• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
key_user_lookup(kuid_t uid)54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent, **p;
58 
59 try_again:
60 	parent = NULL;
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
key_user_put(struct key_user * user)123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
key_alloc_serial(struct key * key)137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 > maxkeys ||
269 			    user->qnbytes + quotalen > maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 	key->last_used_at = ktime_get_real_seconds();
301 
302 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
303 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
304 	if (flags & KEY_ALLOC_BUILT_IN)
305 		key->flags |= 1 << KEY_FLAG_BUILTIN;
306 	if (flags & KEY_ALLOC_UID_KEYRING)
307 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
308 
309 #ifdef KEY_DEBUGGING
310 	key->magic = KEY_DEBUG_MAGIC;
311 #endif
312 
313 	/* let the security module know about the key */
314 	ret = security_key_alloc(key, cred, flags);
315 	if (ret < 0)
316 		goto security_error;
317 
318 	/* publish the key by giving it a serial number */
319 	atomic_inc(&user->nkeys);
320 	key_alloc_serial(key);
321 
322 error:
323 	return key;
324 
325 security_error:
326 	kfree(key->description);
327 	kmem_cache_free(key_jar, key);
328 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
329 		spin_lock(&user->lock);
330 		user->qnkeys--;
331 		user->qnbytes -= quotalen;
332 		spin_unlock(&user->lock);
333 	}
334 	key_user_put(user);
335 	key = ERR_PTR(ret);
336 	goto error;
337 
338 no_memory_3:
339 	kmem_cache_free(key_jar, key);
340 no_memory_2:
341 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
342 		spin_lock(&user->lock);
343 		user->qnkeys--;
344 		user->qnbytes -= quotalen;
345 		spin_unlock(&user->lock);
346 	}
347 	key_user_put(user);
348 no_memory_1:
349 	key = ERR_PTR(-ENOMEM);
350 	goto error;
351 
352 no_quota:
353 	spin_unlock(&user->lock);
354 	key_user_put(user);
355 	key = ERR_PTR(-EDQUOT);
356 	goto error;
357 }
358 EXPORT_SYMBOL(key_alloc);
359 
360 /**
361  * key_payload_reserve - Adjust data quota reservation for the key's payload
362  * @key: The key to make the reservation for.
363  * @datalen: The amount of data payload the caller now wants.
364  *
365  * Adjust the amount of the owning user's key data quota that a key reserves.
366  * If the amount is increased, then -EDQUOT may be returned if there isn't
367  * enough free quota available.
368  *
369  * If successful, 0 is returned.
370  */
key_payload_reserve(struct key * key,size_t datalen)371 int key_payload_reserve(struct key *key, size_t datalen)
372 {
373 	int delta = (int)datalen - key->datalen;
374 	int ret = 0;
375 
376 	key_check(key);
377 
378 	/* contemplate the quota adjustment */
379 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
380 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
381 			key_quota_root_maxbytes : key_quota_maxbytes;
382 
383 		spin_lock(&key->user->lock);
384 
385 		if (delta > 0 &&
386 		    (key->user->qnbytes + delta >= maxbytes ||
387 		     key->user->qnbytes + delta < key->user->qnbytes)) {
388 			ret = -EDQUOT;
389 		}
390 		else {
391 			key->user->qnbytes += delta;
392 			key->quotalen += delta;
393 		}
394 		spin_unlock(&key->user->lock);
395 	}
396 
397 	/* change the recorded data length if that didn't generate an error */
398 	if (ret == 0)
399 		key->datalen = datalen;
400 
401 	return ret;
402 }
403 EXPORT_SYMBOL(key_payload_reserve);
404 
405 /*
406  * Change the key state to being instantiated.
407  */
mark_key_instantiated(struct key * key,int reject_error)408 static void mark_key_instantiated(struct key *key, int reject_error)
409 {
410 	/* Commit the payload before setting the state; barrier versus
411 	 * key_read_state().
412 	 */
413 	smp_store_release(&key->state,
414 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
415 }
416 
417 /*
418  * Instantiate a key and link it into the target keyring atomically.  Must be
419  * called with the target keyring's semaphore writelocked.  The target key's
420  * semaphore need not be locked as instantiation is serialised by
421  * key_construction_mutex.
