1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
51
memslot_is_logging(struct kvm_memory_slot * memslot)52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
60 *
61 * Interface to HYP function to flush all VM TLB entries
62 */
kvm_flush_remote_tlbs(struct kvm * kvm)63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
76 * kmap on 32bit).
77 */
kvm_flush_dcache_pte(pte_t pte)78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80 __kvm_flush_dcache_pte(pte);
81 }
82
kvm_flush_dcache_pmd(pmd_t pmd)83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85 __kvm_flush_dcache_pmd(pmd);
86 }
87
kvm_flush_dcache_pud(pud_t pud)88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90 __kvm_flush_dcache_pud(pud);
91 }
92
kvm_is_device_pfn(unsigned long pfn)93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95 return !pfn_valid(pfn);
96 }
97
98 /**
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
101 * @addr: IPA
102 * @pmd: pmd pointer for IPA
103 *
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
106 */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109 if (!pmd_thp_or_huge(*pmd))
110 return;
111
112 pmd_clear(pmd);
113 kvm_tlb_flush_vmid_ipa(kvm, addr);
114 put_page(virt_to_page(pmd));
115 }
116
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118 int min, int max)
119 {
120 void *page;
121
122 BUG_ON(max > KVM_NR_MEM_OBJS);
123 if (cache->nobjs >= min)
124 return 0;
125 while (cache->nobjs < max) {
126 page = (void *)__get_free_page(PGALLOC_GFP);
127 if (!page)
128 return -ENOMEM;
129 cache->objects[cache->nobjs++] = page;
130 }
131 return 0;
132 }
133
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136 while (mc->nobjs)
137 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142 void *p;
143
144 BUG_ON(!mc || !mc->nobjs);
145 p = mc->objects[--mc->nobjs];
146 return p;
147 }
148
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 stage2_pgd_clear(pgd);
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 stage2_pud_free(pud_table);
155 put_page(virt_to_page(pgd));
156 }
157
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud));
162 stage2_pud_clear(pud);
163 kvm_tlb_flush_vmid_ipa(kvm, addr);
164 stage2_pmd_free(pmd_table);
165 put_page(virt_to_page(pud));
166 }
167
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170 pte_t *pte_table = pte_offset_kernel(pmd, 0);
171 VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 pmd_clear(pmd);
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 pte_free_kernel(NULL, pte_table);
175 put_page(virt_to_page(pmd));
176 }
177
178 /*
179 * Unmapping vs dcache management:
180 *
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
184 * data.
185 *
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
189 *
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
193 *
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
197 */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199 phys_addr_t addr, phys_addr_t end)
200 {
201 phys_addr_t start_addr = addr;
202 pte_t *pte, *start_pte;
203
204 start_pte = pte = pte_offset_kernel(pmd, addr);
205 do {
206 if (!pte_none(*pte)) {
207 pte_t old_pte = *pte;
208
209 kvm_set_pte(pte, __pte(0));
210 kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212 /* No need to invalidate the cache for device mappings */
213 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 kvm_flush_dcache_pte(old_pte);
215
216 put_page(virt_to_page(pte));
217 }
218 } while (pte++, addr += PAGE_SIZE, addr != end);
219
220 if (stage2_pte_table_empty(start_pte))
221 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225 phys_addr_t addr, phys_addr_t end)
226 {
227 phys_addr_t next, start_addr = addr;
228 pmd_t *pmd, *start_pmd;
229
230 start_pmd = pmd = stage2_pmd_offset(pud, addr);
231 do {
232 next = stage2_pmd_addr_end(addr, end);
233 if (!pmd_none(*pmd)) {
234 if (pmd_thp_or_huge(*pmd)) {
235 pmd_t old_pmd = *pmd;
236
237 pmd_clear(pmd);
238 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240 kvm_flush_dcache_pmd(old_pmd);
241
242 put_page(virt_to_page(pmd));
243 } else {
244 unmap_stage2_ptes(kvm, pmd, addr, next);
245 }
246 }
247 } while (pmd++, addr = next, addr != end);
248
249 if (stage2_pmd_table_empty(start_pmd))
250 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 phys_addr_t addr, phys_addr_t end)
255 {
256 phys_addr_t next, start_addr = addr;
257 pud_t *pud, *start_pud;
258
259 start_pud = pud = stage2_pud_offset(pgd, addr);
260 do {
261 next = stage2_pud_addr_end(addr, end);
262 if (!stage2_pud_none(*pud)) {
263 if (stage2_pud_huge(*pud)) {
264 pud_t old_pud = *pud;
265
266 stage2_pud_clear(pud);
267 kvm_tlb_flush_vmid_ipa(kvm, addr);
268 kvm_flush_dcache_pud(old_pud);
269 put_page(virt_to_page(pud));
270 } else {
271 unmap_stage2_pmds(kvm, pud, addr, next);
272 }
273 }
274 } while (pud++, addr = next, addr != end);
275
276 if (stage2_pud_table_empty(start_pud))
277 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
285 *
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
290 */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293 pgd_t *pgd;
294 phys_addr_t addr = start, end = start + size;
295 phys_addr_t next;
296
297 assert_spin_locked(&kvm->mmu_lock);
298 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299 do {
300 /*
301 * Make sure the page table is still active, as another thread
302 * could have possibly freed the page table, while we released
303 * the lock.
304 */
305 if (!READ_ONCE(kvm->arch.pgd))
306 break;
307 next = stage2_pgd_addr_end(addr, end);
308 if (!stage2_pgd_none(*pgd))
309 unmap_stage2_puds(kvm, pgd, addr, next);
310 /*
311 * If the range is too large, release the kvm->mmu_lock
312 * to prevent starvation and lockup detector warnings.
313 */
314 if (next != end)
315 cond_resched_lock(&kvm->mmu_lock);
316 } while (pgd++, addr = next, addr != end);
317 }
318
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320 phys_addr_t addr, phys_addr_t end)
321 {
322 pte_t *pte;
323
324 pte = pte_offset_kernel(pmd, addr);
325 do {
326 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327 kvm_flush_dcache_pte(*pte);
328 } while (pte++, addr += PAGE_SIZE, addr != end);
329 }
330
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332 phys_addr_t addr, phys_addr_t end)
333 {
334 pmd_t *pmd;
335 phys_addr_t next;
336
337 pmd = stage2_pmd_offset(pud, addr);
338 do {
339 next = stage2_pmd_addr_end(addr, end);
340 if (!pmd_none(*pmd)) {
341 if (pmd_thp_or_huge(*pmd))
342 kvm_flush_dcache_pmd(*pmd);
343 else
344 stage2_flush_ptes(kvm, pmd, addr, next);
345 }
346 } while (pmd++, addr = next, addr != end);
347 }
348
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350 phys_addr_t addr, phys_addr_t end)
351 {
352 pud_t *pud;
353 phys_addr_t next;
354
355 pud = stage2_pud_offset(pgd, addr);
356 do {
357 next = stage2_pud_addr_end(addr, end);
358 if (!stage2_pud_none(*pud)) {
359 if (stage2_pud_huge(*pud))
360 kvm_flush_dcache_pud(*pud);
361 else
362 stage2_flush_pmds(kvm, pud, addr, next);
363 }
364 } while (pud++, addr = next, addr != end);
365 }
366
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)367 static void stage2_flush_memslot(struct kvm *kvm,
368 struct kvm_memory_slot *memslot)
369 {
370 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
372 phys_addr_t next;
373 pgd_t *pgd;
374
375 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376 do {
377 next = stage2_pgd_addr_end(addr, end);
378 if (!stage2_pgd_none(*pgd))
379 stage2_flush_puds(kvm, pgd, addr, next);
380 } while (pgd++, addr = next, addr != end);
381 }
382
383 /**
384 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
385 * @kvm: The struct kvm pointer
386 *
387 * Go through the stage 2 page tables and invalidate any cache lines
388 * backing memory already mapped to the VM.
