1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44 const struct vmci_event_data *ed,
45 void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49 struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51 struct sock *sk,
52 struct sock *pending,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55 struct sock *sk,
56 struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58 struct sock *sk,
59 struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61 struct sock *sk,
62 struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64 struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68 bool old_pkt_proto);
69
70 struct vmci_transport_recv_pkt_info {
71 struct work_struct work;
72 struct sock *sk;
73 struct vmci_transport_packet pkt;
74 };
75
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81 VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91 * to a control message.
92 */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96
vmci_transport_error_to_vsock_error(s32 vmci_error)97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 switch (vmci_error) {
100 case VMCI_ERROR_NO_MEM:
101 return -ENOMEM;
102 case VMCI_ERROR_DUPLICATE_ENTRY:
103 case VMCI_ERROR_ALREADY_EXISTS:
104 return -EADDRINUSE;
105 case VMCI_ERROR_NO_ACCESS:
106 return -EPERM;
107 case VMCI_ERROR_NO_RESOURCES:
108 return -ENOBUFS;
109 case VMCI_ERROR_INVALID_RESOURCE:
110 return -EHOSTUNREACH;
111 case VMCI_ERROR_INVALID_ARGS:
112 default:
113 break;
114 }
115 return -EINVAL;
116 }
117
vmci_transport_peer_rid(u32 peer_cid)118 static u32 vmci_transport_peer_rid(u32 peer_cid)
119 {
120 if (VMADDR_CID_HYPERVISOR == peer_cid)
121 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
122
123 return VMCI_TRANSPORT_PACKET_RID;
124 }
125
126 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)127 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
128 struct sockaddr_vm *src,
129 struct sockaddr_vm *dst,
130 u8 type,
131 u64 size,
132 u64 mode,
133 struct vmci_transport_waiting_info *wait,
134 u16 proto,
135 struct vmci_handle handle)
136 {
137 /* We register the stream control handler as an any cid handle so we
138 * must always send from a source address of VMADDR_CID_ANY
139 */
140 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
141 VMCI_TRANSPORT_PACKET_RID);
142 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
143 vmci_transport_peer_rid(dst->svm_cid));
144 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
145 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
146 pkt->type = type;
147 pkt->src_port = src->svm_port;
148 pkt->dst_port = dst->svm_port;
149 memset(&pkt->proto, 0, sizeof(pkt->proto));
150 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
151
152 switch (pkt->type) {
153 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
154 pkt->u.size = 0;
155 break;
156
157 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
158 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
159 pkt->u.size = size;
160 break;
161
162 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
163 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
164 pkt->u.handle = handle;
165 break;
166
167 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
168 case VMCI_TRANSPORT_PACKET_TYPE_READ:
169 case VMCI_TRANSPORT_PACKET_TYPE_RST:
170 pkt->u.size = 0;
171 break;
172
173 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
174 pkt->u.mode = mode;
175 break;
176
177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
178 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
179 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
180 break;
181
182 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
183 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
184 pkt->u.size = size;
185 pkt->proto = proto;
186 break;
187 }
188 }
189
190 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
192 struct sockaddr_vm *local,
193 struct sockaddr_vm *remote)
194 {
195 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
196 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
197 }
198
199 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
201 struct sockaddr_vm *src,
202 struct sockaddr_vm *dst,
203 enum vmci_transport_packet_type type,
204 u64 size,
205 u64 mode,
206 struct vmci_transport_waiting_info *wait,
207 u16 proto,
208 struct vmci_handle handle,
209 bool convert_error)
210 {
211 int err;
212
213 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
214 proto, handle);
215 err = vmci_datagram_send(&pkt->dg);
216 if (convert_error && (err < 0))
217 return vmci_transport_error_to_vsock_error(err);
218
219 return err;
220 }
221
222 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
224 enum vmci_transport_packet_type type,
225 u64 size,
226 u64 mode,
227 struct vmci_transport_waiting_info *wait,
228 struct vmci_handle handle)
229 {
230 struct vmci_transport_packet reply;
231 struct sockaddr_vm src, dst;
232
233 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
234 return 0;
235 } else {
236 vmci_transport_packet_get_addresses(pkt, &src, &dst);
237 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
238 type,
239 size, mode, wait,
240 VSOCK_PROTO_INVALID,
241 handle, true);
242 }
243 }
244
245 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst,
248 enum vmci_transport_packet_type type,
249 u64 size,
250 u64 mode,
251 struct vmci_transport_waiting_info *wait,
252 struct vmci_handle handle)
253 {
254 /* Note that it is safe to use a single packet across all CPUs since
255 * two tasklets of the same type are guaranteed to not ever run
256 * simultaneously. If that ever changes, or VMCI stops using tasklets,
257 * we can use per-cpu packets.
258 */
259 static struct vmci_transport_packet pkt;
260
261 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
262 size, mode, wait,
263 VSOCK_PROTO_INVALID, handle,
264 false);
265 }
266
267 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)268 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
269 struct sockaddr_vm *dst,
270 enum vmci_transport_packet_type type,
271 u64 size,
272 u64 mode,
273 struct vmci_transport_waiting_info *wait,
274 u16 proto,
275 struct vmci_handle handle)
276 {
277 struct vmci_transport_packet *pkt;
278 int err;
279
280 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
281 if (!pkt)
282 return -ENOMEM;
283
284 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
285 mode, wait, proto, handle,
286 true);
287 kfree(pkt);
288
289 return err;
290 }
291
292 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)293 vmci_transport_send_control_pkt(struct sock *sk,
294 enum vmci_transport_packet_type type,
295 u64 size,
296 u64 mode,
297 struct vmci_transport_waiting_info *wait,
298 u16 proto,
299 struct vmci_handle handle)
300 {
301 struct vsock_sock *vsk;
302
303 vsk = vsock_sk(sk);
304
305 if (!vsock_addr_bound(&vsk->local_addr))
306 return -EINVAL;
307
308 if (!vsock_addr_bound(&vsk->remote_addr))
309 return -EINVAL;
310
311 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
312 &vsk->remote_addr,
313 type, size, mode,
314 wait, proto, handle);
315 }
316
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)317 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
318 struct sockaddr_vm *src,
319 struct vmci_transport_packet *pkt)
320 {
321 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 return 0;
323 return vmci_transport_send_control_pkt_bh(
324 dst, src,
325 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
326 0, NULL, VMCI_INVALID_HANDLE);
327 }
328
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)329 static int vmci_transport_send_reset(struct sock *sk,
330 struct vmci_transport_packet *pkt)
331 {
332 struct sockaddr_vm *dst_ptr;
333 struct sockaddr_vm dst;
334 struct vsock_sock *vsk;
335
336 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
337 return 0;
338
339 vsk = vsock_sk(sk);
340
341 if (!vsock_addr_bound(&vsk->local_addr))
342 return -EINVAL;
343
344 if (vsock_addr_bound(&vsk->remote_addr)) {
345 dst_ptr = &vsk->remote_addr;
346 } else {
347 vsock_addr_init(&dst, pkt->dg.src.context,
348 pkt->src_port);
349 dst_ptr = &dst;
350 }
351 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
352 VMCI_TRANSPORT_PACKET_TYPE_RST,
353 0, 0, NULL, VSOCK_PROTO_INVALID,
354 VMCI_INVALID_HANDLE);
355 }
356
vmci_transport_send_negotiate(struct sock * sk,size_t size)357 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
358 {
359 return vmci_transport_send_control_pkt(
360 sk,
361 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
362 size, 0, NULL,
363 VSOCK_PROTO_INVALID,
364 VMCI_INVALID_HANDLE);
365 }
366
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)367 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
368 u16 version)
369 {
