1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/poll.h>
39 #include <net/sock.h>
40
41 #include "rds.h"
42
43 /* this is just used for stats gathering :/ */
44 static DEFINE_SPINLOCK(rds_sock_lock);
45 static unsigned long rds_sock_count;
46 static LIST_HEAD(rds_sock_list);
47 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
48
49 /*
50 * This is called as the final descriptor referencing this socket is closed.
51 * We have to unbind the socket so that another socket can be bound to the
52 * address it was using.
53 *
54 * We have to be careful about racing with the incoming path. sock_orphan()
55 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
56 * messages shouldn't be queued.
57 */
rds_release(struct socket * sock)58 static int rds_release(struct socket *sock)
59 {
60 struct sock *sk = sock->sk;
61 struct rds_sock *rs;
62
63 if (!sk)
64 goto out;
65
66 rs = rds_sk_to_rs(sk);
67
68 sock_orphan(sk);
69 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
70 * that ensures the recv path has completed messing
71 * with the socket. */
72 rds_clear_recv_queue(rs);
73 rds_cong_remove_socket(rs);
74
75 rds_remove_bound(rs);
76
77 rds_send_drop_to(rs, NULL);
78 rds_rdma_drop_keys(rs);
79 rds_notify_queue_get(rs, NULL);
80
81 spin_lock_bh(&rds_sock_lock);
82 list_del_init(&rs->rs_item);
83 rds_sock_count--;
84 spin_unlock_bh(&rds_sock_lock);
85
86 rds_trans_put(rs->rs_transport);
87
88 sock->sk = NULL;
89 sock_put(sk);
90 out:
91 return 0;
92 }
93
94 /*
95 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
96 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
97 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
98 * this seems more conservative.
99 * NB - normally, one would use sk_callback_lock for this, but we can
100 * get here from interrupts, whereas the network code grabs sk_callback_lock
101 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
102 */
rds_wake_sk_sleep(struct rds_sock * rs)103 void rds_wake_sk_sleep(struct rds_sock *rs)
104 {
105 unsigned long flags;
106
107 read_lock_irqsave(&rs->rs_recv_lock, flags);
108 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
109 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
110 }
111
rds_getname(struct socket * sock,struct sockaddr * uaddr,int * uaddr_len,int peer)112 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
113 int *uaddr_len, int peer)
114 {
115 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
116 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
117
118 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
119
120 /* racey, don't care */
121 if (peer) {
122 if (!rs->rs_conn_addr)
123 return -ENOTCONN;
124
125 sin->sin_port = rs->rs_conn_port;
126 sin->sin_addr.s_addr = rs->rs_conn_addr;
127 } else {
128 sin->sin_port = rs->rs_bound_port;
129 sin->sin_addr.s_addr = rs->rs_bound_addr;
130 }
131
132 sin->sin_family = AF_INET;
133
134 *uaddr_len = sizeof(*sin);
135 return 0;
136 }
137
138 /*
139 * RDS' poll is without a doubt the least intuitive part of the interface,
140 * as POLLIN and POLLOUT do not behave entirely as you would expect from
141 * a network protocol.
142 *
143 * POLLIN is asserted if
144 * - there is data on the receive queue.
145 * - to signal that a previously congested destination may have become
146 * uncongested
147 * - A notification has been queued to the socket (this can be a congestion
148 * update, or a RDMA completion).
149 *
150 * POLLOUT is asserted if there is room on the send queue. This does not mean
151 * however, that the next sendmsg() call will succeed. If the application tries
152 * to send to a congested destination, the system call may still fail (and
153 * return ENOBUFS).