389 */
stage2_flush_vm(struct kvm * kvm)390 static void stage2_flush_vm(struct kvm *kvm)
391 {
392 struct kvm_memslots *slots;
393 struct kvm_memory_slot *memslot;
394 int idx;
395
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398
399 slots = kvm_memslots(kvm);
400 kvm_for_each_memslot(memslot, slots)
401 stage2_flush_memslot(kvm, memslot);
402
403 spin_unlock(&kvm->mmu_lock);
404 srcu_read_unlock(&kvm->srcu, idx);
405 }
406
clear_hyp_pgd_entry(pgd_t * pgd)407 static void clear_hyp_pgd_entry(pgd_t *pgd)
408 {
409 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
410 pgd_clear(pgd);
411 pud_free(NULL, pud_table);
412 put_page(virt_to_page(pgd));
413 }
414
clear_hyp_pud_entry(pud_t * pud)415 static void clear_hyp_pud_entry(pud_t *pud)
416 {
417 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
418 VM_BUG_ON(pud_huge(*pud));
419 pud_clear(pud);
420 pmd_free(NULL, pmd_table);
421 put_page(virt_to_page(pud));
422 }
423
clear_hyp_pmd_entry(pmd_t * pmd)424 static void clear_hyp_pmd_entry(pmd_t *pmd)
425 {
426 pte_t *pte_table = pte_offset_kernel(pmd, 0);
427 VM_BUG_ON(pmd_thp_or_huge(*pmd));
428 pmd_clear(pmd);
429 pte_free_kernel(NULL, pte_table);
430 put_page(virt_to_page(pmd));
431 }
432
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)433 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
434 {
435 pte_t *pte, *start_pte;
436
437 start_pte = pte = pte_offset_kernel(pmd, addr);
438 do {
439 if (!pte_none(*pte)) {
440 kvm_set_pte(pte, __pte(0));
441 put_page(virt_to_page(pte));
442 }
443 } while (pte++, addr += PAGE_SIZE, addr != end);
444
445 if (hyp_pte_table_empty(start_pte))
446 clear_hyp_pmd_entry(pmd);
447 }
448
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)449 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
450 {
451 phys_addr_t next;
452 pmd_t *pmd, *start_pmd;
453
454 start_pmd = pmd = pmd_offset(pud, addr);
455 do {
456 next = pmd_addr_end(addr, end);
457 /* Hyp doesn't use huge pmds */
458 if (!pmd_none(*pmd))
459 unmap_hyp_ptes(pmd, addr, next);
460 } while (pmd++, addr = next, addr != end);
461
462 if (hyp_pmd_table_empty(start_pmd))
463 clear_hyp_pud_entry(pud);
464 }
465
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)466 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
467 {
468 phys_addr_t next;
469 pud_t *pud, *start_pud;
470
471 start_pud = pud = pud_offset(pgd, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 /* Hyp doesn't use huge puds */
475 if (!pud_none(*pud))
476 unmap_hyp_pmds(pud, addr, next);
477 } while (pud++, addr = next, addr != end);
478
479 if (hyp_pud_table_empty(start_pud))
480 clear_hyp_pgd_entry(pgd);
481 }
482
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)483 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
484 {
485 pgd_t *pgd;
486 phys_addr_t addr = start, end = start + size;
487 phys_addr_t next;
488
489 /*
490 * We don't unmap anything from HYP, except at the hyp tear down.
491 * Hence, we don't have to invalidate the TLBs here.
492 */
493 pgd = pgdp + pgd_index(addr);
494 do {
495 next = pgd_addr_end(addr, end);
496 if (!pgd_none(*pgd))
497 unmap_hyp_puds(pgd, addr, next);
498 } while (pgd++, addr = next, addr != end);
499 }
500
501 /**
502 * free_hyp_pgds - free Hyp-mode page tables
503 *
504 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
505 * therefore contains either mappings in the kernel memory area (above
506 * PAGE_OFFSET), or device mappings in the vmalloc range (from
507 * VMALLOC_START to VMALLOC_END).
508 *
509 * boot_hyp_pgd should only map two pages for the init code.
510 */
free_hyp_pgds(void)511 void free_hyp_pgds(void)
512 {
513 mutex_lock(&kvm_hyp_pgd_mutex);
514
515 if (boot_hyp_pgd) {
516 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
517 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
518 boot_hyp_pgd = NULL;
519 }
520
521 if (hyp_pgd) {
522 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
523 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
524 (uintptr_t)high_memory - PAGE_OFFSET);
525 unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
526 VMALLOC_END - VMALLOC_START);
527
528 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
529 hyp_pgd = NULL;
530 }
531 if (merged_hyp_pgd) {
532 clear_page(merged_hyp_pgd);
533 free_page((unsigned long)merged_hyp_pgd);
534 merged_hyp_pgd = NULL;
535 }
536
537 mutex_unlock(&kvm_hyp_pgd_mutex);
538 }
539
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)540 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
541 unsigned long end, unsigned long pfn,
542 pgprot_t prot)
543 {
544 pte_t *pte;
545 unsigned long addr;
546
547 addr = start;
548 do {
549 pte = pte_offset_kernel(pmd, addr);
550 kvm_set_pte(pte, pfn_pte(pfn, prot));
551 get_page(virt_to_page(pte));
552 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
553 pfn++;
554 } while (addr += PAGE_SIZE, addr != end);
555 }
556
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)557 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
558 unsigned long end, unsigned long pfn,
559 pgprot_t prot)
560 {
561 pmd_t *pmd;
562 pte_t *pte;
563 unsigned long addr, next;
564
565 addr = start;
566 do {
567 pmd = pmd_offset(pud, addr);
568
569 BUG_ON(pmd_sect(*pmd));
570
571 if (pmd_none(*pmd)) {
572 pte = pte_alloc_one_kernel(NULL, addr);
573 if (!pte) {
574 kvm_err("Cannot allocate Hyp pte\n");
575 return -ENOMEM;
576 }
577 pmd_populate_kernel(NULL, pmd, pte);
578 get_page(virt_to_page(pmd));
579 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
580 }
581
582 next = pmd_addr_end(addr, end);
583
584 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
585 pfn += (next - addr) >> PAGE_SHIFT;
586 } while (addr = next, addr != end);
587
588 return 0;
589 }
590
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)591 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
592 unsigned long end, unsigned long pfn,
593 pgprot_t prot)
594 {
595 pud_t *pud;
596 pmd_t *pmd;
597 unsigned long addr, next;
598 int ret;
599
600 addr = start;
601 do {
602 pud = pud_offset(pgd, addr);
603
604 if (pud_none_or_clear_bad(pud)) {
605 pmd = pmd_alloc_one(NULL, addr);
606 if (!pmd) {
607 kvm_err("Cannot allocate Hyp pmd\n");
608 return -ENOMEM;
609 }
610 pud_populate(NULL, pud, pmd);
611 get_page(virt_to_page(pud));
612 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
613 }
614
615 next = pud_addr_end(addr, end);
616 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
617 if (ret)
618 return ret;
