1 /*
2 * auxtrace.c: AUX area trace support
3 * Copyright (c) 2013-2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "auxtrace.h"
50
51 #include <linux/hash.h>
52
53 #include "event.h"
54 #include "session.h"
55 #include "debug.h"
56 #include <subcmd/parse-options.h>
57
58 #include "intel-pt.h"
59 #include "intel-bts.h"
60
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)64 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
65 struct auxtrace_mmap_params *mp,
66 void *userpg, int fd)
67 {
68 struct perf_event_mmap_page *pc = userpg;
69
70 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
71
72 mm->userpg = userpg;
73 mm->mask = mp->mask;
74 mm->len = mp->len;
75 mm->prev = 0;
76 mm->idx = mp->idx;
77 mm->tid = mp->tid;
78 mm->cpu = mp->cpu;
79
80 if (!mp->len) {
81 mm->base = NULL;
82 return 0;
83 }
84
85 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
86 pr_err("Cannot use AUX area tracing mmaps\n");
87 return -1;
88 #endif
89
90 pc->aux_offset = mp->offset;
91 pc->aux_size = mp->len;
92
93 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
94 if (mm->base == MAP_FAILED) {
95 pr_debug2("failed to mmap AUX area\n");
96 mm->base = NULL;
97 return -1;
98 }
99
100 return 0;
101 }
102
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)103 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
104 {
105 if (mm->base) {
106 munmap(mm->base, mm->len);
107 mm->base = NULL;
108 }
109 }
110
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)111 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
112 off_t auxtrace_offset,
113 unsigned int auxtrace_pages,
114 bool auxtrace_overwrite)
115 {
116 if (auxtrace_pages) {
117 mp->offset = auxtrace_offset;
118 mp->len = auxtrace_pages * (size_t)page_size;
119 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
120 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
121 pr_debug2("AUX area mmap length %zu\n", mp->len);
122 } else {
123 mp->len = 0;
124 }
125 }
126
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct perf_evlist * evlist,int idx,bool per_cpu)127 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
128 struct perf_evlist *evlist, int idx,
129 bool per_cpu)
130 {
131 mp->idx = idx;
132
133 if (per_cpu) {
134 mp->cpu = evlist->cpus->map[idx];
135 if (evlist->threads)
136 mp->tid = thread_map__pid(evlist->threads, 0);
137 else
138 mp->tid = -1;
139 } else {
140 mp->cpu = -1;
141 mp->tid = thread_map__pid(evlist->threads, idx);
142 }
143 }
144
145 #define AUXTRACE_INIT_NR_QUEUES 32
146
auxtrace_alloc_queue_array(unsigned int nr_queues)147 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
148 {
149 struct auxtrace_queue *queue_array;
150 unsigned int max_nr_queues, i;
151
152 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
153 if (nr_queues > max_nr_queues)
154 return NULL;
155
156 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
157 if (!queue_array)
158 return NULL;
159
160 for (i = 0; i < nr_queues; i++) {
161 INIT_LIST_HEAD(&queue_array[i].head);
162 queue_array[i].priv = NULL;
163 }
164
165 return queue_array;
166 }
167
auxtrace_queues__init(struct auxtrace_queues * queues)168 int auxtrace_queues__init(struct auxtrace_queues *queues)
169 {
170 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
171 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
172 if (!queues->queue_array)
173 return -ENOMEM;
174 return 0;
175 }
176
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)177 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
178 unsigned int new_nr_queues)
179 {
180 unsigned int nr_queues = queues->nr_queues;
181 struct auxtrace_queue *queue_array;
182 unsigned int i;
183
184 if (!nr_queues)
185 nr_queues = AUXTRACE_INIT_NR_QUEUES;
186
187 while (nr_queues && nr_queues < new_nr_queues)
188 nr_queues <<= 1;
189
190 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
191 return -EINVAL;
192
193 queue_array = auxtrace_alloc_queue_array(nr_queues);
194 if (!queue_array)
195 return -ENOMEM;
196
197 for (i = 0; i < queues->nr_queues; i++) {
198 list_splice_tail(&queues->queue_array[i].head,
199 &queue_array[i].head);
200 queue_array[i].tid = queues->queue_array[i].tid;
201 queue_array[i].cpu = queues->queue_array[i].cpu;
202 queue_array[i].set = queues->queue_array[i].set;
203 queue_array[i].priv = queues->queue_array[i].priv;
204 }
205
206 queues->nr_queues = nr_queues;
207 queues->queue_array = queue_array;
208
209 return 0;
210 }
211
auxtrace_copy_data(u64 size,struct perf_session * session)212 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
213 {
214 int fd = perf_data_file__fd(session->file);
215 void *p;
216 ssize_t ret;
217
218 if (size > SSIZE_MAX)
219 return NULL;
220
221 p = malloc(size);
222 if (!p)
223 return NULL;
224
225 ret = readn(fd, p, size);
226 if (ret != (ssize_t)size) {
227 free(p);
228 return NULL;
229 }
230
231 return p;
232 }
233
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)234 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
235 unsigned int idx,
236 struct auxtrace_buffer *buffer)
237 {
238 struct auxtrace_queue *queue;
239 int err;
240
241 if (idx >= queues->nr_queues) {
242 err = auxtrace_queues__grow(queues, idx + 1);
243 if (err)
244 return err;
245 }
246
247 queue = &queues->queue_array[idx];
248
249 if (!queue->set) {
250 queue->set = true;
251 queue->tid = buffer->tid;
252 queue->cpu = buffer->cpu;
253 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
254 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
255 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
256 return -EINVAL;
257 }
258
259 buffer->buffer_nr = queues->next_buffer_nr++;
260
261 list_add_tail(&buffer->list, &queue->head);
262
263 queues->new_data = true;
264 queues->populated = true;
265
266 return 0;
267 }
268
269 /* Limit buffers to 32MiB on 32-bit */
270 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
271
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)272 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
273 unsigned int idx,
274 struct auxtrace_buffer *buffer)
275 {
276 u64 sz = buffer->size;
277 bool consecutive = false;
278 struct auxtrace_buffer *b;
279 int err;
280
281 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
282 b = memdup(buffer, sizeof(struct auxtrace_buffer));
283 if (!b)
284 return -ENOMEM;
285 b->size = BUFFER_LIMIT_FOR_32_BIT;
286 b->consecutive = consecutive;
287 err = auxtrace_queues__add_buffer(queues, idx, b);
288 if (err) {
289 auxtrace_buffer__free(b);
290 return err;
291 }
292 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
293 sz -= BUFFER_LIMIT_FOR_32_BIT;
294 consecutive = true;
295 }
296
297 buffer->size = sz;
298 buffer->consecutive = consecutive;
299
300 return 0;
301 }
302
auxtrace_queues__add_event_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer)303 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
304 struct perf_session *session,
305 unsigned int idx,
306 struct auxtrace_buffer *buffer)
307 {
308 if (session->one_mmap) {
309 buffer->data = buffer->data_offset - session->one_mmap_offset +
310 session->one_mmap_addr;
311 } else if (perf_data_file__is_pipe(session->file)) {
312 buffer->data = auxtrace_copy_data(buffer->size, session);