422  */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)423 static int __key_instantiate_and_link(struct key *key,
424 				      struct key_preparsed_payload *prep,
425 				      struct key *keyring,
426 				      struct key *authkey,
427 				      struct assoc_array_edit **_edit)
428 {
429 	int ret, awaken;
430 
431 	key_check(key);
432 	key_check(keyring);
433 
434 	awaken = 0;
435 	ret = -EBUSY;
436 
437 	mutex_lock(&key_construction_mutex);
438 
439 	/* can't instantiate twice */
440 	if (key->state == KEY_IS_UNINSTANTIATED) {
441 		/* instantiate the key */
442 		ret = key->type->instantiate(key, prep);
443 
444 		if (ret == 0) {
445 			/* mark the key as being instantiated */
446 			atomic_inc(&key->user->nikeys);
447 			mark_key_instantiated(key, 0);
448 
449 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
450 				awaken = 1;
451 
452 			/* and link it into the destination keyring */
453 			if (keyring) {
454 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
455 					set_bit(KEY_FLAG_KEEP, &key->flags);
456 
457 				__key_link(key, _edit);
458 			}
459 
460 			/* disable the authorisation key */
461 			if (authkey)
462 				key_revoke(authkey);
463 
464 			if (prep->expiry != TIME_T_MAX) {
465 				key->expiry = prep->expiry;
466 				key_schedule_gc(prep->expiry + key_gc_delay);
467 			}
468 		}
469 	}
470 
471 	mutex_unlock(&key_construction_mutex);
472 
473 	/* wake up anyone waiting for a key to be constructed */
474 	if (awaken)
475 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
476 
477 	return ret;
478 }
479 
480 /**
481  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482  * @key: The key to instantiate.
483  * @data: The data to use to instantiate the keyring.
484  * @datalen: The length of @data.
485  * @keyring: Keyring to create a link in on success (or NULL).
486  * @authkey: The authorisation token permitting instantiation.
487  *
488  * Instantiate a key that's in the uninstantiated state using the provided data
489  * and, if successful, link it in to the destination keyring if one is
490  * supplied.
491  *
492  * If successful, 0 is returned, the authorisation token is revoked and anyone
493  * waiting for the key is woken up.  If the key was already instantiated,
494  * -EBUSY will be returned.
495  */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)496 int key_instantiate_and_link(struct key *key,
497 			     const void *data,
498 			     size_t datalen,
499 			     struct key *keyring,
500 			     struct key *authkey)
501 {
502 	struct key_preparsed_payload prep;
503 	struct assoc_array_edit *edit;
504 	int ret;
505 
506 	memset(&prep, 0, sizeof(prep));
507 	prep.data = data;
508 	prep.datalen = datalen;
509 	prep.quotalen = key->type->def_datalen;
510 	prep.expiry = TIME_T_MAX;
511 	if (key->type->preparse) {
512 		ret = key->type->preparse(&prep);
513 		if (ret < 0)
514 			goto error;
515 	}
516 
517 	if (keyring) {
518 		ret = __key_link_begin(keyring, &key->index_key, &edit);
519 		if (ret < 0)
520 			goto error;
521 
522 		if (keyring->restrict_link && keyring->restrict_link->check) {
523 			struct key_restriction *keyres = keyring->restrict_link;
524 
525 			ret = keyres->check(keyring, key->type, &prep.payload,
526 					    keyres->key);
527 			if (ret < 0)
528 				goto error_link_end;
529 		}
530 	}
531 
532 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
533 
534 error_link_end:
535 	if (keyring)
536 		__key_link_end(keyring, &key->index_key, edit);
537 
538 error:
539 	if (key->type->preparse)
540 		key->type->free_preparse(&prep);
541 	return ret;
542 }
543 
544 EXPORT_SYMBOL(key_instantiate_and_link);
545 
546 /**
547  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
548  * @key: The key to instantiate.
549  * @timeout: The timeout on the negative key.
550  * @error: The error to return when the key is hit.
551  * @keyring: Keyring to create a link in on success (or NULL).
552  * @authkey: The authorisation token permitting instantiation.