619 pfn += (next - addr) >> PAGE_SHIFT;
620 } while (addr = next, addr != end);
621
622 return 0;
623 }
624
__create_hyp_mappings(pgd_t * pgdp,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)625 static int __create_hyp_mappings(pgd_t *pgdp,
626 unsigned long start, unsigned long end,
627 unsigned long pfn, pgprot_t prot)
628 {
629 pgd_t *pgd;
630 pud_t *pud;
631 unsigned long addr, next;
632 int err = 0;
633
634 mutex_lock(&kvm_hyp_pgd_mutex);
635 addr = start & PAGE_MASK;
636 end = PAGE_ALIGN(end);
637 do {
638 pgd = pgdp + pgd_index(addr);
639
640 if (pgd_none(*pgd)) {
641 pud = pud_alloc_one(NULL, addr);
642 if (!pud) {
643 kvm_err("Cannot allocate Hyp pud\n");
644 err = -ENOMEM;
645 goto out;
646 }
647 pgd_populate(NULL, pgd, pud);
648 get_page(virt_to_page(pgd));
649 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
650 }
651
652 next = pgd_addr_end(addr, end);
653 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
654 if (err)
655 goto out;
656 pfn += (next - addr) >> PAGE_SHIFT;
657 } while (addr = next, addr != end);
658 out:
659 mutex_unlock(&kvm_hyp_pgd_mutex);
660 return err;
661 }
662
kvm_kaddr_to_phys(void * kaddr)663 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
664 {
665 if (!is_vmalloc_addr(kaddr)) {
666 BUG_ON(!virt_addr_valid(kaddr));
667 return __pa(kaddr);
668 } else {
669 return page_to_phys(vmalloc_to_page(kaddr)) +
670 offset_in_page(kaddr);
671 }
672 }
673
674 /**
675 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
676 * @from: The virtual kernel start address of the range
677 * @to: The virtual kernel end address of the range (exclusive)
678 * @prot: The protection to be applied to this range
679 *
680 * The same virtual address as the kernel virtual address is also used
681 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
682 * physical pages.
683 */
create_hyp_mappings(void * from,void * to,pgprot_t prot)684 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
685 {
686 phys_addr_t phys_addr;
687 unsigned long virt_addr;
688 unsigned long start = kern_hyp_va((unsigned long)from);
689 unsigned long end = kern_hyp_va((unsigned long)to);
690
691 if (is_kernel_in_hyp_mode())
692 return 0;
693
694 start = start & PAGE_MASK;
695 end = PAGE_ALIGN(end);
696
697 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
698 int err;
699
700 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
701 err = __create_hyp_mappings(hyp_pgd, virt_addr,
702 virt_addr + PAGE_SIZE,
703 __phys_to_pfn(phys_addr),
704 prot);
705 if (err)
706 return err;
707 }
708
709 return 0;
710 }
711
712 /**
713 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
714 * @from: The kernel start VA of the range
715 * @to: The kernel end VA of the range (exclusive)
716 * @phys_addr: The physical start address which gets mapped
717 *
718 * The resulting HYP VA is the same as the kernel VA, modulo
719 * HYP_PAGE_OFFSET.
720 */
create_hyp_io_mappings(void * from,void * to,phys_addr_t phys_addr)721 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
722 {
723 unsigned long start = kern_hyp_va((unsigned long)from);
724 unsigned long end = kern_hyp_va((unsigned long)to);
725
726 if (is_kernel_in_hyp_mode())
727 return 0;
728
729 /* Check for a valid kernel IO mapping */
730 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
731 return -EINVAL;
732
733 return __create_hyp_mappings(hyp_pgd, start, end,
734 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
735 }
736
737 /**
738 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
739 * @kvm: The KVM struct pointer for the VM.
740 *
741 * Allocates only the stage-2 HW PGD level table(s) (can support either full
742 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
743 * allocated pages.
744 *
745 * Note we don't need locking here as this is only called when the VM is
746 * created, which can only be done once.
747 */
kvm_alloc_stage2_pgd(struct kvm * kvm)748 int kvm_alloc_stage2_pgd(struct kvm *kvm)
749 {
750 pgd_t *pgd;
751
752 if (kvm->arch.pgd != NULL) {
753 kvm_err("kvm_arch already initialized?\n");
754 return -EINVAL;
755 }
756
757 /* Allocate the HW PGD, making sure that each page gets its own refcount */
758 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
759 if (!pgd)
760 return -ENOMEM;
761
762 kvm->arch.pgd = pgd;
763 return 0;
764 }
765
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)766 static void stage2_unmap_memslot(struct kvm *kvm,
767 struct kvm_memory_slot *memslot)
768 {
769 hva_t hva = memslot->userspace_addr;
770 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
771 phys_addr_t size = PAGE_SIZE * memslot->npages;
772 hva_t reg_end = hva + size;
773
774 /*
775 * A memory region could potentially cover multiple VMAs, and any holes
776 * between them, so iterate over all of them to find out if we should
777 * unmap any of them.
778 *
779 * +--------------------------------------------+
780 * +---------------+----------------+ +----------------+
781 * | : VMA 1 | VMA 2 | | VMA 3 : |
782 * +---------------+----------------+ +----------------+
783 * | memory region |
784 * +--------------------------------------------+
785 */
786 do {
787 struct vm_area_struct *vma = find_vma(current->mm, hva);
788 hva_t vm_start, vm_end;
789
790 if (!vma || vma->vm_start >= reg_end)
791 break;
792
793 /*
794 * Take the intersection of this VMA with the memory region
795 */
796 vm_start = max(hva, vma->vm_start);
797 vm_end = min(reg_end, vma->vm_end);
798
799 if (!(vma->vm_flags & VM_PFNMAP)) {
800 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
801 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
802 }
803 hva = vm_end;
804 } while (hva < reg_end);
805 }
806
807 /**
808 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
809 * @kvm: The struct kvm pointer
810 *
811 * Go through the memregions and unmap any reguler RAM
812 * backing memory already mapped to the VM.
813 */
stage2_unmap_vm(struct kvm * kvm)814 void stage2_unmap_vm(struct kvm *kvm)
815 {
816 struct kvm_memslots *slots;
817 struct kvm_memory_slot *memslot;
818 int idx;
819
820 idx = srcu_read_lock(&kvm->srcu);
821 down_read(¤t->mm->mmap_sem);
822 spin_lock(&kvm->mmu_lock);
823
824 slots = kvm_memslots(kvm);
825 kvm_for_each_memslot(memslot, slots)
826 stage2_unmap_memslot(kvm, memslot);
827
828 spin_unlock(&kvm->mmu_lock);
829 up_read(¤t->mm->mmap_sem);
830 srcu_read_unlock(&kvm->srcu, idx);
831 }
832
833 /**
834 * kvm_free_stage2_pgd - free all stage-2 tables
835 * @kvm: The KVM struct pointer for the VM.
