• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sigreturn.c - tests for x86 sigreturn(2) and exit-to-userspace
3  * Copyright (c) 2014-2015 Andrew Lutomirski
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * This is a series of tests that exercises the sigreturn(2) syscall and
15  * the IRET / SYSRET paths in the kernel.
16  *
17  * For now, this focuses on the effects of unusual CS and SS values,
18  * and it has a bunch of tests to make sure that ESP/RSP is restored
19  * properly.
20  *
21  * The basic idea behind these tests is to raise(SIGUSR1) to create a
22  * sigcontext frame, plug in the values to be tested, and then return,
23  * which implicitly invokes sigreturn(2) and programs the user context
24  * as desired.
25  *
26  * For tests for which we expect sigreturn and the subsequent return to
27  * user mode to succeed, we return to a short trampoline that generates
28  * SIGTRAP so that the meat of the tests can be ordinary C code in a
29  * SIGTRAP handler.
30  *
31  * The inner workings of each test is documented below.
32  *
33  * Do not run on outdated, unpatched kernels at risk of nasty crashes.
34  */
35 
36 #define _GNU_SOURCE
37 
38 #include <sys/time.h>
39 #include <time.h>
40 #include <stdlib.h>
41 #include <sys/syscall.h>
42 #include <unistd.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <inttypes.h>
46 #include <sys/mman.h>
47 #include <sys/signal.h>
48 #include <sys/ucontext.h>
49 #include <asm/ldt.h>
50 #include <err.h>
51 #include <setjmp.h>
52 #include <stddef.h>
53 #include <stdbool.h>
54 #include <sys/ptrace.h>
55 #include <sys/user.h>
56 
57 /* Pull in AR_xyz defines. */
58 typedef unsigned int u32;
59 typedef unsigned short u16;
60 #include "../../../../arch/x86/include/asm/desc_defs.h"
61 
62 /*
63  * Copied from asm/ucontext.h, as asm/ucontext.h conflicts badly with the glibc
64  * headers.
65  */
66 #ifdef __x86_64__
67 /*
68  * UC_SIGCONTEXT_SS will be set when delivering 64-bit or x32 signals on
69  * kernels that save SS in the sigcontext.  All kernels that set
70  * UC_SIGCONTEXT_SS will correctly restore at least the low 32 bits of esp
71  * regardless of SS (i.e. they implement espfix).
72  *
73  * Kernels that set UC_SIGCONTEXT_SS will also set UC_STRICT_RESTORE_SS
74  * when delivering a signal that came from 64-bit code.
75  *
76  * Sigreturn restores SS as follows:
77  *
78  * if (saved SS is valid || UC_STRICT_RESTORE_SS is set ||
79  *     saved CS is not 64-bit)
80  *         new SS = saved SS  (will fail IRET and signal if invalid)
81  * else
82  *         new SS = a flat 32-bit data segment
83  */
84 #define UC_SIGCONTEXT_SS       0x2
85 #define UC_STRICT_RESTORE_SS   0x4
86 #endif
87 
88 /*
89  * In principle, this test can run on Linux emulation layers (e.g.
90  * Illumos "LX branded zones").  Solaris-based kernels reserve LDT
91  * entries 0-5 for their own internal purposes, so start our LDT
92  * allocations above that reservation.  (The tests don't pass on LX
93  * branded zones, but at least this lets them run.)
94  */
95 #define LDT_OFFSET 6
96 
97 /* An aligned stack accessible through some of our segments. */
98 static unsigned char stack16[65536] __attribute__((aligned(4096)));
99 
100 /*
101  * An aligned int3 instruction used as a trampoline.  Some of the tests
102  * want to fish out their ss values, so this trampoline copies ss to eax
103  * before the int3.
104  */
105 asm (".pushsection .text\n\t"
106      ".type int3, @function\n\t"
107      ".align 4096\n\t"
108      "int3:\n\t"
109      "mov %ss,%ecx\n\t"
110      "int3\n\t"
111      ".size int3, . - int3\n\t"
112      ".align 4096, 0xcc\n\t"
113      ".popsection");
114 extern char int3[4096];
115 
116 /*
117  * At startup, we prepapre:
118  *
119  * - ldt_nonexistent_sel: An LDT entry that doesn't exist (all-zero
120  *   descriptor or out of bounds).
121  * - code16_sel: A 16-bit LDT code segment pointing to int3.
122  * - data16_sel: A 16-bit LDT data segment pointing to stack16.