313 if (!buffer->data)
314 return -ENOMEM;
315 buffer->data_needs_freeing = true;
316 } else if (BITS_PER_LONG == 32 &&
317 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
318 int err;
319
320 err = auxtrace_queues__split_buffer(queues, idx, buffer);
321 if (err)
322 return err;
323 }
324
325 return auxtrace_queues__add_buffer(queues, idx, buffer);
326 }
327
filter_cpu(struct perf_session * session,int cpu)328 static bool filter_cpu(struct perf_session *session, int cpu)
329 {
330 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
331
332 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
333 }
334
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)335 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
336 struct perf_session *session,
337 union perf_event *event, off_t data_offset,
338 struct auxtrace_buffer **buffer_ptr)
339 {
340 struct auxtrace_buffer *buffer;
341 unsigned int idx;
342 int err;
343
344 if (filter_cpu(session, event->auxtrace.cpu))
345 return 0;
346
347 buffer = zalloc(sizeof(struct auxtrace_buffer));
348 if (!buffer)
349 return -ENOMEM;
350
351 buffer->pid = -1;
352 buffer->tid = event->auxtrace.tid;
353 buffer->cpu = event->auxtrace.cpu;
354 buffer->data_offset = data_offset;
355 buffer->offset = event->auxtrace.offset;
356 buffer->reference = event->auxtrace.reference;
357 buffer->size = event->auxtrace.size;
358 idx = event->auxtrace.idx;
359
360 err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
361 if (err)
362 goto out_err;
363
364 if (buffer_ptr)
365 *buffer_ptr = buffer;
366
367 return 0;
368
369 out_err:
370 auxtrace_buffer__free(buffer);
371 return err;
372 }
373
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)374 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
375 struct perf_session *session,
376 off_t file_offset, size_t sz)
377 {
378 union perf_event *event;
379 int err;
380 char buf[PERF_SAMPLE_MAX_SIZE];
381
382 err = perf_session__peek_event(session, file_offset, buf,
383 PERF_SAMPLE_MAX_SIZE, &event, NULL);
384 if (err)
385 return err;
386
387 if (event->header.type == PERF_RECORD_AUXTRACE) {
388 if (event->header.size < sizeof(struct auxtrace_event) ||
389 event->header.size != sz) {
390 err = -EINVAL;
391 goto out;
392 }
393 file_offset += event->header.size;
394 err = auxtrace_queues__add_event(queues, session, event,
395 file_offset, NULL);
396 }
397 out:
398 return err;
399 }
400
auxtrace_queues__free(struct auxtrace_queues * queues)401 void auxtrace_queues__free(struct auxtrace_queues *queues)
402 {
403 unsigned int i;
404
405 for (i = 0; i < queues->nr_queues; i++) {
406 while (!list_empty(&queues->queue_array[i].head)) {
407 struct auxtrace_buffer *buffer;
408
409 buffer = list_entry(queues->queue_array[i].head.next,
410 struct auxtrace_buffer, list);
411 list_del(&buffer->list);
412 auxtrace_buffer__free(buffer);
413 }
414 }
415
416 zfree(&queues->queue_array);
417 queues->nr_queues = 0;
418 }
419
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)420 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
421 unsigned int pos, unsigned int queue_nr,
422 u64 ordinal)
423 {
424 unsigned int parent;
425
426 while (pos) {
427 parent = (pos - 1) >> 1;
428 if (heap_array[parent].ordinal <= ordinal)
429 break;
430 heap_array[pos] = heap_array[parent];
431 pos = parent;
432 }
433 heap_array[pos].queue_nr = queue_nr;
434 heap_array[pos].ordinal = ordinal;
435 }
436
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)437 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
438 u64 ordinal)
439 {
440 struct auxtrace_heap_item *heap_array;
441
442 if (queue_nr >= heap->heap_sz) {
443 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
444
445 while (heap_sz <= queue_nr)
446 heap_sz <<= 1;
447 heap_array = realloc(heap->heap_array,
448 heap_sz * sizeof(struct auxtrace_heap_item));
449 if (!heap_array)
450 return -ENOMEM;
451 heap->heap_array = heap_array;
452 heap->heap_sz = heap_sz;
453 }
454
455 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
456
457 return 0;
458 }
459
auxtrace_heap__free(struct auxtrace_heap * heap)460 void auxtrace_heap__free(struct auxtrace_heap *heap)
461 {
462 zfree(&heap->heap_array);
463 heap->heap_cnt = 0;
464 heap->heap_sz = 0;
465 }
466
auxtrace_heap__pop(struct auxtrace_heap * heap)467 void auxtrace_heap__pop(struct auxtrace_heap *heap)
468 {
469 unsigned int pos, last, heap_cnt = heap->heap_cnt;
470 struct auxtrace_heap_item *heap_array;
471
472 if (!heap_cnt)
473 return;
474
475 heap->heap_cnt -= 1;
476
477 heap_array = heap->heap_array;
478
479 pos = 0;
480 while (1) {
481 unsigned int left, right;
482
483 left = (pos << 1) + 1;
484 if (left >= heap_cnt)
485 break;
486 right = left + 1;
487 if (right >= heap_cnt) {
488 heap_array[pos] = heap_array[left];
489 return;
490 }
491 if (heap_array[left].ordinal < heap_array[right].ordinal) {
492 heap_array[pos] = heap_array[left];
493 pos = left;
494 } else {
495 heap_array[pos] = heap_array[right];
496 pos = right;
497 }
498 }
499
500 last = heap_cnt - 1;
501 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
502 heap_array[last].ordinal);
503 }
504
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct perf_evlist * evlist)505 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
506 struct perf_evlist *evlist)
507 {
508 if (itr)
509 return itr->info_priv_size(itr, evlist);
510 return 0;
511 }
512
auxtrace_not_supported(void)513 static int auxtrace_not_supported(void)
514 {
515 pr_err("AUX area tracing is not supported on this architecture\n");
516 return -EINVAL;
517 }
518
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct auxtrace_info_event * auxtrace_info,size_t priv_size)519 int auxtrace_record__info_fill(struct auxtrace_record *itr,
520 struct perf_session *session,
521 struct auxtrace_info_event *auxtrace_info,
522 size_t priv_size)
523 {
524 if (itr)
525 return itr->info_fill(itr, session, auxtrace_info, priv_size);
526 return auxtrace_not_supported();
527 }
528
auxtrace_record__free(struct auxtrace_record * itr)529 void auxtrace_record__free(struct auxtrace_record *itr)
530 {
531 if (itr)
532 itr->free(itr);
533 }
534
auxtrace_record__snapshot_start(struct auxtrace_record * itr)535 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
536 {
537 if (itr && itr->snapshot_start)
538 return itr->snapshot_start(itr);
539 return 0;
540 }
541
auxtrace_record__snapshot_finish(struct auxtrace_record * itr)542 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
543 {
544 if (itr && itr->snapshot_finish)
545 return itr->snapshot_finish(itr);
546 return 0;
547 }
548
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)549 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
550 struct auxtrace_mmap *mm,
551 unsigned char *data, u64 *head, u64 *old)
552 {
553 if (itr && itr->find_snapshot)
554 return itr->find_snapshot(itr, idx, mm, data, head, old);
555 return 0;
556 }
557
auxtrace_record__options(struct auxtrace_record * itr,struct perf_evlist * evlist,struct record_opts * opts)558 int auxtrace_record__options(struct auxtrace_record *itr,
559 struct perf_evlist *evlist,
560 struct record_opts *opts)
561 {
562 if (itr)
563 return itr->recording_options(itr, evlist, opts);
