• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34 
35 #include "trace.h"
36 
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41 
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45 
46 #define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48 
49 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
51 
memslot_is_logging(struct kvm_memory_slot * memslot)52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56 
57 /**
58  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59  * @kvm:	pointer to kvm structure.
60  *
61  * Interface to HYP function to flush all VM TLB entries
62  */
kvm_flush_remote_tlbs(struct kvm * kvm)63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72 
73 /*
74  * D-Cache management functions. They take the page table entries by
75  * value, as they are flushing the cache using the kernel mapping (or
76  * kmap on 32bit).
77  */
kvm_flush_dcache_pte(pte_t pte)78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80 	__kvm_flush_dcache_pte(pte);
81 }
82 
kvm_flush_dcache_pmd(pmd_t pmd)83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85 	__kvm_flush_dcache_pmd(pmd);
86 }
87 
kvm_flush_dcache_pud(pud_t pud)88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90 	__kvm_flush_dcache_pud(pud);
91 }
92 
kvm_is_device_pfn(unsigned long pfn)93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95 	return !pfn_valid(pfn);
96 }
97 
98 /**
99  * stage2_dissolve_pmd() - clear and flush huge PMD entry
100  * @kvm:	pointer to kvm structure.
101  * @addr:	IPA
102  * @pmd:	pmd pointer for IPA
103  *
104  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105  * pages in the range dirty.
106  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109 	if (!pmd_thp_or_huge(*pmd))
110 		return;
111 
112 	pmd_clear(pmd);
113 	kvm_tlb_flush_vmid_ipa(kvm, addr);
114 	put_page(virt_to_page(pmd));
115 }
116 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118 				  int min, int max)
119 {
120 	void *page;
121 
122 	BUG_ON(max > KVM_NR_MEM_OBJS);
123 	if (cache->nobjs >= min)
124 		return 0;
125 	while (cache->nobjs < max) {
126 		page = (void *)__get_free_page(PGALLOC_GFP);
127 		if (!page)
128 			return -ENOMEM;
129 		cache->objects[cache->nobjs++] = page;
130 	}
131 	return 0;
132 }
133 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136 	while (mc->nobjs)
137 		free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142 	void *p;
143 
144 	BUG_ON(!mc || !mc->nobjs);
145 	p = mc->objects[--mc->nobjs];
146 	return p;
147 }
148 
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151 	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 	stage2_pgd_clear(pgd);
153 	kvm_tlb_flush_vmid_ipa(kvm, addr);
154 	stage2_pud_free(pud_table);
155 	put_page(virt_to_page(pgd));
156 }
157 
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 	VM_BUG_ON(stage2_pud_huge(*pud));
162 	stage2_pud_clear(pud);
163 	kvm_tlb_flush_vmid_ipa(kvm, addr);
164 	stage2_pmd_free(pmd_table);
165 	put_page(virt_to_page(pud));
166 }
167 
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
171 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
172 	pmd_clear(pmd);
173 	kvm_tlb_flush_vmid_ipa(kvm, addr);
174 	pte_free_kernel(NULL, pte_table);
175 	put_page(virt_to_page(pmd));
176 }
177 
178 /*
179  * Unmapping vs dcache management:
180  *
181  * If a guest maps certain memory pages as uncached, all writes will
182  * bypass the data cache and go directly to RAM.  However, the CPUs
183  * can still speculate reads (not writes) and fill cache lines with
184  * data.
185  *
186  * Those cache lines will be *clean* cache lines though, so a
187  * clean+invalidate operation is equivalent to an invalidate
188  * operation, because no cache lines are marked dirty.
189  *
190  * Those clean cache lines could be filled prior to an uncached write
191  * by the guest, and the cache coherent IO subsystem would therefore
192  * end up writing old data to disk.
193  *
194  * This is why right after unmapping a page/section and invalidating
195  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196  * the IO subsystem will never hit in the cache.
