• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* DataCenter TCP (DCTCP) congestion control.
2  *
3  * http://simula.stanford.edu/~alizade/Site/DCTCP.html
4  *
5  * This is an implementation of DCTCP over Reno, an enhancement to the
6  * TCP congestion control algorithm designed for data centers. DCTCP
7  * leverages Explicit Congestion Notification (ECN) in the network to
8  * provide multi-bit feedback to the end hosts. DCTCP's goal is to meet
9  * the following three data center transport requirements:
10  *
11  *  - High burst tolerance (incast due to partition/aggregate)
12  *  - Low latency (short flows, queries)
13  *  - High throughput (continuous data updates, large file transfers)
14  *    with commodity shallow buffered switches
15  *
16  * The algorithm is described in detail in the following two papers:
17  *
18  * 1) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
19  *    Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan:
20  *      "Data Center TCP (DCTCP)", Data Center Networks session
21  *      Proc. ACM SIGCOMM, New Delhi, 2010.
22  *   http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
23  *
24  * 2) Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar:
25  *      "Analysis of DCTCP: Stability, Convergence, and Fairness"
26  *      Proc. ACM SIGMETRICS, San Jose, 2011.
27  *   http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
28  *
29  * Initial prototype from Abdul Kabbani, Masato Yasuda and Mohammad Alizadeh.
30  *
31  * Authors:
32  *
33  *	Daniel Borkmann <dborkman@redhat.com>
34  *	Florian Westphal <fw@strlen.de>
35  *	Glenn Judd <glenn.judd@morganstanley.com>
36  *
37  * This program is free software; you can redistribute it and/or modify
38  * it under the terms of the GNU General Public License as published by
39  * the Free Software Foundation; either version 2 of the License, or (at
40  * your option) any later version.
41  */
42 
43 #include <linux/module.h>
44 #include <linux/mm.h>
45 #include <net/tcp.h>
46 #include <linux/inet_diag.h>
47 
48 #define DCTCP_MAX_ALPHA	1024U
49 
50 struct dctcp {
51 	u32 acked_bytes_ecn;
52 	u32 acked_bytes_total;
53 	u32 prior_snd_una;
54 	u32 prior_rcv_nxt;
55 	u32 dctcp_alpha;
56 	u32 next_seq;
57 	u32 ce_state;
58 	u32 loss_cwnd;
59 };
60 
61 static unsigned int dctcp_shift_g __read_mostly = 4; /* g = 1/2^4 */
62 module_param(dctcp_shift_g, uint, 0644);
63 MODULE_PARM_DESC(dctcp_shift_g, "parameter g for updating dctcp_alpha");
64 
65 static unsigned int dctcp_alpha_on_init __read_mostly = DCTCP_MAX_ALPHA;
66 module_param(dctcp_alpha_on_init, uint, 0644);
67 MODULE_PARM_DESC(dctcp_alpha_on_init, "parameter for initial alpha value");
68 
69 static struct tcp_congestion_ops dctcp_reno;
70 
dctcp_reset(const struct tcp_sock * tp,struct dctcp * ca)71 static void dctcp_reset(const struct tcp_sock *tp, struct dctcp *ca)
72 {
73 	ca->next_seq = tp->snd_nxt;
74 
75 	ca->acked_bytes_ecn = 0;
76 	ca->acked_bytes_total = 0;
77 }
78 
dctcp_init(struct sock * sk)79 static void dctcp_init(struct sock *sk)
80 {
81 	const struct tcp_sock *tp = tcp_sk(sk);
82 
83 	if ((tp->ecn_flags & TCP_ECN_OK) ||
84 	    (sk->sk_state == TCP_LISTEN ||
85 	     sk->sk_state == TCP_CLOSE)) {
86 		struct dctcp *ca = inet_csk_ca(sk);
87 
88 		ca->prior_snd_una = tp->snd_una;
89 		ca->prior_rcv_nxt = tp->rcv_nxt;
90 
91 		ca->dctcp_alpha = min(dctcp_alpha_on_init, DCTCP_MAX_ALPHA);
92 
93 		ca->loss_cwnd = 0;
94 		ca->ce_state = 0;
95 
96 		dctcp_reset(tp, ca);
97 		return;
98 	}
99 
100 	/* No ECN support? Fall back to Reno. Also need to clear
101 	 * ECT from sk since it is set during 3WHS for DCTCP.