564 return 0;
565 }
566
auxtrace_record__reference(struct auxtrace_record * itr)567 u64 auxtrace_record__reference(struct auxtrace_record *itr)
568 {
569 if (itr)
570 return itr->reference(itr);
571 return 0;
572 }
573
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)574 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
575 struct record_opts *opts, const char *str)
576 {
577 if (!str)
578 return 0;
579
580 if (itr)
581 return itr->parse_snapshot_options(itr, opts, str);
582
583 pr_err("No AUX area tracing to snapshot\n");
584 return -EINVAL;
585 }
586
587 struct auxtrace_record *__weak
auxtrace_record__init(struct perf_evlist * evlist __maybe_unused,int * err)588 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
589 {
590 *err = 0;
591 return NULL;
592 }
593
auxtrace_index__alloc(struct list_head * head)594 static int auxtrace_index__alloc(struct list_head *head)
595 {
596 struct auxtrace_index *auxtrace_index;
597
598 auxtrace_index = malloc(sizeof(struct auxtrace_index));
599 if (!auxtrace_index)
600 return -ENOMEM;
601
602 auxtrace_index->nr = 0;
603 INIT_LIST_HEAD(&auxtrace_index->list);
604
605 list_add_tail(&auxtrace_index->list, head);
606
607 return 0;
608 }
609
auxtrace_index__free(struct list_head * head)610 void auxtrace_index__free(struct list_head *head)
611 {
612 struct auxtrace_index *auxtrace_index, *n;
613
614 list_for_each_entry_safe(auxtrace_index, n, head, list) {
615 list_del(&auxtrace_index->list);
616 free(auxtrace_index);
617 }
618 }
619
auxtrace_index__last(struct list_head * head)620 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
621 {
622 struct auxtrace_index *auxtrace_index;
623 int err;
624
625 if (list_empty(head)) {
626 err = auxtrace_index__alloc(head);
627 if (err)
628 return NULL;
629 }
630
631 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
632
633 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
634 err = auxtrace_index__alloc(head);
635 if (err)
636 return NULL;
637 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
638 list);
639 }
640
641 return auxtrace_index;
642 }
643
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)644 int auxtrace_index__auxtrace_event(struct list_head *head,
645 union perf_event *event, off_t file_offset)
646 {
647 struct auxtrace_index *auxtrace_index;
648 size_t nr;
649
650 auxtrace_index = auxtrace_index__last(head);
651 if (!auxtrace_index)
652 return -ENOMEM;
653
654 nr = auxtrace_index->nr;
655 auxtrace_index->entries[nr].file_offset = file_offset;
656 auxtrace_index->entries[nr].sz = event->header.size;
657 auxtrace_index->nr += 1;
658
659 return 0;
660 }
661
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)662 static int auxtrace_index__do_write(int fd,
663 struct auxtrace_index *auxtrace_index)
664 {
665 struct auxtrace_index_entry ent;
666 size_t i;
667
668 for (i = 0; i < auxtrace_index->nr; i++) {
669 ent.file_offset = auxtrace_index->entries[i].file_offset;
670 ent.sz = auxtrace_index->entries[i].sz;
671 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
672 return -errno;
673 }
674 return 0;
675 }
676
auxtrace_index__write(int fd,struct list_head * head)677 int auxtrace_index__write(int fd, struct list_head *head)
678 {
679 struct auxtrace_index *auxtrace_index;
680 u64 total = 0;
681 int err;
682
683 list_for_each_entry(auxtrace_index, head, list)
684 total += auxtrace_index->nr;
685
686 if (writen(fd, &total, sizeof(total)) != sizeof(total))
687 return -errno;
688
689 list_for_each_entry(auxtrace_index, head, list) {
690 err = auxtrace_index__do_write(fd, auxtrace_index);
691 if (err)
692 return err;
693 }
694
695 return 0;
696 }
697
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)698 static int auxtrace_index__process_entry(int fd, struct list_head *head,
699 bool needs_swap)
700 {
701 struct auxtrace_index *auxtrace_index;
702 struct auxtrace_index_entry ent;
703 size_t nr;
704
705 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
706 return -1;
707
708 auxtrace_index = auxtrace_index__last(head);
709 if (!auxtrace_index)
710 return -1;
711
712 nr = auxtrace_index->nr;
713 if (needs_swap) {
714 auxtrace_index->entries[nr].file_offset =
715 bswap_64(ent.file_offset);
716 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
717 } else {
718 auxtrace_index->entries[nr].file_offset = ent.file_offset;
719 auxtrace_index->entries[nr].sz = ent.sz;
720 }
721
722 auxtrace_index->nr = nr + 1;
723
724 return 0;
725 }
726
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)727 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
728 bool needs_swap)
729 {
730 struct list_head *head = &session->auxtrace_index;
731 u64 nr;
732
733 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
734 return -1;
735
736 if (needs_swap)
737 nr = bswap_64(nr);
738
739 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
740 return -1;
741
742 while (nr--) {
743 int err;
744
745 err = auxtrace_index__process_entry(fd, head, needs_swap);
746 if (err)
747 return -1;
748 }
749
750 return 0;
751 }
752
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)753 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
754 struct perf_session *session,
755 struct auxtrace_index_entry *ent)
756 {
757 return auxtrace_queues__add_indexed_event(queues, session,
758 ent->file_offset, ent->sz);
759 }
760
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)761 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
762 struct perf_session *session)
763 {
764 struct auxtrace_index *auxtrace_index;
765 struct auxtrace_index_entry *ent;
766 size_t i;
767 int err;
768
769 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
770 for (i = 0; i < auxtrace_index->nr; i++) {
771 ent = &auxtrace_index->entries[i];
772 err = auxtrace_queues__process_index_entry(queues,
773 session,
774 ent);
775 if (err)
776 return err;
777 }
778 }
779 return 0;
780 }
781
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)782 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
783 struct auxtrace_buffer *buffer)
784 {
785 if (buffer) {
786 if (list_is_last(&buffer->list, &queue->head))
787 return NULL;
788 return list_entry(buffer->list.next, struct auxtrace_buffer,
789 list);
790 } else {
791 if (list_empty(&queue->head))
792 return NULL;
793 return list_entry(queue->head.next, struct auxtrace_buffer,
794 list);
795 }
796 }
797
auxtrace_buffer__get_data(struct auxtrace_buffer * buffer,int fd)798 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
799 {
800 size_t adj = buffer->data_offset & (page_size - 1);
801 size_t size = buffer->size + adj;
802 off_t file_offset = buffer->data_offset - adj;
803 void *addr;
804
805 if (buffer->data)
806 return buffer->data;
807
808 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
809 if (addr == MAP_FAILED)
810 return NULL;
811
812 buffer->mmap_addr = addr;
813 buffer->mmap_size = size;
814
815 buffer->data = addr + adj;
816
817 return buffer->data;
818 }
819
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)820 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
821 {
822 if (!buffer->data || !buffer->mmap_addr)
823 return;
824 munmap(buffer->mmap_addr, buffer->mmap_size);
825 buffer->mmap_addr = NULL;
826 buffer->mmap_size = 0;
