• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 #include <net/busy_poll.h>
30 
31 int sysctl_tcp_abort_on_overflow __read_mostly;
32 
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)33 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
34 {
35 	if (seq == s_win)
36 		return true;
37 	if (after(end_seq, s_win) && before(seq, e_win))
38 		return true;
39 	return seq == e_win && seq == end_seq;
40 }
41 
42 static enum tcp_tw_status
tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock * tw,const struct sk_buff * skb,int mib_idx)43 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
44 				  const struct sk_buff *skb, int mib_idx)
45 {
46 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
47 
48 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
49 				  &tcptw->tw_last_oow_ack_time)) {
50 		/* Send ACK. Note, we do not put the bucket,
51 		 * it will be released by caller.
52 		 */
53 		return TCP_TW_ACK;
54 	}
55 
56 	/* We are rate-limiting, so just release the tw sock and drop skb. */
57 	inet_twsk_put(tw);
58 	return TCP_TW_SUCCESS;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			if (tmp_opt.rcv_tsecr)
105 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109 		}
110 	}
111 
112 	if (tw->tw_substate == TCP_FIN_WAIT2) {
113 		/* Just repeat all the checks of tcp_rcv_state_process() */
114 
115 		/* Out of window, send ACK */
116 		if (paws_reject ||
117 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118 				   tcptw->tw_rcv_nxt,
119 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120 			return tcp_timewait_check_oow_rate_limit(
121 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122 
123 		if (th->rst)
124 			goto kill;
125 
126 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127 			return TCP_TW_RST;
128 
129 		/* Dup ACK? */
130 		if (!th->ack ||
131 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142 			return TCP_TW_RST;
143 
144 		/* FIN arrived, enter true time-wait state. */
145 		tw->tw_substate	  = TCP_TIME_WAIT;
146 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 		if (tmp_opt.saw_tstamp) {
148 			tcptw->tw_ts_recent_stamp = get_seconds();
149 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150 		}
151 
152 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153 		return TCP_TW_ACK;
154 	}
155 
156 	/*
157 	 *	Now real TIME-WAIT state.
158 	 *
159 	 *	RFC 1122:
160 	 *	"When a connection is [...] on TIME-WAIT state [...]
161 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162 	 *	reopen the connection directly, if it:
163 	 *
164 	 *	(1)  assigns its initial sequence number for the new
165 	 *	connection to be larger than the largest sequence
166 	 *	number it used on the previous connection incarnation,
167 	 *	and
168 	 *
169 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170 	 *	to be an old duplicate".
171 	 */
172 
173 	if (!paws_reject &&
174 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176 		/* In window segment, it may be only reset or bare ack. */
177 
178 		if (th->rst) {
179 			/* This is TIME_WAIT assassination, in two flavors.
180 			 * Oh well... nobody has a sufficient solution to this
181 			 * protocol bug yet.
182 			 */
183 			if (sysctl_tcp_rfc1337 == 0) {
184 kill:
185 				inet_twsk_deschedule_put(tw);
186 				return TCP_TW_SUCCESS;
187 			}
188 		} else {
189 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190 		}
191 
192 		if (tmp_opt.saw_tstamp) {
193 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194 			tcptw->tw_ts_recent_stamp = get_seconds();
195 		}
196 
197 		inet_twsk_put(tw);
198 		return TCP_TW_SUCCESS;
199 	}
200 
201 	/* Out of window segment.
202 
203 	   All the segments are ACKed immediately.
204 
205 	   The only exception is new SYN. We accept it, if it is
206 	   not old duplicate and we are not in danger to be killed
207 	   by delayed old duplicates. RFC check is that it has
208 	   newer sequence number works at rates <40Mbit/sec.
209 	   However, if paws works, it is reliable AND even more,
210 	   we even may relax silly seq space cutoff.
211 
212 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214 	   we must return socket to time-wait state. It is not good,
215 	   but not fatal yet.
216 	 */
217 
218 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220 	     (tmp_opt.saw_tstamp &&
221 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223 		if (isn == 0)
224 			isn++;
225 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226 		return TCP_TW_SYN;
227 	}
228 
229 	if (paws_reject)
230 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231 
232 	if (!th->rst) {
233 		/* In this case we must reset the TIMEWAIT timer.