154 */
rds_poll(struct file * file,struct socket * sock,poll_table * wait)155 static unsigned int rds_poll(struct file *file, struct socket *sock,
156 poll_table *wait)
157 {
158 struct sock *sk = sock->sk;
159 struct rds_sock *rs = rds_sk_to_rs(sk);
160 unsigned int mask = 0;
161 unsigned long flags;
162
163 poll_wait(file, sk_sleep(sk), wait);
164
165 if (rs->rs_seen_congestion)
166 poll_wait(file, &rds_poll_waitq, wait);
167
168 read_lock_irqsave(&rs->rs_recv_lock, flags);
169 if (!rs->rs_cong_monitor) {
170 /* When a congestion map was updated, we signal POLLIN for
171 * "historical" reasons. Applications can also poll for
172 * WRBAND instead. */
173 if (rds_cong_updated_since(&rs->rs_cong_track))
174 mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
175 } else {
176 spin_lock(&rs->rs_lock);
177 if (rs->rs_cong_notify)
178 mask |= (POLLIN | POLLRDNORM);
179 spin_unlock(&rs->rs_lock);
180 }
181 if (!list_empty(&rs->rs_recv_queue) ||
182 !list_empty(&rs->rs_notify_queue))
183 mask |= (POLLIN | POLLRDNORM);
184 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
185 mask |= (POLLOUT | POLLWRNORM);
186 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
187
188 /* clear state any time we wake a seen-congested socket */
189 if (mask)
190 rs->rs_seen_congestion = 0;
191
192 return mask;
193 }
194
rds_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)195 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
196 {
197 return -ENOIOCTLCMD;
198 }
199
rds_cancel_sent_to(struct rds_sock * rs,char __user * optval,int len)200 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
201 int len)
202 {
203 struct sockaddr_in sin;
204 int ret = 0;
205
206 /* racing with another thread binding seems ok here */
207 if (rs->rs_bound_addr == 0) {
208 ret = -ENOTCONN; /* XXX not a great errno */
209 goto out;
210 }
211
212 if (len < sizeof(struct sockaddr_in)) {
213 ret = -EINVAL;
214 goto out;
215 }
216
217 if (copy_from_user(&sin, optval, sizeof(sin))) {
218 ret = -EFAULT;
219 goto out;
220 }
221
222 rds_send_drop_to(rs, &sin);
223 out:
224 return ret;
225 }
226
rds_set_bool_option(unsigned char * optvar,char __user * optval,int optlen)227 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
228 int optlen)
229 {
230 int value;
231
232 if (optlen < sizeof(int))
233 return -EINVAL;
234 if (get_user(value, (int __user *) optval))
235 return -EFAULT;
236 *optvar = !!value;
237 return 0;
238 }
239
rds_cong_monitor(struct rds_sock * rs,char __user * optval,int optlen)240 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
241 int optlen)
242 {
243 int ret;
244
245 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
246 if (ret == 0) {
247 if (rs->rs_cong_monitor) {
248 rds_cong_add_socket(rs);
249 } else {
250 rds_cong_remove_socket(rs);
251 rs->rs_cong_mask = 0;
252 rs->rs_cong_notify = 0;
253 }
254 }
255 return ret;
256 }
257
rds_set_transport(struct rds_sock * rs,char __user * optval,int optlen)258 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
259 int optlen)
260 {
261 int t_type;
262
263 if (rs->rs_transport)
264 return -EOPNOTSUPP; /* previously attached to transport */
265
266 if (optlen != sizeof(int))
267 return -EINVAL;
268
269 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
270 return -EFAULT;
271
272 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
273 return -EINVAL;
274
275 rs->rs_transport = rds_trans_get(t_type);
276
277 return rs->rs_transport ? 0 : -ENOPROTOOPT;
278 }
279
rds_enable_recvtstamp(struct sock * sk,char __user * optval,int optlen)280 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