827 buffer->data = NULL;
828 buffer->use_data = NULL;
829 }
830
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)831 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
832 {
833 auxtrace_buffer__put_data(buffer);
834 if (buffer->data_needs_freeing) {
835 buffer->data_needs_freeing = false;
836 zfree(&buffer->data);
837 buffer->use_data = NULL;
838 buffer->size = 0;
839 }
840 }
841
auxtrace_buffer__free(struct auxtrace_buffer * buffer)842 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
843 {
844 auxtrace_buffer__drop_data(buffer);
845 free(buffer);
846 }
847
auxtrace_synth_error(struct auxtrace_error_event * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg)848 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
849 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
850 const char *msg)
851 {
852 size_t size;
853
854 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
855
856 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
857 auxtrace_error->type = type;
858 auxtrace_error->code = code;
859 auxtrace_error->cpu = cpu;
860 auxtrace_error->pid = pid;
861 auxtrace_error->tid = tid;
862 auxtrace_error->ip = ip;
863 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
864
865 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
866 strlen(auxtrace_error->msg) + 1;
867 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
868 }
869
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)870 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
871 struct perf_tool *tool,
872 struct perf_session *session,
873 perf_event__handler_t process)
874 {
875 union perf_event *ev;
876 size_t priv_size;
877 int err;
878
879 pr_debug2("Synthesizing auxtrace information\n");
880 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
881 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
882 if (!ev)
883 return -ENOMEM;
884
885 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
886 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
887 priv_size;
888 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
889 priv_size);
890 if (err)
891 goto out_free;
892
893 err = process(tool, ev, NULL, NULL);
894 out_free:
895 free(ev);
896 return err;
897 }
898
auxtrace__dont_decode(struct perf_session * session)899 static bool auxtrace__dont_decode(struct perf_session *session)
900 {
901 return !session->itrace_synth_opts ||
902 session->itrace_synth_opts->dont_decode;
903 }
904
perf_event__process_auxtrace_info(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_session * session)905 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
906 union perf_event *event,
907 struct perf_session *session)
908 {
909 enum auxtrace_type type = event->auxtrace_info.type;
910
911 if (dump_trace)
912 fprintf(stdout, " type: %u\n", type);
913
914 switch (type) {
915 case PERF_AUXTRACE_INTEL_PT:
916 return intel_pt_process_auxtrace_info(event, session);
917 case PERF_AUXTRACE_INTEL_BTS:
918 return intel_bts_process_auxtrace_info(event, session);
919 case PERF_AUXTRACE_CS_ETM:
920 case PERF_AUXTRACE_UNKNOWN:
921 default:
922 return -EINVAL;
923 }
924 }
925
perf_event__process_auxtrace(struct perf_tool * tool,union perf_event * event,struct perf_session * session)926 s64 perf_event__process_auxtrace(struct perf_tool *tool,
927 union perf_event *event,
928 struct perf_session *session)
929 {
930 s64 err;
931
932 if (dump_trace)
933 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n",
934 event->auxtrace.size, event->auxtrace.offset,
935 event->auxtrace.reference, event->auxtrace.idx,
936 event->auxtrace.tid, event->auxtrace.cpu);
937
938 if (auxtrace__dont_decode(session))
939 return event->auxtrace.size;
940
941 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
942 return -EINVAL;
943
944 err = session->auxtrace->process_auxtrace_event(session, event, tool);
945 if (err < 0)
946 return err;
947
948 return event->auxtrace.size;
949 }
950
951 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
952 #define PERF_ITRACE_DEFAULT_PERIOD 100000
953 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
954 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
955 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
956 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
957
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts)958 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
959 {
960 synth_opts->instructions = true;
961 synth_opts->branches = true;
962 synth_opts->transactions = true;
963 synth_opts->ptwrites = true;
964 synth_opts->pwr_events = true;
965 synth_opts->errors = true;
966 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
967 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
968 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
969 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
970 synth_opts->initial_skip = 0;
971 }
972
973 /*
974 * Please check tools/perf/Documentation/perf-script.txt for information
975 * about the options parsed here, which is introduced after this cset,
976 * when support in 'perf script' for these options is introduced.
977 */
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)978 int itrace_parse_synth_opts(const struct option *opt, const char *str,
979 int unset)
980 {
981 struct itrace_synth_opts *synth_opts = opt->value;
982 const char *p;
983 char *endptr;
984 bool period_type_set = false;
985 bool period_set = false;
986
987 synth_opts->set = true;
988
989 if (unset) {
990 synth_opts->dont_decode = true;
991 return 0;
992 }
993
994 if (!str) {
995 itrace_synth_opts__set_default(synth_opts);
996 return 0;
997 }
998
999 for (p = str; *p;) {
1000 switch (*p++) {
1001 case 'i':
1002 synth_opts->instructions = true;
1003 while (*p == ' ' || *p == ',')
1004 p += 1;
1005 if (isdigit(*p)) {
1006 synth_opts->period = strtoull(p, &endptr, 10);
1007 period_set = true;
1008 p = endptr;
1009 while (*p == ' ' || *p == ',')
1010 p += 1;
1011 switch (*p++) {
1012 case 'i':
1013 synth_opts->period_type =
1014 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1015 period_type_set = true;
1016 break;
1017 case 't':
1018 synth_opts->period_type =
1019 PERF_ITRACE_PERIOD_TICKS;
1020 period_type_set = true;
1021 break;
1022 case 'm':
1023 synth_opts->period *= 1000;
1024 /* Fall through */
1025 case 'u':
1026 synth_opts->period *= 1000;
1027 /* Fall through */
1028 case 'n':
1029 if (*p++ != 's')
1030 goto out_err;
1031 synth_opts->period_type =
1032 PERF_ITRACE_PERIOD_NANOSECS;
1033 period_type_set = true;
1034 break;
1035 case '\0':
1036 goto out;
1037 default:
1038 goto out_err;
1039 }
1040 }
1041 break;
1042 case 'b':
1043 synth_opts->branches = true;
1044 break;
1045 case 'x':
1046 synth_opts->transactions = true;
1047 break;
1048 case 'w':
1049 synth_opts->ptwrites = true;
1050 break;
1051 case 'p':
1052 synth_opts->pwr_events = true;
1053 break;
1054 case 'e':
1055 synth_opts->errors = true;
1056 break;
1057 case 'd':
1058 synth_opts->log = true;
1059 break;
1060 case 'c':
1061 synth_opts->branches = true;
1062 synth_opts->calls = true;
1063 break;
1064 case 'r':
1065 synth_opts->branches = true;
1066 synth_opts->returns = true;
1067 break;
1068 case 'g':
1069 synth_opts->callchain = true;