553  *
554  * Negatively instantiate a key that's in the uninstantiated state and, if
555  * successful, set its timeout and stored error and link it in to the
556  * destination keyring if one is supplied.  The key and any links to the key
557  * will be automatically garbage collected after the timeout expires.
558  *
559  * Negative keys are used to rate limit repeated request_key() calls by causing
560  * them to return the stored error code (typically ENOKEY) until the negative
561  * key expires.
562  *
563  * If successful, 0 is returned, the authorisation token is revoked and anyone
564  * waiting for the key is woken up.  If the key was already instantiated,
565  * -EBUSY will be returned.
566  */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)567 int key_reject_and_link(struct key *key,
568 			unsigned timeout,
569 			unsigned error,
570 			struct key *keyring,
571 			struct key *authkey)
572 {
573 	struct assoc_array_edit *edit;
574 	struct timespec now;
575 	int ret, awaken, link_ret = 0;
576 
577 	key_check(key);
578 	key_check(keyring);
579 
580 	awaken = 0;
581 	ret = -EBUSY;
582 
583 	if (keyring) {
584 		if (keyring->restrict_link)
585 			return -EPERM;
586 
587 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
588 	}
589 
590 	mutex_lock(&key_construction_mutex);
591 
592 	/* can't instantiate twice */
593 	if (key->state == KEY_IS_UNINSTANTIATED) {
594 		/* mark the key as being negatively instantiated */
595 		atomic_inc(&key->user->nikeys);
596 		mark_key_instantiated(key, -error);
597 		now = current_kernel_time();
598 		key->expiry = now.tv_sec + timeout;
599 		key_schedule_gc(key->expiry + key_gc_delay);
600 
601 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
602 			awaken = 1;
603 
604 		ret = 0;
605 
606 		/* and link it into the destination keyring */
607 		if (keyring && link_ret == 0)
608 			__key_link(key, &edit);
609 
610 		/* disable the authorisation key */
611 		if (authkey)
612 			key_revoke(authkey);
613 	}
614 
615 	mutex_unlock(&key_construction_mutex);
616 
617 	if (keyring && link_ret == 0)
618 		__key_link_end(keyring, &key->index_key, edit);
619 
620 	/* wake up anyone waiting for a key to be constructed */
621 	if (awaken)
622 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
623 
624 	return ret == 0 ? link_ret : ret;
625 }
626 EXPORT_SYMBOL(key_reject_and_link);
627 
628 /**
629  * key_put - Discard a reference to a key.
630  * @key: The key to discard a reference from.
631  *
632  * Discard a reference to a key, and when all the references are gone, we
633  * schedule the cleanup task to come and pull it out of the tree in process
634  * context at some later time.
635  */
key_put(struct key * key)636 void key_put(struct key *key)
637 {
638 	if (key) {
639 		key_check(key);
640 
641 		if (refcount_dec_and_test(&key->usage))
642 			schedule_work(&key_gc_work);
643 	}
644 }
645 EXPORT_SYMBOL(key_put);
646 
647 /*
648  * Find a key by its serial number.
649  */
key_lookup(key_serial_t id)650 struct key *key_lookup(key_serial_t id)
651 {
652 	struct rb_node *n;
653 	struct key *key;
654 
655 	spin_lock(&key_serial_lock);
656 
657 	/* search the tree for the specified key */
658 	n = key_serial_tree.rb_node;
659 	while (n) {
660 		key = rb_entry(n, struct key, serial_node);
661 
662 		if (id < key->serial)
663 			n = n->rb_left;
664 		else if (id > key->serial)
665 			n = n->rb_right;
666 		else
667 			goto found;
668 	}
669 
670 not_found:
671 	key = ERR_PTR(-ENOKEY);
672 	goto error;
673 
674 found:
675 	/* A key is allowed to be looked up only if someone still owns a
676 	 * reference to it - otherwise it's awaiting the gc.
677 	 */
678 	if (!refcount_inc_not_zero(&key->usage))
679 		goto not_found;
680 
681 error:
682 	spin_unlock(&key_serial_lock);
683 	return key;
684 }
685 
686 /*
687  * Find and lock the specified key type against removal.
688  *
689  * We return with the sem read-locked if successful.  If the type wasn't
690  * available -ENOKEY is returned instead.
