• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * net/sched/cls_u32.c	Ugly (or Universal) 32bit key Packet Classifier.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *
11  *	The filters are packed to hash tables of key nodes
12  *	with a set of 32bit key/mask pairs at every node.
13  *	Nodes reference next level hash tables etc.
14  *
15  *	This scheme is the best universal classifier I managed to
16  *	invent; it is not super-fast, but it is not slow (provided you
17  *	program it correctly), and general enough.  And its relative
18  *	speed grows as the number of rules becomes larger.
19  *
20  *	It seems that it represents the best middle point between
21  *	speed and manageability both by human and by machine.
22  *
23  *	It is especially useful for link sharing combined with QoS;
24  *	pure RSVP doesn't need such a general approach and can use
25  *	much simpler (and faster) schemes, sort of cls_rsvp.c.
26  *
27  *	JHS: We should remove the CONFIG_NET_CLS_IND from here
28  *	eventually when the meta match extension is made available
29  *
30  *	nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31  */
32 
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <linux/netdevice.h>
44 #include <linux/hash.h>
45 #include <net/netlink.h>
46 #include <net/act_api.h>
47 #include <net/pkt_cls.h>
48 #include <linux/netdevice.h>
49 
50 struct tc_u_knode {
51 	struct tc_u_knode __rcu	*next;
52 	u32			handle;
53 	struct tc_u_hnode __rcu	*ht_up;
54 	struct tcf_exts		exts;
55 #ifdef CONFIG_NET_CLS_IND
56 	int			ifindex;
57 #endif
58 	u8			fshift;
59 	struct tcf_result	res;
60 	struct tc_u_hnode __rcu	*ht_down;
61 #ifdef CONFIG_CLS_U32_PERF
62 	struct tc_u32_pcnt __percpu *pf;
63 #endif
64 	u32			flags;
65 #ifdef CONFIG_CLS_U32_MARK
66 	u32			val;
67 	u32			mask;
68 	u32 __percpu		*pcpu_success;
69 #endif
70 	struct tcf_proto	*tp;
71 	union {
72 		struct work_struct	work;
73 		struct rcu_head		rcu;
74 	};
75 	/* The 'sel' field MUST be the last field in structure to allow for
76 	 * tc_u32_keys allocated at end of structure.
77 	 */
78 	struct tc_u32_sel	sel;
79 };
80 
81 struct tc_u_hnode {
82 	struct tc_u_hnode __rcu	*next;
83 	u32			handle;
84 	u32			prio;
85 	struct tc_u_common	*tp_c;
86 	int			refcnt;
87 	unsigned int		divisor;
88 	struct rcu_head		rcu;
89 	/* The 'ht' field MUST be the last field in structure to allow for
90 	 * more entries allocated at end of structure.
91 	 */
92 	struct tc_u_knode __rcu	*ht[1];
93 };
94 
95 struct tc_u_common {
96 	struct tc_u_hnode __rcu	*hlist;
97 	struct Qdisc		*q;
98 	int			refcnt;
99 	u32			hgenerator;
100 	struct hlist_node	hnode;
101 	struct rcu_head		rcu;
102 };
103 
u32_hash_fold(__be32 key,const struct tc_u32_sel * sel,u8 fshift)104 static inline unsigned int u32_hash_fold(__be32 key,
105 					 const struct tc_u32_sel *sel,
106 					 u8 fshift)
107 {
108 	unsigned int h = ntohl(key & sel->hmask) >> fshift;
109 
110 	return h;
111 }
112 
u32_classify(struct sk_buff * skb,const struct tcf_proto * tp,struct tcf_result * res)113 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
114 			struct tcf_result *res)
115 {
116 	struct {
117 		struct tc_u_knode *knode;
118 		unsigned int	  off;
119 	} stack[TC_U32_MAXDEPTH];
120 
121 	struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
122 	unsigned int off = skb_network_offset(skb);
123 	struct tc_u_knode *n;
124 	int sdepth = 0;
125 	int off2 = 0;
126 	int sel = 0;
127 #ifdef CONFIG_CLS_U32_PERF
128 	int j;
129 #endif
130 	int i, r;
131 
132 next_ht:
133 	n = rcu_dereference_bh(ht->ht[sel]);
134 
135 next_knode:
136 	if (n) {
137 		struct tc_u32_key *key = n->sel.keys;
138 
139 #ifdef CONFIG_CLS_U32_PERF
140 		__this_cpu_inc(n->pf->rcnt);
141 		j = 0;
142 #endif
143 
144 		if (tc_skip_sw(n->flags)) {
145 			n = rcu_dereference_bh(n->next);
146 			goto next_knode;
147 		}
148 
149 #ifdef CONFIG_CLS_U32_MARK
150 		if ((skb->mark & n->mask) != n->val) {
151 			n = rcu_dereference_bh(n->next);
152 			goto next_knode;
153 		} else {
154 			__this_cpu_inc(*n->pcpu_success);
155 		}
156 #endif
157 
158 		for (i = n->sel.nkeys; i > 0; i--, key++) {
159 			int toff = off + key->off + (off2 & key->offmask);
160 			__be32 *data, hdata;
161 
162 			if (skb_headroom(skb) + toff > INT_MAX)
163 				goto out;
164 
165 			data = skb_header_pointer(skb, toff, 4, &hdata);
166 			if (!data)
167 				goto out;
168 			if ((*data ^ key->val) & key->mask) {
169 				n = rcu_dereference_bh(n->next);
170 				goto next_knode;
171 			}
172 #ifdef CONFIG_CLS_U32_PERF
173 			__this_cpu_inc(n->pf->kcnts[j]);
174 			j++;
175 #endif
176 		}
177 
178 		ht = rcu_dereference_bh(n->ht_down);
