2174 struct trie *t)
2175 {
2176 struct key_vector *n, *pn;
2177
2178 if (!t)
2179 return NULL;
2180
2181 pn = t->kv;
2182 n = rcu_dereference(pn->tnode[0]);
2183 if (!n)
2184 return NULL;
2185
2186 if (IS_TNODE(n)) {
2187 iter->tnode = n;
2188 iter->index = 0;
2189 iter->depth = 1;
2190 } else {
2191 iter->tnode = pn;
2192 iter->index = 0;
2193 iter->depth = 0;
2194 }
2195
2196 return n;
2197 }
2198
trie_collect_stats(struct trie * t,struct trie_stat * s)2199 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2200 {
2201 struct key_vector *n;
2202 struct fib_trie_iter iter;
2203
2204 memset(s, 0, sizeof(*s));
2205
2206 rcu_read_lock();
2207 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2208 if (IS_LEAF(n)) {
2209 struct fib_alias *fa;
2210
2211 s->leaves++;
2212 s->totdepth += iter.depth;
2213 if (iter.depth > s->maxdepth)
2214 s->maxdepth = iter.depth;
2215
2216 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2217 ++s->prefixes;
2218 } else {
2219 s->tnodes++;
2220 if (n->bits < MAX_STAT_DEPTH)
2221 s->nodesizes[n->bits]++;
2222 s->nullpointers += tn_info(n)->empty_children;
2223 }
2224 }
2225 rcu_read_unlock();
2226 }
2227
2228 /*
2229 * This outputs /proc/net/fib_triestats
2230 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2231 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2232 {
2233 unsigned int i, max, pointers, bytes, avdepth;
2234
2235 if (stat->leaves)
2236 avdepth = stat->totdepth*100 / stat->leaves;
2237 else
2238 avdepth = 0;
2239
2240 seq_printf(seq, "\tAver depth: %u.%02d\n",
2241 avdepth / 100, avdepth % 100);
2242 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2243
2244 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2245 bytes = LEAF_SIZE * stat->leaves;
2246
2247 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2248 bytes += sizeof(struct fib_alias) * stat->prefixes;
2249
2250 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2251 bytes += TNODE_SIZE(0) * stat->tnodes;
2252
2253 max = MAX_STAT_DEPTH;
2254 while (max > 0 && stat->nodesizes[max-1] == 0)
2255 max--;
2256
2257 pointers = 0;
2258 for (i = 1; i < max; i++)
2259 if (stat->nodesizes[i] != 0) {
2260 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2261 pointers += (1<<i) * stat->nodesizes[i];
2262 }
2263 seq_putc(seq, '\n');
2264 seq_printf(seq, "\tPointers: %u\n", pointers);
2265
2266 bytes += sizeof(struct key_vector *) * pointers;
2267 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2268 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2269 }
2270
2271 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2272 static void trie_show_usage(struct seq_file *seq,
2273 const struct trie_use_stats __percpu *stats)
2274 {
2275 struct trie_use_stats s = { 0 };
2276 int cpu;
2277
2278 /* loop through all of the CPUs and gather up the stats */
2279 for_each_possible_cpu(cpu) {
2280 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2281
2282 s.gets += pcpu->gets;
2283 s.backtrack += pcpu->backtrack;
2284 s.semantic_match_passed += pcpu->semantic_match_passed;
2285 s.semantic_match_miss += pcpu->semantic_match_miss;
2286 s.null_node_hit += pcpu->null_node_hit;
2287 s.resize_node_skipped += pcpu->resize_node_skipped;
2288 }
2289
2290 seq_printf(seq, "\nCounters:\n---------\n");
2291 seq_printf(seq, "gets = %u\n", s.gets);
2292 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2293 seq_printf(seq, "semantic match passed = %u\n",
2294 s.semantic_match_passed);
2295 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2296 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2297 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2298 }
2299 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2300
fib_table_print(struct seq_file * seq,struct fib_table * tb)2301 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2302 {
2303 if (tb->tb_id == RT_TABLE_LOCAL)
2304 seq_puts(seq, "Local:\n");
2305 else if (tb->tb_id == RT_TABLE_MAIN)
2306 seq_puts(seq, "Main:\n");
2307 else
2308 seq_printf(seq, "Id %d:\n", tb->tb_id);
2309 }
2310
2311
fib_triestat_seq_show(struct seq_file * seq,void * v)2312 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2313 {
2314 struct net *net = (struct net *)seq->private;
2315 unsigned int h;
2316
2317 seq_printf(seq,
2318 "Basic info: size of leaf:"
2319 " %zd bytes, size of tnode: %zd bytes.\n",
2320 LEAF_SIZE, TNODE_SIZE(0));
2321
2322 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2323 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2324 struct fib_table *tb;