197  */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199 		       phys_addr_t addr, phys_addr_t end)
200 {
201 	phys_addr_t start_addr = addr;
202 	pte_t *pte, *start_pte;
203 
204 	start_pte = pte = pte_offset_kernel(pmd, addr);
205 	do {
206 		if (!pte_none(*pte)) {
207 			pte_t old_pte = *pte;
208 
209 			kvm_set_pte(pte, __pte(0));
210 			kvm_tlb_flush_vmid_ipa(kvm, addr);
211 
212 			/* No need to invalidate the cache for device mappings */
213 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214 				kvm_flush_dcache_pte(old_pte);
215 
216 			put_page(virt_to_page(pte));
217 		}
218 	} while (pte++, addr += PAGE_SIZE, addr != end);
219 
220 	if (stage2_pte_table_empty(start_pte))
221 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223 
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225 		       phys_addr_t addr, phys_addr_t end)
226 {
227 	phys_addr_t next, start_addr = addr;
228 	pmd_t *pmd, *start_pmd;
229 
230 	start_pmd = pmd = stage2_pmd_offset(pud, addr);
231 	do {
232 		next = stage2_pmd_addr_end(addr, end);
233 		if (!pmd_none(*pmd)) {
234 			if (pmd_thp_or_huge(*pmd)) {
235 				pmd_t old_pmd = *pmd;
236 
237 				pmd_clear(pmd);
238 				kvm_tlb_flush_vmid_ipa(kvm, addr);
239 
240 				kvm_flush_dcache_pmd(old_pmd);
241 
242 				put_page(virt_to_page(pmd));
243 			} else {
244 				unmap_stage2_ptes(kvm, pmd, addr, next);
245 			}
246 		}
247 	} while (pmd++, addr = next, addr != end);
248 
249 	if (stage2_pmd_table_empty(start_pmd))
250 		clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252 
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254 		       phys_addr_t addr, phys_addr_t end)
255 {
256 	phys_addr_t next, start_addr = addr;
257 	pud_t *pud, *start_pud;
258 
259 	start_pud = pud = stage2_pud_offset(pgd, addr);
260 	do {
261 		next = stage2_pud_addr_end(addr, end);
262 		if (!stage2_pud_none(*pud)) {
263 			if (stage2_pud_huge(*pud)) {
264 				pud_t old_pud = *pud;
265 
266 				stage2_pud_clear(pud);
267 				kvm_tlb_flush_vmid_ipa(kvm, addr);
268 				kvm_flush_dcache_pud(old_pud);
269 				put_page(virt_to_page(pud));
270 			} else {
271 				unmap_stage2_pmds(kvm, pud, addr, next);
272 			}
273 		}
274 	} while (pud++, addr = next, addr != end);
275 
276 	if (stage2_pud_table_empty(start_pud))
277 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279 
280 /**
281  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282  * @kvm:   The VM pointer
283  * @start: The intermediate physical base address of the range to unmap
284  * @size:  The size of the area to unmap
285  *
286  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
287  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288  * destroying the VM), otherwise another faulting VCPU may come in and mess
289  * with things behind our backs.
290  */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293 	pgd_t *pgd;
294 	phys_addr_t addr = start, end = start + size;
295 	phys_addr_t next;
296 
297 	assert_spin_locked(&kvm->mmu_lock);
298 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
299 	do {
300 		/*
301 		 * Make sure the page table is still active, as another thread
302 		 * could have possibly freed the page table, while we released
303 		 * the lock.
304 		 */
305 		if (!READ_ONCE(kvm->arch.pgd))
306 			break;
307 		next = stage2_pgd_addr_end(addr, end);
308 		if (!stage2_pgd_none(*pgd))
309 			unmap_stage2_puds(kvm, pgd, addr, next);
310 		/*
311 		 * If the range is too large, release the kvm->mmu_lock
312 		 * to prevent starvation and lockup detector warnings.