691  */
key_type_lookup(const char * type)692 struct key_type *key_type_lookup(const char *type)
693 {
694 	struct key_type *ktype;
695 
696 	down_read(&key_types_sem);
697 
698 	/* look up the key type to see if it's one of the registered kernel
699 	 * types */
700 	list_for_each_entry(ktype, &key_types_list, link) {
701 		if (strcmp(ktype->name, type) == 0)
702 			goto found_kernel_type;
703 	}
704 
705 	up_read(&key_types_sem);
706 	ktype = ERR_PTR(-ENOKEY);
707 
708 found_kernel_type:
709 	return ktype;
710 }
711 
key_set_timeout(struct key * key,unsigned timeout)712 void key_set_timeout(struct key *key, unsigned timeout)
713 {
714 	struct timespec now;
715 	time_t expiry = 0;
716 
717 	/* make the changes with the locks held to prevent races */
718 	down_write(&key->sem);
719 
720 	if (timeout > 0) {
721 		now = current_kernel_time();
722 		expiry = now.tv_sec + timeout;
723 	}
724 
725 	key->expiry = expiry;
726 	key_schedule_gc(key->expiry + key_gc_delay);
727 
728 	up_write(&key->sem);
729 }
730 EXPORT_SYMBOL_GPL(key_set_timeout);
731 
732 /*
733  * Unlock a key type locked by key_type_lookup().
734  */
key_type_put(struct key_type * ktype)735 void key_type_put(struct key_type *ktype)
736 {
737 	up_read(&key_types_sem);
738 }
739 
740 /*
741  * Attempt to update an existing key.
742  *
743  * The key is given to us with an incremented refcount that we need to discard
744  * if we get an error.
745  */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)746 static inline key_ref_t __key_update(key_ref_t key_ref,
747 				     struct key_preparsed_payload *prep)
748 {
749 	struct key *key = key_ref_to_ptr(key_ref);
750 	int ret;
751 
752 	/* need write permission on the key to update it */
753 	ret = key_permission(key_ref, KEY_NEED_WRITE);
754 	if (ret < 0)
755 		goto error;
756 
757 	ret = -EEXIST;
758 	if (!key->type->update)
759 		goto error;
760 
761 	down_write(&key->sem);
762 
763 	ret = key->type->update(key, prep);
764 	if (ret == 0)
765 		/* Updating a negative key positively instantiates it */
766 		mark_key_instantiated(key, 0);
767 
768 	up_write(&key->sem);
769 
770 	if (ret < 0)
771 		goto error;
772 out:
773 	return key_ref;
774 
775 error:
776 	key_put(key);
777 	key_ref = ERR_PTR(ret);
778 	goto out;
779 }
780 
781 /**
782  * key_create_or_update - Update or create and instantiate a key.
783  * @keyring_ref: A pointer to the destination keyring with possession flag.
784  * @type: The type of key.
785  * @description: The searchable description for the key.
786  * @payload: The data to use to instantiate or update the key.
787  * @plen: The length of @payload.
788  * @perm: The permissions mask for a new key.
789  * @flags: The quota flags for a new key.
790  *
791  * Search the destination keyring for a key of the same description and if one
792  * is found, update it, otherwise create and instantiate a new one and create a
793  * link to it from that keyring.
794  *
795  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
796  * concocted.
797  *
798  * Returns a pointer to the new key if successful, -ENODEV if the key type
799  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
800  * caller isn't permitted to modify the keyring or the LSM did not permit
801  * creation of the key.
802  *
803  * On success, the possession flag from the keyring ref will be tacked on to
804  * the key ref before it is returned.