234 		 *
235 		 * If it is ACKless SYN it may be both old duplicate
236 		 * and new good SYN with random sequence number <rcv_nxt.
237 		 * Do not reschedule in the last case.
238 		 */
239 		if (paws_reject || th->ack)
240 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241 
242 		return tcp_timewait_check_oow_rate_limit(
243 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244 	}
245 	inet_twsk_put(tw);
246 	return TCP_TW_SUCCESS;
247 }
248 EXPORT_SYMBOL(tcp_timewait_state_process);
249 
250 /*
251  * Move a socket to time-wait or dead fin-wait-2 state.
252  */
tcp_time_wait(struct sock * sk,int state,int timeo)253 void tcp_time_wait(struct sock *sk, int state, int timeo)
254 {
255 	const struct inet_connection_sock *icsk = inet_csk(sk);
256 	const struct tcp_sock *tp = tcp_sk(sk);
257 	struct inet_timewait_sock *tw;
258 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
259 
260 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
261 
262 	if (tw) {
263 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265 		struct inet_sock *inet = inet_sk(sk);
266 
267 		tw->tw_transparent	= inet->transparent;
268 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
269 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
270 		tcptw->tw_snd_nxt	= tp->snd_nxt;
271 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
272 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
273 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
274 		tcptw->tw_ts_offset	= tp->tsoffset;
275 		tcptw->tw_last_oow_ack_time = 0;
276 
277 #if IS_ENABLED(CONFIG_IPV6)
278 		if (tw->tw_family == PF_INET6) {
279 			struct ipv6_pinfo *np = inet6_sk(sk);
280 
281 			tw->tw_v6_daddr = sk->sk_v6_daddr;
282 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
283 			tw->tw_tclass = np->tclass;
284 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
285 			tw->tw_ipv6only = sk->sk_ipv6only;
286 		}
287 #endif
288 
289 #ifdef CONFIG_TCP_MD5SIG
290 		/*
291 		 * The timewait bucket does not have the key DB from the
292 		 * sock structure. We just make a quick copy of the
293 		 * md5 key being used (if indeed we are using one)
294 		 * so the timewait ack generating code has the key.
295 		 */
296 		do {
297 			struct tcp_md5sig_key *key;
298 			tcptw->tw_md5_key = NULL;
299 			key = tp->af_specific->md5_lookup(sk, sk);
300 			if (key) {
301 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
302 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
303 					BUG();
304 			}
305 		} while (0);
306 #endif
307 
308 		/* Get the TIME_WAIT timeout firing. */
309 		if (timeo < rto)
310 			timeo = rto;
311 
312 		tw->tw_timeout = TCP_TIMEWAIT_LEN;
313 		if (state == TCP_TIME_WAIT)
314 			timeo = TCP_TIMEWAIT_LEN;
315 
316 		/* tw_timer is pinned, so we need to make sure BH are disabled
317 		 * in following section, otherwise timer handler could run before
318 		 * we complete the initialization.
319 		 */
320 		local_bh_disable();
321 		inet_twsk_schedule(tw, timeo);
322 		/* Linkage updates. */
323 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
324 		inet_twsk_put(tw);
325 		local_bh_enable();
326 	} else {
327 		/* Sorry, if we're out of memory, just CLOSE this
328 		 * socket up.  We've got bigger problems than
329 		 * non-graceful socket closings.
330 		 */
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
332 	}
333 
334 	tcp_update_metrics(sk);
335 	tcp_done(sk);
336 }
337 
tcp_twsk_destructor(struct sock * sk)338 void tcp_twsk_destructor(struct sock *sk)
339 {
340 #ifdef CONFIG_TCP_MD5SIG
341 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 	if (twsk->tw_md5_key)
344 		kfree_rcu(twsk->tw_md5_key, rcu);
345 #endif
346 }
347 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
348 
349 /* Warning : This function is called without sk_listener being locked.
350  * Be sure to read socket fields once, as their value could change under us.