281 int optlen)
282 {
283 int val, valbool;
284
285 if (optlen != sizeof(int))
286 return -EFAULT;
287
288 if (get_user(val, (int __user *)optval))
289 return -EFAULT;
290
291 valbool = val ? 1 : 0;
292
293 if (valbool)
294 sock_set_flag(sk, SOCK_RCVTSTAMP);
295 else
296 sock_reset_flag(sk, SOCK_RCVTSTAMP);
297
298 return 0;
299 }
300
rds_recv_track_latency(struct rds_sock * rs,char __user * optval,int optlen)301 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
302 int optlen)
303 {
304 struct rds_rx_trace_so trace;
305 int i;
306
307 if (optlen != sizeof(struct rds_rx_trace_so))
308 return -EFAULT;
309
310 if (copy_from_user(&trace, optval, sizeof(trace)))
311 return -EFAULT;
312
313 if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
314 return -EFAULT;
315
316 rs->rs_rx_traces = trace.rx_traces;
317 for (i = 0; i < rs->rs_rx_traces; i++) {
318 if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
319 rs->rs_rx_traces = 0;
320 return -EFAULT;
321 }
322 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
323 }
324
325 return 0;
326 }
327
rds_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)328 static int rds_setsockopt(struct socket *sock, int level, int optname,
329 char __user *optval, unsigned int optlen)
330 {
331 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
332 int ret;
333
334 if (level != SOL_RDS) {
335 ret = -ENOPROTOOPT;
336 goto out;
337 }
338
339 switch (optname) {
340 case RDS_CANCEL_SENT_TO:
341 ret = rds_cancel_sent_to(rs, optval, optlen);
342 break;
343 case RDS_GET_MR:
344 ret = rds_get_mr(rs, optval, optlen);
345 break;
346 case RDS_GET_MR_FOR_DEST:
347 ret = rds_get_mr_for_dest(rs, optval, optlen);
348 break;
349 case RDS_FREE_MR:
350 ret = rds_free_mr(rs, optval, optlen);
351 break;
352 case RDS_RECVERR:
353 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
354 break;
355 case RDS_CONG_MONITOR:
356 ret = rds_cong_monitor(rs, optval, optlen);
357 break;
358 case SO_RDS_TRANSPORT:
359 lock_sock(sock->sk);
360 ret = rds_set_transport(rs, optval, optlen);
361 release_sock(sock->sk);
362 break;
363 case SO_TIMESTAMP:
364 lock_sock(sock->sk);
365 ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
366 release_sock(sock->sk);
367 break;
368 case SO_RDS_MSG_RXPATH_LATENCY:
369 ret = rds_recv_track_latency(rs, optval, optlen);
370 break;
371 default:
372 ret = -ENOPROTOOPT;
373 }
374 out:
375 return ret;
376 }
377
rds_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)378 static int rds_getsockopt(struct socket *sock, int level, int optname,
379 char __user *optval, int __user *optlen)
380 {
381 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
382 int ret = -ENOPROTOOPT, len;
383 int trans;
384
385 if (level != SOL_RDS)
386 goto out;
387
388 if (get_user(len, optlen)) {
389 ret = -EFAULT;
390 goto out;
391 }
392
393 switch (optname) {
394 case RDS_INFO_FIRST ... RDS_INFO_LAST:
395 ret = rds_info_getsockopt(sock, optname, optval,
396 optlen);
397 break;
398
399 case RDS_RECVERR:
400 if (len < sizeof(int))
401 ret = -EINVAL;
402 else
403 if (put_user(rs->rs_recverr, (int __user *) optval) ||
404 put_user(sizeof(int), optlen))
405 ret = -EFAULT;
406 else
407 ret = 0;
408 break;
409 case SO_RDS_TRANSPORT:
410 if (len < sizeof(int)) {
411 ret = -EINVAL;
412 break;
413 }
414 trans = (rs->rs_transport ? rs->rs_transport->t_type :
415 RDS_TRANS_NONE); /* unbound */
416 if (put_user(trans, (int __user *)optval) ||
417 put_user(sizeof(int), optlen))
418 ret = -EFAULT;
419 else
420 ret = 0;
421 break;
422 default:
423 break;
424 }