1070 synth_opts->callchain_sz =
1071 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1072 while (*p == ' ' || *p == ',')
1073 p += 1;
1074 if (isdigit(*p)) {
1075 unsigned int val;
1076
1077 val = strtoul(p, &endptr, 10);
1078 p = endptr;
1079 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1080 goto out_err;
1081 synth_opts->callchain_sz = val;
1082 }
1083 break;
1084 case 'l':
1085 synth_opts->last_branch = true;
1086 synth_opts->last_branch_sz =
1087 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1088 while (*p == ' ' || *p == ',')
1089 p += 1;
1090 if (isdigit(*p)) {
1091 unsigned int val;
1092
1093 val = strtoul(p, &endptr, 10);
1094 p = endptr;
1095 if (!val ||
1096 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1097 goto out_err;
1098 synth_opts->last_branch_sz = val;
1099 }
1100 break;
1101 case 's':
1102 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1103 if (p == endptr)
1104 goto out_err;
1105 p = endptr;
1106 break;
1107 case ' ':
1108 case ',':
1109 break;
1110 default:
1111 goto out_err;
1112 }
1113 }
1114 out:
1115 if (synth_opts->instructions) {
1116 if (!period_type_set)
1117 synth_opts->period_type =
1118 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1119 if (!period_set)
1120 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1121 }
1122
1123 return 0;
1124
1125 out_err:
1126 pr_err("Bad Instruction Tracing options '%s'\n", str);
1127 return -EINVAL;
1128 }
1129
1130 static const char * const auxtrace_error_type_name[] = {
1131 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1132 };
1133
auxtrace_error_name(int type)1134 static const char *auxtrace_error_name(int type)
1135 {
1136 const char *error_type_name = NULL;
1137
1138 if (type < PERF_AUXTRACE_ERROR_MAX)
1139 error_type_name = auxtrace_error_type_name[type];
1140 if (!error_type_name)
1141 error_type_name = "unknown AUX";
1142 return error_type_name;
1143 }
1144
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1145 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1146 {
1147 struct auxtrace_error_event *e = &event->auxtrace_error;
1148 int ret;
1149
1150 ret = fprintf(fp, " %s error type %u",
1151 auxtrace_error_name(e->type), e->type);
1152 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1153 e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1154 return ret;
1155 }
1156
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1157 void perf_session__auxtrace_error_inc(struct perf_session *session,
1158 union perf_event *event)
1159 {
1160 struct auxtrace_error_event *e = &event->auxtrace_error;
1161
1162 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1163 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1164 }
1165
events_stats__auxtrace_error_warn(const struct events_stats * stats)1166 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1167 {
1168 int i;
1169
1170 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1171 if (!stats->nr_auxtrace_errors[i])
1172 continue;
1173 ui__warning("%u %s errors\n",
1174 stats->nr_auxtrace_errors[i],
1175 auxtrace_error_name(i));
1176 }
1177 }
1178
perf_event__process_auxtrace_error(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_session * session)1179 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1180 union perf_event *event,
1181 struct perf_session *session)
1182 {
1183 if (auxtrace__dont_decode(session))
1184 return 0;
1185
1186 perf_event__fprintf_auxtrace_error(event, stdout);
1187 return 0;
1188 }
1189
__auxtrace_mmap__read(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1190 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1191 struct auxtrace_record *itr,
1192 struct perf_tool *tool, process_auxtrace_t fn,
1193 bool snapshot, size_t snapshot_size)
1194 {
1195 u64 head, old = mm->prev, offset, ref;
1196 unsigned char *data = mm->base;
1197 size_t size, head_off, old_off, len1, len2, padding;
1198 union perf_event ev;
1199 void *data1, *data2;
1200
1201 if (snapshot) {
1202 head = auxtrace_mmap__read_snapshot_head(mm);
1203 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1204 &head, &old))
1205 return -1;
1206 } else {
1207 head = auxtrace_mmap__read_head(mm);
1208 }
1209
1210 if (old == head)
1211 return 0;
1212
1213 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1214 mm->idx, old, head, head - old);
1215
1216 if (mm->mask) {
1217 head_off = head & mm->mask;
1218 old_off = old & mm->mask;
1219 } else {
1220 head_off = head % mm->len;
1221 old_off = old % mm->len;
1222 }
1223
1224 if (head_off > old_off)
1225 size = head_off - old_off;
1226 else
1227 size = mm->len - (old_off - head_off);
1228
1229 if (snapshot && size > snapshot_size)
1230 size = snapshot_size;
1231
1232 ref = auxtrace_record__reference(itr);
1233
1234 if (head > old || size <= head || mm->mask) {
1235 offset = head - size;
1236 } else {
1237 /*
1238 * When the buffer size is not a power of 2, 'head' wraps at the
1239 * highest multiple of the buffer size, so we have to subtract
1240 * the remainder here.
1241 */
1242 u64 rem = (0ULL - mm->len) % mm->len;
1243
1244 offset = head - size - rem;
1245 }
1246
1247 if (size > head_off) {
1248 len1 = size - head_off;
1249 data1 = &data[mm->len - len1];
1250 len2 = head_off;
1251 data2 = &data[0];
1252 } else {
1253 len1 = size;
1254 data1 = &data[head_off - len1];
1255 len2 = 0;
1256 data2 = NULL;
1257 }
1258
1259 if (itr->alignment) {
1260 unsigned int unwanted = len1 % itr->alignment;
1261
1262 len1 -= unwanted;
1263 size -= unwanted;
1264 }
1265
1266 /* padding must be written by fn() e.g. record__process_auxtrace() */
1267 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1268 if (padding)
1269 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1270
1271 memset(&ev, 0, sizeof(ev));
1272 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1273 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1274 ev.auxtrace.size = size + padding;
1275 ev.auxtrace.offset = offset;
1276 ev.auxtrace.reference = ref;
1277 ev.auxtrace.idx = mm->idx;
1278 ev.auxtrace.tid = mm->tid;
1279 ev.auxtrace.cpu = mm->cpu;
1280
1281 if (fn(tool, &ev, data1, len1, data2, len2))
1282 return -1;
1283
1284 mm->prev = head;
1285
1286 if (!snapshot) {
1287 auxtrace_mmap__write_tail(mm, head);
1288 if (itr->read_finish) {
1289 int err;
1290
1291 err = itr->read_finish(itr, mm->idx);
1292 if (err < 0)
1293 return err;
1294 }
1295 }
1296
1297 return 1;
1298 }
1299
auxtrace_mmap__read(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1300 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1301 struct perf_tool *tool, process_auxtrace_t fn)
1302 {
1303 return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1304 }
1305
auxtrace_mmap__read_snapshot(struct auxtrace_mmap * mm,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1306 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1307 struct auxtrace_record *itr,
1308 struct perf_tool *tool, process_auxtrace_t fn,
1309 size_t snapshot_size)
1310 {
1311 return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1312 }
1313
1314 /**
1315 * struct auxtrace_cache - hash table to implement a cache
1316 * @hashtable: the hashtable
1317 * @sz: hashtable size (number of hlists)