805  */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)806 key_ref_t key_create_or_update(key_ref_t keyring_ref,
807 			       const char *type,
808 			       const char *description,
809 			       const void *payload,
810 			       size_t plen,
811 			       key_perm_t perm,
812 			       unsigned long flags)
813 {
814 	struct keyring_index_key index_key = {
815 		.description	= description,
816 	};
817 	struct key_preparsed_payload prep;
818 	struct assoc_array_edit *edit;
819 	const struct cred *cred = current_cred();
820 	struct key *keyring, *key = NULL;
821 	key_ref_t key_ref;
822 	int ret;
823 	struct key_restriction *restrict_link = NULL;
824 
825 	/* look up the key type to see if it's one of the registered kernel
826 	 * types */
827 	index_key.type = key_type_lookup(type);
828 	if (IS_ERR(index_key.type)) {
829 		key_ref = ERR_PTR(-ENODEV);
830 		goto error;
831 	}
832 
833 	key_ref = ERR_PTR(-EINVAL);
834 	if (!index_key.type->instantiate ||
835 	    (!index_key.description && !index_key.type->preparse))
836 		goto error_put_type;
837 
838 	keyring = key_ref_to_ptr(keyring_ref);
839 
840 	key_check(keyring);
841 
842 	key_ref = ERR_PTR(-EPERM);
843 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
844 		restrict_link = keyring->restrict_link;
845 
846 	key_ref = ERR_PTR(-ENOTDIR);
847 	if (keyring->type != &key_type_keyring)
848 		goto error_put_type;
849 
850 	memset(&prep, 0, sizeof(prep));
851 	prep.data = payload;
852 	prep.datalen = plen;
853 	prep.quotalen = index_key.type->def_datalen;
854 	prep.expiry = TIME_T_MAX;
855 	if (index_key.type->preparse) {
856 		ret = index_key.type->preparse(&prep);
857 		if (ret < 0) {
858 			key_ref = ERR_PTR(ret);
859 			goto error_free_prep;
860 		}
861 		if (!index_key.description)
862 			index_key.description = prep.description;
863 		key_ref = ERR_PTR(-EINVAL);
864 		if (!index_key.description)
865 			goto error_free_prep;
866 	}
867 	index_key.desc_len = strlen(index_key.description);
868 
869 	ret = __key_link_begin(keyring, &index_key, &edit);
870 	if (ret < 0) {
871 		key_ref = ERR_PTR(ret);
872 		goto error_free_prep;
873 	}
874 
875 	if (restrict_link && restrict_link->check) {
876 		ret = restrict_link->check(keyring, index_key.type,
877 					   &prep.payload, restrict_link->key);
878 		if (ret < 0) {
879 			key_ref = ERR_PTR(ret);
880 			goto error_link_end;
881 		}
882 	}
883 
884 	/* if we're going to allocate a new key, we're going to have
885 	 * to modify the keyring */
886 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
887 	if (ret < 0) {
888 		key_ref = ERR_PTR(ret);
889 		goto error_link_end;
890 	}
891 
892 	/* if it's possible to update this type of key, search for an existing
893 	 * key of the same type and description in the destination keyring and
894 	 * update that instead if possible
895 	 */
896 	if (index_key.type->update) {
897 		key_ref = find_key_to_update(keyring_ref, &index_key);
898 		if (key_ref)
899 			goto found_matching_key;
900 	}
901 
902 	/* if the client doesn't provide, decide on the permissions we want */
903 	if (perm == KEY_PERM_UNDEF) {
904 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
905 		perm |= KEY_USR_VIEW;
906 
907 		if (index_key.type->read)
908 			perm |= KEY_POS_READ;
909 
910 		if (index_key.type == &key_type_keyring ||
911 		    index_key.type->update)
912 			perm |= KEY_POS_WRITE;
913 	}
914 
915 	/* allocate a new key */
916 	key = key_alloc(index_key.type, index_key.description,
917 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
918 	if (IS_ERR(key)) {
919 		key_ref = ERR_CAST(key);
920 		goto error_link_end;
921 	}
922 
923 	/* instantiate it and link it into the target keyring */
924 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
925 	if (ret < 0) {
926 		key_put(key);
927 		key_ref = ERR_PTR(ret);
928 		goto error_link_end;
929 	}
930 
931 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
932 
933 error_link_end:
934 	__key_link_end(keyring, &index_key, edit);
935 error_free_prep:
936 	if (index_key.type->preparse)
937 		index_key.type->free_preparse(&prep);
938 error_put_type:
939 	key_type_put(index_key.type);
940 error:
941 	return key_ref;
942 
943  found_matching_key:
944 	/* we found a matching key, so we're going to try to update it
945 	 * - we can drop the locks first as we have the key pinned
946 	 */
947 	__key_link_end(keyring, &index_key, edit);
948 
949 	key = key_ref_to_ptr(key_ref);
950 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
951 		ret = wait_for_key_construction(key, true);
952 		if (ret < 0) {
953 			key_ref_put(key_ref);
954 			key_ref = ERR_PTR(ret);
955 			goto error_free_prep;
956 		}
957 	}
958 
959 	key_ref = __key_update(key_ref, &prep);
960 	goto error_free_prep;
961 }
962 EXPORT_SYMBOL(key_create_or_update);
963 
964 /**
965  * key_update - Update a key's contents.
