• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36 
37 #include <linux/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
49 
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension	virt");
52 #endif
53 
54 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
56 
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65 
66 static bool vgic_present;
67 
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 	BUG_ON(preemptible());
73 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75 
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
kvm_arm_get_running_vcpu(void)80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 	BUG_ON(preemptible());
83 	return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85 
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
kvm_get_running_vcpus(void)89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 	return &kvm_arm_running_vcpu;
92 }
93 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98 
kvm_arch_hardware_setup(void)99 int kvm_arch_hardware_setup(void)
100 {
101 	return 0;
102 }
103 
kvm_arch_check_processor_compat(void * rtn)104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 	*(int *)rtn = 0;
107 }
108 
109 
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:	pointer to the KVM struct
113  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 	int ret, cpu;
117 
118 	if (type)
119 		return -EINVAL;
120 
121 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 	if (!kvm->arch.last_vcpu_ran)
123 		return -ENOMEM;
124 
125 	for_each_possible_cpu(cpu)
126 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127 
128 	ret = kvm_alloc_stage2_pgd(kvm);
129 	if (ret)
130 		goto out_fail_alloc;
131 
132 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 	if (ret)
134 		goto out_free_stage2_pgd;
135 
136 	kvm_vgic_early_init(kvm);
137 
138 	/* Mark the initial VMID generation invalid */
139 	kvm->arch.vmid_gen = 0;
140 
141 	/* The maximum number of VCPUs is limited by the host's GIC model */
142 	kvm->arch.max_vcpus = vgic_present ?
143 				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144 
145 	return ret;
146 out_free_stage2_pgd:
147 	kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 	free_percpu(kvm->arch.last_vcpu_ran);
150 	kvm->arch.last_vcpu_ran = NULL;
151 	return ret;
152 }
153 
kvm_arch_has_vcpu_debugfs(void)154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156 	return false;
157 }
158 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161 	return 0;
162 }
163 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166 	return VM_FAULT_SIGBUS;
167 }
168 
169 
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:	pointer to the KVM struct
173  */
kvm_arch_destroy_vm(struct kvm * kvm)174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176 	int i;
177 
178 	free_percpu(kvm->arch.last_vcpu_ran);
179 	kvm->arch.last_vcpu_ran = NULL;
180 
181 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 		if (kvm->vcpus[i]) {
183 			kvm_arch_vcpu_free(kvm->vcpus[i]);
184 			kvm->vcpus[i] = NULL;
185 		}
186 	}
187 
188 	kvm_vgic_destroy(kvm);
189 }
190 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193 	int r;
194 	switch (ext) {
195 	case KVM_CAP_IRQCHIP:
196 		r = vgic_present;
197 		break;
198 	case KVM_CAP_IOEVENTFD:
199 	case KVM_CAP_DEVICE_CTRL:
200 	case KVM_CAP_USER_MEMORY:
201 	case KVM_CAP_SYNC_MMU:
202 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 	case KVM_CAP_ONE_REG:
204 	case KVM_CAP_ARM_PSCI:
205 	case KVM_CAP_ARM_PSCI_0_2:
206 	case KVM_CAP_READONLY_MEM:
207 	case KVM_CAP_MP_STATE:
208 	case KVM_CAP_IMMEDIATE_EXIT:
209 		r = 1;
210 		break;
211 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 		r = 1;
213 		break;
214 	case KVM_CAP_NR_VCPUS:
215 		r = num_online_cpus();
216 		break;
217 	case KVM_CAP_MAX_VCPUS:
218 		r = KVM_MAX_VCPUS;
219 		break;
220 	case KVM_CAP_MAX_VCPU_ID:
221 		r = KVM_MAX_VCPU_ID;
222 		break;
223 	case KVM_CAP_NR_MEMSLOTS:
224 		r = KVM_USER_MEM_SLOTS;
225 		break;
226 	case KVM_CAP_MSI_DEVID:
227 		if (!kvm)
228 			r = -EINVAL;
229 		else
230 			r = kvm->arch.vgic.msis_require_devid;
231 		break;
232 	case KVM_CAP_ARM_USER_IRQ:
233 		/*
234 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235 		 * (bump this number if adding more devices)
236 		 */
237 		r = 1;
238 		break;
239 	default:
240 		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 		break;
242 	}
243 	return r;
244 }
245 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)246 long kvm_arch_dev_ioctl(struct file *filp,
247 			unsigned int ioctl, unsigned long arg)
248 {
249 	return -EINVAL;
250 }
251 
252 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255 	int err;
256 	struct kvm_vcpu *vcpu;
257 
258 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259 		err = -EBUSY;
260 		goto out;
261 	}
262 
263 	if (id >= kvm->arch.max_vcpus) {
264 		err = -EINVAL;
265 		goto out;
266 	}
267 
268 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269 	if (!vcpu) {
270 		err = -ENOMEM;
271 		goto out;
272 	}
273 
274 	err = kvm_vcpu_init(vcpu, kvm, id);
275 	if (err)
276 		goto free_vcpu;
277 
278 	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 	if (err)
280 		goto vcpu_uninit;
281 
282 	return vcpu;
283 vcpu_uninit:
284 	kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286 	kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288 	return ERR_PTR(err);
289 }
290 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293 	kvm_vgic_vcpu_early_init(vcpu);
294 }
295 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298 	kvm_mmu_free_memory_caches(vcpu);
299 	kvm_timer_vcpu_terminate(vcpu);
300 	kvm_vgic_vcpu_destroy(vcpu);
301 	kvm_pmu_vcpu_destroy(vcpu);
302 	kvm_vcpu_uninit(vcpu);
303 	kmem_cache_free(kvm_vcpu_cache, vcpu);
304 }
305 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)306 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
307 {
308 	kvm_arch_vcpu_free(vcpu);
309 }
310 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)311 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
312 {
313 	return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
314 	       kvm_timer_should_fire(vcpu_ptimer(vcpu));
315 }
316 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)317 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
318 {
319 	kvm_timer_schedule(vcpu);
320 	/*
321 	 * If we're about to block (most likely because we've just hit a
322 	 * WFI), we need to sync back the state of the GIC CPU interface
323 	 * so that we have the lastest PMR and group enables. This ensures
324 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
325 	 * whether we have pending interrupts.