1318 * @entry_size: size of an entry
1319 * @limit: limit the number of entries to this maximum, when reached the cache
1320 * is dropped and caching begins again with an empty cache
1321 * @cnt: current number of entries
1322 * @bits: hashtable size (@sz = 2^@bits)
1323 */
1324 struct auxtrace_cache {
1325 struct hlist_head *hashtable;
1326 size_t sz;
1327 size_t entry_size;
1328 size_t limit;
1329 size_t cnt;
1330 unsigned int bits;
1331 };
1332
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1333 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1334 unsigned int limit_percent)
1335 {
1336 struct auxtrace_cache *c;
1337 struct hlist_head *ht;
1338 size_t sz, i;
1339
1340 c = zalloc(sizeof(struct auxtrace_cache));
1341 if (!c)
1342 return NULL;
1343
1344 sz = 1UL << bits;
1345
1346 ht = calloc(sz, sizeof(struct hlist_head));
1347 if (!ht)
1348 goto out_free;
1349
1350 for (i = 0; i < sz; i++)
1351 INIT_HLIST_HEAD(&ht[i]);
1352
1353 c->hashtable = ht;
1354 c->sz = sz;
1355 c->entry_size = entry_size;
1356 c->limit = (c->sz * limit_percent) / 100;
1357 c->bits = bits;
1358
1359 return c;
1360
1361 out_free:
1362 free(c);
1363 return NULL;
1364 }
1365
auxtrace_cache__drop(struct auxtrace_cache * c)1366 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1367 {
1368 struct auxtrace_cache_entry *entry;
1369 struct hlist_node *tmp;
1370 size_t i;
1371
1372 if (!c)
1373 return;
1374
1375 for (i = 0; i < c->sz; i++) {
1376 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1377 hlist_del(&entry->hash);
1378 auxtrace_cache__free_entry(c, entry);
1379 }
1380 }
1381
1382 c->cnt = 0;
1383 }
1384
auxtrace_cache__free(struct auxtrace_cache * c)1385 void auxtrace_cache__free(struct auxtrace_cache *c)
1386 {
1387 if (!c)
1388 return;
1389
1390 auxtrace_cache__drop(c);
1391 free(c->hashtable);
1392 free(c);
1393 }
1394
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)1395 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1396 {
1397 return malloc(c->entry_size);
1398 }
1399
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)1400 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1401 void *entry)
1402 {
1403 free(entry);
1404 }
1405
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)1406 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1407 struct auxtrace_cache_entry *entry)
1408 {
1409 if (c->limit && ++c->cnt > c->limit)
1410 auxtrace_cache__drop(c);
1411
1412 entry->key = key;
1413 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1414
1415 return 0;
1416 }
1417
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)1418 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1419 {
1420 struct auxtrace_cache_entry *entry;
1421 struct hlist_head *hlist;
1422
1423 if (!c)
1424 return NULL;
1425
1426 hlist = &c->hashtable[hash_32(key, c->bits)];
1427 hlist_for_each_entry(entry, hlist, hash) {
1428 if (entry->key == key)
1429 return entry;
1430 }
1431
1432 return NULL;
1433 }
1434
addr_filter__free_str(struct addr_filter * filt)1435 static void addr_filter__free_str(struct addr_filter *filt)
1436 {
1437 free(filt->str);
1438 filt->action = NULL;
1439 filt->sym_from = NULL;
1440 filt->sym_to = NULL;
1441 filt->filename = NULL;
1442 filt->str = NULL;
1443 }
1444
addr_filter__new(void)1445 static struct addr_filter *addr_filter__new(void)
1446 {
1447 struct addr_filter *filt = zalloc(sizeof(*filt));
1448
1449 if (filt)
1450 INIT_LIST_HEAD(&filt->list);
1451
1452 return filt;
1453 }
1454
addr_filter__free(struct addr_filter * filt)1455 static void addr_filter__free(struct addr_filter *filt)
1456 {
1457 if (filt)
1458 addr_filter__free_str(filt);
1459 free(filt);
1460 }
1461
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)1462 static void addr_filters__add(struct addr_filters *filts,
1463 struct addr_filter *filt)
1464 {
1465 list_add_tail(&filt->list, &filts->head);
1466 filts->cnt += 1;
1467 }
1468
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)1469 static void addr_filters__del(struct addr_filters *filts,
1470 struct addr_filter *filt)
1471 {
1472 list_del_init(&filt->list);
1473 filts->cnt -= 1;
1474 }
1475
addr_filters__init(struct addr_filters * filts)1476 void addr_filters__init(struct addr_filters *filts)
1477 {
1478 INIT_LIST_HEAD(&filts->head);
1479 filts->cnt = 0;
1480 }
1481
addr_filters__exit(struct addr_filters * filts)1482 void addr_filters__exit(struct addr_filters *filts)
1483 {
1484 struct addr_filter *filt, *n;
1485
1486 list_for_each_entry_safe(filt, n, &filts->head, list) {
1487 addr_filters__del(filts, filt);
1488 addr_filter__free(filt);
1489 }
1490 }
1491
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)1492 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1493 const char *str_delim)
1494 {
1495 *inp += strspn(*inp, " ");
1496
1497 if (isdigit(**inp)) {
1498 char *endptr;
1499
1500 if (!num)
1501 return -EINVAL;
1502 errno = 0;
1503 *num = strtoull(*inp, &endptr, 0);
1504 if (errno)
1505 return -errno;
1506 if (endptr == *inp)
1507 return -EINVAL;
1508 *inp = endptr;
1509 } else {
1510 size_t n;
1511
1512 if (!str)
1513 return -EINVAL;
1514 *inp += strspn(*inp, " ");
1515 *str = *inp;
1516 n = strcspn(*inp, str_delim);
1517 if (!n)
1518 return -EINVAL;
1519 *inp += n;
1520 if (**inp) {
1521 **inp = '\0';
1522 *inp += 1;
1523 }
1524 }
1525 return 0;
1526 }
1527
parse_action(struct addr_filter * filt)1528 static int parse_action(struct addr_filter *filt)
1529 {
1530 if (!strcmp(filt->action, "filter")) {
1531 filt->start = true;
1532 filt->range = true;
1533 } else if (!strcmp(filt->action, "start")) {
1534 filt->start = true;
1535 } else if (!strcmp(filt->action, "stop")) {
1536 filt->start = false;
1537 } else if (!strcmp(filt->action, "tracestop")) {
1538 filt->start = false;
1539 filt->range = true;
1540 filt->action += 5; /* Change 'tracestop' to 'stop' */
1541 } else {
1542 return -EINVAL;
1543 }
1544 return 0;
1545 }
1546
parse_sym_idx(char ** inp,int * idx)1547 static int parse_sym_idx(char **inp, int *idx)
1548 {
1549 *idx = -1;
1550
1551 *inp += strspn(*inp, " ");
1552
1553 if (**inp != '#')
1554 return 0;
1555
1556 *inp += 1;
1557
1558 if (**inp == 'g' || **inp == 'G') {
1559 *inp += 1;
1560 *idx = 0;
1561 } else {
1562 unsigned long num;
1563 char *endptr;
1564
1565 errno = 0;
1566 num = strtoul(*inp, &endptr, 0);
1567 if (errno)
1568 return -errno;
1569 if (endptr == *inp || num > INT_MAX)
1570 return -EINVAL;
1571 *inp = endptr;
1572 *idx = num;
1573 }
1574
1575 return 0;
1576 }
1577
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)1578 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1579 {
1580 int err = parse_num_or_str(inp, num, str, " ");
1581
1582 if (!err && *str)
1583 err = parse_sym_idx(inp, idx);
1584
1585 return err;
1586 }
1587
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)1588 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1589 {
1590 char *fstr;
1591 int err;
1592
1593 filt->str = fstr = strdup(*filter_inp);
1594 if (!fstr)
1595 return -ENOMEM;
1596
1597 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1598 if (err)
1599 goto out_err;
1600
1601 err = parse_action(filt);
1602 if (err)
1603 goto out_err;
1604