836 *
837 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
838 * underlying level-2 and level-3 tables before freeing the actual level-1 table
839 * and setting the struct pointer to NULL.
840 */
kvm_free_stage2_pgd(struct kvm * kvm)841 void kvm_free_stage2_pgd(struct kvm *kvm)
842 {
843 void *pgd = NULL;
844
845 spin_lock(&kvm->mmu_lock);
846 if (kvm->arch.pgd) {
847 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
848 pgd = READ_ONCE(kvm->arch.pgd);
849 kvm->arch.pgd = NULL;
850 }
851 spin_unlock(&kvm->mmu_lock);
852
853 /* Free the HW pgd, one page at a time */
854 if (pgd)
855 free_pages_exact(pgd, S2_PGD_SIZE);
856 }
857
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)858 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859 phys_addr_t addr)
860 {
861 pgd_t *pgd;
862 pud_t *pud;
863
864 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
865 if (WARN_ON(stage2_pgd_none(*pgd))) {
866 if (!cache)
867 return NULL;
868 pud = mmu_memory_cache_alloc(cache);
869 stage2_pgd_populate(pgd, pud);
870 get_page(virt_to_page(pgd));
871 }
872
873 return stage2_pud_offset(pgd, addr);
874 }
875
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)876 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
877 phys_addr_t addr)
878 {
879 pud_t *pud;
880 pmd_t *pmd;
881
882 pud = stage2_get_pud(kvm, cache, addr);
883 if (!pud)
884 return NULL;
885
886 if (stage2_pud_none(*pud)) {
887 if (!cache)
888 return NULL;
889 pmd = mmu_memory_cache_alloc(cache);
890 stage2_pud_populate(pud, pmd);
891 get_page(virt_to_page(pud));
892 }
893
894 return stage2_pmd_offset(pud, addr);
895 }
896
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)897 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
898 *cache, phys_addr_t addr, const pmd_t *new_pmd)
899 {
900 pmd_t *pmd, old_pmd;
901
902 pmd = stage2_get_pmd(kvm, cache, addr);
903 VM_BUG_ON(!pmd);
904
905 old_pmd = *pmd;
906 if (pmd_present(old_pmd)) {
907 /*
908 * Multiple vcpus faulting on the same PMD entry, can
909 * lead to them sequentially updating the PMD with the
910 * same value. Following the break-before-make
911 * (pmd_clear() followed by tlb_flush()) process can
912 * hinder forward progress due to refaults generated
913 * on missing translations.
914 *
915 * Skip updating the page table if the entry is
916 * unchanged.
917 */
918 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
919 return 0;
920
921 /*
922 * Mapping in huge pages should only happen through a
923 * fault. If a page is merged into a transparent huge
924 * page, the individual subpages of that huge page
925 * should be unmapped through MMU notifiers before we
926 * get here.
927 *
928 * Merging of CompoundPages is not supported; they
929 * should become splitting first, unmapped, merged,
930 * and mapped back in on-demand.
931 */
932 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
933
934 pmd_clear(pmd);
935 kvm_tlb_flush_vmid_ipa(kvm, addr);
936 } else {
937 get_page(virt_to_page(pmd));
938 }
939
940 kvm_set_pmd(pmd, *new_pmd);
941 return 0;
942 }
943
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)944 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
945 phys_addr_t addr, const pte_t *new_pte,
946 unsigned long flags)
947 {
948 pmd_t *pmd;
949 pte_t *pte, old_pte;
950 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
951 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
952
953 VM_BUG_ON(logging_active && !cache);
954
955 /* Create stage-2 page table mapping - Levels 0 and 1 */
956 pmd = stage2_get_pmd(kvm, cache, addr);
957 if (!pmd) {
958 /*
959 * Ignore calls from kvm_set_spte_hva for unallocated
960 * address ranges.
961 */
962 return 0;
963 }
964
965 /*
966 * While dirty page logging - dissolve huge PMD, then continue on to
967 * allocate page.
968 */
969 if (logging_active)
970 stage2_dissolve_pmd(kvm, addr, pmd);
971
972 /* Create stage-2 page mappings - Level 2 */
973 if (pmd_none(*pmd)) {
974 if (!cache)
975 return 0; /* ignore calls from kvm_set_spte_hva */
976 pte = mmu_memory_cache_alloc(cache);
977 pmd_populate_kernel(NULL, pmd, pte);
978 get_page(virt_to_page(pmd));
979 }
980
981 pte = pte_offset_kernel(pmd, addr);
982
983 if (iomap && pte_present(*pte))
984 return -EFAULT;
985
986 /* Create 2nd stage page table mapping - Level 3 */
987 old_pte = *pte;
988 if (pte_present(old_pte)) {
989 /* Skip page table update if there is no change */
990 if (pte_val(old_pte) == pte_val(*new_pte))
991 return 0;
992
993 kvm_set_pte(pte, __pte(0));
994 kvm_tlb_flush_vmid_ipa(kvm, addr);
995 } else {
996 get_page(virt_to_page(pte));
997 }
998
999 kvm_set_pte(pte, *new_pte);
1000 return 0;
1001 }
1002
1003 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1004 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1005 {
1006 if (pte_young(*pte)) {
1007 *pte = pte_mkold(*pte);
1008 return 1;
1009 }
1010 return 0;
1011 }
1012 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1013 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1014 {
1015 return __ptep_test_and_clear_young(pte);
1016 }
1017 #endif
1018
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1019 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1020 {
1021 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1022 }
1023
1024 /**
1025 * kvm_phys_addr_ioremap - map a device range to guest IPA
1026 *
1027 * @kvm: The KVM pointer
1028 * @guest_ipa: The IPA at which to insert the mapping
1029 * @pa: The physical address of the device
1030 * @size: The size of the mapping
1031 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1032 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1033 phys_addr_t pa, unsigned long size, bool writable)
1034 {
1035 phys_addr_t addr, end;
1036 int ret = 0;
1037 unsigned long pfn;
1038 struct kvm_mmu_memory_cache cache = { 0, };
1039
1040 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1041 pfn = __phys_to_pfn(pa);
1042
1043 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1044 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1045
1046 if (writable)
1047 pte = kvm_s2pte_mkwrite(pte);
1048
1049 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1050 KVM_NR_MEM_OBJS);
1051 if (ret)
1052 goto out;
1053 spin_lock(&kvm->mmu_lock);
1054 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1055 KVM_S2PTE_FLAG_IS_IOMAP);
1056 spin_unlock(&kvm->mmu_lock);
1057 if (ret)
1058 goto out;
1059
1060 pfn++;
1061 }
1062
1063 out:
1064 mmu_free_memory_cache(&cache);
1065 return ret;
1066 }
1067
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1068 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1069 {
1070 kvm_pfn_t pfn = *pfnp;
1071 gfn_t gfn = *ipap >> PAGE_SHIFT;
1072 struct page *page = pfn_to_page(pfn);
1073
1074 /*
1075 * PageTransCompoungMap() returns true for THP and
1076 * hugetlbfs. Make sure the adjustment is done only for THP
1077 * pages.