179 		if (!ht) {
180 check_terminal:
181 			if (n->sel.flags & TC_U32_TERMINAL) {
182 
183 				*res = n->res;
184 #ifdef CONFIG_NET_CLS_IND
185 				if (!tcf_match_indev(skb, n->ifindex)) {
186 					n = rcu_dereference_bh(n->next);
187 					goto next_knode;
188 				}
189 #endif
190 #ifdef CONFIG_CLS_U32_PERF
191 				__this_cpu_inc(n->pf->rhit);
192 #endif
193 				r = tcf_exts_exec(skb, &n->exts, res);
194 				if (r < 0) {
195 					n = rcu_dereference_bh(n->next);
196 					goto next_knode;
197 				}
198 
199 				return r;
200 			}
201 			n = rcu_dereference_bh(n->next);
202 			goto next_knode;
203 		}
204 
205 		/* PUSH */
206 		if (sdepth >= TC_U32_MAXDEPTH)
207 			goto deadloop;
208 		stack[sdepth].knode = n;
209 		stack[sdepth].off = off;
210 		sdepth++;
211 
212 		ht = rcu_dereference_bh(n->ht_down);
213 		sel = 0;
214 		if (ht->divisor) {
215 			__be32 *data, hdata;
216 
217 			data = skb_header_pointer(skb, off + n->sel.hoff, 4,
218 						  &hdata);
219 			if (!data)
220 				goto out;
221 			sel = ht->divisor & u32_hash_fold(*data, &n->sel,
222 							  n->fshift);
223 		}
224 		if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
225 			goto next_ht;
226 
227 		if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
228 			off2 = n->sel.off + 3;
229 			if (n->sel.flags & TC_U32_VAROFFSET) {
230 				__be16 *data, hdata;
231 
232 				data = skb_header_pointer(skb,
233 							  off + n->sel.offoff,
234 							  2, &hdata);
235 				if (!data)
236 					goto out;
237 				off2 += ntohs(n->sel.offmask & *data) >>
238 					n->sel.offshift;
239 			}
240 			off2 &= ~3;
241 		}
242 		if (n->sel.flags & TC_U32_EAT) {
243 			off += off2;
244 			off2 = 0;
245 		}
246 
247 		if (off < skb->len)
248 			goto next_ht;
249 	}
250 
251 	/* POP */
252 	if (sdepth--) {
253 		n = stack[sdepth].knode;
254 		ht = rcu_dereference_bh(n->ht_up);
255 		off = stack[sdepth].off;
256 		goto check_terminal;
257 	}
258 out:
259 	return -1;
260 
261 deadloop:
262 	net_warn_ratelimited("cls_u32: dead loop\n");
263 	return -1;
264 }
265 
u32_lookup_ht(struct tc_u_common * tp_c,u32 handle)266 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
267 {
268 	struct tc_u_hnode *ht;
269 
270 	for (ht = rtnl_dereference(tp_c->hlist);
271 	     ht;
272 	     ht = rtnl_dereference(ht->next))
273 		if (ht->handle == handle)
274 			break;
275 
276 	return ht;
277 }
278 
u32_lookup_key(struct tc_u_hnode * ht,u32 handle)279 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
280 {
281 	unsigned int sel;
282 	struct tc_u_knode *n = NULL;
283 
284 	sel = TC_U32_HASH(handle);
285 	if (sel > ht->divisor)
286 		goto out;
287 
288 	for (n = rtnl_dereference(ht->ht[sel]);
289 	     n;
290 	     n = rtnl_dereference(n->next))
291 		if (n->handle == handle)
292 			break;
293 out:
294 	return n;
295 }
296 
297 
u32_get(struct tcf_proto * tp,u32 handle)298 static void *u32_get(struct tcf_proto *tp, u32 handle)
299 {
300 	struct tc_u_hnode *ht;
301 	struct tc_u_common *tp_c = tp->data;
302 
303 	if (TC_U32_HTID(handle) == TC_U32_ROOT)
304 		ht = rtnl_dereference(tp->root);
305 	else
306 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
307 
308 	if (!ht)
309 		return NULL;
310 
311 	if (TC_U32_KEY(handle) == 0)
312 		return ht;
313 
314 	return u32_lookup_key(ht, handle);
315 }
316 
gen_new_htid(struct tc_u_common * tp_c)317 static u32 gen_new_htid(struct tc_u_common *tp_c)
318 {
319 	int i = 0x800;
320 
321 	/* hgenerator only used inside rtnl lock it is safe to increment
322 	 * without read _copy_ update semantics
323 	 */
324 	do {
325 		if (++tp_c->hgenerator == 0x7FF)
326 			tp_c->hgenerator = 1;
327 	} while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
328 
329 	return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
330 }
331 
332 static struct hlist_head *tc_u_common_hash;
333 
334 #define U32_HASH_SHIFT 10
335 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
336 
tc_u_hash(const struct tcf_proto * tp)337 static unsigned int tc_u_hash(const struct tcf_proto *tp)
338 {
339 	struct net_device *dev = tp->q->dev_queue->dev;
340 	u32 qhandle = tp->q->handle;
341 	int ifindex = dev->ifindex;
342 
343 	return hash_64((u64)ifindex << 32 | qhandle, U32_HASH_SHIFT);
344 }
345 
tc_u_common_find(const struct tcf_proto * tp)346 static struct tc_u_common *tc_u_common_find(const struct tcf_proto *tp)
347 {
348 	struct tc_u_common *tc;
349 	unsigned int h;
350 
351 	h = tc_u_hash(tp);
352 	hlist_for_each_entry(tc, &tc_u_common_hash[h], hnode) {
353 		if (tc->q == tp->q)
354 			return tc;
355 	}
356 	return NULL;
357 }
358 
u32_init(struct tcf_proto * tp)359 static int u32_init(struct tcf_proto *tp)