313 		 */
314 		if (next != end)
315 			cond_resched_lock(&kvm->mmu_lock);
316 	} while (pgd++, addr = next, addr != end);
317 }
318 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)319 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
320 			      phys_addr_t addr, phys_addr_t end)
321 {
322 	pte_t *pte;
323 
324 	pte = pte_offset_kernel(pmd, addr);
325 	do {
326 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
327 			kvm_flush_dcache_pte(*pte);
328 	} while (pte++, addr += PAGE_SIZE, addr != end);
329 }
330 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)331 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
332 			      phys_addr_t addr, phys_addr_t end)
333 {
334 	pmd_t *pmd;
335 	phys_addr_t next;
336 
337 	pmd = stage2_pmd_offset(pud, addr);
338 	do {
339 		next = stage2_pmd_addr_end(addr, end);
340 		if (!pmd_none(*pmd)) {
341 			if (pmd_thp_or_huge(*pmd))
342 				kvm_flush_dcache_pmd(*pmd);
343 			else
344 				stage2_flush_ptes(kvm, pmd, addr, next);
345 		}
346 	} while (pmd++, addr = next, addr != end);
347 }
348 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)349 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
350 			      phys_addr_t addr, phys_addr_t end)
351 {
352 	pud_t *pud;
353 	phys_addr_t next;
354 
355 	pud = stage2_pud_offset(pgd, addr);
356 	do {
357 		next = stage2_pud_addr_end(addr, end);
358 		if (!stage2_pud_none(*pud)) {
359 			if (stage2_pud_huge(*pud))
360 				kvm_flush_dcache_pud(*pud);
361 			else
362 				stage2_flush_pmds(kvm, pud, addr, next);
363 		}
364 	} while (pud++, addr = next, addr != end);
365 }
366 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)367 static void stage2_flush_memslot(struct kvm *kvm,
368 				 struct kvm_memory_slot *memslot)
369 {
370 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
371 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
372 	phys_addr_t next;
373 	pgd_t *pgd;
374 
375 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
376 	do {
377 		next = stage2_pgd_addr_end(addr, end);
378 		if (!stage2_pgd_none(*pgd))
379 			stage2_flush_puds(kvm, pgd, addr, next);
380 	} while (pgd++, addr = next, addr != end);
381 }
382 
383 /**
384  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
385  * @kvm: The struct kvm pointer
386  *
387  * Go through the stage 2 page tables and invalidate any cache lines
388  * backing memory already mapped to the VM.
389  */
stage2_flush_vm(struct kvm * kvm)390 static void stage2_flush_vm(struct kvm *kvm)
391 {
392 	struct kvm_memslots *slots;
393 	struct kvm_memory_slot *memslot;
394 	int idx;
395 
396 	idx = srcu_read_lock(&kvm->srcu);
397 	spin_lock(&kvm->mmu_lock);
398 
399 	slots = kvm_memslots(kvm);
400 	kvm_for_each_memslot(memslot, slots)
401 		stage2_flush_memslot(kvm, memslot);
402 
403 	spin_unlock(&kvm->mmu_lock);
404 	srcu_read_unlock(&kvm->srcu, idx);
405 }
406 
clear_hyp_pgd_entry(pgd_t * pgd)407 static void clear_hyp_pgd_entry(pgd_t *pgd)
408 {
409 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
410 	pgd_clear(pgd);
411 	pud_free(NULL, pud_table);
412 	put_page(virt_to_page(pgd));
413 }
414 
clear_hyp_pud_entry(pud_t * pud)415 static void clear_hyp_pud_entry(pud_t *pud)
416 {
417 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
418 	VM_BUG_ON(pud_huge(*pud));
419 	pud_clear(pud);
420 	pmd_free(NULL, pmd_table);
421 	put_page(virt_to_page(pud));
422 }
423 
clear_hyp_pmd_entry(pmd_t * pmd)424 static void clear_hyp_pmd_entry(pmd_t *pmd)