1078 */
1079 if (!PageHuge(page) && PageTransCompoundMap(page)) {
1080 unsigned long mask;
1081 /*
1082 * The address we faulted on is backed by a transparent huge
1083 * page. However, because we map the compound huge page and
1084 * not the individual tail page, we need to transfer the
1085 * refcount to the head page. We have to be careful that the
1086 * THP doesn't start to split while we are adjusting the
1087 * refcounts.
1088 *
1089 * We are sure this doesn't happen, because mmu_notifier_retry
1090 * was successful and we are holding the mmu_lock, so if this
1091 * THP is trying to split, it will be blocked in the mmu
1092 * notifier before touching any of the pages, specifically
1093 * before being able to call __split_huge_page_refcount().
1094 *
1095 * We can therefore safely transfer the refcount from PG_tail
1096 * to PG_head and switch the pfn from a tail page to the head
1097 * page accordingly.
1098 */
1099 mask = PTRS_PER_PMD - 1;
1100 VM_BUG_ON((gfn & mask) != (pfn & mask));
1101 if (pfn & mask) {
1102 *ipap &= PMD_MASK;
1103 kvm_release_pfn_clean(pfn);
1104 pfn &= ~mask;
1105 kvm_get_pfn(pfn);
1106 *pfnp = pfn;
1107 }
1108
1109 return true;
1110 }
1111
1112 return false;
1113 }
1114
kvm_is_write_fault(struct kvm_vcpu * vcpu)1115 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1116 {
1117 if (kvm_vcpu_trap_is_iabt(vcpu))
1118 return false;
1119
1120 return kvm_vcpu_dabt_iswrite(vcpu);
1121 }
1122
1123 /**
1124 * stage2_wp_ptes - write protect PMD range
1125 * @pmd: pointer to pmd entry
1126 * @addr: range start address
1127 * @end: range end address
1128 */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1129 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1130 {
1131 pte_t *pte;
1132
1133 pte = pte_offset_kernel(pmd, addr);
1134 do {
1135 if (!pte_none(*pte)) {
1136 if (!kvm_s2pte_readonly(pte))
1137 kvm_set_s2pte_readonly(pte);
1138 }
1139 } while (pte++, addr += PAGE_SIZE, addr != end);
1140 }
1141
1142 /**
1143 * stage2_wp_pmds - write protect PUD range
1144 * @pud: pointer to pud entry
1145 * @addr: range start address
1146 * @end: range end address
1147 */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1148 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1149 {
1150 pmd_t *pmd;
1151 phys_addr_t next;
1152
1153 pmd = stage2_pmd_offset(pud, addr);
1154
1155 do {
1156 next = stage2_pmd_addr_end(addr, end);
1157 if (!pmd_none(*pmd)) {
1158 if (pmd_thp_or_huge(*pmd)) {
1159 if (!kvm_s2pmd_readonly(pmd))
1160 kvm_set_s2pmd_readonly(pmd);
1161 } else {
1162 stage2_wp_ptes(pmd, addr, next);
1163 }
1164 }
1165 } while (pmd++, addr = next, addr != end);
1166 }
1167
1168 /**
1169 * stage2_wp_puds - write protect PGD range
1170 * @pgd: pointer to pgd entry
1171 * @addr: range start address
1172 * @end: range end address
1173 *
1174 * Process PUD entries, for a huge PUD we cause a panic.
1175 */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1176 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1177 {
1178 pud_t *pud;
1179 phys_addr_t next;
1180
1181 pud = stage2_pud_offset(pgd, addr);
1182 do {
1183 next = stage2_pud_addr_end(addr, end);
1184 if (!stage2_pud_none(*pud)) {
1185 /* TODO:PUD not supported, revisit later if supported */
1186 BUG_ON(stage2_pud_huge(*pud));
1187 stage2_wp_pmds(pud, addr, next);
1188 }
1189 } while (pud++, addr = next, addr != end);
1190 }
1191
1192 /**
1193 * stage2_wp_range() - write protect stage2 memory region range
1194 * @kvm: The KVM pointer
1195 * @addr: Start address of range
1196 * @end: End address of range
1197 */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1198 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1199 {
1200 pgd_t *pgd;
1201 phys_addr_t next;
1202
1203 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1204 do {
1205 /*
1206 * Release kvm_mmu_lock periodically if the memory region is
1207 * large. Otherwise, we may see kernel panics with
1208 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1209 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1210 * will also starve other vCPUs. We have to also make sure
1211 * that the page tables are not freed while we released
1212 * the lock.
1213 */
1214 cond_resched_lock(&kvm->mmu_lock);
1215 if (!READ_ONCE(kvm->arch.pgd))
1216 break;
1217 next = stage2_pgd_addr_end(addr, end);
1218 if (stage2_pgd_present(*pgd))
1219 stage2_wp_puds(pgd, addr, next);
1220 } while (pgd++, addr = next, addr != end);
1221 }
1222
1223 /**
1224 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1225 * @kvm: The KVM pointer
1226 * @slot: The memory slot to write protect
1227 *
1228 * Called to start logging dirty pages after memory region
1229 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1230 * all present PMD and PTEs are write protected in the memory region.
1231 * Afterwards read of dirty page log can be called.
1232 *
1233 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1234 * serializing operations for VM memory regions.
1235 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1236 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1237 {
1238 struct kvm_memslots *slots = kvm_memslots(kvm);
1239 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1240 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1241 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1242
1243 spin_lock(&kvm->mmu_lock);
1244 stage2_wp_range(kvm, start, end);
1245 spin_unlock(&kvm->mmu_lock);
1246 kvm_flush_remote_tlbs(kvm);
1247 }
1248
1249 /**
1250 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1251 * @kvm: The KVM pointer
1252 * @slot: The memory slot associated with mask
1253 * @gfn_offset: The gfn offset in memory slot
1254 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1255 * slot to be write protected
1256 *
1257 * Walks bits set in mask write protects the associated pte's. Caller must
1258 * acquire kvm_mmu_lock.