360 {
361 	struct tc_u_hnode *root_ht;
362 	struct tc_u_common *tp_c;
363 	unsigned int h;
364 
365 	tp_c = tc_u_common_find(tp);
366 
367 	root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
368 	if (root_ht == NULL)
369 		return -ENOBUFS;
370 
371 	root_ht->refcnt++;
372 	root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
373 	root_ht->prio = tp->prio;
374 
375 	if (tp_c == NULL) {
376 		tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
377 		if (tp_c == NULL) {
378 			kfree(root_ht);
379 			return -ENOBUFS;
380 		}
381 		tp_c->q = tp->q;
382 		INIT_HLIST_NODE(&tp_c->hnode);
383 
384 		h = tc_u_hash(tp);
385 		hlist_add_head(&tp_c->hnode, &tc_u_common_hash[h]);
386 	}
387 
388 	tp_c->refcnt++;
389 	RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
390 	rcu_assign_pointer(tp_c->hlist, root_ht);
391 	root_ht->tp_c = tp_c;
392 
393 	rcu_assign_pointer(tp->root, root_ht);
394 	tp->data = tp_c;
395 	return 0;
396 }
397 
u32_destroy_key(struct tcf_proto * tp,struct tc_u_knode * n,bool free_pf)398 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
399 			   bool free_pf)
400 {
401 	struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
402 
403 	tcf_exts_destroy(&n->exts);
404 	tcf_exts_put_net(&n->exts);
405 	if (ht && --ht->refcnt == 0)
406 		kfree(ht);
407 #ifdef CONFIG_CLS_U32_PERF
408 	if (free_pf)
409 		free_percpu(n->pf);
410 #endif
411 #ifdef CONFIG_CLS_U32_MARK
412 	if (free_pf)
413 		free_percpu(n->pcpu_success);
414 #endif
415 	kfree(n);
416 	return 0;
417 }
418 
419 /* u32_delete_key_rcu should be called when free'ing a copied
420  * version of a tc_u_knode obtained from u32_init_knode(). When
421  * copies are obtained from u32_init_knode() the statistics are
422  * shared between the old and new copies to allow readers to
423  * continue to update the statistics during the copy. To support
424  * this the u32_delete_key_rcu variant does not free the percpu
425  * statistics.
426  */
u32_delete_key_work(struct work_struct * work)427 static void u32_delete_key_work(struct work_struct *work)
428 {
429 	struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
430 
431 	rtnl_lock();
432 	u32_destroy_key(key->tp, key, false);
433 	rtnl_unlock();
434 }
435 
u32_delete_key_rcu(struct rcu_head * rcu)436 static void u32_delete_key_rcu(struct rcu_head *rcu)
437 {
438 	struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
439 
440 	INIT_WORK(&key->work, u32_delete_key_work);
441 	tcf_queue_work(&key->work);
442 }
443 
444 /* u32_delete_key_freepf_rcu is the rcu callback variant
445  * that free's the entire structure including the statistics
446  * percpu variables. Only use this if the key is not a copy
447  * returned by u32_init_knode(). See u32_delete_key_rcu()
448  * for the variant that should be used with keys return from
449  * u32_init_knode()
450  */
u32_delete_key_freepf_work(struct work_struct * work)451 static void u32_delete_key_freepf_work(struct work_struct *work)
452 {
453 	struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
454 
455 	rtnl_lock();
456 	u32_destroy_key(key->tp, key, true);
457 	rtnl_unlock();
458 }
459 
u32_delete_key_freepf_rcu(struct rcu_head * rcu)460 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
461 {
462 	struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
463 
464 	INIT_WORK(&key->work, u32_delete_key_freepf_work);
465 	tcf_queue_work(&key->work);
466 }
467 
u32_delete_key(struct tcf_proto * tp,struct tc_u_knode * key)468 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
469 {
470 	struct tc_u_knode __rcu **kp;
471 	struct tc_u_knode *pkp;
472 	struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
473 
474 	if (ht) {
475 		kp = &ht->ht[TC_U32_HASH(key->handle)];
476 		for (pkp = rtnl_dereference(*kp); pkp;
477 		     kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
478 			if (pkp == key) {
479 				RCU_INIT_POINTER(*kp, key->next);
480 
481 				tcf_unbind_filter(tp, &key->res);
482 				tcf_exts_get_net(&key->exts);
483 				call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
484 				return 0;
485 			}
486 		}
487 	}
488 	WARN_ON(1);
489 	return 0;
490 }
491 
u32_remove_hw_knode(struct tcf_proto * tp,u32 handle)492 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
493 {
494 	struct net_device *dev = tp->q->dev_queue->dev;
495 	struct tc_cls_u32_offload cls_u32 = {};
496 
497 	if (!tc_should_offload(dev, 0))
498 		return;
499 
500 	tc_cls_common_offload_init(&cls_u32.common, tp);
501 	cls_u32.command = TC_CLSU32_DELETE_KNODE;
502 	cls_u32.knode.handle = handle;
503 
504 	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
505 }
506 