351  */
tcp_openreq_init_rwin(struct request_sock * req,const struct sock * sk_listener,const struct dst_entry * dst)352 void tcp_openreq_init_rwin(struct request_sock *req,
353 			   const struct sock *sk_listener,
354 			   const struct dst_entry *dst)
355 {
356 	struct inet_request_sock *ireq = inet_rsk(req);
357 	const struct tcp_sock *tp = tcp_sk(sk_listener);
358 	int full_space = tcp_full_space(sk_listener);
359 	u32 window_clamp;
360 	__u8 rcv_wscale;
361 	u32 rcv_wnd;
362 	int mss;
363 
364 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
365 	window_clamp = READ_ONCE(tp->window_clamp);
366 	/* Set this up on the first call only */
367 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
368 
369 	/* limit the window selection if the user enforce a smaller rx buffer */
370 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
371 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
372 		req->rsk_window_clamp = full_space;
373 
374 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
375 	if (rcv_wnd == 0)
376 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
377 	else if (full_space < rcv_wnd * mss)
378 		full_space = rcv_wnd * mss;
379 
380 	/* tcp_full_space because it is guaranteed to be the first packet */
381 	tcp_select_initial_window(full_space,
382 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
383 		&req->rsk_rcv_wnd,
384 		&req->rsk_window_clamp,
385 		ireq->wscale_ok,
386 		&rcv_wscale,
387 		rcv_wnd);
388 	ireq->rcv_wscale = rcv_wscale;
389 }
390 EXPORT_SYMBOL(tcp_openreq_init_rwin);
391 
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)392 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
393 				  const struct request_sock *req)
394 {
395 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
396 }
397 
tcp_ca_openreq_child(struct sock * sk,const struct dst_entry * dst)398 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
399 {
400 	struct inet_connection_sock *icsk = inet_csk(sk);
401 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
402 	bool ca_got_dst = false;
403 
404 	if (ca_key != TCP_CA_UNSPEC) {
405 		const struct tcp_congestion_ops *ca;
406 
407 		rcu_read_lock();
408 		ca = tcp_ca_find_key(ca_key);
409 		if (likely(ca && try_module_get(ca->owner))) {
410 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
411 			icsk->icsk_ca_ops = ca;
412 			ca_got_dst = true;
413 		}
414 		rcu_read_unlock();
415 	}
416 
417 	/* If no valid choice made yet, assign current system default ca. */
418 	if (!ca_got_dst &&
419 	    (!icsk->icsk_ca_setsockopt ||
420 	     !try_module_get(icsk->icsk_ca_ops->owner)))
421 		tcp_assign_congestion_control(sk);
422 
423 	tcp_set_ca_state(sk, TCP_CA_Open);
424 }
425 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
426 
427 /* This is not only more efficient than what we used to do, it eliminates
428  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
429  *
430  * Actually, we could lots of memory writes here. tp of listening
431  * socket contains all necessary default parameters.
432  */
tcp_create_openreq_child(const struct sock * sk,struct request_sock * req,struct sk_buff * skb)433 struct sock *tcp_create_openreq_child(const struct sock *sk,
434 				      struct request_sock *req,
435 				      struct sk_buff *skb)
436 {
437 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
438 
439 	if (newsk) {
440 		const struct inet_request_sock *ireq = inet_rsk(req);
441 		struct tcp_request_sock *treq = tcp_rsk(req);
442 		struct inet_connection_sock *newicsk = inet_csk(newsk);
443 		struct tcp_sock *newtp = tcp_sk(newsk);
444 
445 		/* Now setup tcp_sock */
446 		newtp->pred_flags = 0;
447 
448 		newtp->rcv_wup = newtp->copied_seq =
449 		newtp->rcv_nxt = treq->rcv_isn + 1;
450 		newtp->segs_in = 1;
451 
452 		newtp->snd_sml = newtp->snd_una =
453 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
454 
455 		INIT_LIST_HEAD(&newtp->tsq_node);
456 
457 		tcp_init_wl(newtp, treq->rcv_isn);
458 
459 		newtp->srtt_us = 0;
460 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
461 		minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
462 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
463 		newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
464 
465 		newtp->packets_out = 0;
466 		newtp->retrans_out = 0;
467 		newtp->sacked_out = 0;
468 		newtp->fackets_out = 0;
469 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
470 		newtp->tlp_high_seq = 0;
471 		newtp->lsndtime = tcp_jiffies32;
472 		newsk->sk_txhash = treq->txhash;
473 		newtp->last_oow_ack_time = 0;
474 		newtp->total_retrans = req->num_retrans;