123  * - npcode32_sel: A 32-bit not-present LDT code segment pointing to int3.
124  * - npdata32_sel: A 32-bit not-present LDT data segment pointing to stack16.
125  * - gdt_data16_idx: A 16-bit GDT data segment pointing to stack16.
126  * - gdt_npdata32_idx: A 32-bit not-present GDT data segment pointing to
127  *   stack16.
128  *
129  * For no particularly good reason, xyz_sel is a selector value with the
130  * RPL and LDT bits filled in, whereas xyz_idx is just an index into the
131  * descriptor table.  These variables will be zero if their respective
132  * segments could not be allocated.
133  */
134 static unsigned short ldt_nonexistent_sel;
135 static unsigned short code16_sel, data16_sel, npcode32_sel, npdata32_sel;
136 
137 static unsigned short gdt_data16_idx, gdt_npdata32_idx;
138 
GDT3(int idx)139 static unsigned short GDT3(int idx)
140 {
141 	return (idx << 3) | 3;
142 }
143 
LDT3(int idx)144 static unsigned short LDT3(int idx)
145 {
146 	return (idx << 3) | 7;
147 }
148 
149 /* Our sigaltstack scratch space. */
150 static char altstack_data[SIGSTKSZ];
151 
sethandler(int sig,void (* handler)(int,siginfo_t *,void *),int flags)152 static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *),
153 		       int flags)
154 {
155 	struct sigaction sa;
156 	memset(&sa, 0, sizeof(sa));
157 	sa.sa_sigaction = handler;
158 	sa.sa_flags = SA_SIGINFO | flags;
159 	sigemptyset(&sa.sa_mask);
160 	if (sigaction(sig, &sa, 0))
161 		err(1, "sigaction");
162 }
163 
clearhandler(int sig)164 static void clearhandler(int sig)
165 {
166 	struct sigaction sa;
167 	memset(&sa, 0, sizeof(sa));
168 	sa.sa_handler = SIG_DFL;
169 	sigemptyset(&sa.sa_mask);
170 	if (sigaction(sig, &sa, 0))
171 		err(1, "sigaction");
172 }
173 
add_ldt(const struct user_desc * desc,unsigned short * var,const char * name)174 static void add_ldt(const struct user_desc *desc, unsigned short *var,
175 		    const char *name)
176 {
177 	if (syscall(SYS_modify_ldt, 1, desc, sizeof(*desc)) == 0) {
178 		*var = LDT3(desc->entry_number);
179 	} else {
180 		printf("[NOTE]\tFailed to create %s segment\n", name);
181 		*var = 0;
182 	}
183 }
184 
setup_ldt(void)185 static void setup_ldt(void)
186 {
187 	if ((unsigned long)stack16 > (1ULL << 32) - sizeof(stack16))
188 		errx(1, "stack16 is too high\n");
189 	if ((unsigned long)int3 > (1ULL << 32) - sizeof(int3))
190 		errx(1, "int3 is too high\n");
191 
192 	ldt_nonexistent_sel = LDT3(LDT_OFFSET + 2);
193 
194 	const struct user_desc code16_desc = {
195 		.entry_number    = LDT_OFFSET + 0,
196 		.base_addr       = (unsigned long)int3,
197 		.limit           = 4095,
198 		.seg_32bit       = 0,
199 		.contents        = 2, /* Code, not conforming */
200 		.read_exec_only  = 0,
201 		.limit_in_pages  = 0,
202 		.seg_not_present = 0,
203 		.useable         = 0
204 	};
205 	add_ldt(&code16_desc, &code16_sel, "code16");
206 
207 	const struct user_desc data16_desc = {
208 		.entry_number    = LDT_OFFSET + 1,
209 		.base_addr       = (unsigned long)stack16,
210 		.limit           = 0xffff,
211 		.seg_32bit       = 0,
212 		.contents        = 0, /* Data, grow-up */
213 		.read_exec_only  = 0,
214 		.limit_in_pages  = 0,
215 		.seg_not_present = 0,
216 		.useable         = 0
217 	};
218 	add_ldt(&data16_desc, &data16_sel, "data16");
219 
220 	const struct user_desc npcode32_desc = {
221 		.entry_number    = LDT_OFFSET + 3,
222 		.base_addr       = (unsigned long)int3,
223 		.limit           = 4095,
224 		.seg_32bit       = 1,
225 		.contents        = 2, /* Code, not conforming */
226 		.read_exec_only  = 0,
227 		.limit_in_pages  = 0,
228 		.seg_not_present = 1,
