• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/netdevice.h>
9 #include <linux/types.h>
10 #include <linux/skbuff.h>
11 #include <linux/debugfs.h>
12 #include <linux/random.h>
13 #include <linux/moduleparam.h>
14 #include <linux/ieee80211.h>
15 #include <net/mac80211.h>
16 #include "rate.h"
17 #include "sta_info.h"
18 #include "rc80211_minstrel.h"
19 #include "rc80211_minstrel_ht.h"
20 
21 #define AVG_AMPDU_SIZE	16
22 #define AVG_PKT_SIZE	1200
23 
24 /* Number of bits for an average sized packet */
25 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 
27 /* Number of symbols for a packet with (bps) bits per symbol */
28 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29 
30 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 #define MCS_SYMBOL_TIME(sgi, syms)					\
32 	(sgi ?								\
33 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
34 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 	)
36 
37 /* Transmit duration for the raw data part of an average sized packet */
38 #define MCS_DURATION(streams, sgi, bps) \
39 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40 
41 #define BW_20			0
42 #define BW_40			1
43 #define BW_80			2
44 
45 /*
46  * Define group sort order: HT40 -> SGI -> #streams
47  */
48 #define GROUP_IDX(_streams, _sgi, _ht40)	\
49 	MINSTREL_HT_GROUP_0 +			\
50 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51 	MINSTREL_MAX_STREAMS * _sgi +	\
52 	_streams - 1
53 
54 /* MCS rate information for an MCS group */
55 #define MCS_GROUP(_streams, _sgi, _ht40)				\
56 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
57 	.streams = _streams,						\
58 	.flags =							\
59 		IEEE80211_TX_RC_MCS |					\
60 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
61 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
62 	.duration = {							\
63 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
64 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
65 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
66 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
67 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
68 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
71 	}								\
72 }
73 
74 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
75 	(MINSTREL_VHT_GROUP_0 +						\
76 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
77 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
78 	 (_streams) - 1)
79 
80 #define BW2VBPS(_bw, r3, r2, r1)					\
81 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
82 
83 #define VHT_GROUP(_streams, _sgi, _bw)					\
84 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
85 	.streams = _streams,						\
86 	.flags =							\
87 		IEEE80211_TX_RC_VHT_MCS |				\
88 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
89 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
90 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
91 	.duration = {							\
92 		MCS_DURATION(_streams, _sgi,				\
93 			     BW2VBPS(_bw,  117,  54,  26)),		\
94 		MCS_DURATION(_streams, _sgi,				\
95 			     BW2VBPS(_bw,  234, 108,  52)),		\
96 		MCS_DURATION(_streams, _sgi,				\
97 			     BW2VBPS(_bw,  351, 162,  78)),		\
98 		MCS_DURATION(_streams, _sgi,				\
99 			     BW2VBPS(_bw,  468, 216, 104)),		\
100 		MCS_DURATION(_streams, _sgi,				\
101 			     BW2VBPS(_bw,  702, 324, 156)),		\
102 		MCS_DURATION(_streams, _sgi,				\
103 			     BW2VBPS(_bw,  936, 432, 208)),		\
104 		MCS_DURATION(_streams, _sgi,				\
105 			     BW2VBPS(_bw, 1053, 486, 234)),		\
106 		MCS_DURATION(_streams, _sgi,				\
107 			     BW2VBPS(_bw, 1170, 540, 260)),		\
108 		MCS_DURATION(_streams, _sgi,				\
109 			     BW2VBPS(_bw, 1404, 648, 312)),		\
110 		MCS_DURATION(_streams, _sgi,				\
111 			     BW2VBPS(_bw, 1560, 720, 346))		\
112 	}								\
113 }
114 
115 #define CCK_DURATION(_bitrate, _short, _len)		\
116 	(1000 * (10 /* SIFS */ +			\
117 	 (_short ? 72 + 24 : 144 + 48) +		\
118 	 (8 * (_len + 4) * 10) / (_bitrate)))
119 
120 #define CCK_ACK_DURATION(_bitrate, _short)			\
121 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
122 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
123 
124 #define CCK_DURATION_LIST(_short)			\
125 	CCK_ACK_DURATION(10, _short),			\
126 	CCK_ACK_DURATION(20, _short),			\
127 	CCK_ACK_DURATION(55, _short),			\
128 	CCK_ACK_DURATION(110, _short)
129 
130 #define CCK_GROUP					\
131 	[MINSTREL_CCK_GROUP] = {			\
132 		.streams = 1,				\
133 		.flags = 0,				\
134 		.duration = {				\
135 			CCK_DURATION_LIST(false),	\
136 			CCK_DURATION_LIST(true)		\
137 		}					\
138 	}
139 
140 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
141 static bool minstrel_vht_only = true;
142 module_param(minstrel_vht_only, bool, 0644);
143 MODULE_PARM_DESC(minstrel_vht_only,
144 		 "Use only VHT rates when VHT is supported by sta.");
145 #endif
146 
147 /*
148  * To enable sufficiently targeted rate sampling, MCS rates are divided into
149  * groups, based on the number of streams and flags (HT40, SGI) that they
150  * use.