2325
2326 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2327 struct trie *t = (struct trie *) tb->tb_data;
2328 struct trie_stat stat;
2329
2330 if (!t)
2331 continue;
2332
2333 fib_table_print(seq, tb);
2334
2335 trie_collect_stats(t, &stat);
2336 trie_show_stats(seq, &stat);
2337 #ifdef CONFIG_IP_FIB_TRIE_STATS
2338 trie_show_usage(seq, t->stats);
2339 #endif
2340 }
2341 }
2342
2343 return 0;
2344 }
2345
fib_triestat_seq_open(struct inode * inode,struct file * file)2346 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2347 {
2348 return single_open_net(inode, file, fib_triestat_seq_show);
2349 }
2350
2351 static const struct file_operations fib_triestat_fops = {
2352 .owner = THIS_MODULE,
2353 .open = fib_triestat_seq_open,
2354 .read = seq_read,
2355 .llseek = seq_lseek,
2356 .release = single_release_net,
2357 };
2358
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2359 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2360 {
2361 struct fib_trie_iter *iter = seq->private;
2362 struct net *net = seq_file_net(seq);
2363 loff_t idx = 0;
2364 unsigned int h;
2365
2366 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2367 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2368 struct fib_table *tb;
2369
2370 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2371 struct key_vector *n;
2372
2373 for (n = fib_trie_get_first(iter,
2374 (struct trie *) tb->tb_data);
2375 n; n = fib_trie_get_next(iter))
2376 if (pos == idx++) {
2377 iter->tb = tb;
2378 return n;
2379 }
2380 }
2381 }
2382
2383 return NULL;
2384 }
2385
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2386 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2387 __acquires(RCU)
2388 {
2389 rcu_read_lock();
2390 return fib_trie_get_idx(seq, *pos);
2391 }
2392
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2393 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2394 {
2395 struct fib_trie_iter *iter = seq->private;
2396 struct net *net = seq_file_net(seq);
2397 struct fib_table *tb = iter->tb;
2398 struct hlist_node *tb_node;
2399 unsigned int h;
2400 struct key_vector *n;
2401
2402 ++*pos;
2403 /* next node in same table */
2404 n = fib_trie_get_next(iter);
2405 if (n)
2406 return n;
2407
2408 /* walk rest of this hash chain */
2409 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2410 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2411 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2412 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2413 if (n)
2414 goto found;
2415 }
2416
2417 /* new hash chain */
2418 while (++h < FIB_TABLE_HASHSZ) {
2419 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2420 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2421 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2422 if (n)
2423 goto found;
2424 }
2425 }
2426 return NULL;
2427
2428 found:
2429 iter->tb = tb;
2430 return n;
2431 }
2432
fib_trie_seq_stop(struct seq_file * seq,void * v)2433 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2434 __releases(RCU)
2435 {
2436 rcu_read_unlock();
2437 }
2438
seq_indent(struct seq_file * seq,int n)2439 static void seq_indent(struct seq_file *seq, int n)
2440 {
2441 while (n-- > 0)
2442 seq_puts(seq, " ");
2443 }
2444
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2445 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2446 {
2447 switch (s) {
2448 case RT_SCOPE_UNIVERSE: return "universe";
2449 case RT_SCOPE_SITE: return "site";
2450 case RT_SCOPE_LINK: return "link";
2451 case RT_SCOPE_HOST: return "host";
2452 case RT_SCOPE_NOWHERE: return "nowhere";
2453 default:
2454 snprintf(buf, len, "scope=%d", s);
2455 return buf;
2456 }
2457 }
2458
2459 static const char *const rtn_type_names[__RTN_MAX] = {
2460 [RTN_UNSPEC] = "UNSPEC",
2461 [RTN_UNICAST] = "UNICAST",
2462 [RTN_LOCAL] = "LOCAL",
2463 [RTN_BROADCAST] = "BROADCAST",
2464 [RTN_ANYCAST] = "ANYCAST",
2465 [RTN_MULTICAST] = "MULTICAST",
2466 [RTN_BLACKHOLE] = "BLACKHOLE",
2467 [RTN_UNREACHABLE] = "UNREACHABLE",
2468 [RTN_PROHIBIT] = "PROHIBIT",
2469 [RTN_THROW] = "THROW",
2470 [RTN_NAT] = "NAT",
2471 [RTN_XRESOLVE] = "XRESOLVE",
2472 };
2473
rtn_type(char * buf,size_t len,unsigned int t)2474 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2475 {
2476 if (t < __RTN_MAX && rtn_type_names[t])
2477 return rtn_type_names[t];
2478 snprintf(buf, len, "type %u", t);
2479 return buf;
2480 }
2481