326 	 */
327 	preempt_disable();
328 	kvm_vgic_vmcr_sync(vcpu);
329 	preempt_enable();
330 }
331 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)332 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
333 {
334 	kvm_timer_unschedule(vcpu);
335 }
336 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)337 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
338 {
339 	/* Force users to call KVM_ARM_VCPU_INIT */
340 	vcpu->arch.target = -1;
341 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
342 
343 	/* Set up the timer */
344 	kvm_timer_vcpu_init(vcpu);
345 
346 	kvm_arm_reset_debug_ptr(vcpu);
347 
348 	return kvm_vgic_vcpu_init(vcpu);
349 }
350 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)351 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
352 {
353 	int *last_ran;
354 
355 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
356 
357 	/*
358 	 * We might get preempted before the vCPU actually runs, but
359 	 * over-invalidation doesn't affect correctness.
360 	 */
361 	if (*last_ran != vcpu->vcpu_id) {
362 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
363 		*last_ran = vcpu->vcpu_id;
364 	}
365 
366 	vcpu->cpu = cpu;
367 	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
368 
369 	kvm_arm_set_running_vcpu(vcpu);
370 
371 	kvm_vgic_load(vcpu);
372 }
373 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)374 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
375 {
376 	kvm_vgic_put(vcpu);
377 
378 	vcpu->cpu = -1;
379 
380 	kvm_arm_set_running_vcpu(NULL);
381 	kvm_timer_vcpu_put(vcpu);
382 }
383 
vcpu_power_off(struct kvm_vcpu * vcpu)384 static void vcpu_power_off(struct kvm_vcpu *vcpu)
385 {
386 	vcpu->arch.power_off = true;
387 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
388 	kvm_vcpu_kick(vcpu);
389 }
390 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)391 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
392 				    struct kvm_mp_state *mp_state)
393 {
394 	if (vcpu->arch.power_off)
395 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
396 	else
397 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
398 
399 	return 0;
400 }
401 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)402 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
403 				    struct kvm_mp_state *mp_state)
404 {
405 	switch (mp_state->mp_state) {
406 	case KVM_MP_STATE_RUNNABLE:
407 		vcpu->arch.power_off = false;
408 		break;
409 	case KVM_MP_STATE_STOPPED:
410 		vcpu_power_off(vcpu);
411 		break;
412 	default:
413 		return -EINVAL;
414 	}
415 
416 	return 0;
417 }
418 
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:		The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428 	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
429 		&& !v->arch.power_off && !v->arch.pause);
430 }
431 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)432 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
433 {
434 	return vcpu_mode_priv(vcpu);
435 }
436 
437 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)438 static void exit_vm_noop(void *info)
439 {
440 }
441 
force_vm_exit(const cpumask_t * mask)442 void force_vm_exit(const cpumask_t *mask)
443 {
444 	preempt_disable();
445 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
446 	preempt_enable();
447 }
448 
449 /**
450  * need_new_vmid_gen - check that the VMID is still valid
451  * @kvm: The VM's VMID to check
452  *
453  * return true if there is a new generation of VMIDs being used
454  *
455  * The hardware supports only 256 values with the value zero reserved for the
456  * host, so we check if an assigned value belongs to a previous generation,
457  * which which requires us to assign a new value. If we're the first to use a
458  * VMID for the new generation, we must flush necessary caches and TLBs on all
459  * CPUs.
460  */
need_new_vmid_gen(struct kvm * kvm)461 static bool need_new_vmid_gen(struct kvm *kvm)
462 {
463 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
464 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
465 	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
466 }
467 
468 /**
469  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
470  * @kvm	The guest that we are about to run
471  *
472  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
473  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
474  * caches and TLBs.
475  */
update_vttbr(struct kvm * kvm)476 static void update_vttbr(struct kvm *kvm)
477 {
478 	phys_addr_t pgd_phys;
479 	u64 vmid;
480 
481 	if (!need_new_vmid_gen(kvm))
482 		return;
483 
484 	spin_lock(&kvm_vmid_lock);
485 
486 	/*
487 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
488 	 * already allocated a valid vmid for this vm, then this vcpu should
489 	 * use the same vmid.
