1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
dsos__init(struct dsos * dsos)30 static void dsos__init(struct dsos *dsos)
31 {
32 INIT_LIST_HEAD(&dsos->head);
33 dsos->root = RB_ROOT;
34 pthread_rwlock_init(&dsos->lock, NULL);
35 }
36
machine__init(struct machine * machine,const char * root_dir,pid_t pid)37 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
38 {
39 memset(machine, 0, sizeof(*machine));
40 map_groups__init(&machine->kmaps, machine);
41 RB_CLEAR_NODE(&machine->rb_node);
42 dsos__init(&machine->dsos);
43
44 machine->threads = RB_ROOT;
45 pthread_rwlock_init(&machine->threads_lock, NULL);
46 machine->nr_threads = 0;
47 INIT_LIST_HEAD(&machine->dead_threads);
48 machine->last_match = NULL;
49
50 machine->vdso_info = NULL;
51 machine->env = NULL;
52
53 machine->pid = pid;
54
55 machine->id_hdr_size = 0;
56 machine->kptr_restrict_warned = false;
57 machine->comm_exec = false;
58 machine->kernel_start = 0;
59
60 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
61
62 machine->root_dir = strdup(root_dir);
63 if (machine->root_dir == NULL)
64 return -ENOMEM;
65
66 if (pid != HOST_KERNEL_ID) {
67 struct thread *thread = machine__findnew_thread(machine, -1,
68 pid);
69 char comm[64];
70
71 if (thread == NULL)
72 return -ENOMEM;
73
74 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
75 thread__set_comm(thread, comm, 0);
76 thread__put(thread);
77 }
78
79 machine->current_tid = NULL;
80
81 return 0;
82 }
83
machine__new_host(void)84 struct machine *machine__new_host(void)
85 {
86 struct machine *machine = malloc(sizeof(*machine));
87
88 if (machine != NULL) {
89 machine__init(machine, "", HOST_KERNEL_ID);
90
91 if (machine__create_kernel_maps(machine) < 0)
92 goto out_delete;
93 }
94
95 return machine;
96 out_delete:
97 free(machine);
98 return NULL;
99 }
100
machine__new_kallsyms(void)101 struct machine *machine__new_kallsyms(void)
102 {
103 struct machine *machine = machine__new_host();
104 /*
105 * FIXME:
106 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
107 * functions and data objects.
108 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
109 * ask for not using the kcore parsing code, once this one is fixed
110 * to create a map per module.
111 */
112 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
113 machine__delete(machine);
114 machine = NULL;
115 }
116
117 return machine;
118 }
119
dsos__purge(struct dsos * dsos)120 static void dsos__purge(struct dsos *dsos)
121 {
122 struct dso *pos, *n;
123
124 pthread_rwlock_wrlock(&dsos->lock);
125
126 list_for_each_entry_safe(pos, n, &dsos->head, node) {
127 RB_CLEAR_NODE(&pos->rb_node);
128 pos->root = NULL;
129 list_del_init(&pos->node);
130 dso__put(pos);
131 }
132
133 pthread_rwlock_unlock(&dsos->lock);
134 }
135
dsos__exit(struct dsos * dsos)136 static void dsos__exit(struct dsos *dsos)
137 {
138 dsos__purge(dsos);
139 pthread_rwlock_destroy(&dsos->lock);
140 }
141
machine__delete_threads(struct machine * machine)142 void machine__delete_threads(struct machine *machine)
143 {
144 struct rb_node *nd;
145
146 pthread_rwlock_wrlock(&machine->threads_lock);
147 nd = rb_first(&machine->threads);
148 while (nd) {
149 struct thread *t = rb_entry(nd, struct thread, rb_node);
150
151 nd = rb_next(nd);
152 __machine__remove_thread(machine, t, false);
153 }
154 pthread_rwlock_unlock(&machine->threads_lock);
155 }
156
machine__exit(struct machine * machine)157 void machine__exit(struct machine *machine)
158 {
159 if (machine == NULL)
160 return;
161
162 machine__destroy_kernel_maps(machine);
163 map_groups__exit(&machine->kmaps);
164 dsos__exit(&machine->dsos);
165 machine__exit_vdso(machine);
166 zfree(&machine->root_dir);
167 zfree(&machine->current_tid);
168 pthread_rwlock_destroy(&machine->threads_lock);
169 }
170
machine__delete(struct machine * machine)171 void machine__delete(struct machine *machine)
172 {
173 if (machine) {
174 machine__exit(machine);
175 free(machine);
176 }
177 }
178
machines__init(struct machines * machines)179 void machines__init(struct machines *machines)
180 {
181 machine__init(&machines->host, "", HOST_KERNEL_ID);
182 machines->guests = RB_ROOT;
183 }
184
machines__exit(struct machines * machines)185 void machines__exit(struct machines *machines)
186 {
187 machine__exit(&machines->host);
188 /* XXX exit guest */
189 }
190
machines__add(struct machines * machines,pid_t pid,const char * root_dir)191 struct machine *machines__add(struct machines *machines, pid_t pid,
192 const char *root_dir)
193 {
194 struct rb_node **p = &machines->guests.rb_node;
195 struct rb_node *parent = NULL;
196 struct machine *pos, *machine = malloc(sizeof(*machine));
197
198 if (machine == NULL)
199 return NULL;
200
201 if (machine__init(machine, root_dir, pid) != 0) {
202 free(machine);
203 return NULL;
204 }
205
206 while (*p != NULL) {
207 parent = *p;
208 pos = rb_entry(parent, struct machine, rb_node);
209 if (pid < pos->pid)
210 p = &(*p)->rb_left;
211 else
212 p = &(*p)->rb_right;
213 }
214
215 rb_link_node(&machine->rb_node, parent, p);
216 rb_insert_color(&machine->rb_node, &machines->guests);
217
218 return machine;
219 }
220
machines__set_comm_exec(struct machines * machines,bool comm_exec)221 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
222 {
223 struct rb_node *nd;
224
225 machines->host.comm_exec = comm_exec;
226
227 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
228 struct machine *machine = rb_entry(nd, struct machine, rb_node);
229
230 machine->comm_exec = comm_exec;
231 }
232 }
233
machines__find(struct machines * machines,pid_t pid)234 struct machine *machines__find(struct machines *machines, pid_t pid)
235 {
236 struct rb_node **p = &machines->guests.rb_node;
237 struct rb_node *parent = NULL;
238 struct machine *machine;
239 struct machine *default_machine = NULL;
240
241 if (pid == HOST_KERNEL_ID)
242 return &machines->host;
243
244 while (*p != NULL) {
245 parent = *p;
246 machine = rb_entry(parent, struct machine, rb_node);
247 if (pid < machine->pid)
248 p = &(*p)->rb_left;
249 else if (pid > machine->pid)
250 p = &(*p)->rb_right;
251 else
252 return machine;
253 if (!machine->pid)
254 default_machine = machine;
255 }
256
257 return default_machine;
258 }
259
machines__findnew(struct machines * machines,pid_t pid)260 struct machine *machines__findnew(struct machines *machines, pid_t pid)
261 {
262 char path[PATH_MAX];
263 const char *root_dir = "";
264 struct machine *machine = machines__find(machines, pid);
265
266 if (machine && (machine->pid == pid))
267 goto out;
268
269 if ((pid != HOST_KERNEL_ID) &&
270 (pid != DEFAULT_GUEST_KERNEL_ID) &&
271 (symbol_conf.guestmount)) {
272 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
273 if (access(path, R_OK)) {
274 static struct strlist *seen;
275
276 if (!seen)
277 seen = strlist__new(NULL, NULL);
278
279 if (!strlist__has_entry(seen, path)) {
280 pr_err("Can't access file %s\n", path);
281 strlist__add(seen, path);
282 }
283 machine = NULL;
284 goto out;
285 }
286 root_dir = path;
287 }
288
289 machine = machines__add(machines, pid, root_dir);
290 out:
291 return machine;
292 }
293
machines__process_guests(struct machines * machines,machine__process_t process,void * data)294 void machines__process_guests(struct machines *machines,
295 machine__process_t process, void *data)
296 {
297 struct rb_node *nd;
298
299 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *pos = rb_entry(nd, struct machine, rb_node);
301 process(pos, data);
302 }
303 }
304
machine__mmap_name(struct machine * machine,char * bf,size_t size)305 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
306 {
307 if (machine__is_host(machine))
308 snprintf(bf, size, "[%s]", "kernel.kallsyms");
309 else if (machine__is_default_guest(machine))
310 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
311 else {
312 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
313 machine->pid);
314 }
315
316 return bf;
317 }
318
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)319 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
320 {
321 struct rb_node *node;
322 struct machine *machine;
323
324 machines->host.id_hdr_size = id_hdr_size;
325
326 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
327 machine = rb_entry(node, struct machine, rb_node);
328 machine->id_hdr_size = id_hdr_size;
329 }
330
331 return;
332 }
333
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)334 static void machine__update_thread_pid(struct machine *machine,
335 struct thread *th, pid_t pid)
336 {
337 struct thread *leader;
338
339 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
340 return;
341
342 th->pid_ = pid;
343
344 if (th->pid_ == th->tid)
345 return;
346
347 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
348 if (!leader)
349 goto out_err;
350
351 if (!leader->mg)
352 leader->mg = map_groups__new(machine);
353
354 if (!leader->mg)
355 goto out_err;
356
357 if (th->mg == leader->mg)
358 return;
359
360 if (th->mg) {
361 /*
362 * Maps are created from MMAP events which provide the pid and
363 * tid. Consequently there never should be any maps on a thread
364 * with an unknown pid. Just print an error if there are.