475 
476 		/* So many TCP implementations out there (incorrectly) count the
477 		 * initial SYN frame in their delayed-ACK and congestion control
478 		 * algorithms that we must have the following bandaid to talk
479 		 * efficiently to them.  -DaveM
480 		 */
481 		newtp->snd_cwnd = TCP_INIT_CWND;
482 		newtp->snd_cwnd_cnt = 0;
483 
484 		/* There's a bubble in the pipe until at least the first ACK. */
485 		newtp->app_limited = ~0U;
486 
487 		tcp_init_xmit_timers(newsk);
488 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
489 
490 		newtp->rx_opt.saw_tstamp = 0;
491 
492 		newtp->rx_opt.dsack = 0;
493 		newtp->rx_opt.num_sacks = 0;
494 
495 		newtp->urg_data = 0;
496 
497 		if (sock_flag(newsk, SOCK_KEEPOPEN))
498 			inet_csk_reset_keepalive_timer(newsk,
499 						       keepalive_time_when(newtp));
500 
501 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
502 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
503 			if (sysctl_tcp_fack)
504 				tcp_enable_fack(newtp);
505 		}
506 		newtp->window_clamp = req->rsk_window_clamp;
507 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
508 		newtp->rcv_wnd = req->rsk_rcv_wnd;
509 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
510 		if (newtp->rx_opt.wscale_ok) {
511 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
512 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
513 		} else {
514 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
515 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
516 		}
517 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
518 				  newtp->rx_opt.snd_wscale);
519 		newtp->max_window = newtp->snd_wnd;
520 
521 		if (newtp->rx_opt.tstamp_ok) {
522 			newtp->rx_opt.ts_recent = req->ts_recent;
523 			newtp->rx_opt.ts_recent_stamp = get_seconds();
524 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
525 		} else {
526 			newtp->rx_opt.ts_recent_stamp = 0;
527 			newtp->tcp_header_len = sizeof(struct tcphdr);
528 		}
529 		newtp->tsoffset = treq->ts_off;
530 #ifdef CONFIG_TCP_MD5SIG
531 		newtp->md5sig_info = NULL;	/*XXX*/
532 		if (newtp->af_specific->md5_lookup(sk, newsk))
533 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
534 #endif
535 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
536 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
537 		newtp->rx_opt.mss_clamp = req->mss;
538 		tcp_ecn_openreq_child(newtp, req);
539 		newtp->fastopen_req = NULL;
540 		newtp->fastopen_rsk = NULL;
541 		newtp->syn_data_acked = 0;
542 		newtp->rack.mstamp = 0;
543 		newtp->rack.advanced = 0;
544 
545 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
546 	}
547 	return newsk;
548 }
549 EXPORT_SYMBOL(tcp_create_openreq_child);
550 
551 /*
552  * Process an incoming packet for SYN_RECV sockets represented as a
553  * request_sock. Normally sk is the listener socket but for TFO it
554  * points to the child socket.
555  *
556  * XXX (TFO) - The current impl contains a special check for ack
557  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
558  *
559  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
560  */
561 
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,bool fastopen)562 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
563 			   struct request_sock *req,
564 			   bool fastopen)
565 {
566 	struct tcp_options_received tmp_opt;
567 	struct sock *child;
568 	const struct tcphdr *th = tcp_hdr(skb);
569 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
570 	bool paws_reject = false;
571 	bool own_req;
572 
573 	tmp_opt.saw_tstamp = 0;
574 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
575 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
576 
577 		if (tmp_opt.saw_tstamp) {
578 			tmp_opt.ts_recent = req->ts_recent;
579 			if (tmp_opt.rcv_tsecr)
580 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
581 			/* We do not store true stamp, but it is not required,
582 			 * it can be estimated (approximately)
583 			 * from another data.
584 			 */
585 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
586 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
587 		}
588 	}
589 
590 	/* Check for pure retransmitted SYN. */
591 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
592 	    flg == TCP_FLAG_SYN &&
593 	    !paws_reject) {
594 		/*
595 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
596 		 * this case on figure 6 and figure 8, but formal
597 		 * protocol description says NOTHING.
598 		 * To be more exact, it says that we should send ACK,
599 		 * because this segment (at least, if it has no data)
600 		 * is out of window.