u32_replace_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,u32 flags)507 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
508 				u32 flags)
509 {
510 	struct net_device *dev = tp->q->dev_queue->dev;
511 	struct tc_cls_u32_offload cls_u32 = {};
512 	int err;
513 
514 	if (!tc_should_offload(dev, flags))
515 		return tc_skip_sw(flags) ? -EINVAL : 0;
516 
517 	tc_cls_common_offload_init(&cls_u32.common, tp);
518 	cls_u32.command = TC_CLSU32_NEW_HNODE;
519 	cls_u32.hnode.divisor = h->divisor;
520 	cls_u32.hnode.handle = h->handle;
521 	cls_u32.hnode.prio = h->prio;
522 
523 	err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
524 	if (tc_skip_sw(flags))
525 		return err;
526 
527 	return 0;
528 }
529 
u32_clear_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h)530 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
531 {
532 	struct net_device *dev = tp->q->dev_queue->dev;
533 	struct tc_cls_u32_offload cls_u32 = {};
534 
535 	if (!tc_should_offload(dev, 0))
536 		return;
537 
538 	tc_cls_common_offload_init(&cls_u32.common, tp);
539 	cls_u32.command = TC_CLSU32_DELETE_HNODE;
540 	cls_u32.hnode.divisor = h->divisor;
541 	cls_u32.hnode.handle = h->handle;
542 	cls_u32.hnode.prio = h->prio;
543 
544 	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
545 }
546 
u32_replace_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,u32 flags)547 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
548 				u32 flags)
549 {
550 	struct net_device *dev = tp->q->dev_queue->dev;
551 	struct tc_cls_u32_offload cls_u32 = {};
552 	int err;
553 
554 	if (!tc_should_offload(dev, flags))
555 		return tc_skip_sw(flags) ? -EINVAL : 0;
556 
557 	tc_cls_common_offload_init(&cls_u32.common, tp);
558 	cls_u32.command = TC_CLSU32_REPLACE_KNODE;
559 	cls_u32.knode.handle = n->handle;
560 	cls_u32.knode.fshift = n->fshift;
561 #ifdef CONFIG_CLS_U32_MARK
562 	cls_u32.knode.val = n->val;
563 	cls_u32.knode.mask = n->mask;
564 #else
565 	cls_u32.knode.val = 0;
566 	cls_u32.knode.mask = 0;
567 #endif
568 	cls_u32.knode.sel = &n->sel;
569 	cls_u32.knode.exts = &n->exts;
570 	if (n->ht_down)
571 		cls_u32.knode.link_handle = n->ht_down->handle;
572 
573 	err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSU32, &cls_u32);
574 
575 	if (!err)
576 		n->flags |= TCA_CLS_FLAGS_IN_HW;
577 
578 	if (tc_skip_sw(flags))
579 		return err;
580 
581 	return 0;
582 }
583 
u32_clear_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht)584 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
585 {
586 	struct tc_u_knode *n;
587 	unsigned int h;
588 
589 	for (h = 0; h <= ht->divisor; h++) {
590 		while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
591 			RCU_INIT_POINTER(ht->ht[h],
592 					 rtnl_dereference(n->next));
593 			tcf_unbind_filter(tp, &n->res);
594 			u32_remove_hw_knode(tp, n->handle);
595 			if (tcf_exts_get_net(&n->exts))
596 				call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
597 			else
598 				u32_destroy_key(n->tp, n, true);
599 		}
600 	}
601 }
602 
u32_destroy_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht)603 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
604 {
605 	struct tc_u_common *tp_c = tp->data;
606 	struct tc_u_hnode __rcu **hn;
607 	struct tc_u_hnode *phn;
608 
609 	WARN_ON(ht->refcnt);
610 
611 	u32_clear_hnode(tp, ht);
612 
613 	hn = &tp_c->hlist;
614 	for (phn = rtnl_dereference(*hn);
615 	     phn;
616 	     hn = &phn->next, phn = rtnl_dereference(*hn)) {
617 		if (phn == ht) {
618 			u32_clear_hw_hnode(tp, ht);
619 			RCU_INIT_POINTER(*hn, ht->next);
620 			kfree_rcu(ht, rcu);
621 			return 0;
622 		}
623 	}
624 
625 	return -ENOENT;
626 }
627 
ht_empty(struct tc_u_hnode * ht)628 static bool ht_empty(struct tc_u_hnode *ht)
629 {
630 	unsigned int h;
631 
632 	for (h = 0; h <= ht->divisor; h++)
633 		if (rcu_access_pointer(ht->ht[h]))
634 			return false;
635 
636 	return true;
637 }
638 
u32_destroy(struct tcf_proto * tp)639 static void u32_destroy(struct tcf_proto *tp)
640 {
641 	struct tc_u_common *tp_c = tp->data;
642 	struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
643 
644 	WARN_ON(root_ht == NULL);
645 
646 	if (root_ht && --root_ht->refcnt == 0)
647 		u32_destroy_hnode(tp, root_ht);
648 
649 	if (--tp_c->refcnt == 0) {
650 		struct tc_u_hnode *ht;
651 
652 		hlist_del(&tp_c->hnode);
653 
654 		while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
655 			u32_clear_hnode(tp, ht);
656 			RCU_INIT_POINTER(tp_c->hlist, ht->next);
657 
658 			/* u32_destroy_key() will later free ht for us, if it's
659 			 * still referenced by some knode
660 			 */
661 			if (--ht->refcnt == 0)
662 				kfree_rcu(ht, rcu);
