• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38 
39 #include "vmci_transport_notify.h"
40 
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44 					  const struct vmci_event_data *ed,
45 					  void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49 				      struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51 					struct sock *sk,
52 					struct sock *pending,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55 					struct sock *sk,
56 					struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58 					struct sock *sk,
59 					struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61 					struct sock *sk,
62 					struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64 					 struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68 						  bool old_pkt_proto);
69 
70 struct vmci_transport_recv_pkt_info {
71 	struct work_struct work;
72 	struct sock *sk;
73 	struct vmci_transport_packet pkt;
74 };
75 
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79 
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81 							   VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83 
84 static int PROTOCOL_OVERRIDE = -1;
85 
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
89 
90 /* The default peer timeout indicates how long we will wait for a peer response
91  * to a control message.
92  */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94 
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96 
vmci_transport_error_to_vsock_error(s32 vmci_error)97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 	switch (vmci_error) {
100 	case VMCI_ERROR_NO_MEM:
101 		return -ENOMEM;
102 	case VMCI_ERROR_DUPLICATE_ENTRY:
103 	case VMCI_ERROR_ALREADY_EXISTS:
104 		return -EADDRINUSE;
105 	case VMCI_ERROR_NO_ACCESS:
106 		return -EPERM;
107 	case VMCI_ERROR_NO_RESOURCES:
108 		return -ENOBUFS;
109 	case VMCI_ERROR_INVALID_RESOURCE:
110 		return -EHOSTUNREACH;
111 	case VMCI_ERROR_INVALID_ARGS:
112 	default:
113 		break;
114 	}
115 	return -EINVAL;
116 }
117 
vmci_transport_peer_rid(u32 peer_cid)118 static u32 vmci_transport_peer_rid(u32 peer_cid)
119 {
120 	if (VMADDR_CID_HYPERVISOR == peer_cid)
121 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
122 
123 	return VMCI_TRANSPORT_PACKET_RID;
124 }
125 
126 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)127 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
128 			   struct sockaddr_vm *src,
129 			   struct sockaddr_vm *dst,
130 			   u8 type,
131 			   u64 size,
132 			   u64 mode,
133 			   struct vmci_transport_waiting_info *wait,
134 			   u16 proto,
135 			   struct vmci_handle handle)
136 {
137 	/* We register the stream control handler as an any cid handle so we
138 	 * must always send from a source address of VMADDR_CID_ANY
139 	 */
140 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
141 				       VMCI_TRANSPORT_PACKET_RID);
142 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
143 				       vmci_transport_peer_rid(dst->svm_cid));
144 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
145 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
146 	pkt->type = type;
147 	pkt->src_port = src->svm_port;
148 	pkt->dst_port = dst->svm_port;
149 	memset(&pkt->proto, 0, sizeof(pkt->proto));
150 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
151 
152 	switch (pkt->type) {
153 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
154 		pkt->u.size = 0;
155 		break;
156 
157 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
158 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
159 		pkt->u.size = size;
160 		break;
161 
162 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
163 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
164 		pkt->u.handle = handle;
165 		break;
166 
167 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
168 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
169 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
170 		pkt->u.size = 0;
171 		break;
172 
173 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
174 		pkt->u.mode = mode;
175 		break;
176 
177 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
178 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
179 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
180 		break;
181 
182 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
183 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
184 		pkt->u.size = size;
185 		pkt->proto = proto;
186 		break;
187 	}
188 }
189 
190 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
192 				    struct sockaddr_vm *local,
193 				    struct sockaddr_vm *remote)
194 {
195 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
196 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
197 }
198 
199 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
201 				  struct sockaddr_vm *src,
202 				  struct sockaddr_vm *dst,
203 				  enum vmci_transport_packet_type type,
204 				  u64 size,
205 				  u64 mode,
206 				  struct vmci_transport_waiting_info *wait,
207 				  u16 proto,
208 				  struct vmci_handle handle,
209 				  bool convert_error)
210 {
211 	int err;
212 
213 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
214 				   proto, handle);
215 	err = vmci_datagram_send(&pkt->dg);
216 	if (convert_error && (err < 0))
217 		return vmci_transport_error_to_vsock_error(err);
218 
219 	return err;
220 }
221 
222 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
224 				      enum vmci_transport_packet_type type,
225 				      u64 size,
226 				      u64 mode,
227 				      struct vmci_transport_waiting_info *wait,
228 				      struct vmci_handle handle)
229 {
230 	struct vmci_transport_packet reply;
231 	struct sockaddr_vm src, dst;
232 
233 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
234 		return 0;
235 	} else {
236 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
237 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
238 							 type,
239 							 size, mode, wait,
240 							 VSOCK_PROTO_INVALID,
241 							 handle, true);
242 	}
243 }
244 
245 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
247 				   struct sockaddr_vm *dst,
248 				   enum vmci_transport_packet_type type,
249 				   u64 size,
250 				   u64 mode,
251 				   struct vmci_transport_waiting_info *wait,
252 				   struct vmci_handle handle)
253 {
254 	/* Note that it is safe to use a single packet across all CPUs since
255 	 * two tasklets of the same type are guaranteed to not ever run
256 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
257 	 * we can use per-cpu packets.
258 	 */
259 	static struct vmci_transport_packet pkt;
260 
261 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
262 						 size, mode, wait,
263 						 VSOCK_PROTO_INVALID, handle,
264 						 false);
265 }
266 
267 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)268 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
269 				      struct sockaddr_vm *dst,
270 				      enum vmci_transport_packet_type type,
271 				      u64 size,
272 				      u64 mode,
273 				      struct vmci_transport_waiting_info *wait,
274 				      u16 proto,
275 				      struct vmci_handle handle)
276 {
277 	struct vmci_transport_packet *pkt;
278 	int err;
279 
280 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
281 	if (!pkt)
282 		return -ENOMEM;
283 
284 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
285 						mode, wait, proto, handle,
286 						true);
287 	kfree(pkt);
288 
289 	return err;
290 }
291 
292 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)293 vmci_transport_send_control_pkt(struct sock *sk,
294 				enum vmci_transport_packet_type type,
295 				u64 size,
296 				u64 mode,
297 				struct vmci_transport_waiting_info *wait,
298 				u16 proto,
299 				struct vmci_handle handle)
300 {
301 	struct vsock_sock *vsk;
302 
303 	vsk = vsock_sk(sk);
304 
305 	if (!vsock_addr_bound(&vsk->local_addr))
306 		return -EINVAL;
307 
308 	if (!vsock_addr_bound(&vsk->remote_addr))
309 		return -EINVAL;
310 
311 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
312 						     &vsk->remote_addr,
313 						     type, size, mode,
314 						     wait, proto, handle);
315 }
316 
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)317 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
318 					struct sockaddr_vm *src,
319 					struct vmci_transport_packet *pkt)
320 {
321 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 		return 0;
323 	return vmci_transport_send_control_pkt_bh(
324 					dst, src,
325 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
326 					0, NULL, VMCI_INVALID_HANDLE);
327 }
328 
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)329 static int vmci_transport_send_reset(struct sock *sk,
330 				     struct vmci_transport_packet *pkt)
331 {
332 	struct sockaddr_vm *dst_ptr;
333 	struct sockaddr_vm dst;
334 	struct vsock_sock *vsk;
335 
336 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
337 		return 0;
338 
339 	vsk = vsock_sk(sk);
340 
341 	if (!vsock_addr_bound(&vsk->local_addr))
342 		return -EINVAL;
343 
344 	if (vsock_addr_bound(&vsk->remote_addr)) {
345 		dst_ptr = &vsk->remote_addr;
346 	} else {
347 		vsock_addr_init(&dst, pkt->dg.src.context,
348 				pkt->src_port);
349 		dst_ptr = &dst;
350 	}
351 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
352 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
353 					     0, 0, NULL, VSOCK_PROTO_INVALID,
354 					     VMCI_INVALID_HANDLE);
355 }
356 
vmci_transport_send_negotiate(struct sock * sk,size_t size)357 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
358 {
359 	return vmci_transport_send_control_pkt(
360 					sk,