601 		 *
602 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
603 		 *  describe SYN-RECV state. All the description
604 		 *  is wrong, we cannot believe to it and should
605 		 *  rely only on common sense and implementation
606 		 *  experience.
607 		 *
608 		 * Enforce "SYN-ACK" according to figure 8, figure 6
609 		 * of RFC793, fixed by RFC1122.
610 		 *
611 		 * Note that even if there is new data in the SYN packet
612 		 * they will be thrown away too.
613 		 *
614 		 * Reset timer after retransmitting SYNACK, similar to
615 		 * the idea of fast retransmit in recovery.
616 		 */
617 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
618 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
619 					  &tcp_rsk(req)->last_oow_ack_time) &&
620 
621 		    !inet_rtx_syn_ack(sk, req)) {
622 			unsigned long expires = jiffies;
623 
624 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
625 				       TCP_RTO_MAX);
626 			if (!fastopen)
627 				mod_timer_pending(&req->rsk_timer, expires);
628 			else
629 				req->rsk_timer.expires = expires;
630 		}
631 		return NULL;
632 	}
633 
634 	/* Further reproduces section "SEGMENT ARRIVES"
635 	   for state SYN-RECEIVED of RFC793.
636 	   It is broken, however, it does not work only
637 	   when SYNs are crossed.
638 
639 	   You would think that SYN crossing is impossible here, since
640 	   we should have a SYN_SENT socket (from connect()) on our end,
641 	   but this is not true if the crossed SYNs were sent to both
642 	   ends by a malicious third party.  We must defend against this,
643 	   and to do that we first verify the ACK (as per RFC793, page
644 	   36) and reset if it is invalid.  Is this a true full defense?
645 	   To convince ourselves, let us consider a way in which the ACK
646 	   test can still pass in this 'malicious crossed SYNs' case.
647 	   Malicious sender sends identical SYNs (and thus identical sequence
648 	   numbers) to both A and B:
649 
650 		A: gets SYN, seq=7
651 		B: gets SYN, seq=7
652 
653 	   By our good fortune, both A and B select the same initial
654 	   send sequence number of seven :-)
655 
656 		A: sends SYN|ACK, seq=7, ack_seq=8
657 		B: sends SYN|ACK, seq=7, ack_seq=8
658 
659 	   So we are now A eating this SYN|ACK, ACK test passes.  So
660 	   does sequence test, SYN is truncated, and thus we consider
661 	   it a bare ACK.
662 
663 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
664 	   bare ACK.  Otherwise, we create an established connection.  Both
665 	   ends (listening sockets) accept the new incoming connection and try
666 	   to talk to each other. 8-)
667 
668 	   Note: This case is both harmless, and rare.  Possibility is about the
669 	   same as us discovering intelligent life on another plant tomorrow.
670 
671 	   But generally, we should (RFC lies!) to accept ACK
672 	   from SYNACK both here and in tcp_rcv_state_process().
673 	   tcp_rcv_state_process() does not, hence, we do not too.
674 
675 	   Note that the case is absolutely generic:
676 	   we cannot optimize anything here without
677 	   violating protocol. All the checks must be made
678 	   before attempt to create socket.
679 	 */
680 
681 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
682 	 *                  and the incoming segment acknowledges something not yet
683 	 *                  sent (the segment carries an unacceptable ACK) ...
684 	 *                  a reset is sent."
685 	 *
686 	 * Invalid ACK: reset will be sent by listening socket.
687 	 * Note that the ACK validity check for a Fast Open socket is done
688 	 * elsewhere and is checked directly against the child socket rather
689 	 * than req because user data may have been sent out.
690 	 */
691 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
692 	    (TCP_SKB_CB(skb)->ack_seq !=
693 	     tcp_rsk(req)->snt_isn + 1))
694 		return sk;
695 
696 	/* Also, it would be not so bad idea to check rcv_tsecr, which
697 	 * is essentially ACK extension and too early or too late values
698 	 * should cause reset in unsynchronized states.