1605 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1606 &filt->sym_from_idx);
1607 if (err)
1608 goto out_err;
1609
1610 fstr += strspn(fstr, " ");
1611
1612 if (*fstr == '/') {
1613 fstr += 1;
1614 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1615 &filt->sym_to_idx);
1616 if (err)
1617 goto out_err;
1618 filt->range = true;
1619 }
1620
1621 fstr += strspn(fstr, " ");
1622
1623 if (*fstr == '@') {
1624 fstr += 1;
1625 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1626 if (err)
1627 goto out_err;
1628 }
1629
1630 fstr += strspn(fstr, " ,");
1631
1632 *filter_inp += fstr - filt->str;
1633
1634 return 0;
1635
1636 out_err:
1637 addr_filter__free_str(filt);
1638
1639 return err;
1640 }
1641
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)1642 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1643 const char *filter)
1644 {
1645 struct addr_filter *filt;
1646 const char *fstr = filter;
1647 int err;
1648
1649 while (*fstr) {
1650 filt = addr_filter__new();
1651 err = parse_one_filter(filt, &fstr);
1652 if (err) {
1653 addr_filter__free(filt);
1654 addr_filters__exit(filts);
1655 return err;
1656 }
1657 addr_filters__add(filts, filt);
1658 }
1659
1660 return 0;
1661 }
1662
1663 struct sym_args {
1664 const char *name;
1665 u64 start;
1666 u64 size;
1667 int idx;
1668 int cnt;
1669 bool started;
1670 bool global;
1671 bool selected;
1672 bool duplicate;
1673 bool near;
1674 };
1675
kern_sym_match(struct sym_args * args,const char * name,char type)1676 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1677 {
1678 /* A function with the same name, and global or the n'th found or any */
1679 return symbol_type__is_a(type, MAP__FUNCTION) &&
1680 !strcmp(name, args->name) &&
1681 ((args->global && isupper(type)) ||
1682 (args->selected && ++(args->cnt) == args->idx) ||
1683 (!args->global && !args->selected));
1684 }
1685
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)1686 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1687 {
1688 struct sym_args *args = arg;
1689
1690 if (args->started) {
1691 if (!args->size)
1692 args->size = start - args->start;
1693 if (args->selected) {
1694 if (args->size)
1695 return 1;
1696 } else if (kern_sym_match(args, name, type)) {
1697 args->duplicate = true;
1698 return 1;
1699 }
1700 } else if (kern_sym_match(args, name, type)) {
1701 args->started = true;
1702 args->start = start;
1703 }
1704
1705 return 0;
1706 }
1707
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)1708 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1709 {
1710 struct sym_args *args = arg;
1711
1712 if (kern_sym_match(args, name, type)) {
1713 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1714 ++args->cnt, start, type, name);
1715 args->near = true;
1716 } else if (args->near) {
1717 args->near = false;
1718 pr_err("\t\twhich is near\t\t%s\n", name);
1719 }
1720
1721 return 0;
1722 }
1723
sym_not_found_error(const char * sym_name,int idx)1724 static int sym_not_found_error(const char *sym_name, int idx)
1725 {
1726 if (idx > 0) {
1727 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1728 idx, sym_name);
1729 } else if (!idx) {
1730 pr_err("Global symbol '%s' not found.\n", sym_name);
1731 } else {
1732 pr_err("Symbol '%s' not found.\n", sym_name);
1733 }
1734 pr_err("Note that symbols must be functions.\n");
1735
1736 return -EINVAL;
1737 }
1738
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)1739 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1740 {
1741 struct sym_args args = {
1742 .name = sym_name,
1743 .idx = idx,
1744 .global = !idx,
1745 .selected = idx > 0,
1746 };
1747 int err;
1748
1749 *start = 0;
1750 *size = 0;
1751
1752 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1753 if (err < 0) {
1754 pr_err("Failed to parse /proc/kallsyms\n");
1755 return err;
1756 }
1757
1758 if (args.duplicate) {
1759 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1760 args.cnt = 0;
1761 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1762 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1763 sym_name);
1764 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1765 return -EINVAL;
1766 }
1767
1768 if (!args.started) {
1769 pr_err("Kernel symbol lookup: ");
1770 return sym_not_found_error(sym_name, idx);
1771 }
1772
1773 *start = args.start;
1774 *size = args.size;
1775
1776 return 0;
1777 }
1778
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)1779 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1780 char type, u64 start)
1781 {
1782 struct sym_args *args = arg;
1783
1784 if (!symbol_type__is_a(type, MAP__FUNCTION))
1785 return 0;
1786
1787 if (!args->started) {
1788 args->started = true;
1789 args->start = start;
1790 }
1791 /* Don't know exactly where the kernel ends, so we add a page */
1792 args->size = round_up(start, page_size) + page_size - args->start;
1793
1794 return 0;
1795 }
1796
addr_filter__entire_kernel(struct addr_filter * filt)1797 static int addr_filter__entire_kernel(struct addr_filter *filt)
1798 {
1799 struct sym_args args = { .started = false };
1800 int err;
1801
1802 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1803 if (err < 0 || !args.started) {
1804 pr_err("Failed to parse /proc/kallsyms\n");
1805 return err;
1806 }
1807
1808 filt->addr = args.start;
1809 filt->size = args.size;
1810
1811 return 0;
1812 }
1813
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)1814 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1815 {
1816 if (start + size >= filt->addr)
1817 return 0;
1818
1819 if (filt->sym_from) {
1820 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1821 filt->sym_to, start, filt->sym_from, filt->addr);
1822 } else {
1823 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1824 filt->sym_to, start, filt->addr);
1825 }
1826
1827 return -EINVAL;
1828 }
1829
addr_filter__resolve_kernel_syms(struct addr_filter * filt)1830 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1831 {
1832 bool no_size = false;
1833 u64 start, size;
1834 int err;
1835
1836 if (symbol_conf.kptr_restrict) {
1837 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1838 return -EINVAL;
1839 }
1840
1841 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1842 return addr_filter__entire_kernel(filt);
1843
1844 if (filt->sym_from) {
1845 err = find_kern_sym(filt->sym_from, &start, &size,
1846 filt->sym_from_idx);
1847 if (err)
1848 return err;
1849 filt->addr = start;
1850 if (filt->range && !filt->size && !filt->sym_to) {
1851 filt->size = size;
1852 no_size = !size;
1853 }
1854 }
1855
1856 if (filt->sym_to) {
1857 err = find_kern_sym(filt->sym_to, &start, &size,
1858 filt->sym_to_idx);
1859 if (err)
1860 return err;
1861
1862 err = check_end_after_start(filt, start, size);
1863 if (err)
1864 return err;
1865 filt->size = start + size - filt->addr;
1866 no_size = !size;
1867 }
1868
1869 /* The very last symbol in kallsyms does not imply a particular size */
1870 if (no_size) {
1871 pr_err("Cannot determine size of symbol '%s'\n",
1872 filt->sym_to ? filt->sym_to : filt->sym_from);
1873 return -EINVAL;
1874 }
1875
1876 return 0;
1877 }
1878
load_dso(const char * name)1879 static struct dso *load_dso(const char *name)
1880 {
1881 struct map *map;
1882 struct dso *dso;
1883