365 */
366 if (!map_groups__empty(th->mg))
367 pr_err("Discarding thread maps for %d:%d\n",
368 th->pid_, th->tid);
369 map_groups__put(th->mg);
370 }
371
372 th->mg = map_groups__get(leader->mg);
373 out_put:
374 thread__put(leader);
375 return;
376 out_err:
377 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
378 goto out_put;
379 }
380
381 /*
382 * Caller must eventually drop thread->refcnt returned with a successful
383 * lookup/new thread inserted.
384 */
____machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)385 static struct thread *____machine__findnew_thread(struct machine *machine,
386 pid_t pid, pid_t tid,
387 bool create)
388 {
389 struct rb_node **p = &machine->threads.rb_node;
390 struct rb_node *parent = NULL;
391 struct thread *th;
392
393 /*
394 * Front-end cache - TID lookups come in blocks,
395 * so most of the time we dont have to look up
396 * the full rbtree:
397 */
398 th = machine->last_match;
399 if (th != NULL) {
400 if (th->tid == tid) {
401 machine__update_thread_pid(machine, th, pid);
402 return thread__get(th);
403 }
404
405 machine->last_match = NULL;
406 }
407
408 while (*p != NULL) {
409 parent = *p;
410 th = rb_entry(parent, struct thread, rb_node);
411
412 if (th->tid == tid) {
413 machine->last_match = th;
414 machine__update_thread_pid(machine, th, pid);
415 return thread__get(th);
416 }
417
418 if (tid < th->tid)
419 p = &(*p)->rb_left;
420 else
421 p = &(*p)->rb_right;
422 }
423
424 if (!create)
425 return NULL;
426
427 th = thread__new(pid, tid);
428 if (th != NULL) {
429 rb_link_node(&th->rb_node, parent, p);
430 rb_insert_color(&th->rb_node, &machine->threads);
431
432 /*
433 * We have to initialize map_groups separately
434 * after rb tree is updated.
435 *
436 * The reason is that we call machine__findnew_thread
437 * within thread__init_map_groups to find the thread
438 * leader and that would screwed the rb tree.
439 */
440 if (thread__init_map_groups(th, machine)) {
441 rb_erase_init(&th->rb_node, &machine->threads);
442 RB_CLEAR_NODE(&th->rb_node);
443 thread__put(th);
444 return NULL;
445 }
446 /*
447 * It is now in the rbtree, get a ref
448 */
449 thread__get(th);
450 machine->last_match = th;
451 ++machine->nr_threads;
452 }
453
454 return th;
455 }
456
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)457 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
458 {
459 return ____machine__findnew_thread(machine, pid, tid, true);
460 }
461
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)462 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
463 pid_t tid)
464 {
465 struct thread *th;
466
467 pthread_rwlock_wrlock(&machine->threads_lock);
468 th = __machine__findnew_thread(machine, pid, tid);
469 pthread_rwlock_unlock(&machine->threads_lock);
470 return th;
471 }
472
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)473 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
474 pid_t tid)
475 {
476 struct thread *th;
477 pthread_rwlock_rdlock(&machine->threads_lock);
478 th = ____machine__findnew_thread(machine, pid, tid, false);
479 pthread_rwlock_unlock(&machine->threads_lock);
480 return th;
481 }
482
machine__thread_exec_comm(struct machine * machine,struct thread * thread)483 struct comm *machine__thread_exec_comm(struct machine *machine,
484 struct thread *thread)
485 {
486 if (machine->comm_exec)
487 return thread__exec_comm(thread);
488 else
489 return thread__comm(thread);
490 }
491
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)492 int machine__process_comm_event(struct machine *machine, union perf_event *event,
493 struct perf_sample *sample)
494 {
495 struct thread *thread = machine__findnew_thread(machine,
496 event->comm.pid,
497 event->comm.tid);
498 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
499 int err = 0;
500
501 if (exec)
502 machine->comm_exec = true;
503
504 if (dump_trace)
505 perf_event__fprintf_comm(event, stdout);
506
507 if (thread == NULL ||
508 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
509 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
510 err = -1;
511 }
512
513 thread__put(thread);
514
515 return err;
516 }
517
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)518 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
519 union perf_event *event,
520 struct perf_sample *sample __maybe_unused)
521 {
522 struct thread *thread = machine__findnew_thread(machine,
523 event->namespaces.pid,
524 event->namespaces.tid);
525 int err = 0;
526
527 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
528 "\nWARNING: kernel seems to support more namespaces than perf"
529 " tool.\nTry updating the perf tool..\n\n");
530
531 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
532 "\nWARNING: perf tool seems to support more namespaces than"
533 " the kernel.\nTry updating the kernel..\n\n");
534
535 if (dump_trace)
536 perf_event__fprintf_namespaces(event, stdout);
537
538 if (thread == NULL ||
539 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
540 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
541 err = -1;
542 }
543
544 thread__put(thread);
545
546 return err;
547 }
548
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)549 int machine__process_lost_event(struct machine *machine __maybe_unused,
550 union perf_event *event, struct perf_sample *sample __maybe_unused)
551 {
552 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
553 event->lost.id, event->lost.lost);
554 return 0;
555 }
556
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)557 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
558 union perf_event *event, struct perf_sample *sample)
559 {
560 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
561 sample->id, event->lost_samples.lost);
562 return 0;
563 }
564
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)565 static struct dso *machine__findnew_module_dso(struct machine *machine,
566 struct kmod_path *m,
567 const char *filename)
568 {
569 struct dso *dso;
570
571 pthread_rwlock_wrlock(&machine->dsos.lock);
572
573 dso = __dsos__find(&machine->dsos, m->name, true);
574 if (!dso) {
575 dso = __dsos__addnew(&machine->dsos, m->name);
576 if (dso == NULL)
577 goto out_unlock;
578
579 dso__set_module_info(dso, m, machine);
580 dso__set_long_name(dso, strdup(filename), true);
581 }
582
583 dso__get(dso);
584 out_unlock:
585 pthread_rwlock_unlock(&machine->dsos.lock);
586 return dso;
587 }
588
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)589 int machine__process_aux_event(struct machine *machine __maybe_unused,
590 union perf_event *event)
591 {
592 if (dump_trace)
593 perf_event__fprintf_aux(event, stdout);
594 return 0;
595 }
596
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)597 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
598 union perf_event *event)
599 {
600 if (dump_trace)
601 perf_event__fprintf_itrace_start(event, stdout);
602 return 0;
603 }
604
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)605 int machine__process_switch_event(struct machine *machine __maybe_unused,
606 union perf_event *event)
607 {
608 if (dump_trace)
609 perf_event__fprintf_switch(event, stdout);
610 return 0;
611 }
612
dso__adjust_kmod_long_name(struct dso * dso,const char * filename)613 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
614 {
615 const char *dup_filename;
616
617 if (!filename || !dso || !dso->long_name)
618 return;
619 if (dso->long_name[0] != '[')
620 return;
621 if (!strchr(filename, '/'))
622 return;
623
624 dup_filename = strdup(filename);
625 if (!dup_filename)
626 return;
627
628 dso__set_long_name(dso, dup_filename, true);
629 }
630
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)631 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
632 const char *filename)
633 {
634 struct map *map = NULL;
635 struct dso *dso = NULL;
636 struct kmod_path m;
637
638 if (kmod_path__parse_name(&m, filename))
639 return NULL;
640
641 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
642 m.name);
643 if (map) {
644 /*
645 * If the map's dso is an offline module, give dso__load()
646 * a chance to find the file path of that module by fixing
647 * long_name.