361 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
362 					size, 0, NULL,
363 					VSOCK_PROTO_INVALID,
364 					VMCI_INVALID_HANDLE);
365 }
366 
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)367 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
368 					  u16 version)
369 {
370 	return vmci_transport_send_control_pkt(
371 					sk,
372 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
373 					size, 0, NULL, version,
374 					VMCI_INVALID_HANDLE);
375 }
376 
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)377 static int vmci_transport_send_qp_offer(struct sock *sk,
378 					struct vmci_handle handle)
379 {
380 	return vmci_transport_send_control_pkt(
381 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
382 					0, NULL,
383 					VSOCK_PROTO_INVALID, handle);
384 }
385 
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)386 static int vmci_transport_send_attach(struct sock *sk,
387 				      struct vmci_handle handle)
388 {
389 	return vmci_transport_send_control_pkt(
390 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
391 					0, 0, NULL, VSOCK_PROTO_INVALID,
392 					handle);
393 }
394 
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)395 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
396 {
397 	return vmci_transport_reply_control_pkt_fast(
398 						pkt,
399 						VMCI_TRANSPORT_PACKET_TYPE_RST,
400 						0, 0, NULL,
401 						VMCI_INVALID_HANDLE);
402 }
403 
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)404 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
405 					  struct sockaddr_vm *src)
406 {
407 	return vmci_transport_send_control_pkt_bh(
408 					dst, src,
409 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
410 					0, 0, NULL, VMCI_INVALID_HANDLE);
411 }
412 
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)413 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
414 				 struct sockaddr_vm *src)
415 {
416 	return vmci_transport_send_control_pkt_bh(
417 					dst, src,
418 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
419 					0, NULL, VMCI_INVALID_HANDLE);
420 }
421 
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)422 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
423 				struct sockaddr_vm *src)
424 {
425 	return vmci_transport_send_control_pkt_bh(
426 					dst, src,
427 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 					0, NULL, VMCI_INVALID_HANDLE);
429 }
430 
vmci_transport_send_wrote(struct sock * sk)431 int vmci_transport_send_wrote(struct sock *sk)
432 {
433 	return vmci_transport_send_control_pkt(
434 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
435 					0, NULL, VSOCK_PROTO_INVALID,
436 					VMCI_INVALID_HANDLE);
437 }
438 
vmci_transport_send_read(struct sock * sk)439 int vmci_transport_send_read(struct sock *sk)
440 {
441 	return vmci_transport_send_control_pkt(
442 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
443 					0, NULL, VSOCK_PROTO_INVALID,
444 					VMCI_INVALID_HANDLE);
445 }
446 
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)447 int vmci_transport_send_waiting_write(struct sock *sk,
448 				      struct vmci_transport_waiting_info *wait)
449 {
450 	return vmci_transport_send_control_pkt(
451 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
452 				0, 0, wait, VSOCK_PROTO_INVALID,
453 				VMCI_INVALID_HANDLE);
454 }
455 
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)456 int vmci_transport_send_waiting_read(struct sock *sk,
457 				     struct vmci_transport_waiting_info *wait)
458 {
459 	return vmci_transport_send_control_pkt(
460 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
461 				0, 0, wait, VSOCK_PROTO_INVALID,
462 				VMCI_INVALID_HANDLE);
463 }
464 
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)465 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
466 {
467 	return vmci_transport_send_control_pkt(
468 					&vsk->sk,
469 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
470 					0, mode, NULL,
471 					VSOCK_PROTO_INVALID,
472 					VMCI_INVALID_HANDLE);
473 }
474 
vmci_transport_send_conn_request(struct sock * sk,size_t size)475 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
476 {
477 	return vmci_transport_send_control_pkt(sk,
478 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
479 					size, 0, NULL,
480 					VSOCK_PROTO_INVALID,
481 					VMCI_INVALID_HANDLE);
482 }
483 
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)484 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
485 					     u16 version)
486 {
487 	return vmci_transport_send_control_pkt(
488 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
489 					size, 0, NULL, version,
490 					VMCI_INVALID_HANDLE);
491 }
492 
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)493 static struct sock *vmci_transport_get_pending(
494 					struct sock *listener,
495 					struct vmci_transport_packet *pkt)
496 {
497 	struct vsock_sock *vlistener;
498 	struct vsock_sock *vpending;
499 	struct sock *pending;
500 	struct sockaddr_vm src;
501 
502 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
503 
504 	vlistener = vsock_sk(listener);
505 
506 	list_for_each_entry(vpending, &vlistener->pending_links,
507 			    pending_links) {
508 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
509 		    pkt->dst_port == vpending->local_addr.svm_port) {
510 			pending = sk_vsock(vpending);
511 			sock_hold(pending);
512 			goto found;
513 		}
514 	}
515 
516 	pending = NULL;
517 found:
518 	return pending;
519 
520 }
521 
vmci_transport_release_pending(struct sock * pending)522 static void vmci_transport_release_pending(struct sock *pending)
523 {
524 	sock_put(pending);
525 }
526 
527 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
528  * trusted sockets 2) sockets from applications running as the same user as the
529  * VM (this is only true for the host side and only when using hosted products)
530  */
531 
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)532 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
533 {
534 	return vsock->trusted ||
535 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
536 }
537 
538 /* We allow sending datagrams to and receiving datagrams from a restricted VM
539  * only if it is trusted as described in vmci_transport_is_trusted.
540  */
541 
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)542 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
543 {
544 	if (VMADDR_CID_HYPERVISOR == peer_cid)
545 		return true;
546 
547 	if (vsock->cached_peer != peer_cid) {
548 		vsock->cached_peer = peer_cid;
549 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
550 		    (vmci_context_get_priv_flags(peer_cid) &
551 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
552 			vsock->cached_peer_allow_dgram = false;
553 		} else {
554 			vsock->cached_peer_allow_dgram = true;
555 		}
556 	}
557 
558 	return vsock->cached_peer_allow_dgram;
559 }
560 
561 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)562 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
563 				struct vmci_handle *handle,
564 				u64 produce_size,
565 				u64 consume_size,
566 				u32 peer, u32 flags, bool trusted)
567 {
568 	int err = 0;
569 
570 	if (trusted) {
571 		/* Try to allocate our queue pair as trusted. This will only
572 		 * work if vsock is running in the host.
573 		 */
574 
575 		err = vmci_qpair_alloc(qpair, handle, produce_size,
576 				       consume_size,
577 				       peer, flags,
578 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
579 		if (err != VMCI_ERROR_NO_ACCESS)
580 			goto out;
581 
582 	}
583 
584 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
585 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
586 out:
587 	if (err < 0) {
588 		pr_err("Could not attach to queue pair with %d\n",
589 		       err);
590 		err = vmci_transport_error_to_vsock_error(err);
591 	}
592 
593 	return err;
594 }
595 
596 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)597 vmci_transport_datagram_create_hnd(u32 resource_id,
598 				   u32 flags,
599 				   vmci_datagram_recv_cb recv_cb,
600 				   void *client_data,
601 				   struct vmci_handle *out_handle)
602 {
603 	int err = 0;
604 
605 	/* Try to allocate our datagram handler as trusted. This will only work
606 	 * if vsock is running in the host.
607 	 */
608 
609 	err = vmci_datagram_create_handle_priv(resource_id, flags,
610 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
611 					       recv_cb,
612 					       client_data, out_handle);
613 
614 	if (err == VMCI_ERROR_NO_ACCESS)
615 		err = vmci_datagram_create_handle(resource_id, flags,
616 						  recv_cb, client_data,
617 						  out_handle);
618 
619 	return err;
620 }
621 
622 /* This is invoked as part of a tasklet that's scheduled when the VMCI
623  * interrupt fires.  This is run in bottom-half context and if it ever needs to
624  * sleep it should defer that work to a work queue.
625  */
626 
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)627 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
628 {
629 	struct sock *sk;
630 	size_t size;
631 	struct sk_buff *skb;
632 	struct vsock_sock *vsk;
633 
634 	sk = (struct sock *)data;
635 
636 	/* This handler is privileged when this module is running on the host.
637 	 * We will get datagrams from all endpoints (even VMs that are in a
638 	 * restricted context). If we get one from a restricted context then
639 	 * the destination socket must be trusted.
640 	 *
641 	 * NOTE: We access the socket struct without holding the lock here.
642 	 * This is ok because the field we are interested is never modified
643 	 * outside of the create and destruct socket functions.