229 		.useable         = 0
230 	};
231 	add_ldt(&npcode32_desc, &npcode32_sel, "npcode32");
232 
233 	const struct user_desc npdata32_desc = {
234 		.entry_number    = LDT_OFFSET + 4,
235 		.base_addr       = (unsigned long)stack16,
236 		.limit           = 0xffff,
237 		.seg_32bit       = 1,
238 		.contents        = 0, /* Data, grow-up */
239 		.read_exec_only  = 0,
240 		.limit_in_pages  = 0,
241 		.seg_not_present = 1,
242 		.useable         = 0
243 	};
244 	add_ldt(&npdata32_desc, &npdata32_sel, "npdata32");
245 
246 	struct user_desc gdt_data16_desc = {
247 		.entry_number    = -1,
248 		.base_addr       = (unsigned long)stack16,
249 		.limit           = 0xffff,
250 		.seg_32bit       = 0,
251 		.contents        = 0, /* Data, grow-up */
252 		.read_exec_only  = 0,
253 		.limit_in_pages  = 0,
254 		.seg_not_present = 0,
255 		.useable         = 0
256 	};
257 
258 	if (syscall(SYS_set_thread_area, &gdt_data16_desc) == 0) {
259 		/*
260 		 * This probably indicates vulnerability to CVE-2014-8133.
261 		 * Merely getting here isn't definitive, though, and we'll
262 		 * diagnose the problem for real later on.
263 		 */
264 		printf("[WARN]\tset_thread_area allocated data16 at index %d\n",
265 		       gdt_data16_desc.entry_number);
266 		gdt_data16_idx = gdt_data16_desc.entry_number;
267 	} else {
268 		printf("[OK]\tset_thread_area refused 16-bit data\n");
269 	}
270 
271 	struct user_desc gdt_npdata32_desc = {
272 		.entry_number    = -1,
273 		.base_addr       = (unsigned long)stack16,
274 		.limit           = 0xffff,
275 		.seg_32bit       = 1,
276 		.contents        = 0, /* Data, grow-up */
277 		.read_exec_only  = 0,
278 		.limit_in_pages  = 0,
279 		.seg_not_present = 1,
280 		.useable         = 0
281 	};
282 
283 	if (syscall(SYS_set_thread_area, &gdt_npdata32_desc) == 0) {
284 		/*
285 		 * As a hardening measure, newer kernels don't allow this.
286 		 */
287 		printf("[WARN]\tset_thread_area allocated npdata32 at index %d\n",
288 		       gdt_npdata32_desc.entry_number);
289 		gdt_npdata32_idx = gdt_npdata32_desc.entry_number;
290 	} else {
291 		printf("[OK]\tset_thread_area refused 16-bit data\n");
292 	}
293 }
294 
295 /* State used by our signal handlers. */
296 static gregset_t initial_regs, requested_regs, resulting_regs;
297 
298 /* Instructions for the SIGUSR1 handler. */
299 static volatile unsigned short sig_cs, sig_ss;
300 static volatile sig_atomic_t sig_trapped, sig_err, sig_trapno;
301 #ifdef __x86_64__
302 static volatile sig_atomic_t sig_corrupt_final_ss;
303 #endif
304 
305 /* Abstractions for some 32-bit vs 64-bit differences. */
306 #ifdef __x86_64__
307 # define REG_IP REG_RIP
308 # define REG_SP REG_RSP
309 # define REG_CX REG_RCX
310 
311 struct selectors {
312 	unsigned short cs, gs, fs, ss;
313 };
314 
ssptr(ucontext_t * ctx)315 static unsigned short *ssptr(ucontext_t *ctx)
316 {
317 	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
318 	return &sels->ss;
319 }
320 
csptr(ucontext_t * ctx)321 static unsigned short *csptr(ucontext_t *ctx)
322 {
323 	struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS];
324 	return &sels->cs;
325 }
326 #else
327 # define REG_IP REG_EIP
328 # define REG_SP REG_ESP
329 # define REG_CX REG_ECX
330 
ssptr(ucontext_t * ctx)331 static greg_t *ssptr(ucontext_t *ctx)
332 {
333 	return &ctx->uc_mcontext.gregs[REG_SS];
334 }
335 
csptr(ucontext_t * ctx)336 static greg_t *csptr(ucontext_t *ctx)
337 {
338 	return &ctx->uc_mcontext.gregs[REG_CS];
339 }
340 #endif
341 
342 /*
343  * Checks a given selector for its code bitness or returns -1 if it's not
344  * a usable code segment selector.