648 */
649 dso__adjust_kmod_long_name(map->dso, filename);
650 goto out;
651 }
652
653 dso = machine__findnew_module_dso(machine, &m, filename);
654 if (dso == NULL)
655 goto out;
656
657 map = map__new2(start, dso, MAP__FUNCTION);
658 if (map == NULL)
659 goto out;
660
661 map_groups__insert(&machine->kmaps, map);
662
663 /* Put the map here because map_groups__insert alread got it */
664 map__put(map);
665 out:
666 /* put the dso here, corresponding to machine__findnew_module_dso */
667 dso__put(dso);
668 free(m.name);
669 return map;
670 }
671
machines__fprintf_dsos(struct machines * machines,FILE * fp)672 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
673 {
674 struct rb_node *nd;
675 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
676
677 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
678 struct machine *pos = rb_entry(nd, struct machine, rb_node);
679 ret += __dsos__fprintf(&pos->dsos.head, fp);
680 }
681
682 return ret;
683 }
684
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)685 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
686 bool (skip)(struct dso *dso, int parm), int parm)
687 {
688 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
689 }
690
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)691 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
692 bool (skip)(struct dso *dso, int parm), int parm)
693 {
694 struct rb_node *nd;
695 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
696
697 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
698 struct machine *pos = rb_entry(nd, struct machine, rb_node);
699 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
700 }
701 return ret;
702 }
703
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)704 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
705 {
706 int i;
707 size_t printed = 0;
708 struct dso *kdso = machine__kernel_map(machine)->dso;
709
710 if (kdso->has_build_id) {
711 char filename[PATH_MAX];
712 if (dso__build_id_filename(kdso, filename, sizeof(filename),
713 false))
714 printed += fprintf(fp, "[0] %s\n", filename);
715 }
716
717 for (i = 0; i < vmlinux_path__nr_entries; ++i)
718 printed += fprintf(fp, "[%d] %s\n",
719 i + kdso->has_build_id, vmlinux_path[i]);
720
721 return printed;
722 }
723
machine__fprintf(struct machine * machine,FILE * fp)724 size_t machine__fprintf(struct machine *machine, FILE *fp)
725 {
726 size_t ret;
727 struct rb_node *nd;
728
729 pthread_rwlock_rdlock(&machine->threads_lock);
730
731 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
732
733 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
734 struct thread *pos = rb_entry(nd, struct thread, rb_node);
735
736 ret += thread__fprintf(pos, fp);
737 }
738
739 pthread_rwlock_unlock(&machine->threads_lock);
740
741 return ret;
742 }
743
machine__get_kernel(struct machine * machine)744 static struct dso *machine__get_kernel(struct machine *machine)
745 {
746 const char *vmlinux_name = NULL;
747 struct dso *kernel;
748
749 if (machine__is_host(machine)) {
750 vmlinux_name = symbol_conf.vmlinux_name;
751 if (!vmlinux_name)
752 vmlinux_name = DSO__NAME_KALLSYMS;
753
754 kernel = machine__findnew_kernel(machine, vmlinux_name,
755 "[kernel]", DSO_TYPE_KERNEL);
756 } else {
757 char bf[PATH_MAX];
758
759 if (machine__is_default_guest(machine))
760 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
761 if (!vmlinux_name)
762 vmlinux_name = machine__mmap_name(machine, bf,
763 sizeof(bf));
764
765 kernel = machine__findnew_kernel(machine, vmlinux_name,
766 "[guest.kernel]",
767 DSO_TYPE_GUEST_KERNEL);
768 }
769
770 if (kernel != NULL && (!kernel->has_build_id))
771 dso__read_running_kernel_build_id(kernel, machine);
772
773 return kernel;
774 }
775
776 struct process_args {
777 u64 start;
778 };
779
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)780 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
781 size_t bufsz)
782 {
783 if (machine__is_default_guest(machine))
784 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
785 else
786 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
787 }
788
789 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
790
791 /* Figure out the start address of kernel map from /proc/kallsyms.
792 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
793 * symbol_name if it's not that important.
794 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start)795 static int machine__get_running_kernel_start(struct machine *machine,
796 const char **symbol_name, u64 *start)
797 {
798 char filename[PATH_MAX];
799 int i, err = -1;
800 const char *name;
801 u64 addr = 0;
802
803 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
804
805 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
806 return 0;
807
808 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
809 err = kallsyms__get_function_start(filename, name, &addr);
810 if (!err)
811 break;
812 }
813
814 if (err)
815 return -1;
816
817 if (symbol_name)
818 *symbol_name = name;
819
820 *start = addr;
821 return 0;
822 }
823
824 /* Kernel-space maps for symbols that are outside the main kernel map and module maps */
825 struct extra_kernel_map {
826 u64 start;
827 u64 end;
828 u64 pgoff;
829 };
830
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)831 static int machine__create_extra_kernel_map(struct machine *machine,
832 struct dso *kernel,
833 struct extra_kernel_map *xm)
834 {
835 struct kmap *kmap;
836 struct map *map;
837
838 map = map__new2(xm->start, kernel, MAP__FUNCTION);
839 if (!map)
840 return -1;
841
842 map->end = xm->end;
843 map->pgoff = xm->pgoff;
844
845 kmap = map__kmap(map);
846
847 kmap->kmaps = &machine->kmaps;
848
849 map_groups__insert(&machine->kmaps, map);
850
851 pr_debug2("Added extra kernel map %" PRIx64 "-%" PRIx64 "\n",
852 map->start, map->end);
853
854 map__put(map);
855
856 return 0;
857 }
858
find_entry_trampoline(struct dso * dso)859 static u64 find_entry_trampoline(struct dso *dso)
860 {
861 /* Duplicates are removed so lookup all aliases */
862 const char *syms[] = {
863 "_entry_trampoline",
864 "__entry_trampoline_start",
865 "entry_SYSCALL_64_trampoline",
866 };
867 struct symbol *sym = dso__first_symbol(dso, MAP__FUNCTION);
868 unsigned int i;
869
870 for (; sym; sym = dso__next_symbol(sym)) {
871 if (sym->binding != STB_GLOBAL)
872 continue;
873 for (i = 0; i < ARRAY_SIZE(syms); i++) {
874 if (!strcmp(sym->name, syms[i]))
875 return sym->start;
876 }
877 }
878
879 return 0;
880 }
881
882 /*
883 * These values can be used for kernels that do not have symbols for the entry
884 * trampolines in kallsyms.
885 */
886 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
887 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
888 #define X86_64_ENTRY_TRAMPOLINE 0x6000
889
890 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)891 int machine__map_x86_64_entry_trampolines(struct machine *machine,
892 struct dso *kernel)
893 {
894 u64 pgoff = find_entry_trampoline(kernel);
895 int nr_cpus_avail, cpu;
896
897 if (!pgoff)
898 return 0;
899
900 nr_cpus_avail = machine__nr_cpus_avail(machine);
901
902 /* Add a 1 page map for each CPU's entry trampoline */
903 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
904 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
905 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
906 X86_64_ENTRY_TRAMPOLINE;
907 struct extra_kernel_map xm = {
908 .start = va,
909 .end = va + page_size,
910 .pgoff = pgoff,
911 };
912
913 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
914 return -1;
915 }
916
917 return 0;
918 }
919
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)920 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
921 {
922 int type;
923 u64 start = 0;
924
925 if (machine__get_running_kernel_start(machine, NULL, &start))
926 return -1;
927
928 /* In case of renewal the kernel map, destroy previous one */
929 machine__destroy_kernel_maps(machine);
930
931 for (type = 0; type < MAP__NR_TYPES; ++type) {
932 struct kmap *kmap;
933 struct map *map;
934
935 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
936 if (machine->vmlinux_maps[type] == NULL)
937 return -1;
938
939 machine->vmlinux_maps[type]->map_ip =
940 machine->vmlinux_maps[type]->unmap_ip =
941 identity__map_ip;
942 map = __machine__kernel_map(machine, type);
943 kmap = map__kmap(map);
944 if (!kmap)
945 return -1;
946
947 kmap->kmaps = &machine->kmaps;
948 map_groups__insert(&machine->kmaps, map);
949 }
950
951 return 0;
952 }
953
machine__destroy_kernel_maps(struct machine * machine)954 void machine__destroy_kernel_maps(struct machine *machine)
955 {
956 int type;
957
958 for (type = 0; type < MAP__NR_TYPES; ++type) {
959 struct kmap *kmap;
960 struct map *map = __machine__kernel_map(machine, type);
961
962 if (map == NULL)
963 continue;
964
965 kmap = map__kmap(map);
966 map_groups__remove(&machine->kmaps, map);
967 if (kmap && kmap->ref_reloc_sym) {
968 /*
969 * ref_reloc_sym is shared among all maps, so free just
970 * on one of them.