490 	 */
491 	if (!need_new_vmid_gen(kvm)) {
492 		spin_unlock(&kvm_vmid_lock);
493 		return;
494 	}
495 
496 	/* First user of a new VMID generation? */
497 	if (unlikely(kvm_next_vmid == 0)) {
498 		atomic64_inc(&kvm_vmid_gen);
499 		kvm_next_vmid = 1;
500 
501 		/*
502 		 * On SMP we know no other CPUs can use this CPU's or each
503 		 * other's VMID after force_vm_exit returns since the
504 		 * kvm_vmid_lock blocks them from reentry to the guest.
505 		 */
506 		force_vm_exit(cpu_all_mask);
507 		/*
508 		 * Now broadcast TLB + ICACHE invalidation over the inner
509 		 * shareable domain to make sure all data structures are
510 		 * clean.
511 		 */
512 		kvm_call_hyp(__kvm_flush_vm_context);
513 	}
514 
515 	kvm->arch.vmid = kvm_next_vmid;
516 	kvm_next_vmid++;
517 	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518 
519 	/* update vttbr to be used with the new vmid */
520 	pgd_phys = virt_to_phys(kvm->arch.pgd);
521 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523 	kvm->arch.vttbr = pgd_phys | vmid;
524 
525 	smp_wmb();
526 	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
527 
528 	spin_unlock(&kvm_vmid_lock);
529 }
530 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)531 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
532 {
533 	struct kvm *kvm = vcpu->kvm;
534 	int ret = 0;
535 
536 	if (likely(vcpu->arch.has_run_once))
537 		return 0;
538 
539 	vcpu->arch.has_run_once = true;
540 
541 	/*
542 	 * Map the VGIC hardware resources before running a vcpu the first
543 	 * time on this VM.
544 	 */
545 	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
546 		ret = kvm_vgic_map_resources(kvm);
547 		if (ret)
548 			return ret;
549 	}
550 
551 	ret = kvm_timer_enable(vcpu);
552 	if (ret)
553 		return ret;
554 
555 	ret = kvm_arm_pmu_v3_enable(vcpu);
556 
557 	return ret;
558 }
559 
kvm_arch_intc_initialized(struct kvm * kvm)560 bool kvm_arch_intc_initialized(struct kvm *kvm)
561 {
562 	return vgic_initialized(kvm);
563 }
564 
kvm_arm_halt_guest(struct kvm * kvm)565 void kvm_arm_halt_guest(struct kvm *kvm)
566 {
567 	int i;
568 	struct kvm_vcpu *vcpu;
569 
570 	kvm_for_each_vcpu(i, vcpu, kvm)
571 		vcpu->arch.pause = true;
572 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 }
574 
kvm_arm_resume_guest(struct kvm * kvm)575 void kvm_arm_resume_guest(struct kvm *kvm)
576 {
577 	int i;
578 	struct kvm_vcpu *vcpu;
579 
580 	kvm_for_each_vcpu(i, vcpu, kvm) {
581 		vcpu->arch.pause = false;
582 		swake_up(kvm_arch_vcpu_wq(vcpu));
583 	}
584 }
585 
vcpu_req_sleep(struct kvm_vcpu * vcpu)586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587 {
588 	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
589 
590 	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
591 				       (!vcpu->arch.pause)));
592 
593 	if (vcpu->arch.power_off || vcpu->arch.pause) {
594 		/* Awaken to handle a signal, request we sleep again later. */
595 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
596 	}
597 }
598 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)599 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
600 {
601 	return vcpu->arch.target >= 0;
602 }
603 
check_vcpu_requests(struct kvm_vcpu * vcpu)604 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
605 {
606 	if (kvm_request_pending(vcpu)) {
607 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
608 			vcpu_req_sleep(vcpu);
609 
610 		/*
611 		 * Clear IRQ_PENDING requests that were made to guarantee
612 		 * that a VCPU sees new virtual interrupts.
613 		 */
614 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615 	}
616 }
617 
618 /**
619  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
620  * @vcpu:	The VCPU pointer
621  * @run:	The kvm_run structure pointer used for userspace state exchange
622  *
623  * This function is called through the VCPU_RUN ioctl called from user space. It
624  * will execute VM code in a loop until the time slice for the process is used
625  * or some emulation is needed from user space in which case the function will
626  * return with return value 0 and with the kvm_run structure filled in with the
627  * required data for the requested emulation.
628  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)629 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631 	int ret;
632 
633 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
634 		return -ENOEXEC;
635 
636 	ret = kvm_vcpu_first_run_init(vcpu);
637 	if (ret)
638 		return ret;
639 
640 	if (run->exit_reason == KVM_EXIT_MMIO) {
641 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
642 		if (ret)
643 			return ret;
644 	}
645 
646 	if (run->immediate_exit)
647 		return -EINTR;
648 
649 	kvm_sigset_activate(vcpu);
650 
651 	ret = 1;
652 	run->exit_reason = KVM_EXIT_UNKNOWN;
653 	while (ret > 0) {
654 		/*
655 		 * Check conditions before entering the guest
656 		 */
657 		cond_resched();
658 
659 		update_vttbr(vcpu->kvm);
660 
661 		check_vcpu_requests(vcpu);
662 
663 		/*
664 		 * Preparing the interrupts to be injected also
665 		 * involves poking the GIC, which must be done in a
666 		 * non-preemptible context.