102 	 */
103 	inet_csk(sk)->icsk_ca_ops = &dctcp_reno;
104 	INET_ECN_dontxmit(sk);
105 }
106 
dctcp_ssthresh(struct sock * sk)107 static u32 dctcp_ssthresh(struct sock *sk)
108 {
109 	struct dctcp *ca = inet_csk_ca(sk);
110 	struct tcp_sock *tp = tcp_sk(sk);
111 
112 	ca->loss_cwnd = tp->snd_cwnd;
113 	return max(tp->snd_cwnd - ((tp->snd_cwnd * ca->dctcp_alpha) >> 11U), 2U);
114 }
115 
116 /* Minimal DCTP CE state machine:
117  *
118  * S:	0 <- last pkt was non-CE
119  *	1 <- last pkt was CE
120  */
121 
dctcp_ce_state_0_to_1(struct sock * sk)122 static void dctcp_ce_state_0_to_1(struct sock *sk)
123 {
124 	struct dctcp *ca = inet_csk_ca(sk);
125 	struct tcp_sock *tp = tcp_sk(sk);
126 
127 	if (!ca->ce_state) {
128 		/* State has changed from CE=0 to CE=1, force an immediate
129 		 * ACK to reflect the new CE state. If an ACK was delayed,
130 		 * send that first to reflect the prior CE state.
131 		 */
132 		if (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_TIMER)
133 			__tcp_send_ack(sk, ca->prior_rcv_nxt);
134 		tcp_enter_quickack_mode(sk, 1);
135 	}
136 
137 	ca->prior_rcv_nxt = tp->rcv_nxt;
138 	ca->ce_state = 1;
139 
140 	tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
141 }
142 
dctcp_ce_state_1_to_0(struct sock * sk)143 static void dctcp_ce_state_1_to_0(struct sock *sk)
144 {
145 	struct dctcp *ca = inet_csk_ca(sk);
146 	struct tcp_sock *tp = tcp_sk(sk);
147 
148 	if (ca->ce_state) {
149 		/* State has changed from CE=1 to CE=0, force an immediate
150 		 * ACK to reflect the new CE state. If an ACK was delayed,
151 		 * send that first to reflect the prior CE state.
152 		 */
153 		if (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_TIMER)
154 			__tcp_send_ack(sk, ca->prior_rcv_nxt);
155 		tcp_enter_quickack_mode(sk, 1);
156 	}
157 
158 	ca->prior_rcv_nxt = tp->rcv_nxt;
159 	ca->ce_state = 0;
160 
161 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
162 }
163 
dctcp_update_alpha(struct sock * sk,u32 flags)164 static void dctcp_update_alpha(struct sock *sk, u32 flags)
165 {
166 	const struct tcp_sock *tp = tcp_sk(sk);
167 	struct dctcp *ca = inet_csk_ca(sk);
168 	u32 acked_bytes = tp->snd_una - ca->prior_snd_una;
169 
170 	/* If ack did not advance snd_una, count dupack as MSS size.
171 	 * If ack did update window, do not count it at all.
172 	 */
173 	if (acked_bytes == 0 && !(flags & CA_ACK_WIN_UPDATE))
174 		acked_bytes = inet_csk(sk)->icsk_ack.rcv_mss;
175 	if (acked_bytes) {
176 		ca->acked_bytes_total += acked_bytes;
177 		ca->prior_snd_una = tp->snd_una;
178 
179 		if (flags & CA_ACK_ECE)
180 			ca->acked_bytes_ecn += acked_bytes;
181 	}
182 
183 	/* Expired RTT */
184 	if (!before(tp->snd_una, ca->next_seq)) {
185 		u64 bytes_ecn = ca->acked_bytes_ecn;
186 		u32 alpha = ca->dctcp_alpha;
187 
188 		/* alpha = (1 - g) * alpha + g * F */
189 
190 		alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
191 		if (bytes_ecn) {
192 			/* If dctcp_shift_g == 1, a 32bit value would overflow
193 			 * after 8 Mbytes.
194 			 */
195 			bytes_ecn <<= (10 - dctcp_shift_g);
196 			do_div(bytes_ecn, max(1U, ca->acked_bytes_total));
197 
198 			alpha = min(alpha + (u32)bytes_ecn, DCTCP_MAX_ALPHA);
199 		}
200 		/* dctcp_alpha can be read from dctcp_get_info() without
201 		 * synchro, so we ask compiler to not use dctcp_alpha
202 		 * as a temporary variable in prior operations.