971 */
972 if (type == MAP__FUNCTION) {
973 zfree((char **)&kmap->ref_reloc_sym->name);
974 zfree(&kmap->ref_reloc_sym);
975 } else
976 kmap->ref_reloc_sym = NULL;
977 }
978
979 map__put(machine->vmlinux_maps[type]);
980 machine->vmlinux_maps[type] = NULL;
981 }
982 }
983
machines__create_guest_kernel_maps(struct machines * machines)984 int machines__create_guest_kernel_maps(struct machines *machines)
985 {
986 int ret = 0;
987 struct dirent **namelist = NULL;
988 int i, items = 0;
989 char path[PATH_MAX];
990 pid_t pid;
991 char *endp;
992
993 if (symbol_conf.default_guest_vmlinux_name ||
994 symbol_conf.default_guest_modules ||
995 symbol_conf.default_guest_kallsyms) {
996 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
997 }
998
999 if (symbol_conf.guestmount) {
1000 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1001 if (items <= 0)
1002 return -ENOENT;
1003 for (i = 0; i < items; i++) {
1004 if (!isdigit(namelist[i]->d_name[0])) {
1005 /* Filter out . and .. */
1006 continue;
1007 }
1008 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1009 if ((*endp != '\0') ||
1010 (endp == namelist[i]->d_name) ||
1011 (errno == ERANGE)) {
1012 pr_debug("invalid directory (%s). Skipping.\n",
1013 namelist[i]->d_name);
1014 continue;
1015 }
1016 sprintf(path, "%s/%s/proc/kallsyms",
1017 symbol_conf.guestmount,
1018 namelist[i]->d_name);
1019 ret = access(path, R_OK);
1020 if (ret) {
1021 pr_debug("Can't access file %s\n", path);
1022 goto failure;
1023 }
1024 machines__create_kernel_maps(machines, pid);
1025 }
1026 failure:
1027 free(namelist);
1028 }
1029
1030 return ret;
1031 }
1032
machines__destroy_kernel_maps(struct machines * machines)1033 void machines__destroy_kernel_maps(struct machines *machines)
1034 {
1035 struct rb_node *next = rb_first(&machines->guests);
1036
1037 machine__destroy_kernel_maps(&machines->host);
1038
1039 while (next) {
1040 struct machine *pos = rb_entry(next, struct machine, rb_node);
1041
1042 next = rb_next(&pos->rb_node);
1043 rb_erase(&pos->rb_node, &machines->guests);
1044 machine__delete(pos);
1045 }
1046 }
1047
machines__create_kernel_maps(struct machines * machines,pid_t pid)1048 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1049 {
1050 struct machine *machine = machines__findnew(machines, pid);
1051
1052 if (machine == NULL)
1053 return -1;
1054
1055 return machine__create_kernel_maps(machine);
1056 }
1057
__machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type,bool no_kcore)1058 int __machine__load_kallsyms(struct machine *machine, const char *filename,
1059 enum map_type type, bool no_kcore)
1060 {
1061 struct map *map = machine__kernel_map(machine);
1062 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
1063
1064 if (ret > 0) {
1065 dso__set_loaded(map->dso, type);
1066 /*
1067 * Since /proc/kallsyms will have multiple sessions for the
1068 * kernel, with modules between them, fixup the end of all
1069 * sections.
1070 */
1071 __map_groups__fixup_end(&machine->kmaps, type);
1072 }
1073
1074 return ret;
1075 }
1076
machine__load_kallsyms(struct machine * machine,const char * filename,enum map_type type)1077 int machine__load_kallsyms(struct machine *machine, const char *filename,
1078 enum map_type type)
1079 {
1080 return __machine__load_kallsyms(machine, filename, type, false);
1081 }
1082
machine__load_vmlinux_path(struct machine * machine,enum map_type type)1083 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1084 {
1085 struct map *map = machine__kernel_map(machine);
1086 int ret = dso__load_vmlinux_path(map->dso, map);
1087
1088 if (ret > 0)
1089 dso__set_loaded(map->dso, type);
1090
1091 return ret;
1092 }
1093
map_groups__fixup_end(struct map_groups * mg)1094 static void map_groups__fixup_end(struct map_groups *mg)
1095 {
1096 int i;
1097 for (i = 0; i < MAP__NR_TYPES; ++i)
1098 __map_groups__fixup_end(mg, i);
1099 }
1100
get_kernel_version(const char * root_dir)1101 static char *get_kernel_version(const char *root_dir)
1102 {
1103 char version[PATH_MAX];
1104 FILE *file;
1105 char *name, *tmp;
1106 const char *prefix = "Linux version ";
1107
1108 sprintf(version, "%s/proc/version", root_dir);
1109 file = fopen(version, "r");
1110 if (!file)
1111 return NULL;
1112
1113 version[0] = '\0';
1114 tmp = fgets(version, sizeof(version), file);
1115 fclose(file);
1116
1117 name = strstr(version, prefix);
1118 if (!name)
1119 return NULL;
1120 name += strlen(prefix);
1121 tmp = strchr(name, ' ');
1122 if (tmp)
1123 *tmp = '\0';
1124
1125 return strdup(name);
1126 }
1127
is_kmod_dso(struct dso * dso)1128 static bool is_kmod_dso(struct dso *dso)
1129 {
1130 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1131 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1132 }
1133
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)1134 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1135 struct kmod_path *m)
1136 {
1137 struct map *map;
1138 char *long_name;
1139
1140 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1141 if (map == NULL)
1142 return 0;
1143
1144 long_name = strdup(path);
1145 if (long_name == NULL)
1146 return -ENOMEM;
1147
1148 dso__set_long_name(map->dso, long_name, true);
1149 dso__kernel_module_get_build_id(map->dso, "");
1150
1151 /*
1152 * Full name could reveal us kmod compression, so
1153 * we need to update the symtab_type if needed.
1154 */
1155 if (m->comp && is_kmod_dso(map->dso))
1156 map->dso->symtab_type++;
1157
1158 return 0;
1159 }
1160
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)1161 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1162 const char *dir_name, int depth)
1163 {
1164 struct dirent *dent;
1165 DIR *dir = opendir(dir_name);
1166 int ret = 0;
1167
1168 if (!dir) {
1169 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1170 return -1;
1171 }
1172
1173 while ((dent = readdir(dir)) != NULL) {
1174 char path[PATH_MAX];
1175 struct stat st;
1176
1177 /*sshfs might return bad dent->d_type, so we have to stat*/
1178 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1179 if (stat(path, &st))
1180 continue;
1181
1182 if (S_ISDIR(st.st_mode)) {
1183 if (!strcmp(dent->d_name, ".") ||
1184 !strcmp(dent->d_name, ".."))
1185 continue;
1186
1187 /* Do not follow top-level source and build symlinks */
1188 if (depth == 0) {
1189 if (!strcmp(dent->d_name, "source") ||
1190 !strcmp(dent->d_name, "build"))
1191 continue;
1192 }
1193
1194 ret = map_groups__set_modules_path_dir(mg, path,
1195 depth + 1);
1196 if (ret < 0)
1197 goto out;
1198 } else {
1199 struct kmod_path m;
1200
1201 ret = kmod_path__parse_name(&m, dent->d_name);
1202 if (ret)
1203 goto out;
1204
1205 if (m.kmod)
1206 ret = map_groups__set_module_path(mg, path, &m);
1207
1208 free(m.name);
1209
1210 if (ret)
1211 goto out;
1212 }
1213 }
1214
1215 out:
1216 closedir(dir);
1217 return ret;
1218 }
1219
machine__set_modules_path(struct machine * machine)1220 static int machine__set_modules_path(struct machine *machine)
1221 {
1222 char *version;
1223 char modules_path[PATH_MAX];
1224
1225 version = get_kernel_version(machine->root_dir);
1226 if (!version)
1227 return -1;
1228
1229 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1230 machine->root_dir, version);
1231 free(version);
1232
1233 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1234 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1235 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1236 u64 *size __maybe_unused,
1237 const char *name __maybe_unused)
1238 {
1239 return 0;
1240 }
1241
machine__create_module(void * arg,const char * name,u64 start,u64 size)1242 static int machine__create_module(void *arg, const char *name, u64 start,
1243 u64 size)
1244 {
1245 struct machine *machine = arg;
1246 struct map *map;
1247
1248 if (arch__fix_module_text_start(&start, &size, name) < 0)
1249 return -1;
1250
1251 map = machine__findnew_module_map(machine, start, name);
1252 if (map == NULL)
1253 return -1;
1254 map->end = start + size;
1255
1256 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1257
1258 return 0;
1259 }
1260
machine__create_modules(struct machine * machine)1261 static int machine__create_modules(struct machine *machine)
1262 {
1263 const char *modules;
1264 char path[PATH_MAX];
1265
1266 if (machine__is_default_guest(machine)) {
1267 modules = symbol_conf.default_guest_modules;
1268 } else {
1269 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1270 modules = path;
1271 }
1272
1273 if (symbol__restricted_filename(modules, "/proc/modules"))
1274 return -1;
1275
1276 if (modules__parse(modules, machine, machine__create_module))
1277 return -1;
1278
1279 if (!machine__set_modules_path(machine))
1280 return 0;
1281
1282 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1283
1284 return 0;
1285 }
1286
machine__create_kernel_maps(struct machine * machine)1287 int machine__create_kernel_maps(struct machine *machine)
1288 {
1289 struct dso *kernel = machine__get_kernel(machine);
1290 const char *name = NULL;
1291 u64 addr = 0;
1292 int ret;
1293
1294 if (kernel == NULL)
1295 return -1;
1296
1297 ret = __machine__create_kernel_maps(machine, kernel);
1298 dso__put(kernel);
1299 if (ret < 0)
1300 return -1;
1301
1302 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1303 if (machine__is_host(machine))
1304 pr_debug("Problems creating module maps, "
1305 "continuing anyway...\n");
1306 else
1307 pr_debug("Problems creating module maps for guest %d, "
1308 "continuing anyway...\n", machine->pid);
1309 }
1310
1311 /*
1312 * Now that we have all the maps created, just set the ->end of them:
1313 */
1314 map_groups__fixup_end(&machine->kmaps);
1315
1316 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1317 if (name &&
1318 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1319 machine__destroy_kernel_maps(machine);
1320 return -1;
1321 }
1322 }
1323
1324 return 0;
1325 }
1326
machine__set_kernel_mmap_len(struct machine * machine,union perf_event * event)1327 static void machine__set_kernel_mmap_len(struct machine *machine,
1328 union perf_event *event)
1329 {
1330 int i;
1331
1332 for (i = 0; i < MAP__NR_TYPES; i++) {
1333 machine->vmlinux_maps[i]->start = event->mmap.start;
1334 machine->vmlinux_maps[i]->end = (event->mmap.start +
1335 event->mmap.len);
1336 /*
1337 * Be a bit paranoid here, some perf.data file came with
1338 * a zero sized synthesized MMAP event for the kernel.