151  *
152  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
153  * BW -> SGI -> #streams
154  */
155 const struct mcs_group minstrel_mcs_groups[] = {
156 	MCS_GROUP(1, 0, BW_20),
157 	MCS_GROUP(2, 0, BW_20),
158 	MCS_GROUP(3, 0, BW_20),
159 
160 	MCS_GROUP(1, 1, BW_20),
161 	MCS_GROUP(2, 1, BW_20),
162 	MCS_GROUP(3, 1, BW_20),
163 
164 	MCS_GROUP(1, 0, BW_40),
165 	MCS_GROUP(2, 0, BW_40),
166 	MCS_GROUP(3, 0, BW_40),
167 
168 	MCS_GROUP(1, 1, BW_40),
169 	MCS_GROUP(2, 1, BW_40),
170 	MCS_GROUP(3, 1, BW_40),
171 
172 	CCK_GROUP,
173 
174 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
175 	VHT_GROUP(1, 0, BW_20),
176 	VHT_GROUP(2, 0, BW_20),
177 	VHT_GROUP(3, 0, BW_20),
178 
179 	VHT_GROUP(1, 1, BW_20),
180 	VHT_GROUP(2, 1, BW_20),
181 	VHT_GROUP(3, 1, BW_20),
182 
183 	VHT_GROUP(1, 0, BW_40),
184 	VHT_GROUP(2, 0, BW_40),
185 	VHT_GROUP(3, 0, BW_40),
186 
187 	VHT_GROUP(1, 1, BW_40),
188 	VHT_GROUP(2, 1, BW_40),
189 	VHT_GROUP(3, 1, BW_40),
190 
191 	VHT_GROUP(1, 0, BW_80),
192 	VHT_GROUP(2, 0, BW_80),
193 	VHT_GROUP(3, 0, BW_80),
194 
195 	VHT_GROUP(1, 1, BW_80),
196 	VHT_GROUP(2, 1, BW_80),
197 	VHT_GROUP(3, 1, BW_80),
198 #endif
199 };
200 
201 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
202 
203 static void
204 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
205 
206 /*
207  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
208  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
209  *
210  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
211  */
212 static u16
minstrel_get_valid_vht_rates(int bw,int nss,__le16 mcs_map)213 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
214 {
215 	u16 mask = 0;
216 
217 	if (bw == BW_20) {
218 		if (nss != 3 && nss != 6)
219 			mask = BIT(9);
220 	} else if (bw == BW_80) {
221 		if (nss == 3 || nss == 7)
222 			mask = BIT(6);
223 		else if (nss == 6)
224 			mask = BIT(9);
225 	} else {
226 		WARN_ON(bw != BW_40);
227 	}
228 
229 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
230 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
231 		mask |= 0x300;
232 		break;
233 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
234 		mask |= 0x200;
235 		break;
236 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
237 		break;
238 	default:
239 		mask = 0x3ff;
240 	}
241 
242 	return 0x3ff & ~mask;
243 }
244 
245 /*
246  * Look up an MCS group index based on mac80211 rate information
247  */
248 static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate * rate)249 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
250 {
251 	return GROUP_IDX((rate->idx / 8) + 1,
252 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
253 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
254 }
255 
256 static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate * rate)257 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
258 {
259 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
260 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
261 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
262 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
263 }
264 
265 static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_tx_rate * rate)266 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
267 		      struct ieee80211_tx_rate *rate)
268 {
269 	int group, idx;
270 
271 	if (rate->flags & IEEE80211_TX_RC_MCS) {
272 		group = minstrel_ht_get_group_idx(rate);
273 		idx = rate->idx % 8;
274 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
275 		group = minstrel_vht_get_group_idx(rate);
276 		idx = ieee80211_rate_get_vht_mcs(rate);
277 	} else {
278 		group = MINSTREL_CCK_GROUP;
279 
280 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
281 			if (rate->idx == mp->cck_rates[idx])
282 				break;
283 
284 		/* short preamble */
285 		if ((mi->supported[group] & BIT(idx + 4)) &&
286 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
287 			idx += 4;
288 	}
289 	return &mi->groups[group].rates[idx];
290 }
291 
292 static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta * mi,int index)293 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
294 {
295 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
296 }
297 
298 /*
299  * Return current throughput based on the average A-MPDU length, taking into
300  * account the expected number of retransmissions and their expected length
301  */
302 int
minstrel_ht_get_tp_avg(struct minstrel_ht_sta * mi,int group,int rate,int prob_ewma)303 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
304 		       int prob_ewma)
305 {
306 	unsigned int nsecs = 0;
307 
308 	/* do not account throughput if sucess prob is below 10% */
309 	if (prob_ewma < MINSTREL_FRAC(10, 100))
310 		return 0;
311 
312 	if (group != MINSTREL_CCK_GROUP)
313 		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
314 
315 	nsecs += minstrel_mcs_groups[group].duration[rate];
316 
317 	/*
318 	 * For the throughput calculation, limit the probability value to 90% to
319 	 * account for collision related packet error rate fluctuation
320 	 * (prob is scaled - see MINSTREL_FRAC above)
321 	 */
322 	if (prob_ewma > MINSTREL_FRAC(90, 100))
323 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
324 								      / nsecs));
325 	else
326 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
327 }
328 
329 /*
330  * Find & sort topmost throughput rates
331  *
332  * If multiple rates provide equal throughput the sorting is based on their
333  * current success probability. Higher success probability is preferred among
334  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
335  */
336 static void
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta * mi,u16 index,u16 * tp_list)337 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
338 			       u16 *tp_list)
339 {
340 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
341 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
342 	int j = MAX_THR_RATES;
343 
344 	cur_group = index / MCS_GROUP_RATES;
345 	cur_idx = index  % MCS_GROUP_RATES;
346 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
347 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
348 
349 	do {
350 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
351 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
352 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
353 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