345  */
cs_bitness(unsigned short cs)346 int cs_bitness(unsigned short cs)
347 {
348 	uint32_t valid = 0, ar;
349 	asm ("lar %[cs], %[ar]\n\t"
350 	     "jnz 1f\n\t"
351 	     "mov $1, %[valid]\n\t"
352 	     "1:"
353 	     : [ar] "=r" (ar), [valid] "+rm" (valid)
354 	     : [cs] "r" (cs));
355 
356 	if (!valid)
357 		return -1;
358 
359 	bool db = (ar & (1 << 22));
360 	bool l = (ar & (1 << 21));
361 
362 	if (!(ar & (1<<11)))
363 	    return -1;	/* Not code. */
364 
365 	if (l && !db)
366 		return 64;
367 	else if (!l && db)
368 		return 32;
369 	else if (!l && !db)
370 		return 16;
371 	else
372 		return -1;	/* Unknown bitness. */
373 }
374 
375 /*
376  * Checks a given selector for its code bitness or returns -1 if it's not
377  * a usable code segment selector.
378  */
is_valid_ss(unsigned short cs)379 bool is_valid_ss(unsigned short cs)
380 {
381 	uint32_t valid = 0, ar;
382 	asm ("lar %[cs], %[ar]\n\t"
383 	     "jnz 1f\n\t"
384 	     "mov $1, %[valid]\n\t"
385 	     "1:"
386 	     : [ar] "=r" (ar), [valid] "+rm" (valid)
387 	     : [cs] "r" (cs));
388 
389 	if (!valid)
390 		return false;
391 
392 	if ((ar & AR_TYPE_MASK) != AR_TYPE_RWDATA &&
393 	    (ar & AR_TYPE_MASK) != AR_TYPE_RWDATA_EXPDOWN)
394 		return false;
395 
396 	return (ar & AR_P);
397 }
398 
399 /* Number of errors in the current test case. */
400 static volatile sig_atomic_t nerrs;
401 
validate_signal_ss(int sig,ucontext_t * ctx)402 static void validate_signal_ss(int sig, ucontext_t *ctx)
403 {
404 #ifdef __x86_64__
405 	bool was_64bit = (cs_bitness(*csptr(ctx)) == 64);
406 
407 	if (!(ctx->uc_flags & UC_SIGCONTEXT_SS)) {
408 		printf("[FAIL]\tUC_SIGCONTEXT_SS was not set\n");
409 		nerrs++;
410 
411 		/*
412 		 * This happens on Linux 4.1.  The rest will fail, too, so
413 		 * return now to reduce the noise.
414 		 */
415 		return;
416 	}
417 
418 	/* UC_STRICT_RESTORE_SS is set iff we came from 64-bit mode. */
419 	if (!!(ctx->uc_flags & UC_STRICT_RESTORE_SS) != was_64bit) {
420 		printf("[FAIL]\tUC_STRICT_RESTORE_SS was wrong in signal %d\n",
421 		       sig);
422 		nerrs++;
423 	}
424 
425 	if (is_valid_ss(*ssptr(ctx))) {
426 		/*
427 		 * DOSEMU was written before 64-bit sigcontext had SS, and
428 		 * it tries to figure out the signal source SS by looking at
429 		 * the physical register.  Make sure that keeps working.
430 		 */
431 		unsigned short hw_ss;
432 		asm ("mov %%ss, %0" : "=rm" (hw_ss));
433 		if (hw_ss != *ssptr(ctx)) {
434 			printf("[FAIL]\tHW SS didn't match saved SS\n");
435 			nerrs++;
436 		}
437 	}
438 #endif
439 }
440 
441 /*
442  * SIGUSR1 handler.  Sets CS and SS as requested and points IP to the
443  * int3 trampoline.  Sets SP to a large known value so that we can see
444  * whether the value round-trips back to user mode correctly.