1884 map = dso__new_map(name);
1885 if (!map)
1886 return NULL;
1887
1888 map__load(map);
1889
1890 dso = dso__get(map->dso);
1891
1892 map__put(map);
1893
1894 return dso;
1895 }
1896
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)1897 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1898 int idx)
1899 {
1900 /* Same name, and global or the n'th found or any */
1901 return !arch__compare_symbol_names(name, sym->name) &&
1902 ((!idx && sym->binding == STB_GLOBAL) ||
1903 (idx > 0 && ++*cnt == idx) ||
1904 idx < 0);
1905 }
1906
print_duplicate_syms(struct dso * dso,const char * sym_name)1907 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1908 {
1909 struct symbol *sym;
1910 bool near = false;
1911 int cnt = 0;
1912
1913 pr_err("Multiple symbols with name '%s'\n", sym_name);
1914
1915 sym = dso__first_symbol(dso, MAP__FUNCTION);
1916 while (sym) {
1917 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1918 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1919 ++cnt, sym->start,
1920 sym->binding == STB_GLOBAL ? 'g' :
1921 sym->binding == STB_LOCAL ? 'l' : 'w',
1922 sym->name);
1923 near = true;
1924 } else if (near) {
1925 near = false;
1926 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1927 }
1928 sym = dso__next_symbol(sym);
1929 }
1930
1931 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1932 sym_name);
1933 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1934 }
1935
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)1936 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1937 u64 *size, int idx)
1938 {
1939 struct symbol *sym;
1940 int cnt = 0;
1941
1942 *start = 0;
1943 *size = 0;
1944
1945 sym = dso__first_symbol(dso, MAP__FUNCTION);
1946 while (sym) {
1947 if (*start) {
1948 if (!*size)
1949 *size = sym->start - *start;
1950 if (idx > 0) {
1951 if (*size)
1952 return 1;
1953 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1954 print_duplicate_syms(dso, sym_name);
1955 return -EINVAL;
1956 }
1957 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1958 *start = sym->start;
1959 *size = sym->end - sym->start;
1960 }
1961 sym = dso__next_symbol(sym);
1962 }
1963
1964 if (!*start)
1965 return sym_not_found_error(sym_name, idx);
1966
1967 return 0;
1968 }
1969
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)1970 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1971 {
1972 struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1973 struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1974
1975 if (!first_sym || !last_sym) {
1976 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1977 filt->filename);
1978 return -EINVAL;
1979 }
1980
1981 filt->addr = first_sym->start;
1982 filt->size = last_sym->end - first_sym->start;
1983
1984 return 0;
1985 }
1986
addr_filter__resolve_syms(struct addr_filter * filt)1987 static int addr_filter__resolve_syms(struct addr_filter *filt)
1988 {
1989 u64 start, size;
1990 struct dso *dso;
1991 int err = 0;
1992
1993 if (!filt->sym_from && !filt->sym_to)
1994 return 0;
1995
1996 if (!filt->filename)
1997 return addr_filter__resolve_kernel_syms(filt);
1998
1999 dso = load_dso(filt->filename);
2000 if (!dso) {
2001 pr_err("Failed to load symbols from: %s\n", filt->filename);
2002 return -EINVAL;
2003 }
2004
2005 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2006 err = addr_filter__entire_dso(filt, dso);
2007 goto put_dso;
2008 }
2009
2010 if (filt->sym_from) {
2011 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2012 filt->sym_from_idx);
2013 if (err)
2014 goto put_dso;
2015 filt->addr = start;
2016 if (filt->range && !filt->size && !filt->sym_to)
2017 filt->size = size;
2018 }
2019
2020 if (filt->sym_to) {
2021 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2022 filt->sym_to_idx);
2023 if (err)
2024 goto put_dso;
2025
2026 err = check_end_after_start(filt, start, size);
2027 if (err)
2028 return err;
2029
2030 filt->size = start + size - filt->addr;
2031 }
2032
2033 put_dso:
2034 dso__put(dso);
2035
2036 return err;
2037 }
2038
addr_filter__to_str(struct addr_filter * filt)2039 static char *addr_filter__to_str(struct addr_filter *filt)
2040 {
2041 char filename_buf[PATH_MAX];
2042 const char *at = "";
2043 const char *fn = "";
2044 char *filter;
2045 int err;
2046
2047 if (filt->filename) {
2048 at = "@";
2049 fn = realpath(filt->filename, filename_buf);
2050 if (!fn)
2051 return NULL;
2052 }
2053
2054 if (filt->range) {
2055 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2056 filt->action, filt->addr, filt->size, at, fn);
2057 } else {
2058 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2059 filt->action, filt->addr, at, fn);
2060 }
2061
2062 return err < 0 ? NULL : filter;
2063 }
2064
parse_addr_filter(struct perf_evsel * evsel,const char * filter,int max_nr)2065 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2066 int max_nr)
2067 {
2068 struct addr_filters filts;
2069 struct addr_filter *filt;
2070 int err;
2071
2072 addr_filters__init(&filts);
2073
2074 err = addr_filters__parse_bare_filter(&filts, filter);
2075 if (err)
2076 goto out_exit;
2077
2078 if (filts.cnt > max_nr) {
2079 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2080 filts.cnt, max_nr);
2081 err = -EINVAL;
2082 goto out_exit;
2083 }
2084
2085 list_for_each_entry(filt, &filts.head, list) {
2086 char *new_filter;
2087
2088 err = addr_filter__resolve_syms(filt);
2089 if (err)
2090 goto out_exit;
2091
2092 new_filter = addr_filter__to_str(filt);
2093 if (!new_filter) {
2094 err = -ENOMEM;
2095 goto out_exit;
2096 }
2097
2098 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2099 err = -ENOMEM;
2100 goto out_exit;
2101 }
2102 }
2103
2104 out_exit:
2105 addr_filters__exit(&filts);
2106
2107 if (err) {
2108 pr_err("Failed to parse address filter: '%s'\n", filter);
2109 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2110 pr_err("Where multiple filters are separated by space or comma.\n");
2111 }
2112
2113 return err;
2114 }
2115
perf_evsel__find_pmu(struct perf_evsel * evsel)2116 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2117 {
2118 struct perf_pmu *pmu = NULL;
2119
2120 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2121 if (pmu->type == evsel->attr.type)
2122 break;
2123 }
2124
2125 return pmu;
2126 }
2127
perf_evsel__nr_addr_filter(struct perf_evsel * evsel)2128 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2129 {
2130 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2131 int nr_addr_filters = 0;
2132
2133 if (!pmu)
2134 return 0;
2135
2136 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2137
2138 return nr_addr_filters;
2139 }
2140
auxtrace_parse_filters(struct perf_evlist * evlist)2141 int auxtrace_parse_filters(struct perf_evlist *evlist)
2142 {
2143 struct perf_evsel *evsel;
2144 char *filter;
2145 int err, max_nr;
2146
2147 evlist__for_each_entry(evlist, evsel) {
2148 filter = evsel->filter;
2149 max_nr = perf_evsel__nr_addr_filter(evsel);
2150 if (!filter || !max_nr)
2151 continue;
2152 evsel->filter = NULL;
2153 err = parse_addr_filter(evsel, filter, max_nr);
2154 free(filter);
2155 if (err)
2156 return err;
2157 pr_debug("Address filter: %s\n", evsel->filter);
2158 }
2159
2160 return 0;
2161 }
2162