370 return vmci_transport_send_control_pkt(
371 sk,
372 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
373 size, 0, NULL, version,
374 VMCI_INVALID_HANDLE);
375 }
376
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)377 static int vmci_transport_send_qp_offer(struct sock *sk,
378 struct vmci_handle handle)
379 {
380 return vmci_transport_send_control_pkt(
381 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
382 0, NULL,
383 VSOCK_PROTO_INVALID, handle);
384 }
385
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)386 static int vmci_transport_send_attach(struct sock *sk,
387 struct vmci_handle handle)
388 {
389 return vmci_transport_send_control_pkt(
390 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
391 0, 0, NULL, VSOCK_PROTO_INVALID,
392 handle);
393 }
394
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)395 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
396 {
397 return vmci_transport_reply_control_pkt_fast(
398 pkt,
399 VMCI_TRANSPORT_PACKET_TYPE_RST,
400 0, 0, NULL,
401 VMCI_INVALID_HANDLE);
402 }
403
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)404 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
405 struct sockaddr_vm *src)
406 {
407 return vmci_transport_send_control_pkt_bh(
408 dst, src,
409 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
410 0, 0, NULL, VMCI_INVALID_HANDLE);
411 }
412
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)413 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
414 struct sockaddr_vm *src)
415 {
416 return vmci_transport_send_control_pkt_bh(
417 dst, src,
418 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
419 0, NULL, VMCI_INVALID_HANDLE);
420 }
421
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)422 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
423 struct sockaddr_vm *src)
424 {
425 return vmci_transport_send_control_pkt_bh(
426 dst, src,
427 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 0, NULL, VMCI_INVALID_HANDLE);
429 }
430
vmci_transport_send_wrote(struct sock * sk)431 int vmci_transport_send_wrote(struct sock *sk)
432 {
433 return vmci_transport_send_control_pkt(
434 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
435 0, NULL, VSOCK_PROTO_INVALID,
436 VMCI_INVALID_HANDLE);
437 }
438
vmci_transport_send_read(struct sock * sk)439 int vmci_transport_send_read(struct sock *sk)
440 {
441 return vmci_transport_send_control_pkt(
442 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
443 0, NULL, VSOCK_PROTO_INVALID,
444 VMCI_INVALID_HANDLE);
445 }
446
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)447 int vmci_transport_send_waiting_write(struct sock *sk,
448 struct vmci_transport_waiting_info *wait)
449 {
450 return vmci_transport_send_control_pkt(
451 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
452 0, 0, wait, VSOCK_PROTO_INVALID,
453 VMCI_INVALID_HANDLE);
454 }
455
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)456 int vmci_transport_send_waiting_read(struct sock *sk,
457 struct vmci_transport_waiting_info *wait)
458 {
459 return vmci_transport_send_control_pkt(
460 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
461 0, 0, wait, VSOCK_PROTO_INVALID,
462 VMCI_INVALID_HANDLE);
463 }
464
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)465 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
466 {
467 return vmci_transport_send_control_pkt(
468 &vsk->sk,
469 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
470 0, mode, NULL,
471 VSOCK_PROTO_INVALID,
472 VMCI_INVALID_HANDLE);
473 }
474
vmci_transport_send_conn_request(struct sock * sk,size_t size)475 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
476 {
477 return vmci_transport_send_control_pkt(sk,
478 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
479 size, 0, NULL,
480 VSOCK_PROTO_INVALID,
481 VMCI_INVALID_HANDLE);
482 }
483
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)484 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
485 u16 version)
486 {
487 return vmci_transport_send_control_pkt(
488 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
489 size, 0, NULL, version,
490 VMCI_INVALID_HANDLE);
491 }
492
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)493 static struct sock *vmci_transport_get_pending(
494 struct sock *listener,
495 struct vmci_transport_packet *pkt)
496 {
497 struct vsock_sock *vlistener;
498 struct vsock_sock *vpending;
499 struct sock *pending;
500 struct sockaddr_vm src;
501
502 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
503
504 vlistener = vsock_sk(listener);
505
506 list_for_each_entry(vpending, &vlistener->pending_links,
507 pending_links) {
508 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
509 pkt->dst_port == vpending->local_addr.svm_port) {
510 pending = sk_vsock(vpending);
511 sock_hold(pending);
512 goto found;
513 }
514 }
515
516 pending = NULL;
517 found:
518 return pending;
519
520 }
521
vmci_transport_release_pending(struct sock * pending)522 static void vmci_transport_release_pending(struct sock *pending)
523 {
524 sock_put(pending);
525 }
526
527 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
528 * trusted sockets 2) sockets from applications running as the same user as the
529 * VM (this is only true for the host side and only when using hosted products)
530 */
531
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)532 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
533 {
534 return vsock->trusted ||
535 vmci_is_context_owner(peer_cid, vsock->owner->uid);
536 }
537
538 /* We allow sending datagrams to and receiving datagrams from a restricted VM
539 * only if it is trusted as described in vmci_transport_is_trusted.
540 */
541
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)542 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
543 {
544 if (VMADDR_CID_HYPERVISOR == peer_cid)
545 return true;
546
547 if (vsock->cached_peer != peer_cid) {
548 vsock->cached_peer = peer_cid;
549 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
550 (vmci_context_get_priv_flags(peer_cid) &
551 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
552 vsock->cached_peer_allow_dgram = false;
553 } else {
554 vsock->cached_peer_allow_dgram = true;
555 }
556 }
557
558 return vsock->cached_peer_allow_dgram;
559 }
560
561 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)562 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
563 struct vmci_handle *handle,
564 u64 produce_size,
565 u64 consume_size,
566 u32 peer, u32 flags, bool trusted)
567 {
568 int err = 0;
569
570 if (trusted) {
571 /* Try to allocate our queue pair as trusted. This will only
572 * work if vsock is running in the host.
573 */
574
575 err = vmci_qpair_alloc(qpair, handle, produce_size,
576 consume_size,
577 peer, flags,
578 VMCI_PRIVILEGE_FLAG_TRUSTED);
579 if (err != VMCI_ERROR_NO_ACCESS)
580 goto out;
581
582 }
583
584 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
585 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
586 out:
587 if (err < 0) {
588 pr_err("Could not attach to queue pair with %d\n",
589 err);
590 err = vmci_transport_error_to_vsock_error(err);
591 }
592
593 return err;
594 }
595
596 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)597 vmci_transport_datagram_create_hnd(u32 resource_id,
598 u32 flags,
599 vmci_datagram_recv_cb recv_cb,
600 void *client_data,
601 struct vmci_handle *out_handle)
602 {
603 int err = 0;
604
605 /* Try to allocate our datagram handler as trusted. This will only work
606 * if vsock is running in the host.
607 */
608
609 err = vmci_datagram_create_handle_priv(resource_id, flags,
610 VMCI_PRIVILEGE_FLAG_TRUSTED,
611 recv_cb,
612 client_data, out_handle);
613
614 if (err == VMCI_ERROR_NO_ACCESS)
615 err = vmci_datagram_create_handle(resource_id, flags,
616 recv_cb, client_data,
617 out_handle);
618
619 return err;
620 }
621
622 /* This is invoked as part of a tasklet that's scheduled when the VMCI
623 * interrupt fires. This is run in bottom-half context and if it ever needs to
624 * sleep it should defer that work to a work queue.
625 */
626
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)627 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
628 {
629 struct sock *sk;
630 size_t size;
631 struct sk_buff *skb;
632 struct vsock_sock *vsk;
633
634 sk = (struct sock *)data;
635
636 /* This handler is privileged when this module is running on the host.
637 * We will get datagrams from all endpoints (even VMs that are in a
638 * restricted context). If we get one from a restricted context then
639 * the destination socket must be trusted.
640 *
641 * NOTE: We access the socket struct without holding the lock here.
642 * This is ok because the field we are interested is never modified
643 * outside of the create and destruct socket functions.