1339 */
1340 if (machine->vmlinux_maps[i]->end == 0)
1341 machine->vmlinux_maps[i]->end = ~0ULL;
1342 }
1343 }
1344
machine__uses_kcore(struct machine * machine)1345 static bool machine__uses_kcore(struct machine *machine)
1346 {
1347 struct dso *dso;
1348
1349 list_for_each_entry(dso, &machine->dsos.head, node) {
1350 if (dso__is_kcore(dso))
1351 return true;
1352 }
1353
1354 return false;
1355 }
1356
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1357 static int machine__process_kernel_mmap_event(struct machine *machine,
1358 union perf_event *event)
1359 {
1360 struct map *map;
1361 char kmmap_prefix[PATH_MAX];
1362 enum dso_kernel_type kernel_type;
1363 bool is_kernel_mmap;
1364
1365 /* If we have maps from kcore then we do not need or want any others */
1366 if (machine__uses_kcore(machine))
1367 return 0;
1368
1369 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1370 if (machine__is_host(machine))
1371 kernel_type = DSO_TYPE_KERNEL;
1372 else
1373 kernel_type = DSO_TYPE_GUEST_KERNEL;
1374
1375 is_kernel_mmap = memcmp(event->mmap.filename,
1376 kmmap_prefix,
1377 strlen(kmmap_prefix) - 1) == 0;
1378 if (event->mmap.filename[0] == '/' ||
1379 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1380 map = machine__findnew_module_map(machine, event->mmap.start,
1381 event->mmap.filename);
1382 if (map == NULL)
1383 goto out_problem;
1384
1385 map->end = map->start + event->mmap.len;
1386 } else if (is_kernel_mmap) {
1387 const char *symbol_name = (event->mmap.filename +
1388 strlen(kmmap_prefix));
1389 /*
1390 * Should be there already, from the build-id table in
1391 * the header.
1392 */
1393 struct dso *kernel = NULL;
1394 struct dso *dso;
1395
1396 pthread_rwlock_rdlock(&machine->dsos.lock);
1397
1398 list_for_each_entry(dso, &machine->dsos.head, node) {
1399
1400 /*
1401 * The cpumode passed to is_kernel_module is not the
1402 * cpumode of *this* event. If we insist on passing
1403 * correct cpumode to is_kernel_module, we should
1404 * record the cpumode when we adding this dso to the
1405 * linked list.
1406 *
1407 * However we don't really need passing correct
1408 * cpumode. We know the correct cpumode must be kernel
1409 * mode (if not, we should not link it onto kernel_dsos
1410 * list).
1411 *
1412 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1413 * is_kernel_module() treats it as a kernel cpumode.
1414 */
1415
1416 if (!dso->kernel ||
1417 is_kernel_module(dso->long_name,
1418 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1419 continue;
1420
1421
1422 kernel = dso;
1423 break;
1424 }
1425
1426 pthread_rwlock_unlock(&machine->dsos.lock);
1427
1428 if (kernel == NULL)
1429 kernel = machine__findnew_dso(machine, kmmap_prefix);
1430 if (kernel == NULL)
1431 goto out_problem;
1432
1433 kernel->kernel = kernel_type;
1434 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1435 dso__put(kernel);
1436 goto out_problem;
1437 }
1438
1439 if (strstr(kernel->long_name, "vmlinux"))
1440 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1441
1442 machine__set_kernel_mmap_len(machine, event);
1443
1444 /*
1445 * Avoid using a zero address (kptr_restrict) for the ref reloc
1446 * symbol. Effectively having zero here means that at record
1447 * time /proc/sys/kernel/kptr_restrict was non zero.
1448 */
1449 if (event->mmap.pgoff != 0) {
1450 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1451 symbol_name,
1452 event->mmap.pgoff);
1453 }
1454
1455 if (machine__is_default_guest(machine)) {
1456 /*
1457 * preload dso of guest kernel and modules
1458 */
1459 dso__load(kernel, machine__kernel_map(machine));
1460 }
1461 }
1462 return 0;
1463 out_problem:
1464 return -1;
1465 }
1466
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1467 int machine__process_mmap2_event(struct machine *machine,
1468 union perf_event *event,
1469 struct perf_sample *sample)
1470 {
1471 struct thread *thread;
1472 struct map *map;
1473 enum map_type type;
1474 int ret = 0;
1475
1476 if (dump_trace)
1477 perf_event__fprintf_mmap2(event, stdout);
1478
1479 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1480 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1481 ret = machine__process_kernel_mmap_event(machine, event);
1482 if (ret < 0)
1483 goto out_problem;
1484 return 0;
1485 }
1486
1487 thread = machine__findnew_thread(machine, event->mmap2.pid,
1488 event->mmap2.tid);
1489 if (thread == NULL)
1490 goto out_problem;
1491
1492 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1493 type = MAP__VARIABLE;
1494 else
1495 type = MAP__FUNCTION;
1496
1497 map = map__new(machine, event->mmap2.start,
1498 event->mmap2.len, event->mmap2.pgoff,
1499 event->mmap2.maj,
1500 event->mmap2.min, event->mmap2.ino,
1501 event->mmap2.ino_generation,
1502 event->mmap2.prot,
1503 event->mmap2.flags,
1504 event->mmap2.filename, type, thread);
1505
1506 if (map == NULL)
1507 goto out_problem_map;
1508
1509 ret = thread__insert_map(thread, map);
1510 if (ret)
1511 goto out_problem_insert;
1512
1513 thread__put(thread);
1514 map__put(map);
1515 return 0;
1516
1517 out_problem_insert:
1518 map__put(map);
1519 out_problem_map:
1520 thread__put(thread);
1521 out_problem:
1522 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1523 return 0;
1524 }
1525
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1526 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1527 struct perf_sample *sample)
1528 {
1529 struct thread *thread;
1530 struct map *map;
1531 enum map_type type;
1532 int ret = 0;
1533
1534 if (dump_trace)
1535 perf_event__fprintf_mmap(event, stdout);
1536
1537 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1538 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1539 ret = machine__process_kernel_mmap_event(machine, event);
1540 if (ret < 0)
1541 goto out_problem;
1542 return 0;
1543 }
1544
1545 thread = machine__findnew_thread(machine, event->mmap.pid,
1546 event->mmap.tid);
1547 if (thread == NULL)
1548 goto out_problem;
1549
1550 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1551 type = MAP__VARIABLE;
1552 else
1553 type = MAP__FUNCTION;
1554
1555 map = map__new(machine, event->mmap.start,
1556 event->mmap.len, event->mmap.pgoff,
1557 0, 0, 0, 0, 0, 0,
1558 event->mmap.filename,
1559 type, thread);
1560
1561 if (map == NULL)
1562 goto out_problem_map;
1563
1564 ret = thread__insert_map(thread, map);
1565 if (ret)
1566 goto out_problem_insert;
1567
1568 thread__put(thread);
1569 map__put(map);
1570 return 0;
1571
1572 out_problem_insert:
1573 map__put(map);
1574 out_problem_map:
1575 thread__put(thread);
1576 out_problem:
1577 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1578 return 0;
1579 }
1580
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1581 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1582 {
1583 if (machine->last_match == th)
1584 machine->last_match = NULL;
1585
1586 BUG_ON(refcount_read(&th->refcnt) == 0);
1587 if (lock)
1588 pthread_rwlock_wrlock(&machine->threads_lock);
1589 rb_erase_init(&th->rb_node, &machine->threads);
1590 RB_CLEAR_NODE(&th->rb_node);
1591 --machine->nr_threads;
1592 /*
1593 * Move it first to the dead_threads list, then drop the reference,
1594 * if this is the last reference, then the thread__delete destructor
1595 * will be called and we will remove it from the dead_threads list.