644 	 */
645 	vsk = vsock_sk(sk);
646 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
647 		return VMCI_ERROR_NO_ACCESS;
648 
649 	size = VMCI_DG_SIZE(dg);
650 
651 	/* Attach the packet to the socket's receive queue as an sk_buff. */
652 	skb = alloc_skb(size, GFP_ATOMIC);
653 	if (!skb)
654 		return VMCI_ERROR_NO_MEM;
655 
656 	/* sk_receive_skb() will do a sock_put(), so hold here. */
657 	sock_hold(sk);
658 	skb_put(skb, size);
659 	memcpy(skb->data, dg, size);
660 	sk_receive_skb(sk, skb, 0);
661 
662 	return VMCI_SUCCESS;
663 }
664 
vmci_transport_stream_allow(u32 cid,u32 port)665 static bool vmci_transport_stream_allow(u32 cid, u32 port)
666 {
667 	static const u32 non_socket_contexts[] = {
668 		VMADDR_CID_RESERVED,
669 	};
670 	int i;
671 
672 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
673 
674 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
675 		if (cid == non_socket_contexts[i])
676 			return false;
677 	}
678 
679 	return true;
680 }
681 
682 /* This is invoked as part of a tasklet that's scheduled when the VMCI
683  * interrupt fires.  This is run in bottom-half context but it defers most of
684  * its work to the packet handling work queue.
685  */
686 
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)687 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
688 {
689 	struct sock *sk;
690 	struct sockaddr_vm dst;
691 	struct sockaddr_vm src;
692 	struct vmci_transport_packet *pkt;
693 	struct vsock_sock *vsk;
694 	bool bh_process_pkt;
695 	int err;
696 
697 	sk = NULL;
698 	err = VMCI_SUCCESS;
699 	bh_process_pkt = false;
700 
701 	/* Ignore incoming packets from contexts without sockets, or resources
702 	 * that aren't vsock implementations.
703 	 */
704 
705 	if (!vmci_transport_stream_allow(dg->src.context, -1)
706 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
707 		return VMCI_ERROR_NO_ACCESS;
708 
709 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
710 		/* Drop datagrams that do not contain full VSock packets. */
711 		return VMCI_ERROR_INVALID_ARGS;
712 
713 	pkt = (struct vmci_transport_packet *)dg;
714 
715 	/* Find the socket that should handle this packet.  First we look for a
716 	 * connected socket and if there is none we look for a socket bound to
717 	 * the destintation address.
718 	 */
719 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
720 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
721 
722 	sk = vsock_find_connected_socket(&src, &dst);
723 	if (!sk) {
724 		sk = vsock_find_bound_socket(&dst);
725 		if (!sk) {
726 			/* We could not find a socket for this specified
727 			 * address.  If this packet is a RST, we just drop it.
728 			 * If it is another packet, we send a RST.  Note that
729 			 * we do not send a RST reply to RSTs so that we do not
730 			 * continually send RSTs between two endpoints.
731 			 *
732 			 * Note that since this is a reply, dst is src and src
733 			 * is dst.
734 			 */
735 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
736 				pr_err("unable to send reset\n");
737 
738 			err = VMCI_ERROR_NOT_FOUND;
739 			goto out;
740 		}
741 	}
742 
743 	/* If the received packet type is beyond all types known to this
744 	 * implementation, reply with an invalid message.  Hopefully this will
745 	 * help when implementing backwards compatibility in the future.
746 	 */
747 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
748 		vmci_transport_send_invalid_bh(&dst, &src);
749 		err = VMCI_ERROR_INVALID_ARGS;
750 		goto out;
751 	}
752 
753 	/* This handler is privileged when this module is running on the host.
754 	 * We will get datagram connect requests from all endpoints (even VMs
755 	 * that are in a restricted context). If we get one from a restricted
756 	 * context then the destination socket must be trusted.
757 	 *
758 	 * NOTE: We access the socket struct without holding the lock here.
759 	 * This is ok because the field we are interested is never modified
760 	 * outside of the create and destruct socket functions.
761 	 */
762 	vsk = vsock_sk(sk);
763 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
764 		err = VMCI_ERROR_NO_ACCESS;
765 		goto out;
766 	}
767 
768 	/* We do most everything in a work queue, but let's fast path the
769 	 * notification of reads and writes to help data transfer performance.
770 	 * We can only do this if there is no process context code executing
771 	 * for this socket since that may change the state.
772 	 */
773 	bh_lock_sock(sk);
774 
775 	if (!sock_owned_by_user(sk)) {
776 		/* The local context ID may be out of date, update it. */
777 		vsk->local_addr.svm_cid = dst.svm_cid;
778 
779 		if (sk->sk_state == TCP_ESTABLISHED)
780 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
781 					sk, pkt, true, &dst, &src,
782 					&bh_process_pkt);
783 	}
784 
785 	bh_unlock_sock(sk);
786 
787 	if (!bh_process_pkt) {
788 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
789 
790 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
791 		if (!recv_pkt_info) {
792 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
793 				pr_err("unable to send reset\n");
794 
795 			err = VMCI_ERROR_NO_MEM;
796 			goto out;
797 		}
798 
799 		recv_pkt_info->sk = sk;
800 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
801 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
802 
803 		schedule_work(&recv_pkt_info->work);
804 		/* Clear sk so that the reference count incremented by one of
805 		 * the Find functions above is not decremented below.  We need
806 		 * that reference count for the packet handler we've scheduled
807 		 * to run.
808 		 */
809 		sk = NULL;
810 	}
811 
812 out:
813 	if (sk)
814 		sock_put(sk);
815 
816 	return err;
817 }
818 
vmci_transport_handle_detach(struct sock * sk)819 static void vmci_transport_handle_detach(struct sock *sk)
820 {
821 	struct vsock_sock *vsk;
822 
823 	vsk = vsock_sk(sk);
824 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
825 		sock_set_flag(sk, SOCK_DONE);
826 
827 		/* On a detach the peer will not be sending or receiving
828 		 * anymore.
829 		 */
830 		vsk->peer_shutdown = SHUTDOWN_MASK;
831 
832 		/* We should not be sending anymore since the peer won't be
833 		 * there to receive, but we can still receive if there is data
834 		 * left in our consume queue.
835 		 */
836 		if (vsock_stream_has_data(vsk) <= 0) {
837 			sk->sk_state = TCP_CLOSE;
838 
839 			if (sk->sk_state == TCP_SYN_SENT) {
840 				/* The peer may detach from a queue pair while
841 				 * we are still in the connecting state, i.e.,
842 				 * if the peer VM is killed after attaching to
843 				 * a queue pair, but before we complete the
844 				 * handshake. In that case, we treat the detach
845 				 * event like a reset.
846 				 */
847 
848 				sk->sk_err = ECONNRESET;
849 				sk->sk_error_report(sk);
850 				return;
851 			}
852 		}
853 		sk->sk_state_change(sk);
854 	}
855 }
856 
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)857 static void vmci_transport_peer_detach_cb(u32 sub_id,
858 					  const struct vmci_event_data *e_data,
859 					  void *client_data)
860 {
861 	struct vmci_transport *trans = client_data;
862 	const struct vmci_event_payload_qp *e_payload;
863 
864 	e_payload = vmci_event_data_const_payload(e_data);
865 
866 	/* XXX This is lame, we should provide a way to lookup sockets by
867 	 * qp_handle.
868 	 */
869 	if (vmci_handle_is_invalid(e_payload->handle) ||
870 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
871 		return;
872 
873 	/* We don't ask for delayed CBs when we subscribe to this event (we
874 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
875 	 * guarantees in that case about what context we might be running in,
876 	 * so it could be BH or process, blockable or non-blockable.  So we
877 	 * need to account for all possible contexts here.
878 	 */
879 	spin_lock_bh(&trans->lock);
880 	if (!trans->sk)
881 		goto out;
882 
883 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
884 	 * where trans->sk isn't locked.
885 	 */
886 	bh_lock_sock(trans->sk);
887 
888 	vmci_transport_handle_detach(trans->sk);
889 
890 	bh_unlock_sock(trans->sk);
891  out:
892 	spin_unlock_bh(&trans->lock);
893 }
894 
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)895 static void vmci_transport_qp_resumed_cb(u32 sub_id,
896 					 const struct vmci_event_data *e_data,
897 					 void *client_data)
898 {
899 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
900 }
901 
vmci_transport_recv_pkt_work(struct work_struct * work)902 static void vmci_transport_recv_pkt_work(struct work_struct *work)
903 {
904 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
905 	struct vmci_transport_packet *pkt;
906 	struct sock *sk;
907 
908 	recv_pkt_info =
909 		container_of(work, struct vmci_transport_recv_pkt_info, work);
910 	sk = recv_pkt_info->sk;
911 	pkt = &recv_pkt_info->pkt;
912 
913 	lock_sock(sk);
914 
915 	/* The local context ID may be out of date. */
916 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
917 
918 	switch (sk->sk_state) {
919 	case TCP_LISTEN:
920 		vmci_transport_recv_listen(sk, pkt);
921 		break;
922 	case TCP_SYN_SENT:
923 		/* Processing of pending connections for servers goes through
924 		 * the listening socket, so see vmci_transport_recv_listen()
925 		 * for that path.