699 	 */
700 
701 	/* RFC793: "first check sequence number". */
702 
703 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
704 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
705 		/* Out of window: send ACK and drop. */
706 		if (!(flg & TCP_FLAG_RST) &&
707 		    !tcp_oow_rate_limited(sock_net(sk), skb,
708 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
709 					  &tcp_rsk(req)->last_oow_ack_time))
710 			req->rsk_ops->send_ack(sk, skb, req);
711 		if (paws_reject)
712 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
713 		return NULL;
714 	}
715 
716 	/* In sequence, PAWS is OK. */
717 
718 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
719 		req->ts_recent = tmp_opt.rcv_tsval;
720 
721 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
722 		/* Truncate SYN, it is out of window starting
723 		   at tcp_rsk(req)->rcv_isn + 1. */
724 		flg &= ~TCP_FLAG_SYN;
725 	}
726 
727 	/* RFC793: "second check the RST bit" and
728 	 *	   "fourth, check the SYN bit"
729 	 */
730 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
731 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
732 		goto embryonic_reset;
733 	}
734 
735 	/* ACK sequence verified above, just make sure ACK is
736 	 * set.  If ACK not set, just silently drop the packet.
737 	 *
738 	 * XXX (TFO) - if we ever allow "data after SYN", the
739 	 * following check needs to be removed.
740 	 */
741 	if (!(flg & TCP_FLAG_ACK))
742 		return NULL;
743 
744 	/* For Fast Open no more processing is needed (sk is the
745 	 * child socket).
746 	 */
747 	if (fastopen)
748 		return sk;
749 
750 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
751 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
752 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
753 		inet_rsk(req)->acked = 1;
754 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
755 		return NULL;
756 	}
757 
758 	/* OK, ACK is valid, create big socket and
759 	 * feed this segment to it. It will repeat all
760 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
761 	 * ESTABLISHED STATE. If it will be dropped after
762 	 * socket is created, wait for troubles.
763 	 */
764 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
765 							 req, &own_req);
766 	if (!child)
767 		goto listen_overflow;
768 
769 	sock_rps_save_rxhash(child, skb);
770 	tcp_synack_rtt_meas(child, req);
771 	return inet_csk_complete_hashdance(sk, child, req, own_req);
772 
773 listen_overflow:
774 	if (!sysctl_tcp_abort_on_overflow) {
775 		inet_rsk(req)->acked = 1;
776 		return NULL;
777 	}
778 
779 embryonic_reset:
780 	if (!(flg & TCP_FLAG_RST)) {
781 		/* Received a bad SYN pkt - for TFO We try not to reset
782 		 * the local connection unless it's really necessary to
783 		 * avoid becoming vulnerable to outside attack aiming at
784 		 * resetting legit local connections.
785 		 */
786 		req->rsk_ops->send_reset(sk, skb);
787 	} else if (fastopen) { /* received a valid RST pkt */
788 		reqsk_fastopen_remove(sk, req, true);
789 		tcp_reset(sk);
790 	}
791 	if (!fastopen) {
792 		inet_csk_reqsk_queue_drop(sk, req);
793 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
794 	}
795 	return NULL;
796 }
797 EXPORT_SYMBOL(tcp_check_req);
798 
799 /*
800  * Queue segment on the new socket if the new socket is active,
801  * otherwise we just shortcircuit this and continue with
802  * the new socket.
803  *
804  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
805  * when entering. But other states are possible due to a race condition
806  * where after __inet_lookup_established() fails but before the listener
807  * locked is obtained, other packets cause the same connection to
808  * be created.
809  */
810 
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)811 int tcp_child_process(struct sock *parent, struct sock *child,
812 		      struct sk_buff *skb)
813 {
814 	int ret = 0;
815 	int state = child->sk_state;
816 
817 	/* record NAPI ID of child */
818 	sk_mark_napi_id(child, skb);
819 
820 	tcp_segs_in(tcp_sk(child), skb);
821 	if (!sock_owned_by_user(child)) {
822 		ret = tcp_rcv_state_process(child, skb);
823 		/* Wakeup parent, send SIGIO */
824 		if (state == TCP_SYN_RECV && child->sk_state != state)
825 			parent->sk_data_ready(parent);
826 	} else {
827 		/* Alas, it is possible again, because we do lookup
828 		 * in main socket hash table and lock on listening
829 		 * socket does not protect us more.
830 		 */
831 		__sk_add_backlog(child, skb);
832 	}
833 
834 	bh_unlock_sock(child);
835 	sock_put(child);
836 	return ret;
837 }
838 EXPORT_SYMBOL(tcp_child_process);
839