1596 */
1597 list_add_tail(&th->node, &machine->dead_threads);
1598 if (lock)
1599 pthread_rwlock_unlock(&machine->threads_lock);
1600 thread__put(th);
1601 }
1602
machine__remove_thread(struct machine * machine,struct thread * th)1603 void machine__remove_thread(struct machine *machine, struct thread *th)
1604 {
1605 return __machine__remove_thread(machine, th, true);
1606 }
1607
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1608 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1609 struct perf_sample *sample)
1610 {
1611 struct thread *thread = machine__find_thread(machine,
1612 event->fork.pid,
1613 event->fork.tid);
1614 struct thread *parent = machine__findnew_thread(machine,
1615 event->fork.ppid,
1616 event->fork.ptid);
1617 int err = 0;
1618
1619 if (dump_trace)
1620 perf_event__fprintf_task(event, stdout);
1621
1622 /*
1623 * There may be an existing thread that is not actually the parent,
1624 * either because we are processing events out of order, or because the
1625 * (fork) event that would have removed the thread was lost. Assume the
1626 * latter case and continue on as best we can.
1627 */
1628 if (parent->pid_ != (pid_t)event->fork.ppid) {
1629 dump_printf("removing erroneous parent thread %d/%d\n",
1630 parent->pid_, parent->tid);
1631 machine__remove_thread(machine, parent);
1632 thread__put(parent);
1633 parent = machine__findnew_thread(machine, event->fork.ppid,
1634 event->fork.ptid);
1635 }
1636
1637 /* if a thread currently exists for the thread id remove it */
1638 if (thread != NULL) {
1639 machine__remove_thread(machine, thread);
1640 thread__put(thread);
1641 }
1642
1643 thread = machine__findnew_thread(machine, event->fork.pid,
1644 event->fork.tid);
1645
1646 if (thread == NULL || parent == NULL ||
1647 thread__fork(thread, parent, sample->time) < 0) {
1648 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1649 err = -1;
1650 }
1651 thread__put(thread);
1652 thread__put(parent);
1653
1654 return err;
1655 }
1656
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1657 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1658 struct perf_sample *sample __maybe_unused)
1659 {
1660 struct thread *thread = machine__find_thread(machine,
1661 event->fork.pid,
1662 event->fork.tid);
1663
1664 if (dump_trace)
1665 perf_event__fprintf_task(event, stdout);
1666
1667 if (thread != NULL) {
1668 thread__exited(thread);
1669 thread__put(thread);
1670 }
1671
1672 return 0;
1673 }
1674
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1675 int machine__process_event(struct machine *machine, union perf_event *event,
1676 struct perf_sample *sample)
1677 {
1678 int ret;
1679
1680 switch (event->header.type) {
1681 case PERF_RECORD_COMM:
1682 ret = machine__process_comm_event(machine, event, sample); break;
1683 case PERF_RECORD_MMAP:
1684 ret = machine__process_mmap_event(machine, event, sample); break;
1685 case PERF_RECORD_NAMESPACES:
1686 ret = machine__process_namespaces_event(machine, event, sample); break;
1687 case PERF_RECORD_MMAP2:
1688 ret = machine__process_mmap2_event(machine, event, sample); break;
1689 case PERF_RECORD_FORK:
1690 ret = machine__process_fork_event(machine, event, sample); break;
1691 case PERF_RECORD_EXIT:
1692 ret = machine__process_exit_event(machine, event, sample); break;
1693 case PERF_RECORD_LOST:
1694 ret = machine__process_lost_event(machine, event, sample); break;
1695 case PERF_RECORD_AUX:
1696 ret = machine__process_aux_event(machine, event); break;
1697 case PERF_RECORD_ITRACE_START:
1698 ret = machine__process_itrace_start_event(machine, event); break;
1699 case PERF_RECORD_LOST_SAMPLES:
1700 ret = machine__process_lost_samples_event(machine, event, sample); break;
1701 case PERF_RECORD_SWITCH:
1702 case PERF_RECORD_SWITCH_CPU_WIDE:
1703 ret = machine__process_switch_event(machine, event); break;
1704 default:
1705 ret = -1;
1706 break;
1707 }
1708
1709 return ret;
1710 }
1711
symbol__match_regex(struct symbol * sym,regex_t * regex)1712 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1713 {
1714 if (!regexec(regex, sym->name, 0, NULL, 0))
1715 return 1;
1716 return 0;
1717 }
1718
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1719 static void ip__resolve_ams(struct thread *thread,
1720 struct addr_map_symbol *ams,
1721 u64 ip)
1722 {
1723 struct addr_location al;
1724
1725 memset(&al, 0, sizeof(al));
1726 /*
1727 * We cannot use the header.misc hint to determine whether a
1728 * branch stack address is user, kernel, guest, hypervisor.
1729 * Branches may straddle the kernel/user/hypervisor boundaries.
1730 * Thus, we have to try consecutively until we find a match
1731 * or else, the symbol is unknown
1732 */
1733 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1734
1735 ams->addr = ip;
1736 ams->al_addr = al.addr;
1737 ams->sym = al.sym;
1738 ams->map = al.map;
1739 ams->phys_addr = 0;
1740 }
1741
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr)1742 static void ip__resolve_data(struct thread *thread,
1743 u8 m, struct addr_map_symbol *ams,
1744 u64 addr, u64 phys_addr)
1745 {
1746 struct addr_location al;
1747
1748 memset(&al, 0, sizeof(al));
1749
1750 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1751 if (al.map == NULL) {
1752 /*
1753 * some shared data regions have execute bit set which puts
1754 * their mapping in the MAP__FUNCTION type array.
1755 * Check there as a fallback option before dropping the sample.
1756 */
1757 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1758 }
1759
1760 ams->addr = addr;
1761 ams->al_addr = al.addr;
1762 ams->sym = al.sym;
1763 ams->map = al.map;
1764 ams->phys_addr = phys_addr;
1765 }
1766
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1767 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1768 struct addr_location *al)
1769 {
1770 struct mem_info *mi = zalloc(sizeof(*mi));
1771
1772 if (!mi)
1773 return NULL;
1774
1775 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1776 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1777 sample->addr, sample->phys_addr);
1778 mi->data_src.val = sample->data_src;
1779
1780 return mi;
1781 }
1782
1783 struct iterations {
1784 int nr_loop_iter;
1785 u64 cycles;
1786 };
1787
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)1788 static int add_callchain_ip(struct thread *thread,
1789 struct callchain_cursor *cursor,
1790 struct symbol **parent,
1791 struct addr_location *root_al,
1792 u8 *cpumode,
1793 u64 ip,
1794 bool branch,
1795 struct branch_flags *flags,
1796 struct iterations *iter,
1797 u64 branch_from)
1798 {
1799 struct addr_location al;
1800 int nr_loop_iter = 0;
1801 u64 iter_cycles = 0;
1802
1803 al.filtered = 0;
1804 al.sym = NULL;
1805 if (!cpumode) {
1806 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1807 ip, &al);
1808 } else {
1809 if (ip >= PERF_CONTEXT_MAX) {
1810 switch (ip) {
1811 case PERF_CONTEXT_HV:
1812 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1813 break;
1814 case PERF_CONTEXT_KERNEL:
1815 *cpumode = PERF_RECORD_MISC_KERNEL;
1816 break;
1817 case PERF_CONTEXT_USER:
1818 *cpumode = PERF_RECORD_MISC_USER;
1819 break;
1820 default:
1821 pr_debug("invalid callchain context: "
1822 "%"PRId64"\n", (s64) ip);
1823 /*
1824 * It seems the callchain is corrupted.
1825 * Discard all.