644 */
645 vsk = vsock_sk(sk);
646 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
647 return VMCI_ERROR_NO_ACCESS;
648
649 size = VMCI_DG_SIZE(dg);
650
651 /* Attach the packet to the socket's receive queue as an sk_buff. */
652 skb = alloc_skb(size, GFP_ATOMIC);
653 if (!skb)
654 return VMCI_ERROR_NO_MEM;
655
656 /* sk_receive_skb() will do a sock_put(), so hold here. */
657 sock_hold(sk);
658 skb_put(skb, size);
659 memcpy(skb->data, dg, size);
660 sk_receive_skb(sk, skb, 0);
661
662 return VMCI_SUCCESS;
663 }
664
vmci_transport_stream_allow(u32 cid,u32 port)665 static bool vmci_transport_stream_allow(u32 cid, u32 port)
666 {
667 static const u32 non_socket_contexts[] = {
668 VMADDR_CID_RESERVED,
669 };
670 int i;
671
672 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
673
674 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
675 if (cid == non_socket_contexts[i])
676 return false;
677 }
678
679 return true;
680 }
681
682 /* This is invoked as part of a tasklet that's scheduled when the VMCI
683 * interrupt fires. This is run in bottom-half context but it defers most of
684 * its work to the packet handling work queue.
685 */
686
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)687 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
688 {
689 struct sock *sk;
690 struct sockaddr_vm dst;
691 struct sockaddr_vm src;
692 struct vmci_transport_packet *pkt;
693 struct vsock_sock *vsk;
694 bool bh_process_pkt;
695 int err;
696
697 sk = NULL;
698 err = VMCI_SUCCESS;
699 bh_process_pkt = false;
700
701 /* Ignore incoming packets from contexts without sockets, or resources
702 * that aren't vsock implementations.
703 */
704
705 if (!vmci_transport_stream_allow(dg->src.context, -1)
706 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
707 return VMCI_ERROR_NO_ACCESS;
708
709 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
710 /* Drop datagrams that do not contain full VSock packets. */
711 return VMCI_ERROR_INVALID_ARGS;
712
713 pkt = (struct vmci_transport_packet *)dg;
714
715 /* Find the socket that should handle this packet. First we look for a
716 * connected socket and if there is none we look for a socket bound to
717 * the destintation address.
718 */
719 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
720 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
721
722 sk = vsock_find_connected_socket(&src, &dst);
723 if (!sk) {
724 sk = vsock_find_bound_socket(&dst);
725 if (!sk) {
726 /* We could not find a socket for this specified
727 * address. If this packet is a RST, we just drop it.
728 * If it is another packet, we send a RST. Note that
729 * we do not send a RST reply to RSTs so that we do not
730 * continually send RSTs between two endpoints.
731 *
732 * Note that since this is a reply, dst is src and src
733 * is dst.
734 */
735 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
736 pr_err("unable to send reset\n");
737
738 err = VMCI_ERROR_NOT_FOUND;
739 goto out;
740 }
741 }
742
743 /* If the received packet type is beyond all types known to this
744 * implementation, reply with an invalid message. Hopefully this will
745 * help when implementing backwards compatibility in the future.
746 */
747 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
748 vmci_transport_send_invalid_bh(&dst, &src);
749 err = VMCI_ERROR_INVALID_ARGS;
750 goto out;
751 }
752
753 /* This handler is privileged when this module is running on the host.
754 * We will get datagram connect requests from all endpoints (even VMs
755 * that are in a restricted context). If we get one from a restricted
756 * context then the destination socket must be trusted.
757 *
758 * NOTE: We access the socket struct without holding the lock here.
759 * This is ok because the field we are interested is never modified
760 * outside of the create and destruct socket functions.
761 */
762 vsk = vsock_sk(sk);
763 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
764 err = VMCI_ERROR_NO_ACCESS;
765 goto out;
766 }
767
768 /* We do most everything in a work queue, but let's fast path the
769 * notification of reads and writes to help data transfer performance.
770 * We can only do this if there is no process context code executing
771 * for this socket since that may change the state.
772 */
773 bh_lock_sock(sk);
774
775 if (!sock_owned_by_user(sk)) {
776 /* The local context ID may be out of date, update it. */
777 vsk->local_addr.svm_cid = dst.svm_cid;
778
779 if (sk->sk_state == TCP_ESTABLISHED)
780 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
781 sk, pkt, true, &dst, &src,
782 &bh_process_pkt);
783 }
784
785 bh_unlock_sock(sk);
786
787 if (!bh_process_pkt) {
788 struct vmci_transport_recv_pkt_info *recv_pkt_info;
789
790 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
791 if (!recv_pkt_info) {
792 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
793 pr_err("unable to send reset\n");
794
795 err = VMCI_ERROR_NO_MEM;
796 goto out;
797 }
798
799 recv_pkt_info->sk = sk;
800 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
801 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
802
803 schedule_work(&recv_pkt_info->work);
804 /* Clear sk so that the reference count incremented by one of
805 * the Find functions above is not decremented below. We need
806 * that reference count for the packet handler we've scheduled
807 * to run.
808 */
809 sk = NULL;
810 }
811
812 out:
813 if (sk)
814 sock_put(sk);
815
816 return err;
817 }
818
vmci_transport_handle_detach(struct sock * sk)819 static void vmci_transport_handle_detach(struct sock *sk)
820 {
821 struct vsock_sock *vsk;
822
823 vsk = vsock_sk(sk);
824 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
825 sock_set_flag(sk, SOCK_DONE);
826
827 /* On a detach the peer will not be sending or receiving
828 * anymore.
829 */
830 vsk->peer_shutdown = SHUTDOWN_MASK;
831
832 /* We should not be sending anymore since the peer won't be
833 * there to receive, but we can still receive if there is data
834 * left in our consume queue.
835 */
836 if (vsock_stream_has_data(vsk) <= 0) {
837 sk->sk_state = TCP_CLOSE;
838
839 if (sk->sk_state == TCP_SYN_SENT) {
840 /* The peer may detach from a queue pair while
841 * we are still in the connecting state, i.e.,
842 * if the peer VM is killed after attaching to
843 * a queue pair, but before we complete the
844 * handshake. In that case, we treat the detach
845 * event like a reset.
846 */
847
848 sk->sk_err = ECONNRESET;
849 sk->sk_error_report(sk);
850 return;
851 }
852 }
853 sk->sk_state_change(sk);
854 }
855 }
856
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)857 static void vmci_transport_peer_detach_cb(u32 sub_id,
858 const struct vmci_event_data *e_data,
859 void *client_data)
860 {
861 struct vmci_transport *trans = client_data;
862 const struct vmci_event_payload_qp *e_payload;
863
864 e_payload = vmci_event_data_const_payload(e_data);
865
866 /* XXX This is lame, we should provide a way to lookup sockets by
867 * qp_handle.
868 */
869 if (vmci_handle_is_invalid(e_payload->handle) ||
870 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
871 return;
872
873 /* We don't ask for delayed CBs when we subscribe to this event (we
874 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
875 * guarantees in that case about what context we might be running in,
876 * so it could be BH or process, blockable or non-blockable. So we
877 * need to account for all possible contexts here.
878 */
879 spin_lock_bh(&trans->lock);
880 if (!trans->sk)
881 goto out;
882
883 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
884 * where trans->sk isn't locked.
885 */
886 bh_lock_sock(trans->sk);
887
888 vmci_transport_handle_detach(trans->sk);
889
890 bh_unlock_sock(trans->sk);
891 out:
892 spin_unlock_bh(&trans->lock);
893 }
894
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)895 static void vmci_transport_qp_resumed_cb(u32 sub_id,
896 const struct vmci_event_data *e_data,
897 void *client_data)
898 {
899 vsock_for_each_connected_socket(vmci_transport_handle_detach);
900 }
901
vmci_transport_recv_pkt_work(struct work_struct * work)902 static void vmci_transport_recv_pkt_work(struct work_struct *work)
903 {
904 struct vmci_transport_recv_pkt_info *recv_pkt_info;
905 struct vmci_transport_packet *pkt;
906 struct sock *sk;
907
908 recv_pkt_info =
909 container_of(work, struct vmci_transport_recv_pkt_info, work);
910 sk = recv_pkt_info->sk;
911 pkt = &recv_pkt_info->pkt;
912
913 lock_sock(sk);
914
915 /* The local context ID may be out of date. */
916 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
917
918 switch (sk->sk_state) {
919 case TCP_LISTEN:
920 vmci_transport_recv_listen(sk, pkt);
921 break;
922 case TCP_SYN_SENT:
923 /* Processing of pending connections for servers goes through
924 * the listening socket, so see vmci_transport_recv_listen()
925 * for that path.