354 						    tmp_prob);
355 		if (cur_tp_avg < tmp_tp_avg ||
356 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
357 			break;
358 		j--;
359 	} while (j > 0);
360 
361 	if (j < MAX_THR_RATES - 1) {
362 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
363 		       (MAX_THR_RATES - (j + 1))));
364 	}
365 	if (j < MAX_THR_RATES)
366 		tp_list[j] = index;
367 }
368 
369 /*
370  * Find and set the topmost probability rate per sta and per group
371  */
372 static void
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta * mi,u16 index)373 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
374 {
375 	struct minstrel_mcs_group_data *mg;
376 	struct minstrel_rate_stats *mrs;
377 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
378 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
379 	int max_gpr_group, max_gpr_idx;
380 	int max_gpr_tp_avg, max_gpr_prob;
381 
382 	cur_group = index / MCS_GROUP_RATES;
383 	cur_idx = index % MCS_GROUP_RATES;
384 	mg = &mi->groups[index / MCS_GROUP_RATES];
385 	mrs = &mg->rates[index % MCS_GROUP_RATES];
386 
387 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
388 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
389 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
390 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
391 
392 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
393 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
394 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
395 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
396 	    (max_tp_group != MINSTREL_CCK_GROUP))
397 		return;
398 
399 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
400 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
401 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
402 
403 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
404 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
405 						    mrs->prob_ewma);
406 		if (cur_tp_avg > tmp_tp_avg)
407 			mi->max_prob_rate = index;
408 
409 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
410 							max_gpr_idx,
411 							max_gpr_prob);
412 		if (cur_tp_avg > max_gpr_tp_avg)
413 			mg->max_group_prob_rate = index;
414 	} else {
415 		if (mrs->prob_ewma > tmp_prob)
416 			mi->max_prob_rate = index;
417 		if (mrs->prob_ewma > max_gpr_prob)
418 			mg->max_group_prob_rate = index;
419 	}
420 }
421 
422 
423 /*
424  * Assign new rate set per sta and use CCK rates only if the fastest
425  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
426  * rate sets where MCS and CCK rates are mixed, because CCK rates can
427  * not use aggregation.
428  */
429 static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta * mi,u16 tmp_mcs_tp_rate[MAX_THR_RATES],u16 tmp_cck_tp_rate[MAX_THR_RATES])430 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
431 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
432 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
433 {
434 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
435 	int i;
436 
437 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
438 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
439 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
440 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
441 
442 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
443 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
444 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
445 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
446 
447 	if (tmp_cck_tp > tmp_mcs_tp) {
448 		for(i = 0; i < MAX_THR_RATES; i++) {
449 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
450 						       tmp_mcs_tp_rate);
451 		}
452 	}
453 
454 }
455 
456 /*
457  * Try to increase robustness of max_prob rate by decrease number of
458  * streams if possible.
459  */
460 static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta * mi)461 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
462 {
463 	struct minstrel_mcs_group_data *mg;
464 	int tmp_max_streams, group, tmp_idx, tmp_prob;
465 	int tmp_tp = 0;
466 
467 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
468 			  MCS_GROUP_RATES].streams;
469 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
470 		mg = &mi->groups[group];
471 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
472 			continue;
473 
474 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
475 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
476 
477 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
478 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
479 				mi->max_prob_rate = mg->max_group_prob_rate;
480 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
481 								tmp_idx,
482 								tmp_prob);
483 		}
484 	}
485 }
486 
487 /*
488  * Update rate statistics and select new primary rates
489  *
490  * Rules for rate selection:
491  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
492  *    probability and throughput during strong fluctuations
493  *  - as long as the max prob rate has a probability of more than 75%, pick
494  *    higher throughput rates, even if the probablity is a bit lower
495  */
496 static void
minstrel_ht_update_stats(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)497 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
498 {
499 	struct minstrel_mcs_group_data *mg;
500 	struct minstrel_rate_stats *mrs;
501 	int group, i, j, cur_prob;
502 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
503 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
504 
505 	if (mi->ampdu_packets > 0) {
506 		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
507 			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
508 		mi->ampdu_len = 0;
509 		mi->ampdu_packets = 0;
510 	}
511 
512 	mi->sample_slow = 0;
513 	mi->sample_count = 0;
514 
515 	/* Initialize global rate indexes */
516 	for(j = 0; j < MAX_THR_RATES; j++){
517 		tmp_mcs_tp_rate[j] = 0;
518 		tmp_cck_tp_rate[j] = 0;
519 	}
520 
521 	/* Find best rate sets within all MCS groups*/
522 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
523 
524 		mg = &mi->groups[group];
525 		if (!mi->supported[group])
526 			continue;
527 
528 		mi->sample_count++;
529 
530 		/* (re)Initialize group rate indexes */
531 		for(j = 0; j < MAX_THR_RATES; j++)
532 			tmp_group_tp_rate[j] = MCS_GROUP_RATES * group;