2482 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2483 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2484 {
2485 const struct fib_trie_iter *iter = seq->private;
2486 struct key_vector *n = v;
2487
2488 if (IS_TRIE(node_parent_rcu(n)))
2489 fib_table_print(seq, iter->tb);
2490
2491 if (IS_TNODE(n)) {
2492 __be32 prf = htonl(n->key);
2493
2494 seq_indent(seq, iter->depth-1);
2495 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2496 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2497 tn_info(n)->full_children,
2498 tn_info(n)->empty_children);
2499 } else {
2500 __be32 val = htonl(n->key);
2501 struct fib_alias *fa;
2502
2503 seq_indent(seq, iter->depth);
2504 seq_printf(seq, " |-- %pI4\n", &val);
2505
2506 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2507 char buf1[32], buf2[32];
2508
2509 seq_indent(seq, iter->depth + 1);
2510 seq_printf(seq, " /%zu %s %s",
2511 KEYLENGTH - fa->fa_slen,
2512 rtn_scope(buf1, sizeof(buf1),
2513 fa->fa_info->fib_scope),
2514 rtn_type(buf2, sizeof(buf2),
2515 fa->fa_type));
2516 if (fa->fa_tos)
2517 seq_printf(seq, " tos=%d", fa->fa_tos);
2518 seq_putc(seq, '\n');
2519 }
2520 }
2521
2522 return 0;
2523 }
2524
2525 static const struct seq_operations fib_trie_seq_ops = {
2526 .start = fib_trie_seq_start,
2527 .next = fib_trie_seq_next,
2528 .stop = fib_trie_seq_stop,
2529 .show = fib_trie_seq_show,
2530 };
2531
fib_trie_seq_open(struct inode * inode,struct file * file)2532 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2533 {
2534 return seq_open_net(inode, file, &fib_trie_seq_ops,
2535 sizeof(struct fib_trie_iter));
2536 }
2537
2538 static const struct file_operations fib_trie_fops = {
2539 .owner = THIS_MODULE,
2540 .open = fib_trie_seq_open,
2541 .read = seq_read,
2542 .llseek = seq_lseek,
2543 .release = seq_release_net,
2544 };
2545
2546 struct fib_route_iter {
2547 struct seq_net_private p;
2548 struct fib_table *main_tb;
2549 struct key_vector *tnode;
2550 loff_t pos;
2551 t_key key;
2552 };
2553
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2554 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2555 loff_t pos)
2556 {
2557 struct key_vector *l, **tp = &iter->tnode;
2558 t_key key;
2559
2560 /* use cached location of previously found key */
2561 if (iter->pos > 0 && pos >= iter->pos) {
2562 key = iter->key;
2563 } else {
2564 iter->pos = 1;
2565 key = 0;
2566 }
2567
2568 pos -= iter->pos;
2569
2570 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2571 key = l->key + 1;
2572 iter->pos++;
2573 l = NULL;
2574
2575 /* handle unlikely case of a key wrap */
2576 if (!key)
2577 break;
2578 }
2579
2580 if (l)
2581 iter->key = l->key; /* remember it */
2582 else
2583 iter->pos = 0; /* forget it */
2584
2585 return l;
2586 }
2587
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2588 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2589 __acquires(RCU)
2590 {
2591 struct fib_route_iter *iter = seq->private;
2592 struct fib_table *tb;
2593 struct trie *t;
2594
2595 rcu_read_lock();
2596
2597 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2598 if (!tb)
2599 return NULL;
2600
2601 iter->main_tb = tb;
2602 t = (struct trie *)tb->tb_data;
2603 iter->tnode = t->kv;
2604
2605 if (*pos != 0)
2606 return fib_route_get_idx(iter, *pos);
2607
2608 iter->pos = 0;
2609 iter->key = KEY_MAX;
2610
2611 return SEQ_START_TOKEN;
2612 }
2613
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2614 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2615 {
2616 struct fib_route_iter *iter = seq->private;
2617 struct key_vector *l = NULL;
2618 t_key key = iter->key + 1;
2619
2620 ++*pos;
2621
2622 /* only allow key of 0 for start of sequence */
2623 if ((v == SEQ_START_TOKEN) || key)
2624 l = leaf_walk_rcu(&iter->tnode, key);
2625
2626 if (l) {
2627 iter->key = l->key;
2628 iter->pos++;
2629 } else {
2630 iter->pos = 0;
2631 }
2632
2633 return l;
2634 }
2635
fib_route_seq_stop(struct seq_file * seq,void * v)2636 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2637 __releases(RCU)
2638 {
2639 rcu_read_unlock();
2640 }
2641
fib_flag_trans(int type,__be32 mask,const struct fib_info * fi)2642 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2643 {
2644 unsigned int flags = 0;
2645
2646 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2647 flags = RTF_REJECT;
2648 if (fi && fi->fib_nh->nh_gw)
2649 flags |= RTF_GATEWAY;
2650 if (mask == htonl(0xFFFFFFFF))
2651 flags |= RTF_HOST;
2652 flags |= RTF_UP;
2653 return flags;
2654 }
2655
2656 /*
2657 * This outputs /proc/net/route.