926 */
927 vmci_transport_recv_connecting_client(sk, pkt);
928 break;
929 case TCP_ESTABLISHED:
930 vmci_transport_recv_connected(sk, pkt);
931 break;
932 default:
933 /* Because this function does not run in the same context as
934 * vmci_transport_recv_stream_cb it is possible that the
935 * socket has closed. We need to let the other side know or it
936 * could be sitting in a connect and hang forever. Send a
937 * reset to prevent that.
938 */
939 vmci_transport_send_reset(sk, pkt);
940 break;
941 }
942
943 release_sock(sk);
944 kfree(recv_pkt_info);
945 /* Release reference obtained in the stream callback when we fetched
946 * this socket out of the bound or connected list.
947 */
948 sock_put(sk);
949 }
950
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)951 static int vmci_transport_recv_listen(struct sock *sk,
952 struct vmci_transport_packet *pkt)
953 {
954 struct sock *pending;
955 struct vsock_sock *vpending;
956 int err;
957 u64 qp_size;
958 bool old_request = false;
959 bool old_pkt_proto = false;
960
961 err = 0;
962
963 /* Because we are in the listen state, we could be receiving a packet
964 * for ourself or any previous connection requests that we received.
965 * If it's the latter, we try to find a socket in our list of pending
966 * connections and, if we do, call the appropriate handler for the
967 * state that that socket is in. Otherwise we try to service the
968 * connection request.
969 */
970 pending = vmci_transport_get_pending(sk, pkt);
971 if (pending) {
972 lock_sock(pending);
973
974 /* The local context ID may be out of date. */
975 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
976
977 switch (pending->sk_state) {
978 case TCP_SYN_SENT:
979 err = vmci_transport_recv_connecting_server(sk,
980 pending,
981 pkt);
982 break;
983 default:
984 vmci_transport_send_reset(pending, pkt);
985 err = -EINVAL;
986 }
987
988 if (err < 0)
989 vsock_remove_pending(sk, pending);
990
991 release_sock(pending);
992 vmci_transport_release_pending(pending);
993
994 return err;
995 }
996
997 /* The listen state only accepts connection requests. Reply with a
998 * reset unless we received a reset.
999 */
1000
1001 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1002 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1003 vmci_transport_reply_reset(pkt);
1004 return -EINVAL;
1005 }
1006
1007 if (pkt->u.size == 0) {
1008 vmci_transport_reply_reset(pkt);
1009 return -EINVAL;
1010 }
1011
1012 /* If this socket can't accommodate this connection request, we send a
1013 * reset. Otherwise we create and initialize a child socket and reply
1014 * with a connection negotiation.
1015 */
1016 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1017 vmci_transport_reply_reset(pkt);
1018 return -ECONNREFUSED;
1019 }
1020
1021 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1022 sk->sk_type, 0);
1023 if (!pending) {
1024 vmci_transport_send_reset(sk, pkt);
1025 return -ENOMEM;
1026 }
1027
1028 vpending = vsock_sk(pending);
1029
1030 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1031 pkt->dst_port);
1032 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1033 pkt->src_port);
1034
1035 /* If the proposed size fits within our min/max, accept it. Otherwise
1036 * propose our own size.
1037 */
1038 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1039 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1040 qp_size = pkt->u.size;
1041 } else {
1042 qp_size = vmci_trans(vpending)->queue_pair_size;
1043 }
1044
1045 /* Figure out if we are using old or new requests based on the
1046 * overrides pkt types sent by our peer.
1047 */
1048 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1049 old_request = old_pkt_proto;
1050 } else {
1051 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1052 old_request = true;
1053 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1054 old_request = false;
1055
1056 }
1057
1058 if (old_request) {
1059 /* Handle a REQUEST (or override) */
1060 u16 version = VSOCK_PROTO_INVALID;
1061 if (vmci_transport_proto_to_notify_struct(
1062 pending, &version, true))
1063 err = vmci_transport_send_negotiate(pending, qp_size);
1064 else
1065 err = -EINVAL;
1066
1067 } else {
1068 /* Handle a REQUEST2 (or override) */
1069 int proto_int = pkt->proto;
1070 int pos;
1071 u16 active_proto_version = 0;
1072
1073 /* The list of possible protocols is the intersection of all
1074 * protocols the client supports ... plus all the protocols we
1075 * support.
1076 */
1077 proto_int &= vmci_transport_new_proto_supported_versions();
1078
1079 /* We choose the highest possible protocol version and use that
1080 * one.
1081 */
1082 pos = fls(proto_int);
1083 if (pos) {
1084 active_proto_version = (1 << (pos - 1));
1085 if (vmci_transport_proto_to_notify_struct(
1086 pending, &active_proto_version, false))
1087 err = vmci_transport_send_negotiate2(pending,
1088 qp_size,
1089 active_proto_version);
1090 else
1091 err = -EINVAL;
1092
1093 } else {
1094 err = -EINVAL;
1095 }
1096 }
1097
1098 if (err < 0) {
1099 vmci_transport_send_reset(sk, pkt);
1100 sock_put(pending);
1101 err = vmci_transport_error_to_vsock_error(err);
1102 goto out;
1103 }
1104
1105 vsock_add_pending(sk, pending);
1106 sk->sk_ack_backlog++;
1107
1108 pending->sk_state = TCP_SYN_SENT;
1109 vmci_trans(vpending)->produce_size =
1110 vmci_trans(vpending)->consume_size = qp_size;
1111 vmci_trans(vpending)->queue_pair_size = qp_size;
1112
1113 vmci_trans(vpending)->notify_ops->process_request(pending);
1114
1115 /* We might never receive another message for this socket and it's not
1116 * connected to any process, so we have to ensure it gets cleaned up
1117 * ourself. Our delayed work function will take care of that. Note
1118 * that we do not ever cancel this function since we have few
1119 * guarantees about its state when calling cancel_delayed_work().
1120 * Instead we hold a reference on the socket for that function and make
1121 * it capable of handling cases where it needs to do nothing but
1122 * release that reference.
1123 */
1124 vpending->listener = sk;
1125 sock_hold(sk);
1126 sock_hold(pending);
1127 schedule_delayed_work(&vpending->pending_work, HZ);
1128
1129 out:
1130 return err;
1131 }
1132
1133 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1134 vmci_transport_recv_connecting_server(struct sock *listener,
1135 struct sock *pending,
1136 struct vmci_transport_packet *pkt)
1137 {
1138 struct vsock_sock *vpending;
1139 struct vmci_handle handle;
1140 struct vmci_qp *qpair;
1141 bool is_local;
1142 u32 flags;
1143 u32 detach_sub_id;
1144 int err;
1145 int skerr;
1146
1147 vpending = vsock_sk(pending);
1148 detach_sub_id = VMCI_INVALID_ID;
1149
1150 switch (pkt->type) {
1151 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1152 if (vmci_handle_is_invalid(pkt->u.handle)) {
1153 vmci_transport_send_reset(pending, pkt);
1154 skerr = EPROTO;
1155 err = -EINVAL;
1156 goto destroy;
1157 }
1158 break;
1159 default:
1160 /* Close and cleanup the connection. */
1161 vmci_transport_send_reset(pending, pkt);
1162 skerr = EPROTO;
1163 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1164 goto destroy;
1165 }
1166
1167 /* In order to complete the connection we need to attach to the offered
1168 * queue pair and send an attach notification. We also subscribe to the
1169 * detach event so we know when our peer goes away, and we do that
1170 * before attaching so we don't miss an event. If all this succeeds,
1171 * we update our state and wakeup anything waiting in accept() for a
1172 * connection.
1173 */
1174
1175 /* We don't care about attach since we ensure the other side has
1176 * attached by specifying the ATTACH_ONLY flag below.