203 		 */
204 		WRITE_ONCE(ca->dctcp_alpha, alpha);
205 		dctcp_reset(tp, ca);
206 	}
207 }
208 
dctcp_react_to_loss(struct sock * sk)209 static void dctcp_react_to_loss(struct sock *sk)
210 {
211 	struct dctcp *ca = inet_csk_ca(sk);
212 	struct tcp_sock *tp = tcp_sk(sk);
213 
214 	ca->loss_cwnd = tp->snd_cwnd;
215 	tp->snd_ssthresh = max(tp->snd_cwnd >> 1U, 2U);
216 }
217 
dctcp_state(struct sock * sk,u8 new_state)218 static void dctcp_state(struct sock *sk, u8 new_state)
219 {
220 	if (new_state == TCP_CA_Recovery &&
221 	    new_state != inet_csk(sk)->icsk_ca_state)
222 		dctcp_react_to_loss(sk);
223 	/* We handle RTO in dctcp_cwnd_event to ensure that we perform only
224 	 * one loss-adjustment per RTT.
225 	 */
226 }
227 
dctcp_cwnd_event(struct sock * sk,enum tcp_ca_event ev)228 static void dctcp_cwnd_event(struct sock *sk, enum tcp_ca_event ev)
229 {
230 	switch (ev) {
231 	case CA_EVENT_ECN_IS_CE:
232 		dctcp_ce_state_0_to_1(sk);
233 		break;
234 	case CA_EVENT_ECN_NO_CE:
235 		dctcp_ce_state_1_to_0(sk);
236 		break;
237 	case CA_EVENT_LOSS:
238 		dctcp_react_to_loss(sk);
239 		break;
240 	default:
241 		/* Don't care for the rest. */
242 		break;
243 	}
244 }
245 
dctcp_get_info(struct sock * sk,u32 ext,int * attr,union tcp_cc_info * info)246 static size_t dctcp_get_info(struct sock *sk, u32 ext, int *attr,
247 			     union tcp_cc_info *info)
248 {
249 	const struct dctcp *ca = inet_csk_ca(sk);
250 
251 	/* Fill it also in case of VEGASINFO due to req struct limits.
252 	 * We can still correctly retrieve it later.
253 	 */
254 	if (ext & (1 << (INET_DIAG_DCTCPINFO - 1)) ||
255 	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
256 		memset(&info->dctcp, 0, sizeof(info->dctcp));
257 		if (inet_csk(sk)->icsk_ca_ops != &dctcp_reno) {
258 			info->dctcp.dctcp_enabled = 1;
259 			info->dctcp.dctcp_ce_state = (u16) ca->ce_state;
260 			info->dctcp.dctcp_alpha = ca->dctcp_alpha;
261 			info->dctcp.dctcp_ab_ecn = ca->acked_bytes_ecn;
262 			info->dctcp.dctcp_ab_tot = ca->acked_bytes_total;
263 		}
264 
265 		*attr = INET_DIAG_DCTCPINFO;
266 		return sizeof(info->dctcp);
267 	}
268 	return 0;
269 }
270 
dctcp_cwnd_undo(struct sock * sk)271 static u32 dctcp_cwnd_undo(struct sock *sk)
272 {
273 	const struct dctcp *ca = inet_csk_ca(sk);
274 
275 	return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
276 }
277 
278 static struct tcp_congestion_ops dctcp __read_mostly = {
279 	.init		= dctcp_init,
280 	.in_ack_event   = dctcp_update_alpha,
281 	.cwnd_event	= dctcp_cwnd_event,
282 	.ssthresh	= dctcp_ssthresh,
283 	.cong_avoid	= tcp_reno_cong_avoid,
284 	.undo_cwnd	= dctcp_cwnd_undo,
285 	.set_state	= dctcp_state,
286 	.get_info	= dctcp_get_info,
287 	.flags		= TCP_CONG_NEEDS_ECN,
288 	.owner		= THIS_MODULE,
289 	.name		= "dctcp",
290 };
291 
292 static struct tcp_congestion_ops dctcp_reno __read_mostly = {
293 	.ssthresh	= tcp_reno_ssthresh,
294 	.cong_avoid	= tcp_reno_cong_avoid,
295 	.undo_cwnd	= tcp_reno_undo_cwnd,
296 	.get_info	= dctcp_get_info,
297 	.owner		= THIS_MODULE,
298 	.name		= "dctcp-reno",
299 };
300 
dctcp_register(void)301 static int __init dctcp_register(void)
302 {
303 	BUILD_BUG_ON(sizeof(struct dctcp) > ICSK_CA_PRIV_SIZE);
304 	return tcp_register_congestion_control(&dctcp);
305 }
306 
dctcp_unregister(void)307 static void __exit dctcp_unregister(void)
308 {
309 	tcp_unregister_congestion_control(&dctcp);
310 }
311 
312 module_init(dctcp_register);
313 module_exit(dctcp_unregister);
314 
315 MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>");
316 MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
317 MODULE_AUTHOR("Glenn Judd <glenn.judd@morganstanley.com>");
318 
319 MODULE_LICENSE("GPL v2");
320 MODULE_DESCRIPTION("DataCenter TCP (DCTCP)");
321