1259 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1260 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1261 struct kvm_memory_slot *slot,
1262 gfn_t gfn_offset, unsigned long mask)
1263 {
1264 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1265 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1266 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1267
1268 stage2_wp_range(kvm, start, end);
1269 }
1270
1271 /*
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * dirty pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1278 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1279 struct kvm_memory_slot *slot,
1280 gfn_t gfn_offset, unsigned long mask)
1281 {
1282 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1283 }
1284
coherent_cache_guest_page(struct kvm_vcpu * vcpu,kvm_pfn_t pfn,unsigned long size)1285 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1286 unsigned long size)
1287 {
1288 __coherent_cache_guest_page(vcpu, pfn, size);
1289 }
1290
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1291 static void kvm_send_hwpoison_signal(unsigned long address,
1292 struct vm_area_struct *vma)
1293 {
1294 siginfo_t info;
1295
1296 info.si_signo = SIGBUS;
1297 info.si_errno = 0;
1298 info.si_code = BUS_MCEERR_AR;
1299 info.si_addr = (void __user *)address;
1300
1301 if (is_vm_hugetlb_page(vma))
1302 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1303 else
1304 info.si_addr_lsb = PAGE_SHIFT;
1305
1306 send_sig_info(SIGBUS, &info, current);
1307 }
1308
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1309 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1310 struct kvm_memory_slot *memslot, unsigned long hva,
1311 unsigned long fault_status)
1312 {
1313 int ret;
1314 bool write_fault, writable, hugetlb = false, force_pte = false;
1315 unsigned long mmu_seq;
1316 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1317 struct kvm *kvm = vcpu->kvm;
1318 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1319 struct vm_area_struct *vma;
1320 kvm_pfn_t pfn;
1321 pgprot_t mem_type = PAGE_S2;
1322 bool logging_active = memslot_is_logging(memslot);
1323 unsigned long flags = 0;
1324
1325 write_fault = kvm_is_write_fault(vcpu);
1326 if (fault_status == FSC_PERM && !write_fault) {
1327 kvm_err("Unexpected L2 read permission error\n");
1328 return -EFAULT;
1329 }
1330
1331 /* Let's check if we will get back a huge page backed by hugetlbfs */
1332 down_read(¤t->mm->mmap_sem);
1333 vma = find_vma_intersection(current->mm, hva, hva + 1);
1334 if (unlikely(!vma)) {
1335 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1336 up_read(¤t->mm->mmap_sem);
1337 return -EFAULT;
1338 }
1339
1340 if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1341 hugetlb = true;
1342 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1343 } else {
1344 /*
1345 * Pages belonging to memslots that don't have the same
1346 * alignment for userspace and IPA cannot be mapped using
1347 * block descriptors even if the pages belong to a THP for
1348 * the process, because the stage-2 block descriptor will
1349 * cover more than a single THP and we loose atomicity for
1350 * unmapping, updates, and splits of the THP or other pages
1351 * in the stage-2 block range.
1352 */
1353 if ((memslot->userspace_addr & ~PMD_MASK) !=
1354 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1355 force_pte = true;
1356 }
1357 up_read(¤t->mm->mmap_sem);
1358
1359 /* We need minimum second+third level pages */
1360 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1361 KVM_NR_MEM_OBJS);
1362 if (ret)
1363 return ret;
1364
1365 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1366 /*
1367 * Ensure the read of mmu_notifier_seq happens before we call
1368 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1369 * the page we just got a reference to gets unmapped before we have a
1370 * chance to grab the mmu_lock, which ensure that if the page gets
1371 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1372 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1373 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1374 */
1375 smp_rmb();
1376
1377 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1378 if (pfn == KVM_PFN_ERR_HWPOISON) {
1379 kvm_send_hwpoison_signal(hva, vma);
1380 return 0;
1381 }
1382 if (is_error_noslot_pfn(pfn))
1383 return -EFAULT;
1384
1385 if (kvm_is_device_pfn(pfn)) {
1386 mem_type = PAGE_S2_DEVICE;
1387 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1388 } else if (logging_active) {
1389 /*
1390 * Faults on pages in a memslot with logging enabled
1391 * should not be mapped with huge pages (it introduces churn
1392 * and performance degradation), so force a pte mapping.
1393 */
1394 force_pte = true;
1395 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1396
1397 /*
1398 * Only actually map the page as writable if this was a write
1399 * fault.
1400 */
1401 if (!write_fault)
1402 writable = false;
1403 }
1404
1405 spin_lock(&kvm->mmu_lock);
1406 if (mmu_notifier_retry(kvm, mmu_seq))
1407 goto out_unlock;
1408
1409 if (!hugetlb && !force_pte)
1410 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1411
1412 if (hugetlb) {
1413 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1414 new_pmd = pmd_mkhuge(new_pmd);
1415 if (writable) {
1416 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1417 kvm_set_pfn_dirty(pfn);
1418 }
1419 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1420 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1421 } else {
1422 pte_t new_pte = pfn_pte(pfn, mem_type);
1423
1424 if (writable) {
1425 new_pte = kvm_s2pte_mkwrite(new_pte);
1426 kvm_set_pfn_dirty(pfn);
1427 mark_page_dirty(kvm, gfn);
1428 }
1429 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1430 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1431 }
1432
1433 out_unlock:
1434 spin_unlock(&kvm->mmu_lock);
1435 kvm_set_pfn_accessed(pfn);
1436 kvm_release_pfn_clean(pfn);
1437 return ret;
1438 }
1439
1440 /*
1441 * Resolve the access fault by making the page young again.
1442 * Note that because the faulting entry is guaranteed not to be
1443 * cached in the TLB, we don't need to invalidate anything.
1444 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1445 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1446 */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1447 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1448 {
1449 pmd_t *pmd;
1450 pte_t *pte;
1451 kvm_pfn_t pfn;
1452 bool pfn_valid = false;
1453
1454 trace_kvm_access_fault(fault_ipa);
1455
1456 spin_lock(&vcpu->kvm->mmu_lock);
1457
1458 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1459 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1460 goto out;
1461
1462 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1463 *pmd = pmd_mkyoung(*pmd);
1464 pfn = pmd_pfn(*pmd);
1465 pfn_valid = true;
1466 goto out;
1467 }
1468
1469 pte = pte_offset_kernel(pmd, fault_ipa);
1470 if (pte_none(*pte)) /* Nothing there either */
1471 goto out;
1472
1473 *pte = pte_mkyoung(*pte); /* Just a page... */
1474 pfn = pte_pfn(*pte);
1475 pfn_valid = true;
1476 out:
1477 spin_unlock(&vcpu->kvm->mmu_lock);
1478 if (pfn_valid)
1479 kvm_set_pfn_accessed(pfn);
1480 }
1481
1482 /**
1483 * kvm_handle_guest_abort - handles all 2nd stage aborts
1484 * @vcpu: the VCPU pointer
1485 * @run: the kvm_run structure
1486 *
1487 * Any abort that gets to the host is almost guaranteed to be caused by a
1488 * missing second stage translation table entry, which can mean that either the
1489 * guest simply needs more memory and we must allocate an appropriate page or it
1490 * can mean that the guest tried to access I/O memory, which is emulated by user
1491 * space. The distinction is based on the IPA causing the fault and whether this
1492 * memory region has been registered as standard RAM by user space.
1493 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1494 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1495 {
1496 unsigned long fault_status;
1497 phys_addr_t fault_ipa;
1498 struct kvm_memory_slot *memslot;
1499 unsigned long hva;
1500 bool is_iabt, write_fault, writable;
1501 gfn_t gfn;
1502 int ret, idx;
1503
1504 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1505
1506 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1507 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1508
1509 /* Synchronous External Abort? */
1510 if (kvm_vcpu_dabt_isextabt(vcpu)) {
1511 /*
1512 * For RAS the host kernel may handle this abort.
1513 * There is no need to pass the error into the guest.
1514 */
1515 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1516 return 1;
1517
1518 if (unlikely(!is_iabt)) {
1519 kvm_inject_vabt(vcpu);
1520 return 1;
1521 }
1522 }
1523
1524 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1525 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1526
1527 /* Check the stage-2 fault is trans. fault or write fault */
1528 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1529 fault_status != FSC_ACCESS) {
1530 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1531 kvm_vcpu_trap_get_class(vcpu),
1532 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1533 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1534 return -EFAULT;
1535 }
1536
1537 idx = srcu_read_lock(&vcpu->kvm->srcu);
1538
1539 gfn = fault_ipa >> PAGE_SHIFT;
1540 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1541 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1542 write_fault = kvm_is_write_fault(vcpu);
1543 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1544 if (is_iabt) {
1545 /* Prefetch Abort on I/O address */
1546 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1547 ret = 1;
1548 goto out_unlock;
1549 }
1550
1551 /*
1552 * Check for a cache maintenance operation. Since we
1553 * ended-up here, we know it is outside of any memory
1554 * slot. But we can't find out if that is for a device,
1555 * or if the guest is just being stupid. The only thing
1556 * we know for sure is that this range cannot be cached.