1826 */
1827 callchain_cursor_reset(cursor);
1828 return 1;
1829 }
1830 return 0;
1831 }
1832 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1833 ip, &al);
1834 }
1835
1836 if (al.sym != NULL) {
1837 if (perf_hpp_list.parent && !*parent &&
1838 symbol__match_regex(al.sym, &parent_regex))
1839 *parent = al.sym;
1840 else if (have_ignore_callees && root_al &&
1841 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1842 /* Treat this symbol as the root,
1843 forgetting its callees. */
1844 *root_al = al;
1845 callchain_cursor_reset(cursor);
1846 }
1847 }
1848
1849 if (symbol_conf.hide_unresolved && al.sym == NULL)
1850 return 0;
1851
1852 if (iter) {
1853 nr_loop_iter = iter->nr_loop_iter;
1854 iter_cycles = iter->cycles;
1855 }
1856
1857 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1858 branch, flags, nr_loop_iter,
1859 iter_cycles, branch_from);
1860 }
1861
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)1862 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1863 struct addr_location *al)
1864 {
1865 unsigned int i;
1866 const struct branch_stack *bs = sample->branch_stack;
1867 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1868
1869 if (!bi)
1870 return NULL;
1871
1872 for (i = 0; i < bs->nr; i++) {
1873 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1874 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1875 bi[i].flags = bs->entries[i].flags;
1876 }
1877 return bi;
1878 }
1879
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)1880 static void save_iterations(struct iterations *iter,
1881 struct branch_entry *be, int nr)
1882 {
1883 int i;
1884
1885 iter->nr_loop_iter = nr;
1886 iter->cycles = 0;
1887
1888 for (i = 0; i < nr; i++)
1889 iter->cycles += be[i].flags.cycles;
1890 }
1891
1892 #define CHASHSZ 127
1893 #define CHASHBITS 7
1894 #define NO_ENTRY 0xff
1895
1896 #define PERF_MAX_BRANCH_DEPTH 127
1897
1898 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)1899 static int remove_loops(struct branch_entry *l, int nr,
1900 struct iterations *iter)
1901 {
1902 int i, j, off;
1903 unsigned char chash[CHASHSZ];
1904
1905 memset(chash, NO_ENTRY, sizeof(chash));
1906
1907 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1908
1909 for (i = 0; i < nr; i++) {
1910 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1911
1912 /* no collision handling for now */
1913 if (chash[h] == NO_ENTRY) {
1914 chash[h] = i;
1915 } else if (l[chash[h]].from == l[i].from) {
1916 bool is_loop = true;
1917 /* check if it is a real loop */
1918 off = 0;
1919 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1920 if (l[j].from != l[i + off].from) {
1921 is_loop = false;
1922 break;
1923 }
1924 if (is_loop) {
1925 j = nr - (i + off);
1926 if (j > 0) {
1927 save_iterations(iter + i + off,
1928 l + i, off);
1929
1930 memmove(iter + i, iter + i + off,
1931 j * sizeof(*iter));
1932
1933 memmove(l + i, l + i + off,
1934 j * sizeof(*l));
1935 }
1936
1937 nr -= off;
1938 }
1939 }
1940 }
1941 return nr;
1942 }
1943
1944 /*
1945 * Recolve LBR callstack chain sample
1946 * Return:
1947 * 1 on success get LBR callchain information
1948 * 0 no available LBR callchain information, should try fp
1949 * negative error code on other errors.
1950 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)1951 static int resolve_lbr_callchain_sample(struct thread *thread,
1952 struct callchain_cursor *cursor,
1953 struct perf_sample *sample,
1954 struct symbol **parent,
1955 struct addr_location *root_al,
1956 int max_stack)
1957 {
1958 struct ip_callchain *chain = sample->callchain;
1959 int chain_nr = min(max_stack, (int)chain->nr), i;
1960 u8 cpumode = PERF_RECORD_MISC_USER;
1961 u64 ip, branch_from = 0;
1962
1963 for (i = 0; i < chain_nr; i++) {
1964 if (chain->ips[i] == PERF_CONTEXT_USER)
1965 break;
1966 }
1967
1968 /* LBR only affects the user callchain */
1969 if (i != chain_nr) {
1970 struct branch_stack *lbr_stack = sample->branch_stack;
1971 int lbr_nr = lbr_stack->nr, j, k;
1972 bool branch;
1973 struct branch_flags *flags;
1974 /*
1975 * LBR callstack can only get user call chain.
1976 * The mix_chain_nr is kernel call chain
1977 * number plus LBR user call chain number.
1978 * i is kernel call chain number,
1979 * 1 is PERF_CONTEXT_USER,
1980 * lbr_nr + 1 is the user call chain number.
1981 * For details, please refer to the comments
1982 * in callchain__printf
1983 */
1984 int mix_chain_nr = i + 1 + lbr_nr + 1;
1985
1986 for (j = 0; j < mix_chain_nr; j++) {
1987 int err;
1988 branch = false;
1989 flags = NULL;
1990
1991 if (callchain_param.order == ORDER_CALLEE) {
1992 if (j < i + 1)
1993 ip = chain->ips[j];
1994 else if (j > i + 1) {
1995 k = j - i - 2;
1996 ip = lbr_stack->entries[k].from;
1997 branch = true;
1998 flags = &lbr_stack->entries[k].flags;
1999 } else {
2000 ip = lbr_stack->entries[0].to;
2001 branch = true;
2002 flags = &lbr_stack->entries[0].flags;
2003 branch_from =
2004 lbr_stack->entries[0].from;
2005 }
2006 } else {
2007 if (j < lbr_nr) {
2008 k = lbr_nr - j - 1;
2009 ip = lbr_stack->entries[k].from;
2010 branch = true;
2011 flags = &lbr_stack->entries[k].flags;
2012 }
2013 else if (j > lbr_nr)
2014 ip = chain->ips[i + 1 - (j - lbr_nr)];
2015 else {
2016 ip = lbr_stack->entries[0].to;
2017 branch = true;
2018 flags = &lbr_stack->entries[0].flags;
2019 branch_from =
2020 lbr_stack->entries[0].from;
2021 }
2022 }
2023
2024 err = add_callchain_ip(thread, cursor, parent,
2025 root_al, &cpumode, ip,
2026 branch, flags, NULL,
2027 branch_from);
2028 if (err)
2029 return (err < 0) ? err : 0;
2030 }
2031 return 1;
2032 }
2033
2034 return 0;
2035 }
2036
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2037 static int thread__resolve_callchain_sample(struct thread *thread,
2038 struct callchain_cursor *cursor,
2039 struct perf_evsel *evsel,
2040 struct perf_sample *sample,
2041 struct symbol **parent,
2042 struct addr_location *root_al,
2043 int max_stack)
2044 {
2045 struct branch_stack *branch = sample->branch_stack;
2046 struct ip_callchain *chain = sample->callchain;
2047 int chain_nr = 0;
2048 u8 cpumode = PERF_RECORD_MISC_USER;
2049 int i, j, err, nr_entries;
2050 int skip_idx = -1;
2051 int first_call = 0;
2052
2053 if (chain)
2054 chain_nr = chain->nr;
2055
2056 if (perf_evsel__has_branch_callstack(evsel)) {
2057 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2058 root_al, max_stack);
2059 if (err)
2060 return (err < 0) ? err : 0;
2061 }
2062
2063 /*
2064 * Based on DWARF debug information, some architectures skip
2065 * a callchain entry saved by the kernel.
2066 */
2067 skip_idx = arch_skip_callchain_idx(thread, chain);
2068
2069 /*
2070 * Add branches to call stack for easier browsing. This gives
2071 * more context for a sample than just the callers.
2072 *
2073 * This uses individual histograms of paths compared to the
2074 * aggregated histograms the normal LBR mode uses.
2075 *
2076 * Limitations for now:
2077 * - No extra filters
2078 * - No annotations (should annotate somehow)
2079 */
2080
2081 if (branch && callchain_param.branch_callstack) {
2082 int nr = min(max_stack, (int)branch->nr);
2083 struct branch_entry be[nr];
2084 struct iterations iter[nr];
2085
2086 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2087 pr_warning("corrupted branch chain. skipping...\n");
2088 goto check_calls;
2089 }
2090
2091 for (i = 0; i < nr; i++) {
2092 if (callchain_param.order == ORDER_CALLEE) {
2093 be[i] = branch->entries[i];
2094
2095 if (chain == NULL)
2096 continue;
2097
2098 /*
2099 * Check for overlap into the callchain.
2100 * The return address is one off compared to
2101 * the branch entry. To adjust for this
2102 * assume the calling instruction is not longer
2103 * than 8 bytes.