663 		}
664 
665 		kfree(tp_c);
666 	}
667 
668 	tp->data = NULL;
669 }
670 
u32_delete(struct tcf_proto * tp,void * arg,bool * last)671 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last)
672 {
673 	struct tc_u_hnode *ht = arg;
674 	struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
675 	struct tc_u_common *tp_c = tp->data;
676 	int ret = 0;
677 
678 	if (ht == NULL)
679 		goto out;
680 
681 	if (TC_U32_KEY(ht->handle)) {
682 		u32_remove_hw_knode(tp, ht->handle);
683 		ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
684 		goto out;
685 	}
686 
687 	if (root_ht == ht)
688 		return -EINVAL;
689 
690 	if (ht->refcnt == 1) {
691 		ht->refcnt--;
692 		u32_destroy_hnode(tp, ht);
693 	} else {
694 		return -EBUSY;
695 	}
696 
697 out:
698 	*last = true;
699 	if (root_ht) {
700 		if (root_ht->refcnt > 1) {
701 			*last = false;
702 			goto ret;
703 		}
704 		if (root_ht->refcnt == 1) {
705 			if (!ht_empty(root_ht)) {
706 				*last = false;
707 				goto ret;
708 			}
709 		}
710 	}
711 
712 	if (tp_c->refcnt > 1) {
713 		*last = false;
714 		goto ret;
715 	}
716 
717 	if (tp_c->refcnt == 1) {
718 		struct tc_u_hnode *ht;
719 
720 		for (ht = rtnl_dereference(tp_c->hlist);
721 		     ht;
722 		     ht = rtnl_dereference(ht->next))
723 			if (!ht_empty(ht)) {
724 				*last = false;
725 				break;
726 			}
727 	}
728 
729 ret:
730 	return ret;
731 }
732 
733 #define NR_U32_NODE (1<<12)
gen_new_kid(struct tc_u_hnode * ht,u32 handle)734 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
735 {
736 	struct tc_u_knode *n;
737 	unsigned long i;
738 	unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
739 					GFP_KERNEL);
740 	if (!bitmap)
741 		return handle | 0xFFF;
742 
743 	for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
744 	     n;
745 	     n = rtnl_dereference(n->next))
746 		set_bit(TC_U32_NODE(n->handle), bitmap);
747 
748 	i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
749 	if (i >= NR_U32_NODE)
750 		i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
751 
752 	kfree(bitmap);
753 	return handle | (i >= NR_U32_NODE ? 0xFFF : i);
754 }
755 
756 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
757 	[TCA_U32_CLASSID]	= { .type = NLA_U32 },
758 	[TCA_U32_HASH]		= { .type = NLA_U32 },
759 	[TCA_U32_LINK]		= { .type = NLA_U32 },
760 	[TCA_U32_DIVISOR]	= { .type = NLA_U32 },
761 	[TCA_U32_SEL]		= { .len = sizeof(struct tc_u32_sel) },
762 	[TCA_U32_INDEV]		= { .type = NLA_STRING, .len = IFNAMSIZ },
763 	[TCA_U32_MARK]		= { .len = sizeof(struct tc_u32_mark) },
764 	[TCA_U32_FLAGS]		= { .type = NLA_U32 },
765 };
766 
u32_set_parms(struct net * net,struct tcf_proto * tp,unsigned long base,struct tc_u_hnode * ht,struct tc_u_knode * n,struct nlattr ** tb,struct nlattr * est,bool ovr)767 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
768 			 unsigned long base, struct tc_u_hnode *ht,
769 			 struct tc_u_knode *n, struct nlattr **tb,
770 			 struct nlattr *est, bool ovr)
771 {
772 	int err;
773 
774 	err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr);
775 	if (err < 0)
776 		return err;
777 
778 	if (tb[TCA_U32_LINK]) {
779 		u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
780 		struct tc_u_hnode *ht_down = NULL, *ht_old;
781 
782 		if (TC_U32_KEY(handle))
783 			return -EINVAL;
784 
785 		if (handle) {
786 			ht_down = u32_lookup_ht(ht->tp_c, handle);
787 
788 			if (ht_down == NULL)
789 				return -EINVAL;
790 			ht_down->refcnt++;
791 		}
792 
793 		ht_old = rtnl_dereference(n->ht_down);
794 		rcu_assign_pointer(n->ht_down, ht_down);
795 
796 		if (ht_old)
797 			ht_old->refcnt--;
798 	}
799 	if (tb[TCA_U32_CLASSID]) {
800 		n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
801 		tcf_bind_filter(tp, &n->res, base);
802 	}
803 
804 #ifdef CONFIG_NET_CLS_IND
805 	if (tb[TCA_U32_INDEV]) {
806 		int ret;
807 		ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
808 		if (ret < 0)
809 			return -EINVAL;
810 		n->ifindex = ret;
811 	}
812 #endif
813 	return 0;
814 }
815 
u32_replace_knode(struct tcf_proto * tp,struct tc_u_common * tp_c,struct tc_u_knode * n)816 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
817 			      struct tc_u_knode *n)
818 {
819 	struct tc_u_knode __rcu **ins;
820 	struct tc_u_knode *pins;
821 	struct tc_u_hnode *ht;
822 
823 	if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
824 		ht = rtnl_dereference(tp->root);
825 	else
826 		ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
827 
828 	ins = &ht->ht[TC_U32_HASH(n->handle)];
829 
830 	/* The node must always exist for it to be replaced if this is not the
831 	 * case then something went very wrong elsewhere.