533 
534 		for (i = 0; i < MCS_GROUP_RATES; i++) {
535 			if (!(mi->supported[group] & BIT(i)))
536 				continue;
537 
538 			index = MCS_GROUP_RATES * group + i;
539 
540 			mrs = &mg->rates[i];
541 			mrs->retry_updated = false;
542 			minstrel_calc_rate_stats(mrs);
543 			cur_prob = mrs->prob_ewma;
544 
545 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
546 				continue;
547 
548 			/* Find max throughput rate set */
549 			if (group != MINSTREL_CCK_GROUP) {
550 				minstrel_ht_sort_best_tp_rates(mi, index,
551 							       tmp_mcs_tp_rate);
552 			} else if (group == MINSTREL_CCK_GROUP) {
553 				minstrel_ht_sort_best_tp_rates(mi, index,
554 							       tmp_cck_tp_rate);
555 			}
556 
557 			/* Find max throughput rate set within a group */
558 			minstrel_ht_sort_best_tp_rates(mi, index,
559 						       tmp_group_tp_rate);
560 
561 			/* Find max probability rate per group and global */
562 			minstrel_ht_set_best_prob_rate(mi, index);
563 		}
564 
565 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
566 		       sizeof(mg->max_group_tp_rate));
567 	}
568 
569 	/* Assign new rate set per sta */
570 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
571 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
572 
573 	/* Try to increase robustness of max_prob_rate*/
574 	minstrel_ht_prob_rate_reduce_streams(mi);
575 
576 	/* try to sample all available rates during each interval */
577 	mi->sample_count *= 8;
578 
579 #ifdef CONFIG_MAC80211_DEBUGFS
580 	/* use fixed index if set */
581 	if (mp->fixed_rate_idx != -1) {
582 		for (i = 0; i < 4; i++)
583 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
584 		mi->max_prob_rate = mp->fixed_rate_idx;
585 	}
586 #endif
587 
588 	/* Reset update timer */
589 	mi->last_stats_update = jiffies;
590 }
591 
592 static bool
minstrel_ht_txstat_valid(struct minstrel_priv * mp,struct ieee80211_tx_rate * rate)593 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
594 {
595 	if (rate->idx < 0)
596 		return false;
597 
598 	if (!rate->count)
599 		return false;
600 
601 	if (rate->flags & IEEE80211_TX_RC_MCS ||
602 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
603 		return true;
604 
605 	return rate->idx == mp->cck_rates[0] ||
606 	       rate->idx == mp->cck_rates[1] ||
607 	       rate->idx == mp->cck_rates[2] ||
608 	       rate->idx == mp->cck_rates[3];
609 }
610 
611 static void
minstrel_set_next_sample_idx(struct minstrel_ht_sta * mi)612 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
613 {
614 	struct minstrel_mcs_group_data *mg;
615 
616 	for (;;) {
617 		mi->sample_group++;
618 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
619 		mg = &mi->groups[mi->sample_group];
620 
621 		if (!mi->supported[mi->sample_group])
622 			continue;
623 
624 		if (++mg->index >= MCS_GROUP_RATES) {
625 			mg->index = 0;
626 			if (++mg->column >= ARRAY_SIZE(sample_table))
627 				mg->column = 0;
628 		}
629 		break;
630 	}
631 }
632 
633 static void
minstrel_downgrade_rate(struct minstrel_ht_sta * mi,u16 * idx,bool primary)634 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
635 {
636 	int group, orig_group;
637 
638 	orig_group = group = *idx / MCS_GROUP_RATES;
639 	while (group > 0) {
640 		group--;
641 
642 		if (!mi->supported[group])
643 			continue;
644 
645 		if (minstrel_mcs_groups[group].streams >
646 		    minstrel_mcs_groups[orig_group].streams)
647 			continue;
648 
649 		if (primary)
650 			*idx = mi->groups[group].max_group_tp_rate[0];
651 		else
652 			*idx = mi->groups[group].max_group_tp_rate[1];
653 		break;
654 	}
655 }
656 
657 static void
minstrel_aggr_check(struct ieee80211_sta * pubsta,struct sk_buff * skb)658 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
659 {
660 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
661 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
662 	u16 tid;
663 
664 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
665 		return;
666 
667 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
668 		return;
669 
670 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
671 		return;
672 
673 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
674 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
675 		return;
676 
677 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
678 }
679 
680 static void
minstrel_ht_tx_status(void * priv,struct ieee80211_supported_band * sband,void * priv_sta,struct ieee80211_tx_status * st)681 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
682                       void *priv_sta, struct ieee80211_tx_status *st)
683 {
684 	struct ieee80211_tx_info *info = st->info;
685 	struct minstrel_ht_sta_priv *msp = priv_sta;
686 	struct minstrel_ht_sta *mi = &msp->ht;
687 	struct ieee80211_tx_rate *ar = info->status.rates;
688 	struct minstrel_rate_stats *rate, *rate2;
689 	struct minstrel_priv *mp = priv;
690 	bool last, update = false;
691 	int i;
692 
693 	if (!msp->is_ht)
694 		return mac80211_minstrel.tx_status_ext(priv, sband,
695 						       &msp->legacy, st);
696 
697 	/* This packet was aggregated but doesn't carry status info */
698 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
699 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
700 		return;
701 
702 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
703 		info->status.ampdu_ack_len =
704 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
705 		info->status.ampdu_len = 1;
706 	}
707 
708 	mi->ampdu_packets++;
709 	mi->ampdu_len += info->status.ampdu_len;
710 
711 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
712 		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
713 		mi->sample_tries = 1;
714 		mi->sample_count--;
715 	}
716 
717 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
718 		mi->sample_packets += info->status.ampdu_len;
719 
720 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
721 	for (i = 0; !last; i++) {
722 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
723 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
724 
725 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
726 
727 		if (last)
728 			rate->success += info->status.ampdu_ack_len;
729 
730 		rate->attempts += ar[i].count * info->status.ampdu_len;
731 	}
732 
733 	/*
734 	 * check for sudden death of spatial multiplexing,
735 	 * downgrade to a lower number of streams if necessary.