2658 * The format of the file is not supposed to be changed
2659 * and needs to be same as fib_hash output to avoid breaking
2660 * legacy utilities
2661 */
fib_route_seq_show(struct seq_file * seq,void * v)2662 static int fib_route_seq_show(struct seq_file *seq, void *v)
2663 {
2664 struct fib_route_iter *iter = seq->private;
2665 struct fib_table *tb = iter->main_tb;
2666 struct fib_alias *fa;
2667 struct key_vector *l = v;
2668 __be32 prefix;
2669
2670 if (v == SEQ_START_TOKEN) {
2671 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2672 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2673 "\tWindow\tIRTT");
2674 return 0;
2675 }
2676
2677 prefix = htonl(l->key);
2678
2679 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2680 const struct fib_info *fi = fa->fa_info;
2681 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2682 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2683
2684 if ((fa->fa_type == RTN_BROADCAST) ||
2685 (fa->fa_type == RTN_MULTICAST))
2686 continue;
2687
2688 if (fa->tb_id != tb->tb_id)
2689 continue;
2690
2691 seq_setwidth(seq, 127);
2692
2693 if (fi)
2694 seq_printf(seq,
2695 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2696 "%d\t%08X\t%d\t%u\t%u",
2697 fi->fib_dev ? fi->fib_dev->name : "*",
2698 prefix,
2699 fi->fib_nh->nh_gw, flags, 0, 0,
2700 fi->fib_priority,
2701 mask,
2702 (fi->fib_advmss ?
2703 fi->fib_advmss + 40 : 0),
2704 fi->fib_window,
2705 fi->fib_rtt >> 3);
2706 else
2707 seq_printf(seq,
2708 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2709 "%d\t%08X\t%d\t%u\t%u",
2710 prefix, 0, flags, 0, 0, 0,
2711 mask, 0, 0, 0);
2712
2713 seq_pad(seq, '\n');
2714 }
2715
2716 return 0;
2717 }
2718
2719 static const struct seq_operations fib_route_seq_ops = {
2720 .start = fib_route_seq_start,
2721 .next = fib_route_seq_next,
2722 .stop = fib_route_seq_stop,
2723 .show = fib_route_seq_show,
2724 };
2725
fib_route_seq_open(struct inode * inode,struct file * file)2726 static int fib_route_seq_open(struct inode *inode, struct file *file)
2727 {
2728 return seq_open_net(inode, file, &fib_route_seq_ops,
2729 sizeof(struct fib_route_iter));
2730 }
2731
2732 static const struct file_operations fib_route_fops = {
2733 .owner = THIS_MODULE,
2734 .open = fib_route_seq_open,
2735 .read = seq_read,
2736 .llseek = seq_lseek,
2737 .release = seq_release_net,
2738 };
2739
fib_proc_init(struct net * net)2740 int __net_init fib_proc_init(struct net *net)
2741 {
2742 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2743 goto out1;
2744
2745 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2746 &fib_triestat_fops))
2747 goto out2;
2748
2749 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2750 goto out3;
2751
2752 return 0;
2753
2754 out3:
2755 remove_proc_entry("fib_triestat", net->proc_net);
2756 out2:
2757 remove_proc_entry("fib_trie", net->proc_net);
2758 out1:
2759 return -ENOMEM;
2760 }
2761
fib_proc_exit(struct net * net)2762 void __net_exit fib_proc_exit(struct net *net)
2763 {
2764 remove_proc_entry("fib_trie", net->proc_net);
2765 remove_proc_entry("fib_triestat", net->proc_net);
2766 remove_proc_entry("route", net->proc_net);
2767 }
2768
2769 #endif /* CONFIG_PROC_FS */
2770