832 	 */
833 	for (pins = rtnl_dereference(*ins); ;
834 	     ins = &pins->next, pins = rtnl_dereference(*ins))
835 		if (pins->handle == n->handle)
836 			break;
837 
838 	RCU_INIT_POINTER(n->next, pins->next);
839 	rcu_assign_pointer(*ins, n);
840 }
841 
u32_init_knode(struct tcf_proto * tp,struct tc_u_knode * n)842 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
843 					 struct tc_u_knode *n)
844 {
845 	struct tc_u_knode *new;
846 	struct tc_u32_sel *s = &n->sel;
847 
848 	new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
849 		      GFP_KERNEL);
850 
851 	if (!new)
852 		return NULL;
853 
854 	RCU_INIT_POINTER(new->next, n->next);
855 	new->handle = n->handle;
856 	RCU_INIT_POINTER(new->ht_up, n->ht_up);
857 
858 #ifdef CONFIG_NET_CLS_IND
859 	new->ifindex = n->ifindex;
860 #endif
861 	new->fshift = n->fshift;
862 	new->res = n->res;
863 	new->flags = n->flags;
864 	RCU_INIT_POINTER(new->ht_down, n->ht_down);
865 
866 	/* bump reference count as long as we hold pointer to structure */
867 	if (new->ht_down)
868 		new->ht_down->refcnt++;
869 
870 #ifdef CONFIG_CLS_U32_PERF
871 	/* Statistics may be incremented by readers during update
872 	 * so we must keep them in tact. When the node is later destroyed
873 	 * a special destroy call must be made to not free the pf memory.
874 	 */
875 	new->pf = n->pf;
876 #endif
877 
878 #ifdef CONFIG_CLS_U32_MARK
879 	new->val = n->val;
880 	new->mask = n->mask;
881 	/* Similarly success statistics must be moved as pointers */
882 	new->pcpu_success = n->pcpu_success;
883 #endif
884 	new->tp = tp;
885 	memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
886 
887 	if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
888 		kfree(new);
889 		return NULL;
890 	}
891 
892 	return new;
893 }
894 
u32_change(struct net * net,struct sk_buff * in_skb,struct tcf_proto * tp,unsigned long base,u32 handle,struct nlattr ** tca,void ** arg,bool ovr)895 static int u32_change(struct net *net, struct sk_buff *in_skb,
896 		      struct tcf_proto *tp, unsigned long base, u32 handle,
897 		      struct nlattr **tca, void **arg, bool ovr)
898 {
899 	struct tc_u_common *tp_c = tp->data;
900 	struct tc_u_hnode *ht;
901 	struct tc_u_knode *n;
902 	struct tc_u32_sel *s;
903 	struct nlattr *opt = tca[TCA_OPTIONS];
904 	struct nlattr *tb[TCA_U32_MAX + 1];
905 	u32 htid, flags = 0;
906 	size_t sel_size;
907 	int err;
908 #ifdef CONFIG_CLS_U32_PERF
909 	size_t size;
910 #endif
911 
912 	if (opt == NULL)
913 		return handle ? -EINVAL : 0;
914 
915 	err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL);
916 	if (err < 0)
917 		return err;
918 
919 	if (tb[TCA_U32_FLAGS]) {
920 		flags = nla_get_u32(tb[TCA_U32_FLAGS]);
921 		if (!tc_flags_valid(flags))
922 			return -EINVAL;
923 	}
924 
925 	n = *arg;
926 	if (n) {
927 		struct tc_u_knode *new;
928 
929 		if (TC_U32_KEY(n->handle) == 0)
930 			return -EINVAL;
931 
932 		if ((n->flags ^ flags) &
933 		    ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW))
934 			return -EINVAL;
935 
936 		new = u32_init_knode(tp, n);
937 		if (!new)
938 			return -ENOMEM;
939 
940 		err = u32_set_parms(net, tp, base,
941 				    rtnl_dereference(n->ht_up), new, tb,
942 				    tca[TCA_RATE], ovr);
943 
944 		if (err) {
945 			u32_destroy_key(tp, new, false);
946 			return err;
947 		}
948 
949 		err = u32_replace_hw_knode(tp, new, flags);
950 		if (err) {
951 			u32_destroy_key(tp, new, false);
952 			return err;
953 		}
954 
955 		if (!tc_in_hw(new->flags))
956 			new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
957 
958 		u32_replace_knode(tp, tp_c, new);
959 		tcf_unbind_filter(tp, &n->res);
960 		tcf_exts_get_net(&n->exts);
961 		call_rcu(&n->rcu, u32_delete_key_rcu);
962 		return 0;
963 	}
964 
965 	if (tb[TCA_U32_DIVISOR]) {
966 		unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
967 
968 		if (--divisor > 0x100)
969 			return -EINVAL;
970 		if (TC_U32_KEY(handle))
971 			return -EINVAL;
972 		if (handle == 0) {
973 			handle = gen_new_htid(tp->data);
974 			if (handle == 0)
975 				return -ENOMEM;
976 		}
977 		ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
978 		if (ht == NULL)
979 			return -ENOBUFS;
980 		ht->tp_c = tp_c;
981 		ht->refcnt = 1;
982 		ht->divisor = divisor;
983 		ht->handle = handle;
984 		ht->prio = tp->prio;
985 
986 		err = u32_replace_hw_hnode(tp, ht, flags);
987 		if (err) {
988 			kfree(ht);
989 			return err;
990 		}
991 
992 		RCU_INIT_POINTER(ht->next, tp_c->hlist);
993 		rcu_assign_pointer(tp_c->hlist, ht);
994 		*arg = ht;
995 
996 		return 0;