736 	 */
737 	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
738 	if (rate->attempts > 30 &&
739 	    MINSTREL_FRAC(rate->success, rate->attempts) <
740 	    MINSTREL_FRAC(20, 100)) {
741 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
742 		update = true;
743 	}
744 
745 	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
746 	if (rate2->attempts > 30 &&
747 	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
748 	    MINSTREL_FRAC(20, 100)) {
749 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
750 		update = true;
751 	}
752 
753 	if (time_after(jiffies, mi->last_stats_update +
754 				(mp->update_interval / 2 * HZ) / 1000)) {
755 		update = true;
756 		minstrel_ht_update_stats(mp, mi);
757 	}
758 
759 	if (update)
760 		minstrel_ht_update_rates(mp, mi);
761 }
762 
763 static void
minstrel_calc_retransmit(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,int index)764 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
765                          int index)
766 {
767 	struct minstrel_rate_stats *mrs;
768 	const struct mcs_group *group;
769 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
770 	unsigned int cw = mp->cw_min;
771 	unsigned int ctime = 0;
772 	unsigned int t_slot = 9; /* FIXME */
773 	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
774 	unsigned int overhead = 0, overhead_rtscts = 0;
775 
776 	mrs = minstrel_get_ratestats(mi, index);
777 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
778 		mrs->retry_count = 1;
779 		mrs->retry_count_rtscts = 1;
780 		return;
781 	}
782 
783 	mrs->retry_count = 2;
784 	mrs->retry_count_rtscts = 2;
785 	mrs->retry_updated = true;
786 
787 	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
788 	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
789 
790 	/* Contention time for first 2 tries */
791 	ctime = (t_slot * cw) >> 1;
792 	cw = min((cw << 1) | 1, mp->cw_max);
793 	ctime += (t_slot * cw) >> 1;
794 	cw = min((cw << 1) | 1, mp->cw_max);
795 
796 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
797 		overhead = mi->overhead;
798 		overhead_rtscts = mi->overhead_rtscts;
799 	}
800 
801 	/* Total TX time for data and Contention after first 2 tries */
802 	tx_time = ctime + 2 * (overhead + tx_time_data);
803 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
804 
805 	/* See how many more tries we can fit inside segment size */
806 	do {
807 		/* Contention time for this try */
808 		ctime = (t_slot * cw) >> 1;
809 		cw = min((cw << 1) | 1, mp->cw_max);
810 
811 		/* Total TX time after this try */
812 		tx_time += ctime + overhead + tx_time_data;
813 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
814 
815 		if (tx_time_rtscts < mp->segment_size)
816 			mrs->retry_count_rtscts++;
817 	} while ((tx_time < mp->segment_size) &&
818 	         (++mrs->retry_count < mp->max_retry));
819 }
820 
821 
822 static void
minstrel_ht_set_rate(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_sta_rates * ratetbl,int offset,int index)823 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
824                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
825 {
826 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
827 	struct minstrel_rate_stats *mrs;
828 	u8 idx;
829 	u16 flags = group->flags;
830 
831 	mrs = minstrel_get_ratestats(mi, index);
832 	if (!mrs->retry_updated)
833 		minstrel_calc_retransmit(mp, mi, index);
834 
835 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
836 		ratetbl->rate[offset].count = 2;
837 		ratetbl->rate[offset].count_rts = 2;
838 		ratetbl->rate[offset].count_cts = 2;
839 	} else {
840 		ratetbl->rate[offset].count = mrs->retry_count;
841 		ratetbl->rate[offset].count_cts = mrs->retry_count;
842 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
843 	}
844 
845 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
846 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
847 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
848 		idx = ((group->streams - 1) << 4) |
849 		      ((index % MCS_GROUP_RATES) & 0xF);
850 	else
851 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
852 
853 	/* enable RTS/CTS if needed:
854 	 *  - if station is in dynamic SMPS (and streams > 1)
855 	 *  - for fallback rates, to increase chances of getting through
856 	 */
857 	if (offset > 0 ||
858 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
859 	     group->streams > 1)) {
860 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
861 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
862 	}
863 
864 	ratetbl->rate[offset].idx = idx;
865 	ratetbl->rate[offset].flags = flags;
866 }
867 
868 static inline int
minstrel_ht_get_prob_ewma(struct minstrel_ht_sta * mi,int rate)869 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
870 {
871 	int group = rate / MCS_GROUP_RATES;
872 	rate %= MCS_GROUP_RATES;
873 	return mi->groups[group].rates[rate].prob_ewma;
874 }
875 
876 static int
minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta * mi)877 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
878 {
879 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
880 	const struct mcs_group *g = &minstrel_mcs_groups[group];
881 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
882 
883 	/* Disable A-MSDU if max_prob_rate is bad */
884 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
885 		return 1;
886 
887 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
888 	if (g->duration[rate] > MCS_DURATION(1, 0, 52))
889 		return 500;
890 
891 	/*
892 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
893 	 * data packet size
894 	 */
895 	if (g->duration[rate] > MCS_DURATION(1, 0, 104))
896 		return 1600;
897 
898 	/*
899 	 * If the rate is slower than single-stream MCS7, or if the max throughput
900 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
901 	 * data packet size
902 	 */
903 	if (g->duration[rate] > MCS_DURATION(1, 0, 260) ||
904 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
905 	     MINSTREL_FRAC(75, 100)))
906 		return 3200;
907 
908 	/*
909 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
910 	 * Since aggregation sessions are started/stopped without txq flush, use
911 	 * the limit here to avoid the complexity of having to de-aggregate
912 	 * packets in the queue.