445  */
sigusr1(int sig,siginfo_t * info,void * ctx_void)446 static void sigusr1(int sig, siginfo_t *info, void *ctx_void)
447 {
448 	ucontext_t *ctx = (ucontext_t*)ctx_void;
449 
450 	validate_signal_ss(sig, ctx);
451 
452 	memcpy(&initial_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
453 
454 	*csptr(ctx) = sig_cs;
455 	*ssptr(ctx) = sig_ss;
456 
457 	ctx->uc_mcontext.gregs[REG_IP] =
458 		sig_cs == code16_sel ? 0 : (unsigned long)&int3;
459 	ctx->uc_mcontext.gregs[REG_SP] = (unsigned long)0x8badf00d5aadc0deULL;
460 	ctx->uc_mcontext.gregs[REG_CX] = 0;
461 
462 	memcpy(&requested_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
463 	requested_regs[REG_CX] = *ssptr(ctx);	/* The asm code does this. */
464 
465 	return;
466 }
467 
468 /*
469  * Called after a successful sigreturn (via int3) or from a failed
470  * sigreturn (directly by kernel).  Restores our state so that the
471  * original raise(SIGUSR1) returns.
472  */
sigtrap(int sig,siginfo_t * info,void * ctx_void)473 static void sigtrap(int sig, siginfo_t *info, void *ctx_void)
474 {
475 	ucontext_t *ctx = (ucontext_t*)ctx_void;
476 
477 	validate_signal_ss(sig, ctx);
478 
479 	sig_err = ctx->uc_mcontext.gregs[REG_ERR];
480 	sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO];
481 
482 	unsigned short ss;
483 	asm ("mov %%ss,%0" : "=r" (ss));
484 
485 	greg_t asm_ss = ctx->uc_mcontext.gregs[REG_CX];
486 	if (asm_ss != sig_ss && sig == SIGTRAP) {
487 		/* Sanity check failure. */
488 		printf("[FAIL]\tSIGTRAP: ss = %hx, frame ss = %hx, ax = %llx\n",
489 		       ss, *ssptr(ctx), (unsigned long long)asm_ss);
490 		nerrs++;
491 	}
492 
493 	memcpy(&resulting_regs, &ctx->uc_mcontext.gregs, sizeof(gregset_t));
494 	memcpy(&ctx->uc_mcontext.gregs, &initial_regs, sizeof(gregset_t));
495 
496 #ifdef __x86_64__
497 	if (sig_corrupt_final_ss) {
498 		if (ctx->uc_flags & UC_STRICT_RESTORE_SS) {
499 			printf("[FAIL]\tUC_STRICT_RESTORE_SS was set inappropriately\n");
500 			nerrs++;
501 		} else {
502 			/*
503 			 * DOSEMU transitions from 32-bit to 64-bit mode by
504 			 * adjusting sigcontext, and it requires that this work
505 			 * even if the saved SS is bogus.
506 			 */
507 			printf("\tCorrupting SS on return to 64-bit mode\n");
508 			*ssptr(ctx) = 0;
509 		}
510 	}
511 #endif
512 
513 	sig_trapped = sig;
514 }
515 
516 #ifdef __x86_64__
517 /* Tests recovery if !UC_STRICT_RESTORE_SS */
sigusr2(int sig,siginfo_t * info,void * ctx_void)518 static void sigusr2(int sig, siginfo_t *info, void *ctx_void)
519 {
520 	ucontext_t *ctx = (ucontext_t*)ctx_void;
521 
522 	if (!(ctx->uc_flags & UC_STRICT_RESTORE_SS)) {
523 		printf("[FAIL]\traise(2) didn't set UC_STRICT_RESTORE_SS\n");
524 		nerrs++;
525 		return;  /* We can't do the rest. */
526 	}
527 
528 	ctx->uc_flags &= ~UC_STRICT_RESTORE_SS;
529 	*ssptr(ctx) = 0;
530 
531 	/* Return.  The kernel should recover without sending another signal. */
532 }
533 