966  * @key_ref: The pointer (plus possession flag) to the key.
967  * @payload: The data to be used to update the key.
968  * @plen: The length of @payload.
969  *
970  * Attempt to update the contents of a key with the given payload data.  The
971  * caller must be granted Write permission on the key.  Negative keys can be
972  * instantiated by this method.
973  *
974  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
975  * type does not support updating.  The key type may return other errors.
976  */
key_update(key_ref_t key_ref,const void * payload,size_t plen)977 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
978 {
979 	struct key_preparsed_payload prep;
980 	struct key *key = key_ref_to_ptr(key_ref);
981 	int ret;
982 
983 	key_check(key);
984 
985 	/* the key must be writable */
986 	ret = key_permission(key_ref, KEY_NEED_WRITE);
987 	if (ret < 0)
988 		return ret;
989 
990 	/* attempt to update it if supported */
991 	if (!key->type->update)
992 		return -EOPNOTSUPP;
993 
994 	memset(&prep, 0, sizeof(prep));
995 	prep.data = payload;
996 	prep.datalen = plen;
997 	prep.quotalen = key->type->def_datalen;
998 	prep.expiry = TIME_T_MAX;
999 	if (key->type->preparse) {
1000 		ret = key->type->preparse(&prep);
1001 		if (ret < 0)
1002 			goto error;
1003 	}
1004 
1005 	down_write(&key->sem);
1006 
1007 	ret = key->type->update(key, &prep);
1008 	if (ret == 0)
1009 		/* Updating a negative key positively instantiates it */
1010 		mark_key_instantiated(key, 0);
1011 
1012 	up_write(&key->sem);
1013 
1014 error:
1015 	if (key->type->preparse)
1016 		key->type->free_preparse(&prep);
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL(key_update);
1020 
1021 /**
1022  * key_revoke - Revoke a key.
1023  * @key: The key to be revoked.
1024  *
1025  * Mark a key as being revoked and ask the type to free up its resources.  The
1026  * revocation timeout is set and the key and all its links will be
1027  * automatically garbage collected after key_gc_delay amount of time if they
1028  * are not manually dealt with first.
1029  */
key_revoke(struct key * key)1030 void key_revoke(struct key *key)
1031 {
1032 	struct timespec now;
1033 	time_t time;
1034 
1035 	key_check(key);
1036 
1037 	/* make sure no one's trying to change or use the key when we mark it
1038 	 * - we tell lockdep that we might nest because we might be revoking an
1039 	 *   authorisation key whilst holding the sem on a key we've just
1040 	 *   instantiated
1041 	 */
1042 	down_write_nested(&key->sem, 1);
1043 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1044 	    key->type->revoke)
1045 		key->type->revoke(key);
1046 
1047 	/* set the death time to no more than the expiry time */
1048 	now = current_kernel_time();
1049 	time = now.tv_sec;
1050 	if (key->revoked_at == 0 || key->revoked_at > time) {
1051 		key->revoked_at = time;
1052 		key_schedule_gc(key->revoked_at + key_gc_delay);
1053 	}
1054 
1055 	up_write(&key->sem);
1056 }
1057 EXPORT_SYMBOL(key_revoke);
1058 
1059 /**
1060  * key_invalidate - Invalidate a key.
1061  * @key: The key to be invalidated.
1062  *
1063  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1064  * is ignored by all searches and other operations from this point.