1177 */
1178 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1179 vmci_transport_peer_detach_cb,
1180 vmci_trans(vpending), &detach_sub_id);
1181 if (err < VMCI_SUCCESS) {
1182 vmci_transport_send_reset(pending, pkt);
1183 err = vmci_transport_error_to_vsock_error(err);
1184 skerr = -err;
1185 goto destroy;
1186 }
1187
1188 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1189
1190 /* Now attach to the queue pair the client created. */
1191 handle = pkt->u.handle;
1192
1193 /* vpending->local_addr always has a context id so we do not need to
1194 * worry about VMADDR_CID_ANY in this case.
1195 */
1196 is_local =
1197 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1198 flags = VMCI_QPFLAG_ATTACH_ONLY;
1199 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1200
1201 err = vmci_transport_queue_pair_alloc(
1202 &qpair,
1203 &handle,
1204 vmci_trans(vpending)->produce_size,
1205 vmci_trans(vpending)->consume_size,
1206 pkt->dg.src.context,
1207 flags,
1208 vmci_transport_is_trusted(
1209 vpending,
1210 vpending->remote_addr.svm_cid));
1211 if (err < 0) {
1212 vmci_transport_send_reset(pending, pkt);
1213 skerr = -err;
1214 goto destroy;
1215 }
1216
1217 vmci_trans(vpending)->qp_handle = handle;
1218 vmci_trans(vpending)->qpair = qpair;
1219
1220 /* When we send the attach message, we must be ready to handle incoming
1221 * control messages on the newly connected socket. So we move the
1222 * pending socket to the connected state before sending the attach
1223 * message. Otherwise, an incoming packet triggered by the attach being
1224 * received by the peer may be processed concurrently with what happens
1225 * below after sending the attach message, and that incoming packet
1226 * will find the listening socket instead of the (currently) pending
1227 * socket. Note that enqueueing the socket increments the reference
1228 * count, so even if a reset comes before the connection is accepted,
1229 * the socket will be valid until it is removed from the queue.
1230 *
1231 * If we fail sending the attach below, we remove the socket from the
1232 * connected list and move the socket to TCP_CLOSE before
1233 * releasing the lock, so a pending slow path processing of an incoming
1234 * packet will not see the socket in the connected state in that case.
1235 */
1236 pending->sk_state = TCP_ESTABLISHED;
1237
1238 vsock_insert_connected(vpending);
1239
1240 /* Notify our peer of our attach. */
1241 err = vmci_transport_send_attach(pending, handle);
1242 if (err < 0) {
1243 vsock_remove_connected(vpending);
1244 pr_err("Could not send attach\n");
1245 vmci_transport_send_reset(pending, pkt);
1246 err = vmci_transport_error_to_vsock_error(err);
1247 skerr = -err;
1248 goto destroy;
1249 }
1250
1251 /* We have a connection. Move the now connected socket from the
1252 * listener's pending list to the accept queue so callers of accept()
1253 * can find it.
1254 */
1255 vsock_remove_pending(listener, pending);
1256 vsock_enqueue_accept(listener, pending);
1257
1258 /* Callers of accept() will be be waiting on the listening socket, not
1259 * the pending socket.
1260 */
1261 listener->sk_data_ready(listener);
1262
1263 return 0;
1264
1265 destroy:
1266 pending->sk_err = skerr;
1267 pending->sk_state = TCP_CLOSE;
1268 /* As long as we drop our reference, all necessary cleanup will handle
1269 * when the cleanup function drops its reference and our destruct
1270 * implementation is called. Note that since the listen handler will
1271 * remove pending from the pending list upon our failure, the cleanup
1272 * function won't drop the additional reference, which is why we do it
1273 * here.
1274 */
1275 sock_put(pending);
1276
1277 return err;
1278 }
1279
1280 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1281 vmci_transport_recv_connecting_client(struct sock *sk,
1282 struct vmci_transport_packet *pkt)
1283 {
1284 struct vsock_sock *vsk;
1285 int err;
1286 int skerr;
1287
1288 vsk = vsock_sk(sk);
1289
1290 switch (pkt->type) {
1291 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1292 if (vmci_handle_is_invalid(pkt->u.handle) ||
1293 !vmci_handle_is_equal(pkt->u.handle,
1294 vmci_trans(vsk)->qp_handle)) {
1295 skerr = EPROTO;
1296 err = -EINVAL;
1297 goto destroy;
1298 }
1299
1300 /* Signify the socket is connected and wakeup the waiter in
1301 * connect(). Also place the socket in the connected table for
1302 * accounting (it can already be found since it's in the bound
1303 * table).
1304 */
1305 sk->sk_state = TCP_ESTABLISHED;
1306 sk->sk_socket->state = SS_CONNECTED;
1307 vsock_insert_connected(vsk);
1308 sk->sk_state_change(sk);
1309
1310 break;
1311 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1312 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1313 if (pkt->u.size == 0
1314 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1315 || pkt->src_port != vsk->remote_addr.svm_port
1316 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1317 || vmci_trans(vsk)->qpair
1318 || vmci_trans(vsk)->produce_size != 0
1319 || vmci_trans(vsk)->consume_size != 0
1320 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1321 skerr = EPROTO;
1322 err = -EINVAL;
1323
1324 goto destroy;
1325 }
1326
1327 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1328 if (err) {
1329 skerr = -err;
1330 goto destroy;
1331 }
1332
1333 break;
1334 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1335 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1336 if (err) {
1337 skerr = -err;
1338 goto destroy;
1339 }
1340
1341 break;
1342 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1343 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1344 * continue processing here after they sent an INVALID packet.
1345 * This meant that we got a RST after the INVALID. We ignore a
1346 * RST after an INVALID. The common code doesn't send the RST
1347 * ... so we can hang if an old version of the common code
1348 * fails between getting a REQUEST and sending an OFFER back.
1349 * Not much we can do about it... except hope that it doesn't
1350 * happen.
1351 */
1352 if (vsk->ignore_connecting_rst) {
1353 vsk->ignore_connecting_rst = false;
1354 } else {
1355 skerr = ECONNRESET;
1356 err = 0;
1357 goto destroy;
1358 }
1359
1360 break;
1361 default:
1362 /* Close and cleanup the connection. */
1363 skerr = EPROTO;
1364 err = -EINVAL;
1365 goto destroy;
1366 }
1367
1368 return 0;
1369
1370 destroy:
1371 vmci_transport_send_reset(sk, pkt);
1372
1373 sk->sk_state = TCP_CLOSE;
1374 sk->sk_err = skerr;
1375 sk->sk_error_report(sk);
1376 return err;
1377 }
1378
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1379 static int vmci_transport_recv_connecting_client_negotiate(
1380 struct sock *sk,
1381 struct vmci_transport_packet *pkt)
1382 {
1383 int err;
1384 struct vsock_sock *vsk;
1385 struct vmci_handle handle;
1386 struct vmci_qp *qpair;
1387 u32 detach_sub_id;
1388 bool is_local;
1389 u32 flags;
1390 bool old_proto = true;
1391 bool old_pkt_proto;
1392 u16 version;
1393
1394 vsk = vsock_sk(sk);
1395 handle = VMCI_INVALID_HANDLE;
1396 detach_sub_id = VMCI_INVALID_ID;
1397
1398 /* If we have gotten here then we should be past the point where old
1399 * linux vsock could have sent the bogus rst.
1400 */
1401 vsk->sent_request = false;
1402 vsk->ignore_connecting_rst = false;
1403
1404 /* Verify that we're OK with the proposed queue pair size */
1405 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1406 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1407 err = -EINVAL;
1408 goto destroy;
1409 }
1410
1411 /* At this point we know the CID the peer is using to talk to us. */
1412
1413 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1414 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1415
1416 /* Setup the notify ops to be the highest supported version that both
1417 * the server and the client support.
1418 */
1419
1420 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1421 old_proto = old_pkt_proto;
1422 } else {
1423 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1424 old_proto = true;
1425 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1426 old_proto = false;
1427
1428 }
1429
1430 if (old_proto)
1431 version = VSOCK_PROTO_INVALID;
1432 else
1433 version = pkt->proto;
1434
1435 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1436 err = -EINVAL;
1437 goto destroy;
1438 }
1439
1440 /* Subscribe to detach events first.