425
426 out:
427 return ret;
428
429 }
430
rds_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)431 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
432 int addr_len, int flags)
433 {
434 struct sock *sk = sock->sk;
435 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
436 struct rds_sock *rs = rds_sk_to_rs(sk);
437 int ret = 0;
438
439 lock_sock(sk);
440
441 if (addr_len != sizeof(struct sockaddr_in)) {
442 ret = -EINVAL;
443 goto out;
444 }
445
446 if (sin->sin_family != AF_INET) {
447 ret = -EAFNOSUPPORT;
448 goto out;
449 }
450
451 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
452 ret = -EDESTADDRREQ;
453 goto out;
454 }
455
456 rs->rs_conn_addr = sin->sin_addr.s_addr;
457 rs->rs_conn_port = sin->sin_port;
458
459 out:
460 release_sock(sk);
461 return ret;
462 }
463
464 static struct proto rds_proto = {
465 .name = "RDS",
466 .owner = THIS_MODULE,
467 .obj_size = sizeof(struct rds_sock),
468 };
469
470 static const struct proto_ops rds_proto_ops = {
471 .family = AF_RDS,
472 .owner = THIS_MODULE,
473 .release = rds_release,
474 .bind = rds_bind,
475 .connect = rds_connect,
476 .socketpair = sock_no_socketpair,
477 .accept = sock_no_accept,
478 .getname = rds_getname,
479 .poll = rds_poll,
480 .ioctl = rds_ioctl,
481 .listen = sock_no_listen,
482 .shutdown = sock_no_shutdown,
483 .setsockopt = rds_setsockopt,
484 .getsockopt = rds_getsockopt,
485 .sendmsg = rds_sendmsg,
486 .recvmsg = rds_recvmsg,
487 .mmap = sock_no_mmap,
488 .sendpage = sock_no_sendpage,
489 };
490
rds_sock_destruct(struct sock * sk)491 static void rds_sock_destruct(struct sock *sk)
492 {
493 struct rds_sock *rs = rds_sk_to_rs(sk);
494
495 WARN_ON((&rs->rs_item != rs->rs_item.next ||
496 &rs->rs_item != rs->rs_item.prev));
497 }
498
__rds_create(struct socket * sock,struct sock * sk,int protocol)499 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
500 {
501 struct rds_sock *rs;
502
503 sock_init_data(sock, sk);
504 sock->ops = &rds_proto_ops;
505 sk->sk_protocol = protocol;
506 sk->sk_destruct = rds_sock_destruct;
507
508 rs = rds_sk_to_rs(sk);
509 spin_lock_init(&rs->rs_lock);
510 rwlock_init(&rs->rs_recv_lock);
511 INIT_LIST_HEAD(&rs->rs_send_queue);
512 INIT_LIST_HEAD(&rs->rs_recv_queue);
513 INIT_LIST_HEAD(&rs->rs_notify_queue);
514 INIT_LIST_HEAD(&rs->rs_cong_list);
515 spin_lock_init(&rs->rs_rdma_lock);
516 rs->rs_rdma_keys = RB_ROOT;
517 rs->rs_rx_traces = 0;
518
519 spin_lock_bh(&rds_sock_lock);
520 list_add_tail(&rs->rs_item, &rds_sock_list);
521 rds_sock_count++;
522 spin_unlock_bh(&rds_sock_lock);
523
524 return 0;
525 }
526
rds_create(struct net * net,struct socket * sock,int protocol,int kern)527 static int rds_create(struct net *net, struct socket *sock, int protocol,
528 int kern)
529 {
530 struct sock *sk;
531
532 if (sock->type != SOCK_SEQPACKET || protocol)
533 return -ESOCKTNOSUPPORT;
534
535 sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
536 if (!sk)
537 return -ENOMEM;
538
539 return __rds_create(sock, sk, protocol);
540 }
541
rds_sock_addref(struct rds_sock * rs)542 void rds_sock_addref(struct rds_sock *rs)
543 {
544 sock_hold(rds_rs_to_sk(rs));
545 }
546
rds_sock_put(struct rds_sock * rs)547 void rds_sock_put(struct rds_sock *rs)
548 {
549 sock_put(rds_rs_to_sk(rs));
550 }
551
552 static const struct net_proto_family rds_family_ops = {
553 .family = AF_RDS,
554 .create = rds_create,
555 .owner = THIS_MODULE,
556 };
557
rds_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)558 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
559 struct rds_info_iterator *iter,