913 	 */
914 	if (!mi->sta->vht_cap.vht_supported)
915 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
916 
917 	/* unlimited */
918 	return 0;
919 }
920 
921 static void
minstrel_ht_update_rates(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)922 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
923 {
924 	struct ieee80211_sta_rates *rates;
925 	int i = 0;
926 
927 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
928 	if (!rates)
929 		return;
930 
931 	/* Start with max_tp_rate[0] */
932 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
933 
934 	if (mp->hw->max_rates >= 3) {
935 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
936 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
937 	}
938 
939 	if (mp->hw->max_rates >= 2) {
940 		/*
941 		 * At least 2 tx rates supported, use max_prob_rate next */
942 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
943 	}
944 
945 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
946 	rates->rate[i].idx = -1;
947 	rate_control_set_rates(mp->hw, mi->sta, rates);
948 }
949 
950 static inline int
minstrel_get_duration(int index)951 minstrel_get_duration(int index)
952 {
953 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
954 	return group->duration[index % MCS_GROUP_RATES];
955 }
956 
957 static int
minstrel_get_sample_rate(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)958 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
959 {
960 	struct minstrel_rate_stats *mrs;
961 	struct minstrel_mcs_group_data *mg;
962 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
963 	int tp_rate1, tp_rate2;
964 	int sample_idx = 0;
965 
966 	if (mi->sample_wait > 0) {
967 		mi->sample_wait--;
968 		return -1;
969 	}
970 
971 	if (!mi->sample_tries)
972 		return -1;
973 
974 	sample_group = mi->sample_group;
975 	mg = &mi->groups[sample_group];
976 	sample_idx = sample_table[mg->column][mg->index];
977 	minstrel_set_next_sample_idx(mi);
978 
979 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
980 		return -1;
981 
982 	mrs = &mg->rates[sample_idx];
983 	sample_idx += sample_group * MCS_GROUP_RATES;
984 
985 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
986 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
987 	    minstrel_get_duration(mi->max_tp_rate[1])) {
988 		tp_rate1 = mi->max_tp_rate[1];
989 		tp_rate2 = mi->max_tp_rate[0];
990 	} else {
991 		tp_rate1 = mi->max_tp_rate[0];
992 		tp_rate2 = mi->max_tp_rate[1];
993 	}
994 
995 	/*
996 	 * Sampling might add some overhead (RTS, no aggregation)
997 	 * to the frame. Hence, don't use sampling for the highest currently
998 	 * used highest throughput or probability rate.
999 	 */
1000 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1001 		return -1;
1002 
1003 	/*
1004 	 * Do not sample if the probability is already higher than 95%
1005 	 * to avoid wasting airtime.
1006 	 */
1007 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
1008 		return -1;
1009 
1010 	/*
1011 	 * Make sure that lower rates get sampled only occasionally,
1012 	 * if the link is working perfectly.