1441 *
1442 * XXX We attach once for each queue pair created for now so it is easy
1443 * to find the socket (it's provided), but later we should only
1444 * subscribe once and add a way to lookup sockets by queue pair handle.
1445 */
1446 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1447 vmci_transport_peer_detach_cb,
1448 vmci_trans(vsk), &detach_sub_id);
1449 if (err < VMCI_SUCCESS) {
1450 err = vmci_transport_error_to_vsock_error(err);
1451 goto destroy;
1452 }
1453
1454 /* Make VMCI select the handle for us. */
1455 handle = VMCI_INVALID_HANDLE;
1456 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1457 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1458
1459 err = vmci_transport_queue_pair_alloc(&qpair,
1460 &handle,
1461 pkt->u.size,
1462 pkt->u.size,
1463 vsk->remote_addr.svm_cid,
1464 flags,
1465 vmci_transport_is_trusted(
1466 vsk,
1467 vsk->
1468 remote_addr.svm_cid));
1469 if (err < 0)
1470 goto destroy;
1471
1472 err = vmci_transport_send_qp_offer(sk, handle);
1473 if (err < 0) {
1474 err = vmci_transport_error_to_vsock_error(err);
1475 goto destroy;
1476 }
1477
1478 vmci_trans(vsk)->qp_handle = handle;
1479 vmci_trans(vsk)->qpair = qpair;
1480
1481 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1482 pkt->u.size;
1483
1484 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1485
1486 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1487
1488 return 0;
1489
1490 destroy:
1491 if (detach_sub_id != VMCI_INVALID_ID)
1492 vmci_event_unsubscribe(detach_sub_id);
1493
1494 if (!vmci_handle_is_invalid(handle))
1495 vmci_qpair_detach(&qpair);
1496
1497 return err;
1498 }
1499
1500 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1501 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1502 struct vmci_transport_packet *pkt)
1503 {
1504 int err = 0;
1505 struct vsock_sock *vsk = vsock_sk(sk);
1506
1507 if (vsk->sent_request) {
1508 vsk->sent_request = false;
1509 vsk->ignore_connecting_rst = true;
1510
1511 err = vmci_transport_send_conn_request(
1512 sk, vmci_trans(vsk)->queue_pair_size);
1513 if (err < 0)
1514 err = vmci_transport_error_to_vsock_error(err);
1515 else
1516 err = 0;
1517
1518 }
1519
1520 return err;
1521 }
1522
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1523 static int vmci_transport_recv_connected(struct sock *sk,
1524 struct vmci_transport_packet *pkt)
1525 {
1526 struct vsock_sock *vsk;
1527 bool pkt_processed = false;
1528
1529 /* In cases where we are closing the connection, it's sufficient to
1530 * mark the state change (and maybe error) and wake up any waiting
1531 * threads. Since this is a connected socket, it's owned by a user
1532 * process and will be cleaned up when the failure is passed back on
1533 * the current or next system call. Our system call implementations
1534 * must therefore check for error and state changes on entry and when
1535 * being awoken.
1536 */
1537 switch (pkt->type) {
1538 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1539 if (pkt->u.mode) {
1540 vsk = vsock_sk(sk);
1541
1542 vsk->peer_shutdown |= pkt->u.mode;
1543 sk->sk_state_change(sk);
1544 }
1545 break;
1546
1547 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1548 vsk = vsock_sk(sk);
1549 /* It is possible that we sent our peer a message (e.g a
1550 * WAITING_READ) right before we got notified that the peer had
1551 * detached. If that happens then we can get a RST pkt back
1552 * from our peer even though there is data available for us to
1553 * read. In that case, don't shutdown the socket completely but
1554 * instead allow the local client to finish reading data off
1555 * the queuepair. Always treat a RST pkt in connected mode like
1556 * a clean shutdown.
1557 */
1558 sock_set_flag(sk, SOCK_DONE);
1559 vsk->peer_shutdown = SHUTDOWN_MASK;
1560 if (vsock_stream_has_data(vsk) <= 0)
1561 sk->sk_state = TCP_CLOSING;
1562
1563 sk->sk_state_change(sk);
1564 break;
1565
1566 default:
1567 vsk = vsock_sk(sk);
1568 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1569 sk, pkt, false, NULL, NULL,
1570 &pkt_processed);
1571 if (!pkt_processed)
1572 return -EINVAL;
1573
1574 break;
1575 }
1576
1577 return 0;
1578 }
1579
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1580 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1581 struct vsock_sock *psk)
1582 {
1583 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1584 if (!vsk->trans)
1585 return -ENOMEM;
1586
1587 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1588 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1589 vmci_trans(vsk)->qpair = NULL;
1590 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1591 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1592 vmci_trans(vsk)->notify_ops = NULL;
1593 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1594 vmci_trans(vsk)->sk = &vsk->sk;
1595 spin_lock_init(&vmci_trans(vsk)->lock);
1596 if (psk) {
1597 vmci_trans(vsk)->queue_pair_size =
1598 vmci_trans(psk)->queue_pair_size;
1599 vmci_trans(vsk)->queue_pair_min_size =
1600 vmci_trans(psk)->queue_pair_min_size;
1601 vmci_trans(vsk)->queue_pair_max_size =
1602 vmci_trans(psk)->queue_pair_max_size;
1603 } else {
1604 vmci_trans(vsk)->queue_pair_size =
1605 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1606 vmci_trans(vsk)->queue_pair_min_size =
1607 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1608 vmci_trans(vsk)->queue_pair_max_size =
1609 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1610 }
1611
1612 return 0;
1613 }
1614
vmci_transport_free_resources(struct list_head * transport_list)1615 static void vmci_transport_free_resources(struct list_head *transport_list)
1616 {
1617 while (!list_empty(transport_list)) {
1618 struct vmci_transport *transport =
1619 list_first_entry(transport_list, struct vmci_transport,
1620 elem);
1621 list_del(&transport->elem);
1622
1623 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1624 vmci_event_unsubscribe(transport->detach_sub_id);
1625 transport->detach_sub_id = VMCI_INVALID_ID;
1626 }
1627
1628 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1629 vmci_qpair_detach(&transport->qpair);
1630 transport->qp_handle = VMCI_INVALID_HANDLE;
1631 transport->produce_size = 0;
1632 transport->consume_size = 0;
1633 }
1634
1635 kfree(transport);
1636 }
1637 }
1638
vmci_transport_cleanup(struct work_struct * work)1639 static void vmci_transport_cleanup(struct work_struct *work)
1640 {
1641 LIST_HEAD(pending);
1642
1643 spin_lock_bh(&vmci_transport_cleanup_lock);
1644 list_replace_init(&vmci_transport_cleanup_list, &pending);
1645 spin_unlock_bh(&vmci_transport_cleanup_lock);
1646 vmci_transport_free_resources(&pending);
1647 }
1648
vmci_transport_destruct(struct vsock_sock * vsk)1649 static void vmci_transport_destruct(struct vsock_sock *vsk)
1650 {
1651 /* transport can be NULL if we hit a failure at init() time */
1652 if (!vmci_trans(vsk))
1653 return;
1654
1655 /* Ensure that the detach callback doesn't use the sk/vsk
1656 * we are about to destruct.
1657 */
1658 spin_lock_bh(&vmci_trans(vsk)->lock);
1659 vmci_trans(vsk)->sk = NULL;
1660 spin_unlock_bh(&vmci_trans(vsk)->lock);
1661
1662 if (vmci_trans(vsk)->notify_ops)
1663 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1664
1665 spin_lock_bh(&vmci_transport_cleanup_lock);
1666 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1667 spin_unlock_bh(&vmci_transport_cleanup_lock);
1668 schedule_work(&vmci_transport_cleanup_work);
1669
1670 vsk->trans = NULL;
1671 }
1672
vmci_transport_release(struct vsock_sock * vsk)1673 static void vmci_transport_release(struct vsock_sock *vsk)
1674 {
1675 vsock_remove_sock(vsk);
1676
1677 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1678 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1679 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1680 }
1681 }
1682
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1683 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1684 struct sockaddr_vm *addr)
1685 {
1686 u32 port;
1687 u32 flags;
1688 int err;
1689
1690 /* VMCI will select a resource ID for us if we provide
1691 * VMCI_INVALID_ID.