667 		 */
668 		preempt_disable();
669 
670 		kvm_pmu_flush_hwstate(vcpu);
671 
672 		kvm_timer_flush_hwstate(vcpu);
673 		kvm_vgic_flush_hwstate(vcpu);
674 
675 		local_irq_disable();
676 
677 		/*
678 		 * If we have a singal pending, or need to notify a userspace
679 		 * irqchip about timer or PMU level changes, then we exit (and
680 		 * update the timer level state in kvm_timer_update_run
681 		 * below).
682 		 */
683 		if (signal_pending(current) ||
684 		    kvm_timer_should_notify_user(vcpu) ||
685 		    kvm_pmu_should_notify_user(vcpu)) {
686 			ret = -EINTR;
687 			run->exit_reason = KVM_EXIT_INTR;
688 		}
689 
690 		/*
691 		 * Ensure we set mode to IN_GUEST_MODE after we disable
692 		 * interrupts and before the final VCPU requests check.
693 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
694 		 * Documentation/virtual/kvm/vcpu-requests.rst
695 		 */
696 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
697 
698 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
699 		    kvm_request_pending(vcpu)) {
700 			vcpu->mode = OUTSIDE_GUEST_MODE;
701 			local_irq_enable();
702 			kvm_pmu_sync_hwstate(vcpu);
703 			kvm_timer_sync_hwstate(vcpu);
704 			kvm_vgic_sync_hwstate(vcpu);
705 			preempt_enable();
706 			continue;
707 		}
708 
709 		kvm_arm_setup_debug(vcpu);
710 
711 		/**************************************************************
712 		 * Enter the guest
713 		 */
714 		trace_kvm_entry(*vcpu_pc(vcpu));
715 		guest_enter_irqoff();
716 
717 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
718 
719 		vcpu->mode = OUTSIDE_GUEST_MODE;
720 		vcpu->stat.exits++;
721 		/*
722 		 * Back from guest
723 		 *************************************************************/
724 
725 		kvm_arm_clear_debug(vcpu);
726 
727 		/*
728 		 * We may have taken a host interrupt in HYP mode (ie
729 		 * while executing the guest). This interrupt is still
730 		 * pending, as we haven't serviced it yet!
731 		 *
732 		 * We're now back in SVC mode, with interrupts
733 		 * disabled.  Enabling the interrupts now will have
734 		 * the effect of taking the interrupt again, in SVC
735 		 * mode this time.
736 		 */
737 		local_irq_enable();
738 
739 		/*
740 		 * We do local_irq_enable() before calling guest_exit() so
741 		 * that if a timer interrupt hits while running the guest we
742 		 * account that tick as being spent in the guest.  We enable
743 		 * preemption after calling guest_exit() so that if we get
744 		 * preempted we make sure ticks after that is not counted as
745 		 * guest time.
746 		 */
747 		guest_exit();
748 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
749 
750 		/*
751 		 * We must sync the PMU and timer state before the vgic state so
752 		 * that the vgic can properly sample the updated state of the
753 		 * interrupt line.
754 		 */
755 		kvm_pmu_sync_hwstate(vcpu);
756 		kvm_timer_sync_hwstate(vcpu);
757 
758 		kvm_vgic_sync_hwstate(vcpu);
759 
760 		preempt_enable();
761 
762 		ret = handle_exit(vcpu, run, ret);
763 	}
764 
765 	/* Tell userspace about in-kernel device output levels */
766 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
767 		kvm_timer_update_run(vcpu);
768 		kvm_pmu_update_run(vcpu);
769 	}
770 
771 	kvm_sigset_deactivate(vcpu);
772 
773 	return ret;
774 }
775 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)776 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
777 {
778 	int bit_index;
779 	bool set;
780 	unsigned long *ptr;
781 
782 	if (number == KVM_ARM_IRQ_CPU_IRQ)
783 		bit_index = __ffs(HCR_VI);
784 	else /* KVM_ARM_IRQ_CPU_FIQ */
785 		bit_index = __ffs(HCR_VF);
786 
787 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
788 	if (level)
789 		set = test_and_set_bit(bit_index, ptr);
790 	else
791 		set = test_and_clear_bit(bit_index, ptr);
792 
793 	/*
794 	 * If we didn't change anything, no need to wake up or kick other CPUs
795 	 */
796 	if (set == level)
797 		return 0;
798 
799 	/*
800 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
801 	 * trigger a world-switch round on the running physical CPU to set the
802 	 * virtual IRQ/FIQ fields in the HCR appropriately.