test_nonstrict_ss(void)534 static int test_nonstrict_ss(void)
535 {
536 	clearhandler(SIGUSR1);
537 	clearhandler(SIGTRAP);
538 	clearhandler(SIGSEGV);
539 	clearhandler(SIGILL);
540 	sethandler(SIGUSR2, sigusr2, 0);
541 
542 	nerrs = 0;
543 
544 	printf("[RUN]\tClear UC_STRICT_RESTORE_SS and corrupt SS\n");
545 	raise(SIGUSR2);
546 	if (!nerrs)
547 		printf("[OK]\tIt worked\n");
548 
549 	return nerrs;
550 }
551 #endif
552 
553 /* Finds a usable code segment of the requested bitness. */
find_cs(int bitness)554 int find_cs(int bitness)
555 {
556 	unsigned short my_cs;
557 
558 	asm ("mov %%cs,%0" :  "=r" (my_cs));
559 
560 	if (cs_bitness(my_cs) == bitness)
561 		return my_cs;
562 	if (cs_bitness(my_cs + (2 << 3)) == bitness)
563 		return my_cs + (2 << 3);
564 	if (my_cs > (2<<3) && cs_bitness(my_cs - (2 << 3)) == bitness)
565 	    return my_cs - (2 << 3);
566 	if (cs_bitness(code16_sel) == bitness)
567 		return code16_sel;
568 
569 	printf("[WARN]\tCould not find %d-bit CS\n", bitness);
570 	return -1;
571 }
572 
test_valid_sigreturn(int cs_bits,bool use_16bit_ss,int force_ss)573 static int test_valid_sigreturn(int cs_bits, bool use_16bit_ss, int force_ss)
574 {
575 	int cs = find_cs(cs_bits);
576 	if (cs == -1) {
577 		printf("[SKIP]\tCode segment unavailable for %d-bit CS, %d-bit SS\n",
578 		       cs_bits, use_16bit_ss ? 16 : 32);
579 		return 0;
580 	}
581 
582 	if (force_ss != -1) {
583 		sig_ss = force_ss;
584 	} else {
585 		if (use_16bit_ss) {
586 			if (!data16_sel) {
587 				printf("[SKIP]\tData segment unavailable for %d-bit CS, 16-bit SS\n",
588 				       cs_bits);
589 				return 0;
590 			}
591 			sig_ss = data16_sel;
592 		} else {
593 			asm volatile ("mov %%ss,%0" : "=r" (sig_ss));
594 		}
595 	}
596 
597 	sig_cs = cs;
598 
599 	printf("[RUN]\tValid sigreturn: %d-bit CS (%hx), %d-bit SS (%hx%s)\n",
600 	       cs_bits, sig_cs, use_16bit_ss ? 16 : 32, sig_ss,
601 	       (sig_ss & 4) ? "" : ", GDT");
602 
603 	raise(SIGUSR1);
604 
605 	nerrs = 0;
606 
607 	/*
608 	 * Check that each register had an acceptable value when the
609 	 * int3 trampoline was invoked.
610 	 */
611 	for (int i = 0; i < NGREG; i++) {
612 		greg_t req = requested_regs[i], res = resulting_regs[i];
613 
614 		if (i == REG_TRAPNO || i == REG_IP)
615 			continue;	/* don't care */
616 
617 		if (i == REG_SP) {
618 			/*
619 			 * If we were using a 16-bit stack segment, then
620 			 * the kernel is a bit stuck: IRET only restores
621 			 * the low 16 bits of ESP/RSP if SS is 16-bit.
622 			 * The kernel uses a hack to restore bits 31:16,
623 			 * but that hack doesn't help with bits 63:32.
624 			 * On Intel CPUs, bits 63:32 end up zeroed, and, on
625 			 * AMD CPUs, they leak the high bits of the kernel
626 			 * espfix64 stack pointer.  There's very little that
627 			 * the kernel can do about it.
628 			 *
629 			 * Similarly, if we are returning to a 32-bit context,
630 			 * the CPU will often lose the high 32 bits of RSP.