1557 *
1558 * So let's assume that the guest is just being
1559 * cautious, and skip the instruction.
1560 */
1561 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1562 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1563 ret = 1;
1564 goto out_unlock;
1565 }
1566
1567 /*
1568 * The IPA is reported as [MAX:12], so we need to
1569 * complement it with the bottom 12 bits from the
1570 * faulting VA. This is always 12 bits, irrespective
1571 * of the page size.
1572 */
1573 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1574 ret = io_mem_abort(vcpu, run, fault_ipa);
1575 goto out_unlock;
1576 }
1577
1578 /* Userspace should not be able to register out-of-bounds IPAs */
1579 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1580
1581 if (fault_status == FSC_ACCESS) {
1582 handle_access_fault(vcpu, fault_ipa);
1583 ret = 1;
1584 goto out_unlock;
1585 }
1586
1587 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1588 if (ret == 0)
1589 ret = 1;
1590 out_unlock:
1591 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1592 return ret;
1593 }
1594
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1595 static int handle_hva_to_gpa(struct kvm *kvm,
1596 unsigned long start,
1597 unsigned long end,
1598 int (*handler)(struct kvm *kvm,
1599 gpa_t gpa, u64 size,
1600 void *data),
1601 void *data)
1602 {
1603 struct kvm_memslots *slots;
1604 struct kvm_memory_slot *memslot;
1605 int ret = 0;
1606
1607 slots = kvm_memslots(kvm);
1608
1609 /* we only care about the pages that the guest sees */
1610 kvm_for_each_memslot(memslot, slots) {
1611 unsigned long hva_start, hva_end;
1612 gfn_t gpa;
1613
1614 hva_start = max(start, memslot->userspace_addr);
1615 hva_end = min(end, memslot->userspace_addr +
1616 (memslot->npages << PAGE_SHIFT));
1617 if (hva_start >= hva_end)
1618 continue;
1619
1620 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1621 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1622 }
1623
1624 return ret;
1625 }
1626
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1627 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1628 {
1629 unmap_stage2_range(kvm, gpa, size);
1630 return 0;
1631 }
1632
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1633 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1634 {
1635 unsigned long end = hva + PAGE_SIZE;
1636
1637 if (!kvm->arch.pgd)
1638 return 0;
1639
1640 trace_kvm_unmap_hva(hva);
1641 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1642 return 0;
1643 }
1644
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1645 int kvm_unmap_hva_range(struct kvm *kvm,
1646 unsigned long start, unsigned long end)
1647 {
1648 if (!kvm->arch.pgd)
1649 return 0;
1650
1651 trace_kvm_unmap_hva_range(start, end);
1652 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1653 return 0;
1654 }
1655
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1656 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1657 {
1658 pte_t *pte = (pte_t *)data;
1659
1660 WARN_ON(size != PAGE_SIZE);
1661 /*
1662 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1663 * flag clear because MMU notifiers will have unmapped a huge PMD before
1664 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1665 * therefore stage2_set_pte() never needs to clear out a huge PMD
1666 * through this calling path.
1667 */
1668 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1669 return 0;
1670 }
1671
1672
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1673 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1674 {
1675 unsigned long end = hva + PAGE_SIZE;
1676 pte_t stage2_pte;
1677
1678 if (!kvm->arch.pgd)
1679 return;
1680
1681 trace_kvm_set_spte_hva(hva);
1682 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1683 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1684 }
1685
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1686 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1687 {
1688 pmd_t *pmd;
1689 pte_t *pte;
1690
1691 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1692 pmd = stage2_get_pmd(kvm, NULL, gpa);
1693 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1694 return 0;
1695
1696 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1697 return stage2_pmdp_test_and_clear_young(pmd);
1698
1699 pte = pte_offset_kernel(pmd, gpa);
1700 if (pte_none(*pte))
1701 return 0;
1702
1703 return stage2_ptep_test_and_clear_young(pte);
1704 }
1705
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1706 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1707 {
1708 pmd_t *pmd;
1709 pte_t *pte;
1710
1711 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1712 pmd = stage2_get_pmd(kvm, NULL, gpa);
1713 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1714 return 0;
1715
1716 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1717 return pmd_young(*pmd);
1718
1719 pte = pte_offset_kernel(pmd, gpa);
1720 if (!pte_none(*pte)) /* Just a page... */
1721 return pte_young(*pte);
1722
1723 return 0;
1724 }
1725
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1726 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1727 {
1728 if (!kvm->arch.pgd)
1729 return 0;
1730 trace_kvm_age_hva(start, end);
1731 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1732 }
1733
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1734 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1735 {
1736 if (!kvm->arch.pgd)
1737 return 0;
1738 trace_kvm_test_age_hva(hva);
1739 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1740 kvm_test_age_hva_handler, NULL);
1741 }
1742
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1743 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1744 {
1745 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1746 }
1747
kvm_mmu_get_httbr(void)1748 phys_addr_t kvm_mmu_get_httbr(void)
1749 {
1750 if (__kvm_cpu_uses_extended_idmap())
1751 return virt_to_phys(merged_hyp_pgd);
1752 else
1753 return virt_to_phys(hyp_pgd);
1754 }
1755
kvm_get_idmap_vector(void)1756 phys_addr_t kvm_get_idmap_vector(void)
1757 {
1758 return hyp_idmap_vector;
1759 }
1760
kvm_map_idmap_text(pgd_t * pgd)1761 static int kvm_map_idmap_text(pgd_t *pgd)
1762 {
1763 int err;
1764
1765 /* Create the idmap in the boot page tables */
1766 err = __create_hyp_mappings(pgd,
1767 hyp_idmap_start, hyp_idmap_end,
1768 __phys_to_pfn(hyp_idmap_start),
1769 PAGE_HYP_EXEC);
1770 if (err)
1771 kvm_err("Failed to idmap %lx-%lx\n",
1772 hyp_idmap_start, hyp_idmap_end);
1773
1774 return err;
1775 }
1776
kvm_mmu_init(void)1777 int kvm_mmu_init(void)
1778 {
1779 int err;
1780
1781 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1782 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1783 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1784
1785 /*
1786 * We rely on the linker script to ensure at build time that the HYP
1787 * init code does not cross a page boundary.
1788 */
1789 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1790
1791 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1792 kvm_debug("HYP VA range: %lx:%lx\n",
1793 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1794
1795 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1796 hyp_idmap_start < kern_hyp_va(~0UL) &&
1797 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1798 /*
1799 * The idmap page is intersecting with the VA space,
1800 * it is not safe to continue further.