803 	 */
804 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
805 	kvm_vcpu_kick(vcpu);
806 
807 	return 0;
808 }
809 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)810 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
811 			  bool line_status)
812 {
813 	u32 irq = irq_level->irq;
814 	unsigned int irq_type, vcpu_idx, irq_num;
815 	int nrcpus = atomic_read(&kvm->online_vcpus);
816 	struct kvm_vcpu *vcpu = NULL;
817 	bool level = irq_level->level;
818 
819 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
820 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
821 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
822 
823 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
824 
825 	switch (irq_type) {
826 	case KVM_ARM_IRQ_TYPE_CPU:
827 		if (irqchip_in_kernel(kvm))
828 			return -ENXIO;
829 
830 		if (vcpu_idx >= nrcpus)
831 			return -EINVAL;
832 
833 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
834 		if (!vcpu)
835 			return -EINVAL;
836 
837 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
838 			return -EINVAL;
839 
840 		return vcpu_interrupt_line(vcpu, irq_num, level);
841 	case KVM_ARM_IRQ_TYPE_PPI:
842 		if (!irqchip_in_kernel(kvm))
843 			return -ENXIO;
844 
845 		if (vcpu_idx >= nrcpus)
846 			return -EINVAL;
847 
848 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
849 		if (!vcpu)
850 			return -EINVAL;
851 
852 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
853 			return -EINVAL;
854 
855 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
856 	case KVM_ARM_IRQ_TYPE_SPI:
857 		if (!irqchip_in_kernel(kvm))
858 			return -ENXIO;
859 
860 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
861 			return -EINVAL;
862 
863 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
864 	}
865 
866 	return -EINVAL;
867 }
868 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)869 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
870 			       const struct kvm_vcpu_init *init)
871 {
872 	unsigned int i, ret;
873 	int phys_target = kvm_target_cpu();
874 
875 	if (init->target != phys_target)
876 		return -EINVAL;
877 
878 	/*
879 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
880 	 * use the same target.
881 	 */
882 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
883 		return -EINVAL;
884 
885 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
886 	for (i = 0; i < sizeof(init->features) * 8; i++) {
887 		bool set = (init->features[i / 32] & (1 << (i % 32)));
888 
889 		if (set && i >= KVM_VCPU_MAX_FEATURES)
890 			return -ENOENT;
891 
892 		/*
893 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
894 		 * use the same feature set.
895 		 */
896 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
897 		    test_bit(i, vcpu->arch.features) != set)
898 			return -EINVAL;
899 
900 		if (set)
901 			set_bit(i, vcpu->arch.features);
902 	}
903 
904 	vcpu->arch.target = phys_target;
905 
906 	/* Now we know what it is, we can reset it. */
907 	ret = kvm_reset_vcpu(vcpu);
908 	if (ret) {
909 		vcpu->arch.target = -1;
910 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
911 	}
912 
913 	return ret;
914 }
915 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)916 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
917 					 struct kvm_vcpu_init *init)
918 {
919 	int ret;
920 
921 	ret = kvm_vcpu_set_target(vcpu, init);
922 	if (ret)
923 		return ret;
924 
925 	/*
926 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
927 	 * guest MMU is turned off and flush the caches as needed.
928 	 */
929 	if (vcpu->arch.has_run_once)
930 		stage2_unmap_vm(vcpu->kvm);
931 
932 	vcpu_reset_hcr(vcpu);
933 
934 	/*
935 	 * Handle the "start in power-off" case.
936 	 */
937 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
938 		vcpu_power_off(vcpu);
939 	else
940 		vcpu->arch.power_off = false;
941 
942 	return 0;
943 }
944 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)945 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
946 				 struct kvm_device_attr *attr)
947 {
948 	int ret = -ENXIO;
949 
950 	switch (attr->group) {
951 	default:
952 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
953 		break;
954 	}
955 
956 	return ret;
957 }
958 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)959 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
960 				 struct kvm_device_attr *attr)
961 {
962 	int ret = -ENXIO;
963 
964 	switch (attr->group) {
965 	default:
966 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
967 		break;
968 	}
969 
970 	return ret;
971 }
972 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)973 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
974 				 struct kvm_device_attr *attr)
975 {
976 	int ret = -ENXIO;
977 
978 	switch (attr->group) {
979 	default:
980 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
981 		break;
982 	}
983 
984 	return ret;
985 }
986 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)987 long kvm_arch_vcpu_ioctl(struct file *filp,
988 			 unsigned int ioctl, unsigned long arg)
989 {
990 	struct kvm_vcpu *vcpu = filp->private_data;
991 	void __user *argp = (void __user *)arg;
992 	struct kvm_device_attr attr;
993 
994 	switch (ioctl) {
995 	case KVM_ARM_VCPU_INIT: {
996 		struct kvm_vcpu_init init;
997 
998 		if (copy_from_user(&init, argp, sizeof(init)))
999 			return -EFAULT;
1000 
1001 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1002 	}
1003 	case KVM_SET_ONE_REG:
1004 	case KVM_GET_ONE_REG: {
1005 		struct kvm_one_reg reg;