1692 */
1693 port = addr->svm_port == VMADDR_PORT_ANY ?
1694 VMCI_INVALID_ID : addr->svm_port;
1695
1696 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1697 return -EACCES;
1698
1699 flags = addr->svm_cid == VMADDR_CID_ANY ?
1700 VMCI_FLAG_ANYCID_DG_HND : 0;
1701
1702 err = vmci_transport_datagram_create_hnd(port, flags,
1703 vmci_transport_recv_dgram_cb,
1704 &vsk->sk,
1705 &vmci_trans(vsk)->dg_handle);
1706 if (err < VMCI_SUCCESS)
1707 return vmci_transport_error_to_vsock_error(err);
1708 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1709 vmci_trans(vsk)->dg_handle.resource);
1710
1711 return 0;
1712 }
1713
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1714 static int vmci_transport_dgram_enqueue(
1715 struct vsock_sock *vsk,
1716 struct sockaddr_vm *remote_addr,
1717 struct msghdr *msg,
1718 size_t len)
1719 {
1720 int err;
1721 struct vmci_datagram *dg;
1722
1723 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1724 return -EMSGSIZE;
1725
1726 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1727 return -EPERM;
1728
1729 /* Allocate a buffer for the user's message and our packet header. */
1730 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1731 if (!dg)
1732 return -ENOMEM;
1733
1734 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1735
1736 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1737 remote_addr->svm_port);
1738 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1739 vsk->local_addr.svm_port);
1740 dg->payload_size = len;
1741
1742 err = vmci_datagram_send(dg);
1743 kfree(dg);
1744 if (err < 0)
1745 return vmci_transport_error_to_vsock_error(err);
1746
1747 return err - sizeof(*dg);
1748 }
1749
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1750 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1751 struct msghdr *msg, size_t len,
1752 int flags)
1753 {
1754 int err;
1755 int noblock;
1756 struct vmci_datagram *dg;
1757 size_t payload_len;
1758 struct sk_buff *skb;
1759
1760 noblock = flags & MSG_DONTWAIT;
1761
1762 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1763 return -EOPNOTSUPP;
1764
1765 /* Retrieve the head sk_buff from the socket's receive queue. */
1766 err = 0;
1767 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1768 if (!skb)
1769 return err;
1770
1771 dg = (struct vmci_datagram *)skb->data;
1772 if (!dg)
1773 /* err is 0, meaning we read zero bytes. */
1774 goto out;
1775
1776 payload_len = dg->payload_size;
1777 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1778 if (payload_len != skb->len - sizeof(*dg)) {
1779 err = -EINVAL;
1780 goto out;
1781 }
1782
1783 if (payload_len > len) {
1784 payload_len = len;
1785 msg->msg_flags |= MSG_TRUNC;
1786 }
1787
1788 /* Place the datagram payload in the user's iovec. */
1789 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1790 if (err)
1791 goto out;
1792
1793 if (msg->msg_name) {
1794 /* Provide the address of the sender. */
1795 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1796 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1797 msg->msg_namelen = sizeof(*vm_addr);
1798 }
1799 err = payload_len;
1800
1801 out:
1802 skb_free_datagram(&vsk->sk, skb);
1803 return err;
1804 }
1805
vmci_transport_dgram_allow(u32 cid,u32 port)1806 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1807 {
1808 if (cid == VMADDR_CID_HYPERVISOR) {
1809 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1810 * state and are allowed.
1811 */
1812 return port == VMCI_UNITY_PBRPC_REGISTER;
1813 }
1814
1815 return true;
1816 }
1817
vmci_transport_connect(struct vsock_sock * vsk)1818 static int vmci_transport_connect(struct vsock_sock *vsk)
1819 {
1820 int err;
1821 bool old_pkt_proto = false;
1822 struct sock *sk = &vsk->sk;
1823
1824 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1825 old_pkt_proto) {
1826 err = vmci_transport_send_conn_request(
1827 sk, vmci_trans(vsk)->queue_pair_size);
1828 if (err < 0) {
1829 sk->sk_state = TCP_CLOSE;
1830 return err;
1831 }
1832 } else {
1833 int supported_proto_versions =
1834 vmci_transport_new_proto_supported_versions();
1835 err = vmci_transport_send_conn_request2(
1836 sk, vmci_trans(vsk)->queue_pair_size,
1837 supported_proto_versions);
1838 if (err < 0) {
1839 sk->sk_state = TCP_CLOSE;
1840 return err;
1841 }
1842
1843 vsk->sent_request = true;
1844 }
1845
1846 return err;
1847 }
1848
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1849 static ssize_t vmci_transport_stream_dequeue(
1850 struct vsock_sock *vsk,
1851 struct msghdr *msg,
1852 size_t len,
1853 int flags)
1854 {
1855 if (flags & MSG_PEEK)
1856 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1857 else
1858 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1859 }
1860
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1861 static ssize_t vmci_transport_stream_enqueue(
1862 struct vsock_sock *vsk,
1863 struct msghdr *msg,
1864 size_t len)
1865 {
1866 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1867 }
1868
vmci_transport_stream_has_data(struct vsock_sock * vsk)1869 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1870 {
1871 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1872 }
1873
vmci_transport_stream_has_space(struct vsock_sock * vsk)1874 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1875 {
1876 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1877 }
1878
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1879 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1880 {
1881 return vmci_trans(vsk)->consume_size;
1882 }
1883
vmci_transport_stream_is_active(struct vsock_sock * vsk)1884 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1885 {
1886 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1887 }
1888
vmci_transport_get_buffer_size(struct vsock_sock * vsk)1889 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1890 {
1891 return vmci_trans(vsk)->queue_pair_size;
1892 }
1893
vmci_transport_get_min_buffer_size(struct vsock_sock * vsk)1894 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1895 {
1896 return vmci_trans(vsk)->queue_pair_min_size;
1897 }
1898
vmci_transport_get_max_buffer_size(struct vsock_sock * vsk)1899 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1900 {
1901 return vmci_trans(vsk)->queue_pair_max_size;
1902 }
1903
vmci_transport_set_buffer_size(struct vsock_sock * vsk,u64 val)1904 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1905 {
1906 if (val < vmci_trans(vsk)->queue_pair_min_size)
1907 vmci_trans(vsk)->queue_pair_min_size = val;
1908 if (val > vmci_trans(vsk)->queue_pair_max_size)
1909 vmci_trans(vsk)->queue_pair_max_size = val;
1910 vmci_trans(vsk)->queue_pair_size = val;
1911 }
1912
vmci_transport_set_min_buffer_size(struct vsock_sock * vsk,u64 val)1913 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1914 u64 val)
1915 {
1916 if (val > vmci_trans(vsk)->queue_pair_size)
1917 vmci_trans(vsk)->queue_pair_size = val;
1918 vmci_trans(vsk)->queue_pair_min_size = val;
1919 }
1920
vmci_transport_set_max_buffer_size(struct vsock_sock * vsk,u64 val)1921 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1922 u64 val)
1923 {
1924 if (val < vmci_trans(vsk)->queue_pair_size)
1925 vmci_trans(vsk)->queue_pair_size = val;
1926 vmci_trans(vsk)->queue_pair_max_size = val;
1927 }
1928
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1929 static int vmci_transport_notify_poll_in(
1930 struct vsock_sock *vsk,
1931 size_t target,
1932 bool *data_ready_now)
1933 {
1934 return vmci_trans(vsk)->notify_ops->poll_in(
1935 &vsk->sk, target, data_ready_now);
1936 }
1937
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1938 static int vmci_transport_notify_poll_out(
1939 struct vsock_sock *vsk,
1940 size_t target,
1941 bool *space_available_now)
1942 {
1943 return vmci_trans(vsk)->notify_ops->poll_out(
1944 &vsk->sk, target, space_available_now);
1945 }
1946
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1947 static int vmci_transport_notify_recv_init(
1948 struct vsock_sock *vsk,
1949 size_t target,
1950 struct vsock_transport_recv_notify_data *data)
1951 {
1952 return vmci_trans(vsk)->notify_ops->recv_init(
1953 &vsk->sk, target,
1954 (struct vmci_transport_recv_notify_data *)data);
1955 }