997 	}
998 
999 	if (tb[TCA_U32_HASH]) {
1000 		htid = nla_get_u32(tb[TCA_U32_HASH]);
1001 		if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1002 			ht = rtnl_dereference(tp->root);
1003 			htid = ht->handle;
1004 		} else {
1005 			ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
1006 			if (ht == NULL)
1007 				return -EINVAL;
1008 		}
1009 	} else {
1010 		ht = rtnl_dereference(tp->root);
1011 		htid = ht->handle;
1012 	}
1013 
1014 	if (ht->divisor < TC_U32_HASH(htid))
1015 		return -EINVAL;
1016 
1017 	if (handle) {
1018 		if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
1019 			return -EINVAL;
1020 		handle = htid | TC_U32_NODE(handle);
1021 	} else
1022 		handle = gen_new_kid(ht, htid);
1023 
1024 	if (tb[TCA_U32_SEL] == NULL)
1025 		return -EINVAL;
1026 
1027 	s = nla_data(tb[TCA_U32_SEL]);
1028 	sel_size = sizeof(*s) + sizeof(*s->keys) * s->nkeys;
1029 	if (nla_len(tb[TCA_U32_SEL]) < sel_size)
1030 		return -EINVAL;
1031 
1032 	n = kzalloc(offsetof(typeof(*n), sel) + sel_size, GFP_KERNEL);
1033 	if (n == NULL)
1034 		return -ENOBUFS;
1035 
1036 #ifdef CONFIG_CLS_U32_PERF
1037 	size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
1038 	n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
1039 	if (!n->pf) {
1040 		kfree(n);
1041 		return -ENOBUFS;
1042 	}
1043 #endif
1044 
1045 	memcpy(&n->sel, s, sel_size);
1046 	RCU_INIT_POINTER(n->ht_up, ht);
1047 	n->handle = handle;
1048 	n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1049 	n->flags = flags;
1050 	n->tp = tp;
1051 
1052 	err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
1053 	if (err < 0)
1054 		goto errout;
1055 
1056 #ifdef CONFIG_CLS_U32_MARK
1057 	n->pcpu_success = alloc_percpu(u32);
1058 	if (!n->pcpu_success) {
1059 		err = -ENOMEM;
1060 		goto errout;
1061 	}
1062 
1063 	if (tb[TCA_U32_MARK]) {
1064 		struct tc_u32_mark *mark;
1065 
1066 		mark = nla_data(tb[TCA_U32_MARK]);
1067 		n->val = mark->val;
1068 		n->mask = mark->mask;
1069 	}
1070 #endif
1071 
1072 	err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1073 	if (err == 0) {
1074 		struct tc_u_knode __rcu **ins;
1075 		struct tc_u_knode *pins;
1076 
1077 		err = u32_replace_hw_knode(tp, n, flags);
1078 		if (err)
1079 			goto errhw;
1080 
1081 		if (!tc_in_hw(n->flags))
1082 			n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1083 
1084 		ins = &ht->ht[TC_U32_HASH(handle)];
1085 		for (pins = rtnl_dereference(*ins); pins;
1086 		     ins = &pins->next, pins = rtnl_dereference(*ins))
1087 			if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1088 				break;
1089 
1090 		RCU_INIT_POINTER(n->next, pins);
1091 		rcu_assign_pointer(*ins, n);
1092 		*arg = n;
1093 		return 0;
1094 	}
1095 
1096 errhw:
1097 #ifdef CONFIG_CLS_U32_MARK
1098 	free_percpu(n->pcpu_success);
1099 #endif
1100 
1101 errout:
1102 	tcf_exts_destroy(&n->exts);
1103 #ifdef CONFIG_CLS_U32_PERF
1104 	free_percpu(n->pf);
1105 #endif
1106 	kfree(n);
1107 	return err;
1108 }
1109 
u32_walk(struct tcf_proto * tp,struct tcf_walker * arg)1110 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1111 {
1112 	struct tc_u_common *tp_c = tp->data;
1113 	struct tc_u_hnode *ht;
1114 	struct tc_u_knode *n;
1115 	unsigned int h;
1116 
1117 	if (arg->stop)
1118 		return;
1119 
1120 	for (ht = rtnl_dereference(tp_c->hlist);
1121 	     ht;
1122 	     ht = rtnl_dereference(ht->next)) {
1123 		if (ht->prio != tp->prio)
1124 			continue;
1125 		if (arg->count >= arg->skip) {
1126 			if (arg->fn(tp, ht, arg) < 0) {
1127 				arg->stop = 1;
1128 				return;
1129 			}
1130 		}
1131 		arg->count++;
1132 		for (h = 0; h <= ht->divisor; h++) {
1133 			for (n = rtnl_dereference(ht->ht[h]);
1134 			     n;
1135 			     n = rtnl_dereference(n->next)) {
1136 				if (arg->count < arg->skip) {
1137 					arg->count++;
1138 					continue;
1139 				}
1140 				if (arg->fn(tp, n, arg) < 0) {
1141 					arg->stop = 1;
1142 					return;
1143 				}
1144 				arg->count++;
1145 			}
1146 		}
1147 	}
1148 }
1149 
u32_bind_class(void * fh,u32 classid,unsigned long cl)1150 static void u32_bind_class(void *fh, u32 classid, unsigned long cl)
1151 {
1152 	struct tc_u_knode *n = fh;
1153 
1154 	if (n && n->res.classid == classid)
1155 		n->res.class = cl;
1156 }
1157 
u32_dump(struct net * net,struct tcf_proto * tp,void * fh,struct sk_buff * skb,struct tcmsg * t)1158 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1159 		    struct sk_buff *skb, struct tcmsg *t)
1160 {
1161 	struct tc_u_knode *n = fh;
1162 	struct tc_u_hnode *ht_up, *ht_down;
1163 	struct nlattr *nest;