1006 
1007 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1008 			return -ENOEXEC;
1009 
1010 		if (copy_from_user(&reg, argp, sizeof(reg)))
1011 			return -EFAULT;
1012 		if (ioctl == KVM_SET_ONE_REG)
1013 			return kvm_arm_set_reg(vcpu, &reg);
1014 		else
1015 			return kvm_arm_get_reg(vcpu, &reg);
1016 	}
1017 	case KVM_GET_REG_LIST: {
1018 		struct kvm_reg_list __user *user_list = argp;
1019 		struct kvm_reg_list reg_list;
1020 		unsigned n;
1021 
1022 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1023 			return -ENOEXEC;
1024 
1025 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1026 			return -EFAULT;
1027 		n = reg_list.n;
1028 		reg_list.n = kvm_arm_num_regs(vcpu);
1029 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1030 			return -EFAULT;
1031 		if (n < reg_list.n)
1032 			return -E2BIG;
1033 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1034 	}
1035 	case KVM_SET_DEVICE_ATTR: {
1036 		if (copy_from_user(&attr, argp, sizeof(attr)))
1037 			return -EFAULT;
1038 		return kvm_arm_vcpu_set_attr(vcpu, &attr);
1039 	}
1040 	case KVM_GET_DEVICE_ATTR: {
1041 		if (copy_from_user(&attr, argp, sizeof(attr)))
1042 			return -EFAULT;
1043 		return kvm_arm_vcpu_get_attr(vcpu, &attr);
1044 	}
1045 	case KVM_HAS_DEVICE_ATTR: {
1046 		if (copy_from_user(&attr, argp, sizeof(attr)))
1047 			return -EFAULT;
1048 		return kvm_arm_vcpu_has_attr(vcpu, &attr);
1049 	}
1050 	default:
1051 		return -EINVAL;
1052 	}
1053 }
1054 
1055 /**
1056  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1057  * @kvm: kvm instance
1058  * @log: slot id and address to which we copy the log
1059  *
1060  * Steps 1-4 below provide general overview of dirty page logging. See
1061  * kvm_get_dirty_log_protect() function description for additional details.
1062  *
1063  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1064  * always flush the TLB (step 4) even if previous step failed  and the dirty
1065  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1066  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1067  * writes will be marked dirty for next log read.
1068  *
1069  *   1. Take a snapshot of the bit and clear it if needed.
1070  *   2. Write protect the corresponding page.
1071  *   3. Copy the snapshot to the userspace.
1072  *   4. Flush TLB's if needed.
1073  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1074 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1075 {
1076 	bool is_dirty = false;
1077 	int r;
1078 
1079 	mutex_lock(&kvm->slots_lock);
1080 
1081 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1082 
1083 	if (is_dirty)
1084 		kvm_flush_remote_tlbs(kvm);
1085 
1086 	mutex_unlock(&kvm->slots_lock);
1087 	return r;
1088 }
1089 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1090 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1091 					struct kvm_arm_device_addr *dev_addr)
1092 {
1093 	unsigned long dev_id, type;
1094 
1095 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1096 		KVM_ARM_DEVICE_ID_SHIFT;
1097 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1098 		KVM_ARM_DEVICE_TYPE_SHIFT;
1099 
1100 	switch (dev_id) {
1101 	case KVM_ARM_DEVICE_VGIC_V2:
1102 		if (!vgic_present)
1103 			return -ENXIO;
1104 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1105 	default:
1106 		return -ENODEV;
1107 	}
1108 }
1109 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1110 long kvm_arch_vm_ioctl(struct file *filp,
1111 		       unsigned int ioctl, unsigned long arg)
1112 {
1113 	struct kvm *kvm = filp->private_data;
1114 	void __user *argp = (void __user *)arg;
1115 
1116 	switch (ioctl) {
1117 	case KVM_CREATE_IRQCHIP: {
1118 		int ret;
1119 		if (!vgic_present)
1120 			return -ENXIO;
1121 		mutex_lock(&kvm->lock);
1122 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1123 		mutex_unlock(&kvm->lock);
1124 		return ret;
1125 	}
1126 	case KVM_ARM_SET_DEVICE_ADDR: {
1127 		struct kvm_arm_device_addr dev_addr;
1128 
1129 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1130 			return -EFAULT;
1131 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1132 	}
1133 	case KVM_ARM_PREFERRED_TARGET: {
1134 		int err;
1135 		struct kvm_vcpu_init init;
1136 
1137 		err = kvm_vcpu_preferred_target(&init);
1138 		if (err)
1139 			return err;
1140 
1141 		if (copy_to_user(argp, &init, sizeof(init)))
1142 			return -EFAULT;
1143 
1144 		return 0;
1145 	}
1146 	default:
1147 		return -EINVAL;
1148 	}
1149 }
1150 
cpu_init_hyp_mode(void * dummy)1151 static void cpu_init_hyp_mode(void *dummy)
1152 {
1153 	phys_addr_t pgd_ptr;
1154 	unsigned long hyp_stack_ptr;
1155 	unsigned long stack_page;
1156 	unsigned long vector_ptr;
1157 
1158 	/* Switch from the HYP stub to our own HYP init vector */
1159 	__hyp_set_vectors(kvm_get_idmap_vector());
1160 
1161 	pgd_ptr = kvm_mmu_get_httbr();
1162 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1163 	hyp_stack_ptr = stack_page + PAGE_SIZE;
1164 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1165 
1166 	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1167 	__cpu_init_stage2();
1168 }
1169 
cpu_hyp_reset(void)1170 static void cpu_hyp_reset(void)
1171 {
1172 	if (!is_kernel_in_hyp_mode())
1173 		__hyp_reset_vectors();
1174 }
1175 
cpu_hyp_reinit(void)1176 static void cpu_hyp_reinit(void)
1177 {
1178 	cpu_hyp_reset();
1179 
1180 	if (is_kernel_in_hyp_mode()) {
1181 		/*
1182 		 * __cpu_init_stage2() is safe to call even if the PM
1183 		 * event was cancelled before the CPU was reset.