926 		 */
927 		vmci_transport_recv_connecting_client(sk, pkt);
928 		break;
929 	case TCP_ESTABLISHED:
930 		vmci_transport_recv_connected(sk, pkt);
931 		break;
932 	default:
933 		/* Because this function does not run in the same context as
934 		 * vmci_transport_recv_stream_cb it is possible that the
935 		 * socket has closed. We need to let the other side know or it
936 		 * could be sitting in a connect and hang forever. Send a
937 		 * reset to prevent that.
938 		 */
939 		vmci_transport_send_reset(sk, pkt);
940 		break;
941 	}
942 
943 	release_sock(sk);
944 	kfree(recv_pkt_info);
945 	/* Release reference obtained in the stream callback when we fetched
946 	 * this socket out of the bound or connected list.
947 	 */
948 	sock_put(sk);
949 }
950 
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)951 static int vmci_transport_recv_listen(struct sock *sk,
952 				      struct vmci_transport_packet *pkt)
953 {
954 	struct sock *pending;
955 	struct vsock_sock *vpending;
956 	int err;
957 	u64 qp_size;
958 	bool old_request = false;
959 	bool old_pkt_proto = false;
960 
961 	err = 0;
962 
963 	/* Because we are in the listen state, we could be receiving a packet
964 	 * for ourself or any previous connection requests that we received.
965 	 * If it's the latter, we try to find a socket in our list of pending
966 	 * connections and, if we do, call the appropriate handler for the
967 	 * state that that socket is in.  Otherwise we try to service the
968 	 * connection request.
969 	 */
970 	pending = vmci_transport_get_pending(sk, pkt);
971 	if (pending) {
972 		lock_sock(pending);
973 
974 		/* The local context ID may be out of date. */
975 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
976 
977 		switch (pending->sk_state) {
978 		case TCP_SYN_SENT:
979 			err = vmci_transport_recv_connecting_server(sk,
980 								    pending,
981 								    pkt);
982 			break;
983 		default:
984 			vmci_transport_send_reset(pending, pkt);
985 			err = -EINVAL;
986 		}
987 
988 		if (err < 0)
989 			vsock_remove_pending(sk, pending);
990 
991 		release_sock(pending);
992 		vmci_transport_release_pending(pending);
993 
994 		return err;
995 	}
996 
997 	/* The listen state only accepts connection requests.  Reply with a
998 	 * reset unless we received a reset.
999 	 */
1000 
1001 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1002 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1003 		vmci_transport_reply_reset(pkt);
1004 		return -EINVAL;
1005 	}
1006 
1007 	if (pkt->u.size == 0) {
1008 		vmci_transport_reply_reset(pkt);
1009 		return -EINVAL;
1010 	}
1011 
1012 	/* If this socket can't accommodate this connection request, we send a
1013 	 * reset.  Otherwise we create and initialize a child socket and reply
1014 	 * with a connection negotiation.
1015 	 */
1016 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1017 		vmci_transport_reply_reset(pkt);
1018 		return -ECONNREFUSED;
1019 	}
1020 
1021 	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1022 				 sk->sk_type, 0);
1023 	if (!pending) {
1024 		vmci_transport_send_reset(sk, pkt);
1025 		return -ENOMEM;
1026 	}
1027 
1028 	vpending = vsock_sk(pending);
1029 
1030 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1031 			pkt->dst_port);
1032 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1033 			pkt->src_port);
1034 
1035 	/* If the proposed size fits within our min/max, accept it. Otherwise
1036 	 * propose our own size.
1037 	 */
1038 	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1039 	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1040 		qp_size = pkt->u.size;
1041 	} else {
1042 		qp_size = vmci_trans(vpending)->queue_pair_size;
1043 	}
1044 
1045 	/* Figure out if we are using old or new requests based on the
1046 	 * overrides pkt types sent by our peer.
1047 	 */
1048 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1049 		old_request = old_pkt_proto;
1050 	} else {
1051 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1052 			old_request = true;
1053 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1054 			old_request = false;
1055 
1056 	}
1057 
1058 	if (old_request) {
1059 		/* Handle a REQUEST (or override) */
1060 		u16 version = VSOCK_PROTO_INVALID;
1061 		if (vmci_transport_proto_to_notify_struct(
1062 			pending, &version, true))
1063 			err = vmci_transport_send_negotiate(pending, qp_size);
1064 		else
1065 			err = -EINVAL;
1066 
1067 	} else {
1068 		/* Handle a REQUEST2 (or override) */
1069 		int proto_int = pkt->proto;
1070 		int pos;
1071 		u16 active_proto_version = 0;
1072 
1073 		/* The list of possible protocols is the intersection of all
1074 		 * protocols the client supports ... plus all the protocols we
1075 		 * support.
1076 		 */
1077 		proto_int &= vmci_transport_new_proto_supported_versions();
1078 
1079 		/* We choose the highest possible protocol version and use that
1080 		 * one.
1081 		 */
1082 		pos = fls(proto_int);
1083 		if (pos) {
1084 			active_proto_version = (1 << (pos - 1));
1085 			if (vmci_transport_proto_to_notify_struct(
1086 				pending, &active_proto_version, false))
1087 				err = vmci_transport_send_negotiate2(pending,
1088 							qp_size,
1089 							active_proto_version);
1090 			else
1091 				err = -EINVAL;
1092 
1093 		} else {
1094 			err = -EINVAL;
1095 		}
1096 	}
1097 
1098 	if (err < 0) {
1099 		vmci_transport_send_reset(sk, pkt);
1100 		sock_put(pending);
1101 		err = vmci_transport_error_to_vsock_error(err);
1102 		goto out;
1103 	}
1104 
1105 	vsock_add_pending(sk, pending);
1106 	sk->sk_ack_backlog++;
1107 
1108 	pending->sk_state = TCP_SYN_SENT;
1109 	vmci_trans(vpending)->produce_size =
1110 		vmci_trans(vpending)->consume_size = qp_size;
1111 	vmci_trans(vpending)->queue_pair_size = qp_size;
1112 
1113 	vmci_trans(vpending)->notify_ops->process_request(pending);
1114 
1115 	/* We might never receive another message for this socket and it's not
1116 	 * connected to any process, so we have to ensure it gets cleaned up
1117 	 * ourself.  Our delayed work function will take care of that.  Note
1118 	 * that we do not ever cancel this function since we have few
1119 	 * guarantees about its state when calling cancel_delayed_work().
1120 	 * Instead we hold a reference on the socket for that function and make
1121 	 * it capable of handling cases where it needs to do nothing but
1122 	 * release that reference.
1123 	 */
1124 	vpending->listener = sk;
1125 	sock_hold(sk);
1126 	sock_hold(pending);
1127 	schedule_delayed_work(&vpending->pending_work, HZ);
1128 
1129 out:
1130 	return err;
1131 }
1132 
1133 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1134 vmci_transport_recv_connecting_server(struct sock *listener,
1135 				      struct sock *pending,
1136 				      struct vmci_transport_packet *pkt)
1137 {
1138 	struct vsock_sock *vpending;
1139 	struct vmci_handle handle;
1140 	struct vmci_qp *qpair;
1141 	bool is_local;
1142 	u32 flags;
1143 	u32 detach_sub_id;
1144 	int err;
1145 	int skerr;
1146 
1147 	vpending = vsock_sk(pending);
1148 	detach_sub_id = VMCI_INVALID_ID;
1149 
1150 	switch (pkt->type) {
1151 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1152 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1153 			vmci_transport_send_reset(pending, pkt);
1154 			skerr = EPROTO;
1155 			err = -EINVAL;
1156 			goto destroy;
1157 		}
1158 		break;
1159 	default:
1160 		/* Close and cleanup the connection. */
1161 		vmci_transport_send_reset(pending, pkt);
1162 		skerr = EPROTO;
1163 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1164 		goto destroy;
1165 	}
1166 
1167 	/* In order to complete the connection we need to attach to the offered
1168 	 * queue pair and send an attach notification.  We also subscribe to the
1169 	 * detach event so we know when our peer goes away, and we do that
1170 	 * before attaching so we don't miss an event.  If all this succeeds,
1171 	 * we update our state and wakeup anything waiting in accept() for a
1172 	 * connection.