1164 
1165 	if (n == NULL)
1166 		return skb->len;
1167 
1168 	t->tcm_handle = n->handle;
1169 
1170 	nest = nla_nest_start(skb, TCA_OPTIONS);
1171 	if (nest == NULL)
1172 		goto nla_put_failure;
1173 
1174 	if (TC_U32_KEY(n->handle) == 0) {
1175 		struct tc_u_hnode *ht = fh;
1176 		u32 divisor = ht->divisor + 1;
1177 
1178 		if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1179 			goto nla_put_failure;
1180 	} else {
1181 #ifdef CONFIG_CLS_U32_PERF
1182 		struct tc_u32_pcnt *gpf;
1183 		int cpu;
1184 #endif
1185 
1186 		if (nla_put(skb, TCA_U32_SEL,
1187 			    sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1188 			    &n->sel))
1189 			goto nla_put_failure;
1190 
1191 		ht_up = rtnl_dereference(n->ht_up);
1192 		if (ht_up) {
1193 			u32 htid = n->handle & 0xFFFFF000;
1194 			if (nla_put_u32(skb, TCA_U32_HASH, htid))
1195 				goto nla_put_failure;
1196 		}
1197 		if (n->res.classid &&
1198 		    nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1199 			goto nla_put_failure;
1200 
1201 		ht_down = rtnl_dereference(n->ht_down);
1202 		if (ht_down &&
1203 		    nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1204 			goto nla_put_failure;
1205 
1206 		if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1207 			goto nla_put_failure;
1208 
1209 #ifdef CONFIG_CLS_U32_MARK
1210 		if ((n->val || n->mask)) {
1211 			struct tc_u32_mark mark = {.val = n->val,
1212 						   .mask = n->mask,
1213 						   .success = 0};
1214 			int cpum;
1215 
1216 			for_each_possible_cpu(cpum) {
1217 				__u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1218 
1219 				mark.success += cnt;
1220 			}
1221 
1222 			if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1223 				goto nla_put_failure;
1224 		}
1225 #endif
1226 
1227 		if (tcf_exts_dump(skb, &n->exts) < 0)
1228 			goto nla_put_failure;
1229 
1230 #ifdef CONFIG_NET_CLS_IND
1231 		if (n->ifindex) {
1232 			struct net_device *dev;
1233 			dev = __dev_get_by_index(net, n->ifindex);
1234 			if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1235 				goto nla_put_failure;
1236 		}
1237 #endif
1238 #ifdef CONFIG_CLS_U32_PERF
1239 		gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1240 			      n->sel.nkeys * sizeof(u64),
1241 			      GFP_KERNEL);
1242 		if (!gpf)
1243 			goto nla_put_failure;
1244 
1245 		for_each_possible_cpu(cpu) {
1246 			int i;
1247 			struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1248 
1249 			gpf->rcnt += pf->rcnt;
1250 			gpf->rhit += pf->rhit;
1251 			for (i = 0; i < n->sel.nkeys; i++)
1252 				gpf->kcnts[i] += pf->kcnts[i];
1253 		}
1254 
1255 		if (nla_put_64bit(skb, TCA_U32_PCNT,
1256 				  sizeof(struct tc_u32_pcnt) +
1257 				  n->sel.nkeys * sizeof(u64),
1258 				  gpf, TCA_U32_PAD)) {
1259 			kfree(gpf);
1260 			goto nla_put_failure;
1261 		}
1262 		kfree(gpf);
1263 #endif
1264 	}
1265 
1266 	nla_nest_end(skb, nest);
1267 
1268 	if (TC_U32_KEY(n->handle))
1269 		if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1270 			goto nla_put_failure;
1271 	return skb->len;
1272 
1273 nla_put_failure:
1274 	nla_nest_cancel(skb, nest);
1275 	return -1;
1276 }
1277 
1278 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1279 	.kind		=	"u32",
1280 	.classify	=	u32_classify,
1281 	.init		=	u32_init,
1282 	.destroy	=	u32_destroy,
1283 	.get		=	u32_get,
1284 	.change		=	u32_change,
1285 	.delete		=	u32_delete,
1286 	.walk		=	u32_walk,
1287 	.dump		=	u32_dump,
1288 	.bind_class	=	u32_bind_class,
1289 	.owner		=	THIS_MODULE,
1290 };
1291 
init_u32(void)1292 static int __init init_u32(void)
1293 {
1294 	int i, ret;
1295 
1296 	pr_info("u32 classifier\n");
1297 #ifdef CONFIG_CLS_U32_PERF
1298 	pr_info("    Performance counters on\n");
1299 #endif
1300 #ifdef CONFIG_NET_CLS_IND
1301 	pr_info("    input device check on\n");
1302 #endif
1303 #ifdef CONFIG_NET_CLS_ACT
1304 	pr_info("    Actions configured\n");
1305 #endif
1306 	tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1307 					  sizeof(struct hlist_head),
1308 					  GFP_KERNEL);
1309 	if (!tc_u_common_hash)
1310 		return -ENOMEM;
1311 
1312 	for (i = 0; i < U32_HASH_SIZE; i++)
1313 		INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1314 
1315 	ret = register_tcf_proto_ops(&cls_u32_ops);
1316 	if (ret)
1317 		kvfree(tc_u_common_hash);
1318 	return ret;
1319 }
1320 
exit_u32(void)1321 static void __exit exit_u32(void)
1322 {
1323 	unregister_tcf_proto_ops(&cls_u32_ops);
1324 	kvfree(tc_u_common_hash);
1325 }
1326 
1327 module_init(init_u32)
1328 module_exit(exit_u32)
1329 MODULE_LICENSE("GPL");
1330