560 struct rds_info_lengths *lens)
561 {
562 struct rds_sock *rs;
563 struct rds_incoming *inc;
564 unsigned int total = 0;
565
566 len /= sizeof(struct rds_info_message);
567
568 spin_lock_bh(&rds_sock_lock);
569
570 list_for_each_entry(rs, &rds_sock_list, rs_item) {
571 read_lock(&rs->rs_recv_lock);
572
573 /* XXX too lazy to maintain counts.. */
574 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
575 total++;
576 if (total <= len)
577 rds_inc_info_copy(inc, iter, inc->i_saddr,
578 rs->rs_bound_addr, 1);
579 }
580
581 read_unlock(&rs->rs_recv_lock);
582 }
583
584 spin_unlock_bh(&rds_sock_lock);
585
586 lens->nr = total;
587 lens->each = sizeof(struct rds_info_message);
588 }
589
rds_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)590 static void rds_sock_info(struct socket *sock, unsigned int len,
591 struct rds_info_iterator *iter,
592 struct rds_info_lengths *lens)
593 {
594 struct rds_info_socket sinfo;
595 struct rds_sock *rs;
596
597 len /= sizeof(struct rds_info_socket);
598
599 spin_lock_bh(&rds_sock_lock);
600
601 if (len < rds_sock_count)
602 goto out;
603
604 list_for_each_entry(rs, &rds_sock_list, rs_item) {
605 sinfo.sndbuf = rds_sk_sndbuf(rs);
606 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
607 sinfo.bound_addr = rs->rs_bound_addr;
608 sinfo.connected_addr = rs->rs_conn_addr;
609 sinfo.bound_port = rs->rs_bound_port;
610 sinfo.connected_port = rs->rs_conn_port;
611 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
612
613 rds_info_copy(iter, &sinfo, sizeof(sinfo));
614 }
615
616 out:
617 lens->nr = rds_sock_count;
618 lens->each = sizeof(struct rds_info_socket);
619
620 spin_unlock_bh(&rds_sock_lock);
621 }
622
rds_exit(void)623 static void rds_exit(void)
624 {
625 sock_unregister(rds_family_ops.family);
626 proto_unregister(&rds_proto);
627 rds_conn_exit();
628 rds_cong_exit();
629 rds_sysctl_exit();
630 rds_threads_exit();
631 rds_stats_exit();
632 rds_page_exit();
633 rds_bind_lock_destroy();
634 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
635 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
636 }
637 module_exit(rds_exit);
638
639 u32 rds_gen_num;
640
rds_init(void)641 static int rds_init(void)
642 {
643 int ret;
644
645 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
646
647 ret = rds_bind_lock_init();
648 if (ret)
649 goto out;
650
651 ret = rds_conn_init();
652 if (ret)
653 goto out_bind;
654
655 ret = rds_threads_init();
656 if (ret)
657 goto out_conn;
658 ret = rds_sysctl_init();
659 if (ret)
660 goto out_threads;
661 ret = rds_stats_init();
662 if (ret)
663 goto out_sysctl;
664 ret = proto_register(&rds_proto, 1);
665 if (ret)
666 goto out_stats;
667 ret = sock_register(&rds_family_ops);
668 if (ret)
669 goto out_proto;
670
671 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
672 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
673
674 goto out;
675
676 out_proto:
677 proto_unregister(&rds_proto);
678 out_stats:
679 rds_stats_exit();
680 out_sysctl:
681 rds_sysctl_exit();
682 out_threads:
683 rds_threads_exit();
684 out_conn:
685 rds_conn_exit();
686 rds_cong_exit();
687 rds_page_exit();
688 out_bind:
689 rds_bind_lock_destroy();
690 out:
691 return ret;
692 }
693 module_init(rds_init);
694
695 #define DRV_VERSION "4.0"
696 #define DRV_RELDATE "Feb 12, 2009"
697
698 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
699 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
700 " v" DRV_VERSION " (" DRV_RELDATE ")");
701 MODULE_VERSION(DRV_VERSION);
702 MODULE_LICENSE("Dual BSD/GPL");
703 MODULE_ALIAS_NETPROTO(PF_RDS);
704