1173 	 */
1174 
1175 	/* We don't care about attach since we ensure the other side has
1176 	 * attached by specifying the ATTACH_ONLY flag below.
1177 	 */
1178 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1179 				   vmci_transport_peer_detach_cb,
1180 				   vmci_trans(vpending), &detach_sub_id);
1181 	if (err < VMCI_SUCCESS) {
1182 		vmci_transport_send_reset(pending, pkt);
1183 		err = vmci_transport_error_to_vsock_error(err);
1184 		skerr = -err;
1185 		goto destroy;
1186 	}
1187 
1188 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1189 
1190 	/* Now attach to the queue pair the client created. */
1191 	handle = pkt->u.handle;
1192 
1193 	/* vpending->local_addr always has a context id so we do not need to
1194 	 * worry about VMADDR_CID_ANY in this case.
1195 	 */
1196 	is_local =
1197 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1198 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1199 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1200 
1201 	err = vmci_transport_queue_pair_alloc(
1202 					&qpair,
1203 					&handle,
1204 					vmci_trans(vpending)->produce_size,
1205 					vmci_trans(vpending)->consume_size,
1206 					pkt->dg.src.context,
1207 					flags,
1208 					vmci_transport_is_trusted(
1209 						vpending,
1210 						vpending->remote_addr.svm_cid));
1211 	if (err < 0) {
1212 		vmci_transport_send_reset(pending, pkt);
1213 		skerr = -err;
1214 		goto destroy;
1215 	}
1216 
1217 	vmci_trans(vpending)->qp_handle = handle;
1218 	vmci_trans(vpending)->qpair = qpair;
1219 
1220 	/* When we send the attach message, we must be ready to handle incoming
1221 	 * control messages on the newly connected socket. So we move the
1222 	 * pending socket to the connected state before sending the attach
1223 	 * message. Otherwise, an incoming packet triggered by the attach being
1224 	 * received by the peer may be processed concurrently with what happens
1225 	 * below after sending the attach message, and that incoming packet
1226 	 * will find the listening socket instead of the (currently) pending
1227 	 * socket. Note that enqueueing the socket increments the reference
1228 	 * count, so even if a reset comes before the connection is accepted,
1229 	 * the socket will be valid until it is removed from the queue.
1230 	 *
1231 	 * If we fail sending the attach below, we remove the socket from the
1232 	 * connected list and move the socket to TCP_CLOSE before
1233 	 * releasing the lock, so a pending slow path processing of an incoming
1234 	 * packet will not see the socket in the connected state in that case.
1235 	 */
1236 	pending->sk_state = TCP_ESTABLISHED;
1237 
1238 	vsock_insert_connected(vpending);
1239 
1240 	/* Notify our peer of our attach. */
1241 	err = vmci_transport_send_attach(pending, handle);
1242 	if (err < 0) {
1243 		vsock_remove_connected(vpending);
1244 		pr_err("Could not send attach\n");
1245 		vmci_transport_send_reset(pending, pkt);
1246 		err = vmci_transport_error_to_vsock_error(err);
1247 		skerr = -err;
1248 		goto destroy;
1249 	}
1250 
1251 	/* We have a connection. Move the now connected socket from the
1252 	 * listener's pending list to the accept queue so callers of accept()
1253 	 * can find it.
1254 	 */
1255 	vsock_remove_pending(listener, pending);
1256 	vsock_enqueue_accept(listener, pending);
1257 
1258 	/* Callers of accept() will be be waiting on the listening socket, not
1259 	 * the pending socket.
1260 	 */
1261 	listener->sk_data_ready(listener);
1262 
1263 	return 0;
1264 
1265 destroy:
1266 	pending->sk_err = skerr;
1267 	pending->sk_state = TCP_CLOSE;
1268 	/* As long as we drop our reference, all necessary cleanup will handle
1269 	 * when the cleanup function drops its reference and our destruct
1270 	 * implementation is called.  Note that since the listen handler will
1271 	 * remove pending from the pending list upon our failure, the cleanup
1272 	 * function won't drop the additional reference, which is why we do it
1273 	 * here.
1274 	 */
1275 	sock_put(pending);
1276 
1277 	return err;
1278 }
1279 
1280 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1281 vmci_transport_recv_connecting_client(struct sock *sk,
1282 				      struct vmci_transport_packet *pkt)
1283 {
1284 	struct vsock_sock *vsk;
1285 	int err;
1286 	int skerr;
1287 
1288 	vsk = vsock_sk(sk);
1289 
1290 	switch (pkt->type) {
1291 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1292 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1293 		    !vmci_handle_is_equal(pkt->u.handle,
1294 					  vmci_trans(vsk)->qp_handle)) {
1295 			skerr = EPROTO;
1296 			err = -EINVAL;
1297 			goto destroy;
1298 		}
1299 
1300 		/* Signify the socket is connected and wakeup the waiter in
1301 		 * connect(). Also place the socket in the connected table for
1302 		 * accounting (it can already be found since it's in the bound
1303 		 * table).
1304 		 */
1305 		sk->sk_state = TCP_ESTABLISHED;
1306 		sk->sk_socket->state = SS_CONNECTED;
1307 		vsock_insert_connected(vsk);
1308 		sk->sk_state_change(sk);
1309 
1310 		break;
1311 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1312 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1313 		if (pkt->u.size == 0
1314 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1315 		    || pkt->src_port != vsk->remote_addr.svm_port
1316 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1317 		    || vmci_trans(vsk)->qpair
1318 		    || vmci_trans(vsk)->produce_size != 0
1319 		    || vmci_trans(vsk)->consume_size != 0
1320 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1321 			skerr = EPROTO;
1322 			err = -EINVAL;
1323 
1324 			goto destroy;
1325 		}
1326 
1327 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1328 		if (err) {
1329 			skerr = -err;
1330 			goto destroy;
1331 		}
1332 
1333 		break;
1334 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1335 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1336 		if (err) {
1337 			skerr = -err;
1338 			goto destroy;
1339 		}
1340 
1341 		break;
1342 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1343 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1344 		 * continue processing here after they sent an INVALID packet.
1345 		 * This meant that we got a RST after the INVALID. We ignore a
1346 		 * RST after an INVALID. The common code doesn't send the RST
1347 		 * ... so we can hang if an old version of the common code
1348 		 * fails between getting a REQUEST and sending an OFFER back.
1349 		 * Not much we can do about it... except hope that it doesn't
1350 		 * happen.
1351 		 */
1352 		if (vsk->ignore_connecting_rst) {
1353 			vsk->ignore_connecting_rst = false;
1354 		} else {
1355 			skerr = ECONNRESET;
1356 			err = 0;
1357 			goto destroy;
1358 		}
1359 
1360 		break;
1361 	default:
1362 		/* Close and cleanup the connection. */
1363 		skerr = EPROTO;
1364 		err = -EINVAL;
1365 		goto destroy;
1366 	}
1367 
1368 	return 0;
1369 
1370 destroy:
1371 	vmci_transport_send_reset(sk, pkt);
1372 
1373 	sk->sk_state = TCP_CLOSE;
1374 	sk->sk_err = skerr;
1375 	sk->sk_error_report(sk);
1376 	return err;
1377 }
1378 
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1379 static int vmci_transport_recv_connecting_client_negotiate(
1380 					struct sock *sk,
1381 					struct vmci_transport_packet *pkt)
1382 {
1383 	int err;
1384 	struct vsock_sock *vsk;
1385 	struct vmci_handle handle;
1386 	struct vmci_qp *qpair;
1387 	u32 detach_sub_id;
1388 	bool is_local;
1389 	u32 flags;
1390 	bool old_proto = true;
1391 	bool old_pkt_proto;
1392 	u16 version;
1393 
1394 	vsk = vsock_sk(sk);
1395 	handle = VMCI_INVALID_HANDLE;
1396 	detach_sub_id = VMCI_INVALID_ID;
1397 
1398 	/* If we have gotten here then we should be past the point where old
1399 	 * linux vsock could have sent the bogus rst.
1400 	 */
1401 	vsk->sent_request = false;
1402 	vsk->ignore_connecting_rst = false;
1403 
1404 	/* Verify that we're OK with the proposed queue pair size */
1405 	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1406 	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1407 		err = -EINVAL;
1408 		goto destroy;
1409 	}
1410 
1411 	/* At this point we know the CID the peer is using to talk to us. */
1412 
1413 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1414 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1415 
1416 	/* Setup the notify ops to be the highest supported version that both
1417 	 * the server and the client support.