1184 		 */
1185 		__cpu_init_stage2();
1186 		kvm_timer_init_vhe();
1187 	} else {
1188 		cpu_init_hyp_mode(NULL);
1189 	}
1190 
1191 	kvm_arm_init_debug();
1192 
1193 	if (vgic_present)
1194 		kvm_vgic_init_cpu_hardware();
1195 }
1196 
_kvm_arch_hardware_enable(void * discard)1197 static void _kvm_arch_hardware_enable(void *discard)
1198 {
1199 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1200 		cpu_hyp_reinit();
1201 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1202 	}
1203 }
1204 
kvm_arch_hardware_enable(void)1205 int kvm_arch_hardware_enable(void)
1206 {
1207 	_kvm_arch_hardware_enable(NULL);
1208 	return 0;
1209 }
1210 
_kvm_arch_hardware_disable(void * discard)1211 static void _kvm_arch_hardware_disable(void *discard)
1212 {
1213 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1214 		cpu_hyp_reset();
1215 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1216 	}
1217 }
1218 
kvm_arch_hardware_disable(void)1219 void kvm_arch_hardware_disable(void)
1220 {
1221 	_kvm_arch_hardware_disable(NULL);
1222 }
1223 
1224 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1225 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1226 				    unsigned long cmd,
1227 				    void *v)
1228 {
1229 	/*
1230 	 * kvm_arm_hardware_enabled is left with its old value over
1231 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1232 	 * re-enable hyp.
1233 	 */
1234 	switch (cmd) {
1235 	case CPU_PM_ENTER:
1236 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1237 			/*
1238 			 * don't update kvm_arm_hardware_enabled here
1239 			 * so that the hardware will be re-enabled
1240 			 * when we resume. See below.
1241 			 */
1242 			cpu_hyp_reset();
1243 
1244 		return NOTIFY_OK;
1245 	case CPU_PM_ENTER_FAILED:
1246 	case CPU_PM_EXIT:
1247 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1248 			/* The hardware was enabled before suspend. */
1249 			cpu_hyp_reinit();
1250 
1251 		return NOTIFY_OK;
1252 
1253 	default:
1254 		return NOTIFY_DONE;
1255 	}
1256 }
1257 
1258 static struct notifier_block hyp_init_cpu_pm_nb = {
1259 	.notifier_call = hyp_init_cpu_pm_notifier,
1260 };
1261 
hyp_cpu_pm_init(void)1262 static void __init hyp_cpu_pm_init(void)
1263 {
1264 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1265 }
hyp_cpu_pm_exit(void)1266 static void __init hyp_cpu_pm_exit(void)
1267 {
1268 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1269 }
1270 #else
hyp_cpu_pm_init(void)1271 static inline void hyp_cpu_pm_init(void)
1272 {
1273 }
hyp_cpu_pm_exit(void)1274 static inline void hyp_cpu_pm_exit(void)
1275 {
1276 }
1277 #endif
1278 
init_common_resources(void)1279 static int init_common_resources(void)
1280 {
1281 	/* set size of VMID supported by CPU */
1282 	kvm_vmid_bits = kvm_get_vmid_bits();
1283 	kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1284 
1285 	return 0;
1286 }
1287 
init_subsystems(void)1288 static int init_subsystems(void)
1289 {
1290 	int err = 0;
1291 
1292 	/*
1293 	 * Enable hardware so that subsystem initialisation can access EL2.