1065  */
key_invalidate(struct key * key)1066 void key_invalidate(struct key *key)
1067 {
1068 	kenter("%d", key_serial(key));
1069 
1070 	key_check(key);
1071 
1072 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1073 		down_write_nested(&key->sem, 1);
1074 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1075 			key_schedule_gc_links();
1076 		up_write(&key->sem);
1077 	}
1078 }
1079 EXPORT_SYMBOL(key_invalidate);
1080 
1081 /**
1082  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1083  * @key: The key to be instantiated
1084  * @prep: The preparsed data to load.
1085  *
1086  * Instantiate a key from preparsed data.  We assume we can just copy the data
1087  * in directly and clear the old pointers.
1088  *
1089  * This can be pointed to directly by the key type instantiate op pointer.
1090  */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1091 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1092 {
1093 	int ret;
1094 
1095 	pr_devel("==>%s()\n", __func__);
1096 
1097 	ret = key_payload_reserve(key, prep->quotalen);
1098 	if (ret == 0) {
1099 		rcu_assign_keypointer(key, prep->payload.data[0]);
1100 		key->payload.data[1] = prep->payload.data[1];
1101 		key->payload.data[2] = prep->payload.data[2];
1102 		key->payload.data[3] = prep->payload.data[3];
1103 		prep->payload.data[0] = NULL;
1104 		prep->payload.data[1] = NULL;
1105 		prep->payload.data[2] = NULL;
1106 		prep->payload.data[3] = NULL;
1107 	}
1108 	pr_devel("<==%s() = %d\n", __func__, ret);
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL(generic_key_instantiate);
1112 
1113 /**
1114  * register_key_type - Register a type of key.
1115  * @ktype: The new key type.
1116  *
1117  * Register a new key type.
1118  *
1119  * Returns 0 on success or -EEXIST if a type of this name already exists.
1120  */
register_key_type(struct key_type * ktype)1121 int register_key_type(struct key_type *ktype)
1122 {
1123 	struct key_type *p;
1124 	int ret;
1125 
1126 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1127 
1128 	ret = -EEXIST;
1129 	down_write(&key_types_sem);
1130 
1131 	/* disallow key types with the same name */
1132 	list_for_each_entry(p, &key_types_list, link) {
1133 		if (strcmp(p->name, ktype->name) == 0)
1134 			goto out;
1135 	}
1136 
1137 	/* store the type */
1138 	list_add(&ktype->link, &key_types_list);
1139 
1140 	pr_notice("Key type %s registered\n", ktype->name);
1141 	ret = 0;
1142 
1143 out:
1144 	up_write(&key_types_sem);
1145 	return ret;
1146 }
1147 EXPORT_SYMBOL(register_key_type);
1148 
1149 /**
1150  * unregister_key_type - Unregister a type of key.
1151  * @ktype: The key type.
1152  *
1153  * Unregister a key type and mark all the extant keys of this type as dead.
1154  * Those keys of this type are then destroyed to get rid of their payloads and
1155  * they and their links will be garbage collected as soon as possible.
1156  */
unregister_key_type(struct key_type * ktype)1157 void unregister_key_type(struct key_type *ktype)
1158 {
1159 	down_write(&key_types_sem);
1160 	list_del_init(&ktype->link);
1161 	downgrade_write(&key_types_sem);
1162 	key_gc_keytype(ktype);
1163 	pr_notice("Key type %s unregistered\n", ktype->name);
1164 	up_read(&key_types_sem);
1165 }
1166 EXPORT_SYMBOL(unregister_key_type);
1167 
1168 /*
1169  * Initialise the key management state.
1170  */
key_init(void)1171 void __init key_init(void)
1172 {
1173 	/* allocate a slab in which we can store keys */
1174 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1175 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1176 
1177 	/* add the special key types */
1178 	list_add_tail(&key_type_keyring.link, &key_types_list);
1179 	list_add_tail(&key_type_dead.link, &key_types_list);
1180 	list_add_tail(&key_type_user.link, &key_types_list);
1181 	list_add_tail(&key_type_logon.link, &key_types_list);
1182 
1183 	/* record the root user tracking */
1184 	rb_link_node(&root_key_user.node,
1185 		     NULL,
1186 		     &key_user_tree.rb_node);
1187 
1188 	rb_insert_color(&root_key_user.node,
1189 			&key_user_tree);
1190 }
1191