1418 	 */
1419 
1420 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1421 		old_proto = old_pkt_proto;
1422 	} else {
1423 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1424 			old_proto = true;
1425 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1426 			old_proto = false;
1427 
1428 	}
1429 
1430 	if (old_proto)
1431 		version = VSOCK_PROTO_INVALID;
1432 	else
1433 		version = pkt->proto;
1434 
1435 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1436 		err = -EINVAL;
1437 		goto destroy;
1438 	}
1439 
1440 	/* Subscribe to detach events first.
1441 	 *
1442 	 * XXX We attach once for each queue pair created for now so it is easy
1443 	 * to find the socket (it's provided), but later we should only
1444 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1445 	 */
1446 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1447 				   vmci_transport_peer_detach_cb,
1448 				   vmci_trans(vsk), &detach_sub_id);
1449 	if (err < VMCI_SUCCESS) {
1450 		err = vmci_transport_error_to_vsock_error(err);
1451 		goto destroy;
1452 	}
1453 
1454 	/* Make VMCI select the handle for us. */
1455 	handle = VMCI_INVALID_HANDLE;
1456 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1457 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1458 
1459 	err = vmci_transport_queue_pair_alloc(&qpair,
1460 					      &handle,
1461 					      pkt->u.size,
1462 					      pkt->u.size,
1463 					      vsk->remote_addr.svm_cid,
1464 					      flags,
1465 					      vmci_transport_is_trusted(
1466 						  vsk,
1467 						  vsk->
1468 						  remote_addr.svm_cid));
1469 	if (err < 0)
1470 		goto destroy;
1471 
1472 	err = vmci_transport_send_qp_offer(sk, handle);
1473 	if (err < 0) {
1474 		err = vmci_transport_error_to_vsock_error(err);
1475 		goto destroy;
1476 	}
1477 
1478 	vmci_trans(vsk)->qp_handle = handle;
1479 	vmci_trans(vsk)->qpair = qpair;
1480 
1481 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1482 		pkt->u.size;
1483 
1484 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1485 
1486 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1487 
1488 	return 0;
1489 
1490 destroy:
1491 	if (detach_sub_id != VMCI_INVALID_ID)
1492 		vmci_event_unsubscribe(detach_sub_id);
1493 
1494 	if (!vmci_handle_is_invalid(handle))
1495 		vmci_qpair_detach(&qpair);
1496 
1497 	return err;
1498 }
1499 
1500 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1501 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1502 					      struct vmci_transport_packet *pkt)
1503 {
1504 	int err = 0;
1505 	struct vsock_sock *vsk = vsock_sk(sk);
1506 
1507 	if (vsk->sent_request) {
1508 		vsk->sent_request = false;
1509 		vsk->ignore_connecting_rst = true;
1510 
1511 		err = vmci_transport_send_conn_request(
1512 			sk, vmci_trans(vsk)->queue_pair_size);
1513 		if (err < 0)
1514 			err = vmci_transport_error_to_vsock_error(err);
1515 		else
1516 			err = 0;
1517 
1518 	}
1519 
1520 	return err;
1521 }
1522 
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1523 static int vmci_transport_recv_connected(struct sock *sk,
1524 					 struct vmci_transport_packet *pkt)
1525 {
1526 	struct vsock_sock *vsk;
1527 	bool pkt_processed = false;
1528 
1529 	/* In cases where we are closing the connection, it's sufficient to
1530 	 * mark the state change (and maybe error) and wake up any waiting
1531 	 * threads. Since this is a connected socket, it's owned by a user
1532 	 * process and will be cleaned up when the failure is passed back on
1533 	 * the current or next system call.  Our system call implementations
1534 	 * must therefore check for error and state changes on entry and when
1535 	 * being awoken.
1536 	 */
1537 	switch (pkt->type) {
1538 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1539 		if (pkt->u.mode) {
1540 			vsk = vsock_sk(sk);
1541 
1542 			vsk->peer_shutdown |= pkt->u.mode;
1543 			sk->sk_state_change(sk);
1544 		}
1545 		break;
1546 
1547 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1548 		vsk = vsock_sk(sk);
1549 		/* It is possible that we sent our peer a message (e.g a
1550 		 * WAITING_READ) right before we got notified that the peer had
1551 		 * detached. If that happens then we can get a RST pkt back
1552 		 * from our peer even though there is data available for us to
1553 		 * read. In that case, don't shutdown the socket completely but
1554 		 * instead allow the local client to finish reading data off
1555 		 * the queuepair. Always treat a RST pkt in connected mode like
1556 		 * a clean shutdown.
1557 		 */
1558 		sock_set_flag(sk, SOCK_DONE);
1559 		vsk->peer_shutdown = SHUTDOWN_MASK;
1560 		if (vsock_stream_has_data(vsk) <= 0)
1561 			sk->sk_state = TCP_CLOSING;
1562 
1563 		sk->sk_state_change(sk);
1564 		break;
1565 
1566 	default:
1567 		vsk = vsock_sk(sk);
1568 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1569 				sk, pkt, false, NULL, NULL,
1570 				&pkt_processed);
1571 		if (!pkt_processed)
1572 			return -EINVAL;
1573 
1574 		break;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1580 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1581 				      struct vsock_sock *psk)
1582 {
1583 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1584 	if (!vsk->trans)
1585 		return -ENOMEM;
1586 
1587 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1588 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1589 	vmci_trans(vsk)->qpair = NULL;
1590 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1591 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1592 	vmci_trans(vsk)->notify_ops = NULL;
1593 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1594 	vmci_trans(vsk)->sk = &vsk->sk;
1595 	spin_lock_init(&vmci_trans(vsk)->lock);
1596 	if (psk) {
1597 		vmci_trans(vsk)->queue_pair_size =
1598 			vmci_trans(psk)->queue_pair_size;
1599 		vmci_trans(vsk)->queue_pair_min_size =
1600 			vmci_trans(psk)->queue_pair_min_size;
1601 		vmci_trans(vsk)->queue_pair_max_size =
1602 			vmci_trans(psk)->queue_pair_max_size;
1603 	} else {
1604 		vmci_trans(vsk)->queue_pair_size =
1605 			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1606 		vmci_trans(vsk)->queue_pair_min_size =
1607 			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1608 		vmci_trans(vsk)->queue_pair_max_size =
1609 			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1610 	}
1611 
1612 	return 0;
1613 }
1614 
vmci_transport_free_resources(struct list_head * transport_list)1615 static void vmci_transport_free_resources(struct list_head *transport_list)
1616 {
1617 	while (!list_empty(transport_list)) {
1618 		struct vmci_transport *transport =
1619 		    list_first_entry(transport_list, struct vmci_transport,
1620 				     elem);
1621 		list_del(&transport->elem);
1622 
1623 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1624 			vmci_event_unsubscribe(transport->detach_sub_id);
1625 			transport->detach_sub_id = VMCI_INVALID_ID;
1626 		}
1627 
1628 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1629 			vmci_qpair_detach(&transport->qpair);
1630 			transport->qp_handle = VMCI_INVALID_HANDLE;
1631 			transport->produce_size = 0;
1632 			transport->consume_size = 0;
1633 		}
1634 
1635 		kfree(transport);
1636 	}
1637 }
1638 
vmci_transport_cleanup(struct work_struct * work)1639 static void vmci_transport_cleanup(struct work_struct *work)
1640 {
1641 	LIST_HEAD(pending);
1642 
1643 	spin_lock_bh(&vmci_transport_cleanup_lock);
1644 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1645 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1646 	vmci_transport_free_resources(&pending);
1647 }
1648 
vmci_transport_destruct(struct vsock_sock * vsk)1649 static void vmci_transport_destruct(struct vsock_sock *vsk)
1650 {
1651 	/* transport can be NULL if we hit a failure at init() time */
1652 	if (!vmci_trans(vsk))
1653 		return;
1654 
1655 	/* Ensure that the detach callback doesn't use the sk/vsk
1656 	 * we are about to destruct.
1657 	 */
1658 	spin_lock_bh(&vmci_trans(vsk)->lock);
1659 	vmci_trans(vsk)->sk = NULL;
1660 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1661 
1662 	if (vmci_trans(vsk)->notify_ops)
1663 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1664 
1665 	spin_lock_bh(&vmci_transport_cleanup_lock);
1666 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1667 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1668 	schedule_work(&vmci_transport_cleanup_work);
1669 
1670 	vsk->trans = NULL;
1671 }
1672 
vmci_transport_release(struct vsock_sock * vsk)1673 static void vmci_transport_release(struct vsock_sock *vsk)
1674 {
1675 	vsock_remove_sock(vsk);
1676 
1677 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1678 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1679 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1680 	}
1681 }
1682 
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1683 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1684 				     struct sockaddr_vm *addr)
1685 {
1686 	u32 port;
1687 	u32 flags;
1688 	int err;
1689 
1690 	/* VMCI will select a resource ID for us if we provide
1691 	 * VMCI_INVALID_ID.