1013 	 */
1014 
1015 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1016 		MCS_GROUP_RATES].streams;
1017 	sample_dur = minstrel_get_duration(sample_idx);
1018 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1019 	    (cur_max_tp_streams - 1 <
1020 	     minstrel_mcs_groups[sample_group].streams ||
1021 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1022 		if (mrs->sample_skipped < 20)
1023 			return -1;
1024 
1025 		if (mi->sample_slow++ > 2)
1026 			return -1;
1027 	}
1028 	mi->sample_tries--;
1029 
1030 	return sample_idx;
1031 }
1032 
1033 static void
minstrel_ht_get_rate(void * priv,struct ieee80211_sta * sta,void * priv_sta,struct ieee80211_tx_rate_control * txrc)1034 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1035                      struct ieee80211_tx_rate_control *txrc)
1036 {
1037 	const struct mcs_group *sample_group;
1038 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1039 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1040 	struct minstrel_ht_sta_priv *msp = priv_sta;
1041 	struct minstrel_ht_sta *mi = &msp->ht;
1042 	struct minstrel_priv *mp = priv;
1043 	int sample_idx;
1044 
1045 	if (rate_control_send_low(sta, priv_sta, txrc))
1046 		return;
1047 
1048 	if (!msp->is_ht)
1049 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1050 
1051 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1052 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1053 		minstrel_aggr_check(sta, txrc->skb);
1054 
1055 	info->flags |= mi->tx_flags;
1056 
1057 #ifdef CONFIG_MAC80211_DEBUGFS
1058 	if (mp->fixed_rate_idx != -1)
1059 		return;
1060 #endif
1061 
1062 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1063 	if (mp->hw->max_rates == 1 &&
1064 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1065 		sample_idx = -1;
1066 	else
1067 		sample_idx = minstrel_get_sample_rate(mp, mi);
1068 
1069 	mi->total_packets++;
1070 
1071 	/* wraparound */
1072 	if (mi->total_packets == ~0) {
1073 		mi->total_packets = 0;
1074 		mi->sample_packets = 0;
1075 	}
1076 
1077 	if (sample_idx < 0)
1078 		return;
1079 
1080 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1081 	sample_idx %= MCS_GROUP_RATES;
1082 
1083 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1084 	    (sample_idx >= 4) != txrc->short_preamble)
1085 		return;
1086 
1087 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1088 	rate->count = 1;
1089 
1090 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1091 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1092 		rate->idx = mp->cck_rates[idx];
1093 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1094 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1095 				       sample_group->streams);
1096 	} else {
1097 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1098 	}
1099 
1100 	rate->flags = sample_group->flags;
1101 }
1102 
1103 static void
minstrel_ht_update_cck(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_supported_band * sband,struct ieee80211_sta * sta)1104 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1105 		       struct ieee80211_supported_band *sband,
1106 		       struct ieee80211_sta *sta)
1107 {
1108 	int i;
1109 
1110 	if (sband->band != NL80211_BAND_2GHZ)
1111 		return;
1112 
1113 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1114 		return;
1115 
1116 	mi->cck_supported = 0;
1117 	mi->cck_supported_short = 0;
1118 	for (i = 0; i < 4; i++) {
1119 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1120 			continue;
1121 
1122 		mi->cck_supported |= BIT(i);
1123 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1124 			mi->cck_supported_short |= BIT(i);
1125 	}
1126 
1127 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1128 }
1129 
1130 static void
minstrel_ht_update_caps(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta)1131 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1132 			struct cfg80211_chan_def *chandef,
1133                         struct ieee80211_sta *sta, void *priv_sta)
1134 {
1135 	struct minstrel_priv *mp = priv;
1136 	struct minstrel_ht_sta_priv *msp = priv_sta;
1137 	struct minstrel_ht_sta *mi = &msp->ht;
1138 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1139 	u16 sta_cap = sta->ht_cap.cap;
1140 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1141 	int use_vht;
1142 	int n_supported = 0;
1143 	int ack_dur;
1144 	int stbc;
1145 	int i;
1146 
1147 	/* fall back to the old minstrel for legacy stations */
1148 	if (!sta->ht_cap.ht_supported)
1149 		goto use_legacy;
1150 
1151 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1152 
1153 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1154 	if (vht_cap->vht_supported)
1155 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1156 	else
1157 #endif
1158 	use_vht = 0;
1159 
1160 	msp->is_ht = true;
1161 	memset(mi, 0, sizeof(*mi));
1162 
1163 	mi->sta = sta;
1164 	mi->last_stats_update = jiffies;
1165 
1166 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1167 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1168 	mi->overhead += ack_dur;
1169 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1170 
1171 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1172 
1173 	/* When using MRR, sample more on the first attempt, without delay */
1174 	if (mp->has_mrr) {
1175 		mi->sample_count = 16;
1176 		mi->sample_wait = 0;
1177 	} else {
1178 		mi->sample_count = 8;
1179 		mi->sample_wait = 8;
1180 	}
1181 	mi->sample_tries = 4;
1182 
1183 	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
1184 	if (!use_vht) {
1185 		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
1186 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1187 		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1188 
1189 		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
1190 			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1191 	}
1192 
1193 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1194 		u32 gflags = minstrel_mcs_groups[i].flags;
1195 		int bw, nss;
1196 
1197 		mi->supported[i] = 0;
1198 		if (i == MINSTREL_CCK_GROUP) {
1199 			minstrel_ht_update_cck(mp, mi, sband, sta);
1200 			continue;
1201 		}
1202 
1203 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1204 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1205 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
1206 					continue;
1207 			} else {
1208 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
1209 					continue;
1210 			}
1211 		}
1212 
1213 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1214 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1215 			continue;
1216 
1217 		nss = minstrel_mcs_groups[i].streams;
1218 