1294 	 */
1295 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1296 
1297 	/*
1298 	 * Register CPU lower-power notifier
1299 	 */
1300 	hyp_cpu_pm_init();
1301 
1302 	/*
1303 	 * Init HYP view of VGIC
1304 	 */
1305 	err = kvm_vgic_hyp_init();
1306 	switch (err) {
1307 	case 0:
1308 		vgic_present = true;
1309 		break;
1310 	case -ENODEV:
1311 	case -ENXIO:
1312 		vgic_present = false;
1313 		err = 0;
1314 		break;
1315 	default:
1316 		goto out;
1317 	}
1318 
1319 	/*
1320 	 * Init HYP architected timer support
1321 	 */
1322 	err = kvm_timer_hyp_init();
1323 	if (err)
1324 		goto out;
1325 
1326 	kvm_perf_init();
1327 	kvm_coproc_table_init();
1328 
1329 out:
1330 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1331 
1332 	return err;
1333 }
1334 
teardown_hyp_mode(void)1335 static void teardown_hyp_mode(void)
1336 {
1337 	int cpu;
1338 
1339 	free_hyp_pgds();
1340 	for_each_possible_cpu(cpu)
1341 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1342 	hyp_cpu_pm_exit();
1343 }
1344 
1345 /**
1346  * Inits Hyp-mode on all online CPUs
1347  */
init_hyp_mode(void)1348 static int init_hyp_mode(void)
1349 {
1350 	int cpu;
1351 	int err = 0;
1352 
1353 	/*
1354 	 * Allocate Hyp PGD and setup Hyp identity mapping
1355 	 */
1356 	err = kvm_mmu_init();
1357 	if (err)
1358 		goto out_err;
1359 
1360 	/*
1361 	 * Allocate stack pages for Hypervisor-mode
1362 	 */
1363 	for_each_possible_cpu(cpu) {
1364 		unsigned long stack_page;
1365 
1366 		stack_page = __get_free_page(GFP_KERNEL);
1367 		if (!stack_page) {
1368 			err = -ENOMEM;
1369 			goto out_err;
1370 		}
1371 
1372 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1373 	}
1374 
1375 	/*
1376 	 * Map the Hyp-code called directly from the host
1377 	 */
1378 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1379 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1380 	if (err) {
1381 		kvm_err("Cannot map world-switch code\n");
1382 		goto out_err;
1383 	}
1384 
1385 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1386 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1387 	if (err) {
1388 		kvm_err("Cannot map rodata section\n");
1389 		goto out_err;
1390 	}
1391 
1392 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1393 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1394 	if (err) {
1395 		kvm_err("Cannot map bss section\n");
1396 		goto out_err;
1397 	}
1398 
1399 	err = kvm_map_vectors();
1400 	if (err) {
1401 		kvm_err("Cannot map vectors\n");
1402 		goto out_err;
1403 	}
1404 
1405 	/*
1406 	 * Map the Hyp stack pages
1407 	 */
1408 	for_each_possible_cpu(cpu) {
1409 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1410 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1411 					  PAGE_HYP);
1412 
1413 		if (err) {
1414 			kvm_err("Cannot map hyp stack\n");
1415 			goto out_err;
1416 		}
1417 	}
1418 
1419 	for_each_possible_cpu(cpu) {
1420 		kvm_cpu_context_t *cpu_ctxt;
1421 
1422 		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1423 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1424 
1425 		if (err) {
1426 			kvm_err("Cannot map host CPU state: %d\n", err);
1427 			goto out_err;
1428 		}
1429 	}
1430 
1431 	err = hyp_map_aux_data();
1432 	if (err)
1433 		kvm_err("Cannot map host auxilary data: %d\n", err);
1434 
1435 	return 0;
1436 
1437 out_err:
1438 	teardown_hyp_mode();
1439 	kvm_err("error initializing Hyp mode: %d\n", err);
1440 	return err;
1441 }
1442 
check_kvm_target_cpu(void * ret)1443 static void check_kvm_target_cpu(void *ret)
1444 {
1445 	*(int *)ret = kvm_target_cpu();
1446 }
1447 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1448 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1449 {
1450 	struct kvm_vcpu *vcpu;
1451 	int i;
1452 
1453 	mpidr &= MPIDR_HWID_BITMASK;
1454 	kvm_for_each_vcpu(i, vcpu, kvm) {
1455 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1456 			return vcpu;
1457 	}
1458 	return NULL;
1459 }
1460 
1461 /**
1462  * Initialize Hyp-mode and memory mappings on all CPUs.
1463  */
kvm_arch_init(void * opaque)1464 int kvm_arch_init(void *opaque)
1465 {
1466 	int err;
1467 	int ret, cpu;
1468 	bool in_hyp_mode;
1469 
1470 	if (!is_hyp_mode_available()) {
1471 		kvm_info("HYP mode not available\n");
1472 		return -ENODEV;
1473 	}
1474 
1475 	for_each_online_cpu(cpu) {
1476 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1477 		if (ret < 0) {
1478 			kvm_err("Error, CPU %d not supported!\n", cpu);
1479 			return -ENODEV;
1480 		}
1481 	}
1482 
1483 	err = init_common_resources();
1484 	if (err)
1485 		return err;
1486 
1487 	in_hyp_mode = is_kernel_in_hyp_mode();
1488 
1489 	if (!in_hyp_mode) {
1490 		err = init_hyp_mode();
1491 		if (err)
1492 			goto out_err;
1493 	}
1494 
1495 	err = init_subsystems();
1496 	if (err)
1497 		goto out_hyp;
1498 
1499 	if (in_hyp_mode)
1500 		kvm_info("VHE mode initialized successfully\n");
1501 	else
1502 		kvm_info("Hyp mode initialized successfully\n");
1503 
1504 	return 0;
1505 
1506 out_hyp:
1507 	if (!in_hyp_mode)
1508 		teardown_hyp_mode();
1509 out_err:
1510 	return err;
1511 }
1512 
1513 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1514 void kvm_arch_exit(void)
1515 {
1516 	kvm_perf_teardown();
1517 }
1518 
arm_init(void)1519 static int arm_init(void)
1520 {
1521 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1522 	return rc;
1523 }
1524 
1525 module_init(arm_init);
1526