1692 	 */
1693 	port = addr->svm_port == VMADDR_PORT_ANY ?
1694 			VMCI_INVALID_ID : addr->svm_port;
1695 
1696 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1697 		return -EACCES;
1698 
1699 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1700 				VMCI_FLAG_ANYCID_DG_HND : 0;
1701 
1702 	err = vmci_transport_datagram_create_hnd(port, flags,
1703 						 vmci_transport_recv_dgram_cb,
1704 						 &vsk->sk,
1705 						 &vmci_trans(vsk)->dg_handle);
1706 	if (err < VMCI_SUCCESS)
1707 		return vmci_transport_error_to_vsock_error(err);
1708 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1709 			vmci_trans(vsk)->dg_handle.resource);
1710 
1711 	return 0;
1712 }
1713 
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1714 static int vmci_transport_dgram_enqueue(
1715 	struct vsock_sock *vsk,
1716 	struct sockaddr_vm *remote_addr,
1717 	struct msghdr *msg,
1718 	size_t len)
1719 {
1720 	int err;
1721 	struct vmci_datagram *dg;
1722 
1723 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1724 		return -EMSGSIZE;
1725 
1726 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1727 		return -EPERM;
1728 
1729 	/* Allocate a buffer for the user's message and our packet header. */
1730 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1731 	if (!dg)
1732 		return -ENOMEM;
1733 
1734 	memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1735 
1736 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1737 				   remote_addr->svm_port);
1738 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1739 				   vsk->local_addr.svm_port);
1740 	dg->payload_size = len;
1741 
1742 	err = vmci_datagram_send(dg);
1743 	kfree(dg);
1744 	if (err < 0)
1745 		return vmci_transport_error_to_vsock_error(err);
1746 
1747 	return err - sizeof(*dg);
1748 }
1749 
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1750 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1751 					struct msghdr *msg, size_t len,
1752 					int flags)
1753 {
1754 	int err;
1755 	int noblock;
1756 	struct vmci_datagram *dg;
1757 	size_t payload_len;
1758 	struct sk_buff *skb;
1759 
1760 	noblock = flags & MSG_DONTWAIT;
1761 
1762 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1763 		return -EOPNOTSUPP;
1764 
1765 	/* Retrieve the head sk_buff from the socket's receive queue. */
1766 	err = 0;
1767 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1768 	if (!skb)
1769 		return err;
1770 
1771 	dg = (struct vmci_datagram *)skb->data;
1772 	if (!dg)
1773 		/* err is 0, meaning we read zero bytes. */
1774 		goto out;
1775 
1776 	payload_len = dg->payload_size;
1777 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1778 	if (payload_len != skb->len - sizeof(*dg)) {
1779 		err = -EINVAL;
1780 		goto out;
1781 	}
1782 
1783 	if (payload_len > len) {
1784 		payload_len = len;
1785 		msg->msg_flags |= MSG_TRUNC;
1786 	}
1787 
1788 	/* Place the datagram payload in the user's iovec. */
1789 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1790 	if (err)
1791 		goto out;
1792 
1793 	if (msg->msg_name) {
1794 		/* Provide the address of the sender. */
1795 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1796 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1797 		msg->msg_namelen = sizeof(*vm_addr);
1798 	}
1799 	err = payload_len;
1800 
1801 out:
1802 	skb_free_datagram(&vsk->sk, skb);
1803 	return err;
1804 }
1805 
vmci_transport_dgram_allow(u32 cid,u32 port)1806 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1807 {
1808 	if (cid == VMADDR_CID_HYPERVISOR) {
1809 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1810 		 * state and are allowed.
1811 		 */
1812 		return port == VMCI_UNITY_PBRPC_REGISTER;
1813 	}
1814 
1815 	return true;
1816 }
1817 
vmci_transport_connect(struct vsock_sock * vsk)1818 static int vmci_transport_connect(struct vsock_sock *vsk)
1819 {
1820 	int err;
1821 	bool old_pkt_proto = false;
1822 	struct sock *sk = &vsk->sk;
1823 
1824 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1825 		old_pkt_proto) {
1826 		err = vmci_transport_send_conn_request(
1827 			sk, vmci_trans(vsk)->queue_pair_size);
1828 		if (err < 0) {
1829 			sk->sk_state = TCP_CLOSE;
1830 			return err;
1831 		}
1832 	} else {
1833 		int supported_proto_versions =
1834 			vmci_transport_new_proto_supported_versions();
1835 		err = vmci_transport_send_conn_request2(
1836 				sk, vmci_trans(vsk)->queue_pair_size,
1837 				supported_proto_versions);
1838 		if (err < 0) {
1839 			sk->sk_state = TCP_CLOSE;
1840 			return err;
1841 		}
1842 
1843 		vsk->sent_request = true;
1844 	}
1845 
1846 	return err;
1847 }
1848 
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1849 static ssize_t vmci_transport_stream_dequeue(
1850 	struct vsock_sock *vsk,
1851 	struct msghdr *msg,
1852 	size_t len,
1853 	int flags)
1854 {
1855 	if (flags & MSG_PEEK)
1856 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1857 	else
1858 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1859 }
1860 
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1861 static ssize_t vmci_transport_stream_enqueue(
1862 	struct vsock_sock *vsk,
1863 	struct msghdr *msg,
1864 	size_t len)
1865 {
1866 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1867 }
1868 
vmci_transport_stream_has_data(struct vsock_sock * vsk)1869 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1870 {
1871 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1872 }
1873 
vmci_transport_stream_has_space(struct vsock_sock * vsk)1874 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1875 {
1876 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1877 }
1878 
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1879 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1880 {
1881 	return vmci_trans(vsk)->consume_size;
1882 }
1883 
vmci_transport_stream_is_active(struct vsock_sock * vsk)1884 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1885 {
1886 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1887 }
1888 
vmci_transport_get_buffer_size(struct vsock_sock * vsk)1889 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1890 {
1891 	return vmci_trans(vsk)->queue_pair_size;
1892 }
1893 
vmci_transport_get_min_buffer_size(struct vsock_sock * vsk)1894 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1895 {
1896 	return vmci_trans(vsk)->queue_pair_min_size;
1897 }
1898 
vmci_transport_get_max_buffer_size(struct vsock_sock * vsk)1899 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1900 {
1901 	return vmci_trans(vsk)->queue_pair_max_size;
1902 }
1903 
vmci_transport_set_buffer_size(struct vsock_sock * vsk,u64 val)1904 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1905 {
1906 	if (val < vmci_trans(vsk)->queue_pair_min_size)
1907 		vmci_trans(vsk)->queue_pair_min_size = val;
1908 	if (val > vmci_trans(vsk)->queue_pair_max_size)
1909 		vmci_trans(vsk)->queue_pair_max_size = val;
1910 	vmci_trans(vsk)->queue_pair_size = val;
1911 }
1912 
vmci_transport_set_min_buffer_size(struct vsock_sock * vsk,u64 val)1913 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1914 					       u64 val)
1915 {
1916 	if (val > vmci_trans(vsk)->queue_pair_size)
1917 		vmci_trans(vsk)->queue_pair_size = val;
1918 	vmci_trans(vsk)->queue_pair_min_size = val;
1919 }
1920 
vmci_transport_set_max_buffer_size(struct vsock_sock * vsk,u64 val)1921 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1922 					       u64 val)
1923 {
1924 	if (val < vmci_trans(vsk)->queue_pair_size)
1925 		vmci_trans(vsk)->queue_pair_size = val;
1926 	vmci_trans(vsk)->queue_pair_max_size = val;
1927 }
1928 
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1929 static int vmci_transport_notify_poll_in(
1930 	struct vsock_sock *vsk,
1931 	size_t target,
1932 	bool *data_ready_now)
1933 {
1934 	return vmci_trans(vsk)->notify_ops->poll_in(
1935 			&vsk->sk, target, data_ready_now);
1936 }
1937 
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1938 static int vmci_transport_notify_poll_out(
1939 	struct vsock_sock *vsk,
1940 	size_t target,
1941 	bool *space_available_now)
1942 {
1943 	return vmci_trans(vsk)->notify_ops->poll_out(
1944 			&vsk->sk, target, space_available_now);
1945 }
1946 
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1947 static int vmci_transport_notify_recv_init(
1948 	struct vsock_sock *vsk,
1949 	size_t target,
1950 	struct vsock_transport_recv_notify_data *data)
1951 {
1952 	return vmci_trans(vsk)->notify_ops->recv_init(
1953 			&vsk->sk, target,
1954 			(struct vmci_transport_recv_notify_data *)data);