631 			 */
632 
633 			if (res == req)
634 				continue;
635 
636 			if (cs_bits != 64 && ((res ^ req) & 0xFFFFFFFF) == 0) {
637 				printf("[NOTE]\tSP: %llx -> %llx\n",
638 				       (unsigned long long)req,
639 				       (unsigned long long)res);
640 				continue;
641 			}
642 
643 			printf("[FAIL]\tSP mismatch: requested 0x%llx; got 0x%llx\n",
644 			       (unsigned long long)requested_regs[i],
645 			       (unsigned long long)resulting_regs[i]);
646 			nerrs++;
647 			continue;
648 		}
649 
650 		bool ignore_reg = false;
651 #if __i386__
652 		if (i == REG_UESP)
653 			ignore_reg = true;
654 #else
655 		if (i == REG_CSGSFS) {
656 			struct selectors *req_sels =
657 				(void *)&requested_regs[REG_CSGSFS];
658 			struct selectors *res_sels =
659 				(void *)&resulting_regs[REG_CSGSFS];
660 			if (req_sels->cs != res_sels->cs) {
661 				printf("[FAIL]\tCS mismatch: requested 0x%hx; got 0x%hx\n",
662 				       req_sels->cs, res_sels->cs);
663 				nerrs++;
664 			}
665 
666 			if (req_sels->ss != res_sels->ss) {
667 				printf("[FAIL]\tSS mismatch: requested 0x%hx; got 0x%hx\n",
668 				       req_sels->ss, res_sels->ss);
669 				nerrs++;
670 			}
671 
672 			continue;
673 		}
674 #endif
675 
676 		/* Sanity check on the kernel */
677 		if (i == REG_CX && req != res) {
678 			printf("[FAIL]\tCX (saved SP) mismatch: requested 0x%llx; got 0x%llx\n",
679 			       (unsigned long long)req,
680 			       (unsigned long long)res);
681 			nerrs++;
682 			continue;
683 		}
684 
685 		if (req != res && !ignore_reg) {
686 			printf("[FAIL]\tReg %d mismatch: requested 0x%llx; got 0x%llx\n",
687 			       i, (unsigned long long)req,
688 			       (unsigned long long)res);
689 			nerrs++;
690 		}
691 	}
692 
693 	if (nerrs == 0)
694 		printf("[OK]\tall registers okay\n");
695 
696 	return nerrs;
697 }
698 
test_bad_iret(int cs_bits,unsigned short ss,int force_cs)699 static int test_bad_iret(int cs_bits, unsigned short ss, int force_cs)
700 {
701 	int cs = force_cs == -1 ? find_cs(cs_bits) : force_cs;
702 	if (cs == -1)
703 		return 0;
704 
705 	sig_cs = cs;
706 	sig_ss = ss;
707 
708 	printf("[RUN]\t%d-bit CS (%hx), bogus SS (%hx)\n",
709 	       cs_bits, sig_cs, sig_ss);
710 
711 	sig_trapped = 0;
712 	raise(SIGUSR1);
713 	if (sig_trapped) {
714 		char errdesc[32] = "";
715 		if (sig_err) {
716 			const char *src = (sig_err & 1) ? " EXT" : "";
717 			const char *table;
718 			if ((sig_err & 0x6) == 0x0)
719 				table = "GDT";
720 			else if ((sig_err & 0x6) == 0x4)
721 				table = "LDT";
722 			else if ((sig_err & 0x6) == 0x2)
723 				table = "IDT";
724 			else
725 				table = "???";
726 
727 			sprintf(errdesc, "%s%s index %d, ",
728 				table, src, sig_err >> 3);
729 		}
730 
731 		char trapname[32];
732 		if (sig_trapno == 13)
733 			strcpy(trapname, "GP");
734 		else if (sig_trapno == 11)
735 			strcpy(trapname, "NP");
736 		else if (sig_trapno == 12)
737 			strcpy(trapname, "SS");
738 		else if (sig_trapno == 32)
739 			strcpy(trapname, "IRET");  /* X86_TRAP_IRET */
740 		else
741 			sprintf(trapname, "%d", sig_trapno);
742 
743 		printf("[OK]\tGot #%s(0x%lx) (i.e. %s%s)\n",
744 		       trapname, (unsigned long)sig_err,
745 		       errdesc, strsignal(sig_trapped));
746 		return 0;
747 	} else {
748 		/*
749 		 * This also implicitly tests UC_STRICT_RESTORE_SS:
750 		 * We check that these signals set UC_STRICT_RESTORE_SS and,
751 		 * if UC_STRICT_RESTORE_SS doesn't cause strict behavior,
752 		 * then we won't get SIGSEGV.
753 		 */
754 		printf("[FAIL]\tDid not get SIGSEGV\n");
755 		return 1;
756 	}
757 }
758 
main()759 int main()
760 {
761 	int total_nerrs = 0;
762 	unsigned short my_cs, my_ss;
763 
764 	asm volatile ("mov %%cs,%0" : "=r" (my_cs));
765 	asm volatile ("mov %%ss,%0" : "=r" (my_ss));
766 	setup_ldt();
767 
768 	stack_t stack = {
769 		.ss_sp = altstack_data,
770 		.ss_size = SIGSTKSZ,
771 	};
772 	if (sigaltstack(&stack, NULL) != 0)
773 		err(1, "sigaltstack");
774 
775 	sethandler(SIGUSR1, sigusr1, 0);
776 	sethandler(SIGTRAP, sigtrap, SA_ONSTACK);
777 
778 	/* Easy cases: return to a 32-bit SS in each possible CS bitness. */
779 	total_nerrs += test_valid_sigreturn(64, false, -1);
780 	total_nerrs += test_valid_sigreturn(32, false, -1);
781 	total_nerrs += test_valid_sigreturn(16, false, -1);
782 
783 	/*
784 	 * Test easy espfix cases: return to a 16-bit LDT SS in each possible
785 	 * CS bitness.  NB: with a long mode CS, the SS bitness is irrelevant.