1956
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1957 static int vmci_transport_notify_recv_pre_block(
1958 struct vsock_sock *vsk,
1959 size_t target,
1960 struct vsock_transport_recv_notify_data *data)
1961 {
1962 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1963 &vsk->sk, target,
1964 (struct vmci_transport_recv_notify_data *)data);
1965 }
1966
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1967 static int vmci_transport_notify_recv_pre_dequeue(
1968 struct vsock_sock *vsk,
1969 size_t target,
1970 struct vsock_transport_recv_notify_data *data)
1971 {
1972 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1973 &vsk->sk, target,
1974 (struct vmci_transport_recv_notify_data *)data);
1975 }
1976
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1977 static int vmci_transport_notify_recv_post_dequeue(
1978 struct vsock_sock *vsk,
1979 size_t target,
1980 ssize_t copied,
1981 bool data_read,
1982 struct vsock_transport_recv_notify_data *data)
1983 {
1984 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1985 &vsk->sk, target, copied, data_read,
1986 (struct vmci_transport_recv_notify_data *)data);
1987 }
1988
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1989 static int vmci_transport_notify_send_init(
1990 struct vsock_sock *vsk,
1991 struct vsock_transport_send_notify_data *data)
1992 {
1993 return vmci_trans(vsk)->notify_ops->send_init(
1994 &vsk->sk,
1995 (struct vmci_transport_send_notify_data *)data);
1996 }
1997
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1998 static int vmci_transport_notify_send_pre_block(
1999 struct vsock_sock *vsk,
2000 struct vsock_transport_send_notify_data *data)
2001 {
2002 return vmci_trans(vsk)->notify_ops->send_pre_block(
2003 &vsk->sk,
2004 (struct vmci_transport_send_notify_data *)data);
2005 }
2006
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)2007 static int vmci_transport_notify_send_pre_enqueue(
2008 struct vsock_sock *vsk,
2009 struct vsock_transport_send_notify_data *data)
2010 {
2011 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2012 &vsk->sk,
2013 (struct vmci_transport_send_notify_data *)data);
2014 }
2015
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)2016 static int vmci_transport_notify_send_post_enqueue(
2017 struct vsock_sock *vsk,
2018 ssize_t written,
2019 struct vsock_transport_send_notify_data *data)
2020 {
2021 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2022 &vsk->sk, written,
2023 (struct vmci_transport_send_notify_data *)data);
2024 }
2025
vmci_transport_old_proto_override(bool * old_pkt_proto)2026 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2027 {
2028 if (PROTOCOL_OVERRIDE != -1) {
2029 if (PROTOCOL_OVERRIDE == 0)
2030 *old_pkt_proto = true;
2031 else
2032 *old_pkt_proto = false;
2033
2034 pr_info("Proto override in use\n");
2035 return true;
2036 }
2037
2038 return false;
2039 }
2040
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)2041 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2042 u16 *proto,
2043 bool old_pkt_proto)
2044 {
2045 struct vsock_sock *vsk = vsock_sk(sk);
2046
2047 if (old_pkt_proto) {
2048 if (*proto != VSOCK_PROTO_INVALID) {
2049 pr_err("Can't set both an old and new protocol\n");
2050 return false;
2051 }
2052 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2053 goto exit;
2054 }
2055
2056 switch (*proto) {
2057 case VSOCK_PROTO_PKT_ON_NOTIFY:
2058 vmci_trans(vsk)->notify_ops =
2059 &vmci_transport_notify_pkt_q_state_ops;
2060 break;
2061 default:
2062 pr_err("Unknown notify protocol version\n");
2063 return false;
2064 }
2065
2066 exit:
2067 vmci_trans(vsk)->notify_ops->socket_init(sk);
2068 return true;
2069 }
2070
vmci_transport_new_proto_supported_versions(void)2071 static u16 vmci_transport_new_proto_supported_versions(void)
2072 {
2073 if (PROTOCOL_OVERRIDE != -1)
2074 return PROTOCOL_OVERRIDE;
2075
2076 return VSOCK_PROTO_ALL_SUPPORTED;
2077 }
2078
vmci_transport_get_local_cid(void)2079 static u32 vmci_transport_get_local_cid(void)
2080 {
2081 return vmci_get_context_id();
2082 }
2083
2084 static const struct vsock_transport vmci_transport = {
2085 .init = vmci_transport_socket_init,
2086 .destruct = vmci_transport_destruct,
2087 .release = vmci_transport_release,
2088 .connect = vmci_transport_connect,
2089 .dgram_bind = vmci_transport_dgram_bind,
2090 .dgram_dequeue = vmci_transport_dgram_dequeue,
2091 .dgram_enqueue = vmci_transport_dgram_enqueue,
2092 .dgram_allow = vmci_transport_dgram_allow,
2093 .stream_dequeue = vmci_transport_stream_dequeue,
2094 .stream_enqueue = vmci_transport_stream_enqueue,
2095 .stream_has_data = vmci_transport_stream_has_data,
2096 .stream_has_space = vmci_transport_stream_has_space,
2097 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2098 .stream_is_active = vmci_transport_stream_is_active,
2099 .stream_allow = vmci_transport_stream_allow,
2100 .notify_poll_in = vmci_transport_notify_poll_in,
2101 .notify_poll_out = vmci_transport_notify_poll_out,
2102 .notify_recv_init = vmci_transport_notify_recv_init,
2103 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2104 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2105 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2106 .notify_send_init = vmci_transport_notify_send_init,
2107 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2108 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2109 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2110 .shutdown = vmci_transport_shutdown,
2111 .set_buffer_size = vmci_transport_set_buffer_size,
2112 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2113 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2114 .get_buffer_size = vmci_transport_get_buffer_size,
2115 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2116 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2117 .get_local_cid = vmci_transport_get_local_cid,
2118 };
2119
vmci_transport_init(void)2120 static int __init vmci_transport_init(void)
2121 {
2122 int err;
2123
2124 /* Create the datagram handle that we will use to send and receive all
2125 * VSocket control messages for this context.
2126 */
2127 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2128 VMCI_FLAG_ANYCID_DG_HND,
2129 vmci_transport_recv_stream_cb,
2130 NULL,
2131 &vmci_transport_stream_handle);
2132 if (err < VMCI_SUCCESS) {
2133 pr_err("Unable to create datagram handle. (%d)\n", err);
2134 return vmci_transport_error_to_vsock_error(err);
2135 }
2136
2137 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2138 vmci_transport_qp_resumed_cb,
2139 NULL, &vmci_transport_qp_resumed_sub_id);
2140 if (err < VMCI_SUCCESS) {
2141 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2142 err = vmci_transport_error_to_vsock_error(err);
2143 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2144 goto err_destroy_stream_handle;
2145 }
2146
2147 err = vsock_core_init(&vmci_transport);
2148 if (err < 0)
2149 goto err_unsubscribe;
2150
2151 return 0;
2152
2153 err_unsubscribe:
2154 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2155 err_destroy_stream_handle:
2156 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2157 return err;
2158 }
2159 module_init(vmci_transport_init);
2160
vmci_transport_exit(void)2161 static void __exit vmci_transport_exit(void)
2162 {
2163 cancel_work_sync(&vmci_transport_cleanup_work);
2164 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2165
2166 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2167 if (vmci_datagram_destroy_handle(
2168 vmci_transport_stream_handle) != VMCI_SUCCESS)
2169 pr_err("Couldn't destroy datagram handle\n");
2170 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2171 }
2172
2173 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2174 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2175 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2176 }
2177
2178 vsock_core_exit();
2179 }
2180 module_exit(vmci_transport_exit);
2181
2182 MODULE_AUTHOR("VMware, Inc.");
2183 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2184 MODULE_VERSION("1.0.4.0-k");
2185 MODULE_LICENSE("GPL v2");
2186 MODULE_ALIAS("vmware_vsock");
2187 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2188