2104 */
2105 if (i == skip_idx ||
2106 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2107 first_call++;
2108 else if (be[i].from < chain->ips[first_call] &&
2109 be[i].from >= chain->ips[first_call] - 8)
2110 first_call++;
2111 } else
2112 be[i] = branch->entries[branch->nr - i - 1];
2113 }
2114
2115 memset(iter, 0, sizeof(struct iterations) * nr);
2116 nr = remove_loops(be, nr, iter);
2117
2118 for (i = 0; i < nr; i++) {
2119 err = add_callchain_ip(thread, cursor, parent,
2120 root_al,
2121 NULL, be[i].to,
2122 true, &be[i].flags,
2123 NULL, be[i].from);
2124
2125 if (!err)
2126 err = add_callchain_ip(thread, cursor, parent, root_al,
2127 NULL, be[i].from,
2128 true, &be[i].flags,
2129 &iter[i], 0);
2130 if (err == -EINVAL)
2131 break;
2132 if (err)
2133 return err;
2134 }
2135
2136 if (chain_nr == 0)
2137 return 0;
2138
2139 chain_nr -= nr;
2140 }
2141
2142 check_calls:
2143 for (i = first_call, nr_entries = 0;
2144 i < chain_nr && nr_entries < max_stack; i++) {
2145 u64 ip;
2146
2147 if (callchain_param.order == ORDER_CALLEE)
2148 j = i;
2149 else
2150 j = chain->nr - i - 1;
2151
2152 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2153 if (j == skip_idx)
2154 continue;
2155 #endif
2156 ip = chain->ips[j];
2157
2158 if (ip < PERF_CONTEXT_MAX)
2159 ++nr_entries;
2160
2161 err = add_callchain_ip(thread, cursor, parent,
2162 root_al, &cpumode, ip,
2163 false, NULL, NULL, 0);
2164
2165 if (err)
2166 return (err < 0) ? err : 0;
2167 }
2168
2169 return 0;
2170 }
2171
unwind_entry(struct unwind_entry * entry,void * arg)2172 static int unwind_entry(struct unwind_entry *entry, void *arg)
2173 {
2174 struct callchain_cursor *cursor = arg;
2175
2176 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2177 return 0;
2178 return callchain_cursor_append(cursor, entry->ip,
2179 entry->map, entry->sym,
2180 false, NULL, 0, 0, 0);
2181 }
2182
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,int max_stack)2183 static int thread__resolve_callchain_unwind(struct thread *thread,
2184 struct callchain_cursor *cursor,
2185 struct perf_evsel *evsel,
2186 struct perf_sample *sample,
2187 int max_stack)
2188 {
2189 /* Can we do dwarf post unwind? */
2190 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2191 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2192 return 0;
2193
2194 /* Bail out if nothing was captured. */
2195 if ((!sample->user_regs.regs) ||
2196 (!sample->user_stack.size))
2197 return 0;
2198
2199 return unwind__get_entries(unwind_entry, cursor,
2200 thread, sample, max_stack);
2201 }
2202
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct perf_evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2203 int thread__resolve_callchain(struct thread *thread,
2204 struct callchain_cursor *cursor,
2205 struct perf_evsel *evsel,
2206 struct perf_sample *sample,
2207 struct symbol **parent,
2208 struct addr_location *root_al,
2209 int max_stack)
2210 {
2211 int ret = 0;
2212
2213 callchain_cursor_reset(&callchain_cursor);
2214
2215 if (callchain_param.order == ORDER_CALLEE) {
2216 ret = thread__resolve_callchain_sample(thread, cursor,
2217 evsel, sample,
2218 parent, root_al,
2219 max_stack);
2220 if (ret)
2221 return ret;
2222 ret = thread__resolve_callchain_unwind(thread, cursor,
2223 evsel, sample,
2224 max_stack);
2225 } else {
2226 ret = thread__resolve_callchain_unwind(thread, cursor,
2227 evsel, sample,
2228 max_stack);
2229 if (ret)
2230 return ret;
2231 ret = thread__resolve_callchain_sample(thread, cursor,
2232 evsel, sample,
2233 parent, root_al,
2234 max_stack);
2235 }
2236
2237 return ret;
2238 }
2239
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2240 int machine__for_each_thread(struct machine *machine,
2241 int (*fn)(struct thread *thread, void *p),
2242 void *priv)
2243 {
2244 struct rb_node *nd;
2245 struct thread *thread;
2246 int rc = 0;
2247
2248 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2249 thread = rb_entry(nd, struct thread, rb_node);
2250 rc = fn(thread, priv);
2251 if (rc != 0)
2252 return rc;
2253 }
2254
2255 list_for_each_entry(thread, &machine->dead_threads, node) {
2256 rc = fn(thread, priv);
2257 if (rc != 0)
2258 return rc;
2259 }
2260 return rc;
2261 }
2262
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2263 int machines__for_each_thread(struct machines *machines,
2264 int (*fn)(struct thread *thread, void *p),
2265 void *priv)
2266 {
2267 struct rb_node *nd;
2268 int rc = 0;
2269
2270 rc = machine__for_each_thread(&machines->host, fn, priv);
2271 if (rc != 0)
2272 return rc;
2273
2274 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276
2277 rc = machine__for_each_thread(machine, fn, priv);
2278 if (rc != 0)
2279 return rc;
2280 }
2281 return rc;
2282 }
2283
__machine__synthesize_threads(struct machine * machine,struct perf_tool * tool,struct target * target,struct thread_map * threads,perf_event__handler_t process,bool data_mmap,unsigned int proc_map_timeout)2284 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285 struct target *target, struct thread_map *threads,
2286 perf_event__handler_t process, bool data_mmap,
2287 unsigned int proc_map_timeout)
2288 {
2289 if (target__has_task(target))
2290 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2291 else if (target__has_cpu(target))
2292 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2293 /* command specified */
2294 return 0;
2295 }
2296
machine__get_current_tid(struct machine * machine,int cpu)2297 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2298 {
2299 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2300 return -1;
2301
2302 return machine->current_tid[cpu];
2303 }
2304
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2305 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2306 pid_t tid)
2307 {
2308 struct thread *thread;
2309
2310 if (cpu < 0)
2311 return -EINVAL;
2312
2313 if (!machine->current_tid) {
2314 int i;
2315
2316 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2317 if (!machine->current_tid)
2318 return -ENOMEM;
2319 for (i = 0; i < MAX_NR_CPUS; i++)
2320 machine->current_tid[i] = -1;
2321 }
2322
2323 if (cpu >= MAX_NR_CPUS) {
2324 pr_err("Requested CPU %d too large. ", cpu);
2325 pr_err("Consider raising MAX_NR_CPUS\n");
2326 return -EINVAL;
2327 }
2328
2329 machine->current_tid[cpu] = tid;
2330
2331 thread = machine__findnew_thread(machine, pid, tid);
2332 if (!thread)
2333 return -ENOMEM;
2334
2335 thread->cpu = cpu;
2336 thread__put(thread);
2337
2338 return 0;
2339 }
2340
2341 /*
2342 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2343 * normalized arch is needed.
2344 */
machine__is(struct machine * machine,const char * arch)2345 bool machine__is(struct machine *machine, const char *arch)
2346 {
2347 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2348 }
2349
machine__nr_cpus_avail(struct machine * machine)2350 int machine__nr_cpus_avail(struct machine *machine)
2351 {
2352 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2353 }
2354
machine__get_kernel_start(struct machine * machine)2355 int machine__get_kernel_start(struct machine *machine)
2356 {
2357 struct map *map = machine__kernel_map(machine);
2358 int err = 0;
2359
2360 /*
2361 * The only addresses above 2^63 are kernel addresses of a 64-bit
2362 * kernel. Note that addresses are unsigned so that on a 32-bit system
2363 * all addresses including kernel addresses are less than 2^32. In
2364 * that case (32-bit system), if the kernel mapping is unknown, all
2365 * addresses will be assumed to be in user space - see
2366 * machine__kernel_ip().
2367 */
2368 machine->kernel_start = 1ULL << 63;
2369 if (map) {
2370 err = map__load(map);
2371 /*
2372 * On x86_64, PTI entry trampolines are less than the
2373 * start of kernel text, but still above 2^63. So leave
2374 * kernel_start = 1ULL << 63 for x86_64.
2375 */
2376 if (!err && !machine__is(machine, "x86_64"))
2377 machine->kernel_start = map->start;
2378 }
2379 return err;
2380 }
2381
machine__findnew_dso(struct machine * machine,const char * filename)2382 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2383 {
2384 return dsos__findnew(&machine->dsos, filename);
2385 }
2386
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2387 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2388 {
2389 struct machine *machine = vmachine;
2390 struct map *map;
2391 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2392
2393 if (sym == NULL)
2394 return NULL;
2395
2396 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2397 *addrp = map->unmap_ip(map, sym->start);
2398 return sym->name;
2399 }
2400