1801 */
1802 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1803 err = -EINVAL;
1804 goto out;
1805 }
1806
1807 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1808 if (!hyp_pgd) {
1809 kvm_err("Hyp mode PGD not allocated\n");
1810 err = -ENOMEM;
1811 goto out;
1812 }
1813
1814 if (__kvm_cpu_uses_extended_idmap()) {
1815 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1816 hyp_pgd_order);
1817 if (!boot_hyp_pgd) {
1818 kvm_err("Hyp boot PGD not allocated\n");
1819 err = -ENOMEM;
1820 goto out;
1821 }
1822
1823 err = kvm_map_idmap_text(boot_hyp_pgd);
1824 if (err)
1825 goto out;
1826
1827 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1828 if (!merged_hyp_pgd) {
1829 kvm_err("Failed to allocate extra HYP pgd\n");
1830 goto out;
1831 }
1832 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1833 hyp_idmap_start);
1834 } else {
1835 err = kvm_map_idmap_text(hyp_pgd);
1836 if (err)
1837 goto out;
1838 }
1839
1840 return 0;
1841 out:
1842 free_hyp_pgds();
1843 return err;
1844 }
1845
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1846 void kvm_arch_commit_memory_region(struct kvm *kvm,
1847 const struct kvm_userspace_memory_region *mem,
1848 const struct kvm_memory_slot *old,
1849 const struct kvm_memory_slot *new,
1850 enum kvm_mr_change change)
1851 {
1852 /*
1853 * At this point memslot has been committed and there is an
1854 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1855 * memory slot is write protected.
1856 */
1857 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1858 kvm_mmu_wp_memory_region(kvm, mem->slot);
1859 }
1860
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1861 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1862 struct kvm_memory_slot *memslot,
1863 const struct kvm_userspace_memory_region *mem,
1864 enum kvm_mr_change change)
1865 {
1866 hva_t hva = mem->userspace_addr;
1867 hva_t reg_end = hva + mem->memory_size;
1868 bool writable = !(mem->flags & KVM_MEM_READONLY);
1869 int ret = 0;
1870
1871 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1872 change != KVM_MR_FLAGS_ONLY)
1873 return 0;
1874
1875 /*
1876 * Prevent userspace from creating a memory region outside of the IPA
1877 * space addressable by the KVM guest IPA space.
1878 */
1879 if (memslot->base_gfn + memslot->npages >=
1880 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1881 return -EFAULT;
1882
1883 down_read(¤t->mm->mmap_sem);
1884 /*
1885 * A memory region could potentially cover multiple VMAs, and any holes
1886 * between them, so iterate over all of them to find out if we can map
1887 * any of them right now.
1888 *
1889 * +--------------------------------------------+
1890 * +---------------+----------------+ +----------------+
1891 * | : VMA 1 | VMA 2 | | VMA 3 : |
1892 * +---------------+----------------+ +----------------+
1893 * | memory region |
1894 * +--------------------------------------------+
1895 */
1896 do {
1897 struct vm_area_struct *vma = find_vma(current->mm, hva);
1898 hva_t vm_start, vm_end;
1899
1900 if (!vma || vma->vm_start >= reg_end)
1901 break;
1902
1903 /*
1904 * Mapping a read-only VMA is only allowed if the
1905 * memory region is configured as read-only.
1906 */
1907 if (writable && !(vma->vm_flags & VM_WRITE)) {
1908 ret = -EPERM;
1909 break;
1910 }
1911
1912 /*
1913 * Take the intersection of this VMA with the memory region
1914 */
1915 vm_start = max(hva, vma->vm_start);
1916 vm_end = min(reg_end, vma->vm_end);
1917
1918 if (vma->vm_flags & VM_PFNMAP) {
1919 gpa_t gpa = mem->guest_phys_addr +
1920 (vm_start - mem->userspace_addr);
1921 phys_addr_t pa;
1922
1923 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1924 pa += vm_start - vma->vm_start;
1925
1926 /* IO region dirty page logging not allowed */
1927 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1928 ret = -EINVAL;
1929 goto out;
1930 }
1931
1932 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1933 vm_end - vm_start,
1934 writable);
1935 if (ret)
1936 break;
1937 }
1938 hva = vm_end;
1939 } while (hva < reg_end);
1940
1941 if (change == KVM_MR_FLAGS_ONLY)
1942 goto out;
1943
1944 spin_lock(&kvm->mmu_lock);
1945 if (ret)
1946 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1947 else
1948 stage2_flush_memslot(kvm, memslot);
1949 spin_unlock(&kvm->mmu_lock);
1950 out:
1951 up_read(¤t->mm->mmap_sem);
1952 return ret;
1953 }
1954
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)1955 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1956 struct kvm_memory_slot *dont)
1957 {
1958 }
1959
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)1960 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1961 unsigned long npages)
1962 {
1963 return 0;
1964 }
1965
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1966 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1967 {
1968 }
1969
kvm_arch_flush_shadow_all(struct kvm * kvm)1970 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1971 {
1972 kvm_free_stage2_pgd(kvm);
1973 }
1974
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1975 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1976 struct kvm_memory_slot *slot)
1977 {
1978 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1979 phys_addr_t size = slot->npages << PAGE_SHIFT;
1980
1981 spin_lock(&kvm->mmu_lock);
1982 unmap_stage2_range(kvm, gpa, size);
1983 spin_unlock(&kvm->mmu_lock);
1984 }
1985
1986 /*
1987 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1988 *
1989 * Main problems:
1990 * - S/W ops are local to a CPU (not broadcast)
1991 * - We have line migration behind our back (speculation)
1992 * - System caches don't support S/W at all (damn!)
1993 *
1994 * In the face of the above, the best we can do is to try and convert
1995 * S/W ops to VA ops. Because the guest is not allowed to infer the
1996 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1997 * which is a rather good thing for us.
1998 *
1999 * Also, it is only used when turning caches on/off ("The expected
2000 * usage of the cache maintenance instructions that operate by set/way
2001 * is associated with the cache maintenance instructions associated
2002 * with the powerdown and powerup of caches, if this is required by
2003 * the implementation.").
2004 *
2005 * We use the following policy:
2006 *
2007 * - If we trap a S/W operation, we enable VM trapping to detect
2008 * caches being turned on/off, and do a full clean.
2009 *
2010 * - We flush the caches on both caches being turned on and off.
2011 *
2012 * - Once the caches are enabled, we stop trapping VM ops.
2013 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2014 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2015 {
2016 unsigned long hcr = vcpu_get_hcr(vcpu);
2017
2018 /*
2019 * If this is the first time we do a S/W operation
2020 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2021 * VM trapping.
2022 *
2023 * Otherwise, rely on the VM trapping to wait for the MMU +
2024 * Caches to be turned off. At that point, we'll be able to
2025 * clean the caches again.
2026 */
2027 if (!(hcr & HCR_TVM)) {
2028 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2029 vcpu_has_cache_enabled(vcpu));
2030 stage2_flush_vm(vcpu->kvm);
2031 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2032 }
2033 }
2034
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2035 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2036 {
2037 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2038
2039 /*
2040 * If switching the MMU+caches on, need to invalidate the caches.
2041 * If switching it off, need to clean the caches.
2042 * Clean + invalidate does the trick always.
2043 */
2044 if (now_enabled != was_enabled)
2045 stage2_flush_vm(vcpu->kvm);
2046
2047 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2048 if (now_enabled)
2049 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2050
2051 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2052 }
2053