1955 }
1956 
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1957 static int vmci_transport_notify_recv_pre_block(
1958 	struct vsock_sock *vsk,
1959 	size_t target,
1960 	struct vsock_transport_recv_notify_data *data)
1961 {
1962 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1963 			&vsk->sk, target,
1964 			(struct vmci_transport_recv_notify_data *)data);
1965 }
1966 
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1967 static int vmci_transport_notify_recv_pre_dequeue(
1968 	struct vsock_sock *vsk,
1969 	size_t target,
1970 	struct vsock_transport_recv_notify_data *data)
1971 {
1972 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1973 			&vsk->sk, target,
1974 			(struct vmci_transport_recv_notify_data *)data);
1975 }
1976 
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1977 static int vmci_transport_notify_recv_post_dequeue(
1978 	struct vsock_sock *vsk,
1979 	size_t target,
1980 	ssize_t copied,
1981 	bool data_read,
1982 	struct vsock_transport_recv_notify_data *data)
1983 {
1984 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1985 			&vsk->sk, target, copied, data_read,
1986 			(struct vmci_transport_recv_notify_data *)data);
1987 }
1988 
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1989 static int vmci_transport_notify_send_init(
1990 	struct vsock_sock *vsk,
1991 	struct vsock_transport_send_notify_data *data)
1992 {
1993 	return vmci_trans(vsk)->notify_ops->send_init(
1994 			&vsk->sk,
1995 			(struct vmci_transport_send_notify_data *)data);
1996 }
1997 
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1998 static int vmci_transport_notify_send_pre_block(
1999 	struct vsock_sock *vsk,
2000 	struct vsock_transport_send_notify_data *data)
2001 {
2002 	return vmci_trans(vsk)->notify_ops->send_pre_block(
2003 			&vsk->sk,
2004 			(struct vmci_transport_send_notify_data *)data);
2005 }
2006 
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)2007 static int vmci_transport_notify_send_pre_enqueue(
2008 	struct vsock_sock *vsk,
2009 	struct vsock_transport_send_notify_data *data)
2010 {
2011 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2012 			&vsk->sk,
2013 			(struct vmci_transport_send_notify_data *)data);
2014 }
2015 
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)2016 static int vmci_transport_notify_send_post_enqueue(
2017 	struct vsock_sock *vsk,
2018 	ssize_t written,
2019 	struct vsock_transport_send_notify_data *data)
2020 {
2021 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2022 			&vsk->sk, written,
2023 			(struct vmci_transport_send_notify_data *)data);
2024 }
2025 
vmci_transport_old_proto_override(bool * old_pkt_proto)2026 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2027 {
2028 	if (PROTOCOL_OVERRIDE != -1) {
2029 		if (PROTOCOL_OVERRIDE == 0)
2030 			*old_pkt_proto = true;
2031 		else
2032 			*old_pkt_proto = false;
2033 
2034 		pr_info("Proto override in use\n");
2035 		return true;
2036 	}
2037 
2038 	return false;
2039 }
2040 
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)2041 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2042 						  u16 *proto,
2043 						  bool old_pkt_proto)
2044 {
2045 	struct vsock_sock *vsk = vsock_sk(sk);
2046 
2047 	if (old_pkt_proto) {
2048 		if (*proto != VSOCK_PROTO_INVALID) {
2049 			pr_err("Can't set both an old and new protocol\n");
2050 			return false;
2051 		}
2052 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2053 		goto exit;
2054 	}
2055 
2056 	switch (*proto) {
2057 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2058 		vmci_trans(vsk)->notify_ops =
2059 			&vmci_transport_notify_pkt_q_state_ops;
2060 		break;
2061 	default:
2062 		pr_err("Unknown notify protocol version\n");
2063 		return false;
2064 	}
2065 
2066 exit:
2067 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2068 	return true;
2069 }
2070 
vmci_transport_new_proto_supported_versions(void)2071 static u16 vmci_transport_new_proto_supported_versions(void)
2072 {
2073 	if (PROTOCOL_OVERRIDE != -1)
2074 		return PROTOCOL_OVERRIDE;
2075 
2076 	return VSOCK_PROTO_ALL_SUPPORTED;
2077 }
2078 
vmci_transport_get_local_cid(void)2079 static u32 vmci_transport_get_local_cid(void)
2080 {
2081 	return vmci_get_context_id();
2082 }
2083 
2084 static const struct vsock_transport vmci_transport = {
2085 	.init = vmci_transport_socket_init,
2086 	.destruct = vmci_transport_destruct,
2087 	.release = vmci_transport_release,
2088 	.connect = vmci_transport_connect,
2089 	.dgram_bind = vmci_transport_dgram_bind,
2090 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2091 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2092 	.dgram_allow = vmci_transport_dgram_allow,
2093 	.stream_dequeue = vmci_transport_stream_dequeue,
2094 	.stream_enqueue = vmci_transport_stream_enqueue,
2095 	.stream_has_data = vmci_transport_stream_has_data,
2096 	.stream_has_space = vmci_transport_stream_has_space,
2097 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2098 	.stream_is_active = vmci_transport_stream_is_active,
2099 	.stream_allow = vmci_transport_stream_allow,
2100 	.notify_poll_in = vmci_transport_notify_poll_in,
2101 	.notify_poll_out = vmci_transport_notify_poll_out,
2102 	.notify_recv_init = vmci_transport_notify_recv_init,
2103 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2104 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2105 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2106 	.notify_send_init = vmci_transport_notify_send_init,
2107 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2108 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2109 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2110 	.shutdown = vmci_transport_shutdown,
2111 	.set_buffer_size = vmci_transport_set_buffer_size,
2112 	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2113 	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2114 	.get_buffer_size = vmci_transport_get_buffer_size,
2115 	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2116 	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2117 	.get_local_cid = vmci_transport_get_local_cid,
2118 };
2119 
vmci_transport_init(void)2120 static int __init vmci_transport_init(void)
2121 {
2122 	int err;
2123 
2124 	/* Create the datagram handle that we will use to send and receive all
2125 	 * VSocket control messages for this context.
2126 	 */
2127 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2128 						 VMCI_FLAG_ANYCID_DG_HND,
2129 						 vmci_transport_recv_stream_cb,
2130 						 NULL,
2131 						 &vmci_transport_stream_handle);
2132 	if (err < VMCI_SUCCESS) {
2133 		pr_err("Unable to create datagram handle. (%d)\n", err);
2134 		return vmci_transport_error_to_vsock_error(err);
2135 	}
2136 
2137 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2138 				   vmci_transport_qp_resumed_cb,
2139 				   NULL, &vmci_transport_qp_resumed_sub_id);
2140 	if (err < VMCI_SUCCESS) {
2141 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2142 		err = vmci_transport_error_to_vsock_error(err);
2143 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2144 		goto err_destroy_stream_handle;
2145 	}
2146 
2147 	err = vsock_core_init(&vmci_transport);
2148 	if (err < 0)
2149 		goto err_unsubscribe;
2150 
2151 	return 0;
2152 
2153 err_unsubscribe:
2154 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2155 err_destroy_stream_handle:
2156 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2157 	return err;
2158 }
2159 module_init(vmci_transport_init);
2160 
vmci_transport_exit(void)2161 static void __exit vmci_transport_exit(void)
2162 {
2163 	cancel_work_sync(&vmci_transport_cleanup_work);
2164 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2165 
2166 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2167 		if (vmci_datagram_destroy_handle(
2168 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2169 			pr_err("Couldn't destroy datagram handle\n");
2170 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2171 	}
2172 
2173 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2174 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2175 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2176 	}
2177 
2178 	vsock_core_exit();
2179 }
2180 module_exit(vmci_transport_exit);
2181 
2182 MODULE_AUTHOR("VMware, Inc.");
2183 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2184 MODULE_VERSION("1.0.4.0-k");
2185 MODULE_LICENSE("GPL v2");
2186 MODULE_ALIAS("vmware_vsock");
2187 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2188