786 	 *
787 	 * This catches the original missing-espfix-on-64-bit-kernels issue
788 	 * as well as CVE-2014-8134.
789 	 */
790 	total_nerrs += test_valid_sigreturn(64, true, -1);
791 	total_nerrs += test_valid_sigreturn(32, true, -1);
792 	total_nerrs += test_valid_sigreturn(16, true, -1);
793 
794 	if (gdt_data16_idx) {
795 		/*
796 		 * For performance reasons, Linux skips espfix if SS points
797 		 * to the GDT.  If we were able to allocate a 16-bit SS in
798 		 * the GDT, see if it leaks parts of the kernel stack pointer.
799 		 *
800 		 * This tests for CVE-2014-8133.
801 		 */
802 		total_nerrs += test_valid_sigreturn(64, true,
803 						    GDT3(gdt_data16_idx));
804 		total_nerrs += test_valid_sigreturn(32, true,
805 						    GDT3(gdt_data16_idx));
806 		total_nerrs += test_valid_sigreturn(16, true,
807 						    GDT3(gdt_data16_idx));
808 	}
809 
810 #ifdef __x86_64__
811 	/* Nasty ABI case: check SS corruption handling. */
812 	sig_corrupt_final_ss = 1;
813 	total_nerrs += test_valid_sigreturn(32, false, -1);
814 	total_nerrs += test_valid_sigreturn(32, true, -1);
815 	sig_corrupt_final_ss = 0;
816 #endif
817 
818 	/*
819 	 * We're done testing valid sigreturn cases.  Now we test states
820 	 * for which sigreturn itself will succeed but the subsequent
821 	 * entry to user mode will fail.
822 	 *
823 	 * Depending on the failure mode and the kernel bitness, these
824 	 * entry failures can generate SIGSEGV, SIGBUS, or SIGILL.
825 	 */
826 	clearhandler(SIGTRAP);
827 	sethandler(SIGSEGV, sigtrap, SA_ONSTACK);
828 	sethandler(SIGBUS, sigtrap, SA_ONSTACK);
829 	sethandler(SIGILL, sigtrap, SA_ONSTACK);  /* 32-bit kernels do this */
830 
831 	/* Easy failures: invalid SS, resulting in #GP(0) */
832 	test_bad_iret(64, ldt_nonexistent_sel, -1);
833 	test_bad_iret(32, ldt_nonexistent_sel, -1);
834 	test_bad_iret(16, ldt_nonexistent_sel, -1);
835 
836 	/* These fail because SS isn't a data segment, resulting in #GP(SS) */
837 	test_bad_iret(64, my_cs, -1);
838 	test_bad_iret(32, my_cs, -1);
839 	test_bad_iret(16, my_cs, -1);
840 
841 	/* Try to return to a not-present code segment, triggering #NP(SS). */
842 	test_bad_iret(32, my_ss, npcode32_sel);
843 
844 	/*
845 	 * Try to return to a not-present but otherwise valid data segment.
846 	 * This will cause IRET to fail with #SS on the espfix stack.  This
847 	 * exercises CVE-2014-9322.
848 	 *
849 	 * Note that, if espfix is enabled, 64-bit Linux will lose track
850 	 * of the actual cause of failure and report #GP(0) instead.
851 	 * This would be very difficult for Linux to avoid, because
852 	 * espfix64 causes IRET failures to be promoted to #DF, so the
853 	 * original exception frame is never pushed onto the stack.
854 	 */
855 	test_bad_iret(32, npdata32_sel, -1);
856 
857 	/*
858 	 * Try to return to a not-present but otherwise valid data
859 	 * segment without invoking espfix.  Newer kernels don't allow
860 	 * this to happen in the first place.  On older kernels, though,
861 	 * this can trigger CVE-2014-9322.
862 	 */
863 	if (gdt_npdata32_idx)
864 		test_bad_iret(32, GDT3(gdt_npdata32_idx), -1);
865 
866 #ifdef __x86_64__
867 	total_nerrs += test_nonstrict_ss();
868 #endif
869 
870 	return total_nerrs ? 1 : 0;
871 }
872