1219 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1220 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1221 			continue;
1222 
1223 		/* HT rate */
1224 		if (gflags & IEEE80211_TX_RC_MCS) {
1225 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1226 			if (use_vht && minstrel_vht_only)
1227 				continue;
1228 #endif
1229 			mi->supported[i] = mcs->rx_mask[nss - 1];
1230 			if (mi->supported[i])
1231 				n_supported++;
1232 			continue;
1233 		}
1234 
1235 		/* VHT rate */
1236 		if (!vht_cap->vht_supported ||
1237 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1238 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1239 			continue;
1240 
1241 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1242 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1243 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1244 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1245 				continue;
1246 			}
1247 		}
1248 
1249 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1250 			bw = BW_40;
1251 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1252 			bw = BW_80;
1253 		else
1254 			bw = BW_20;
1255 
1256 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1257 				vht_cap->vht_mcs.tx_mcs_map);
1258 
1259 		if (mi->supported[i])
1260 			n_supported++;
1261 	}
1262 
1263 	if (!n_supported)
1264 		goto use_legacy;
1265 
1266 	mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1267 
1268 	/* create an initial rate table with the lowest supported rates */
1269 	minstrel_ht_update_stats(mp, mi);
1270 	minstrel_ht_update_rates(mp, mi);
1271 
1272 	return;
1273 
1274 use_legacy:
1275 	msp->is_ht = false;
1276 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1277 	msp->legacy.r = msp->ratelist;
1278 	msp->legacy.sample_table = msp->sample_table;
1279 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1280 					   &msp->legacy);
1281 }
1282 
1283 static void
minstrel_ht_rate_init(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta)1284 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1285 		      struct cfg80211_chan_def *chandef,
1286                       struct ieee80211_sta *sta, void *priv_sta)
1287 {
1288 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1289 }
1290 
1291 static void
minstrel_ht_rate_update(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta,u32 changed)1292 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1293 			struct cfg80211_chan_def *chandef,
1294                         struct ieee80211_sta *sta, void *priv_sta,
1295                         u32 changed)
1296 {
1297 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1298 }
1299 
1300 static void *
minstrel_ht_alloc_sta(void * priv,struct ieee80211_sta * sta,gfp_t gfp)1301 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1302 {
1303 	struct ieee80211_supported_band *sband;
1304 	struct minstrel_ht_sta_priv *msp;
1305 	struct minstrel_priv *mp = priv;
1306 	struct ieee80211_hw *hw = mp->hw;
1307 	int max_rates = 0;
1308 	int i;
1309 
1310 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1311 		sband = hw->wiphy->bands[i];
1312 		if (sband && sband->n_bitrates > max_rates)
1313 			max_rates = sband->n_bitrates;
1314 	}
1315 
1316 	msp = kzalloc(sizeof(*msp), gfp);
1317 	if (!msp)
1318 		return NULL;
1319 
1320 	msp->ratelist = kzalloc(sizeof(struct minstrel_rate) * max_rates, gfp);
1321 	if (!msp->ratelist)
1322 		goto error;
1323 
1324 	msp->sample_table = kmalloc(SAMPLE_COLUMNS * max_rates, gfp);
1325 	if (!msp->sample_table)
1326 		goto error1;
1327 
1328 	return msp;
1329 
1330 error1:
1331 	kfree(msp->ratelist);
1332 error:
1333 	kfree(msp);
1334 	return NULL;
1335 }
1336 
1337 static void
minstrel_ht_free_sta(void * priv,struct ieee80211_sta * sta,void * priv_sta)1338 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1339 {
1340 	struct minstrel_ht_sta_priv *msp = priv_sta;
1341 
1342 	kfree(msp->sample_table);
1343 	kfree(msp->ratelist);
1344 	kfree(msp);
1345 }
1346 
1347 static void *
minstrel_ht_alloc(struct ieee80211_hw * hw,struct dentry * debugfsdir)1348 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1349 {
1350 	return mac80211_minstrel.alloc(hw, debugfsdir);
1351 }
1352 
1353 static void
minstrel_ht_free(void * priv)1354 minstrel_ht_free(void *priv)
1355 {
1356 	mac80211_minstrel.free(priv);
1357 }
1358 
minstrel_ht_get_expected_throughput(void * priv_sta)1359 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1360 {
1361 	struct minstrel_ht_sta_priv *msp = priv_sta;
1362 	struct minstrel_ht_sta *mi = &msp->ht;
1363 	int i, j, prob, tp_avg;
1364 
1365 	if (!msp->is_ht)
1366 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1367 
1368 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1369 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1370 	prob = mi->groups[i].rates[j].prob_ewma;
1371 
1372 	/* convert tp_avg from pkt per second in kbps */
1373 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1374 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1375 
1376 	return tp_avg;
1377 }
1378 
1379 static const struct rate_control_ops mac80211_minstrel_ht = {
1380 	.name = "minstrel_ht",
1381 	.tx_status_ext = minstrel_ht_tx_status,
1382 	.get_rate = minstrel_ht_get_rate,
1383 	.rate_init = minstrel_ht_rate_init,
1384 	.rate_update = minstrel_ht_rate_update,
1385 	.alloc_sta = minstrel_ht_alloc_sta,
1386 	.free_sta = minstrel_ht_free_sta,
1387 	.alloc = minstrel_ht_alloc,
1388 	.free = minstrel_ht_free,
1389 #ifdef CONFIG_MAC80211_DEBUGFS
1390 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1391 	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
1392 #endif
1393 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1394 };
1395 
1396 
init_sample_table(void)1397 static void __init init_sample_table(void)
1398 {
1399 	int col, i, new_idx;
1400 	u8 rnd[MCS_GROUP_RATES];
1401 
1402 	memset(sample_table, 0xff, sizeof(sample_table));
1403 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1404 		prandom_bytes(rnd, sizeof(rnd));
1405 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1406 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1407 			while (sample_table[col][new_idx] != 0xff)
1408 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1409 
1410 			sample_table[col][new_idx] = i;
1411 		}
1412 	}
1413 }
1414 
1415 int __init
rc80211_minstrel_ht_init(void)1416 rc80211_minstrel_ht_init(void)
1417 {
1418 	init_sample_table();
1419 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1420 }
1421 
1422 void
rc80211_minstrel_ht_exit(void)1423 rc80211_minstrel_ht_exit(void)
1424 {
1425 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1426 }
1427