425 {
426 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
427 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
428 	pmd_clear(pmd);
429 	pte_free_kernel(NULL, pte_table);
430 	put_page(virt_to_page(pmd));
431 }
432 
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)433 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
434 {
435 	pte_t *pte, *start_pte;
436 
437 	start_pte = pte = pte_offset_kernel(pmd, addr);
438 	do {
439 		if (!pte_none(*pte)) {
440 			kvm_set_pte(pte, __pte(0));
441 			put_page(virt_to_page(pte));
442 		}
443 	} while (pte++, addr += PAGE_SIZE, addr != end);
444 
445 	if (hyp_pte_table_empty(start_pte))
446 		clear_hyp_pmd_entry(pmd);
447 }
448 
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)449 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
450 {
451 	phys_addr_t next;
452 	pmd_t *pmd, *start_pmd;
453 
454 	start_pmd = pmd = pmd_offset(pud, addr);
455 	do {
456 		next = pmd_addr_end(addr, end);
457 		/* Hyp doesn't use huge pmds */
458 		if (!pmd_none(*pmd))
459 			unmap_hyp_ptes(pmd, addr, next);
460 	} while (pmd++, addr = next, addr != end);
461 
462 	if (hyp_pmd_table_empty(start_pmd))
463 		clear_hyp_pud_entry(pud);
464 }
465 
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)466 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
467 {
468 	phys_addr_t next;
469 	pud_t *pud, *start_pud;
470 
471 	start_pud = pud = pud_offset(pgd, addr);
472 	do {
473 		next = pud_addr_end(addr, end);
474 		/* Hyp doesn't use huge puds */
475 		if (!pud_none(*pud))
476 			unmap_hyp_pmds(pud, addr, next);
477 	} while (pud++, addr = next, addr != end);
478 
479 	if (hyp_pud_table_empty(start_pud))
480 		clear_hyp_pgd_entry(pgd);
481 }
482 
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)483 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
484 {
485 	pgd_t *pgd;
486 	phys_addr_t addr = start, end = start + size;
487 	phys_addr_t next;
488 
489 	/*
490 	 * We don't unmap anything from HYP, except at the hyp tear down.
491 	 * Hence, we don't have to invalidate the TLBs here.
492 	 */
493 	pgd = pgdp + pgd_index(addr);
494 	do {
495 		next = pgd_addr_end(addr, end);
496 		if (!pgd_none(*pgd))
497 			unmap_hyp_puds(pgd, addr, next);
498 	} while (pgd++, addr = next, addr != end);
499 }
500 
501 /**
502  * free_hyp_pgds - free Hyp-mode page tables
503  *
504  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
505  * therefore contains either mappings in the kernel memory area (above
506  * PAGE_OFFSET), or device mappings in the vmalloc range (from
507  * VMALLOC_START to VMALLOC_END).
508  *
509  * boot_hyp_pgd should only map two pages for the init code.
510  */
free_hyp_pgds(void)511 void free_hyp_pgds(void)
512 {
513 	mutex_lock(&kvm_hyp_pgd_mutex);
514 
515 	if (boot_hyp_pgd) {
516 		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
517 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
518 		boot_hyp_pgd = NULL;
519 	}
520 
521 	if (hyp_pgd) {
522 		unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
523 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
524 				(uintptr_t)high_memory - PAGE_OFFSET);
525 		unmap_hyp_range(hyp_pgd, kern_hyp_va(VMALLOC_START),
526 				VMALLOC_END - VMALLOC_START);
527 
528 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
529 		hyp_pgd = NULL;
530 	}
531 	if (merged_hyp_pgd) {
532 		clear_page(merged_hyp_pgd);
533 		free_page((unsigned long)merged_hyp_pgd);
534 		merged_hyp_pgd = NULL;
535 	}
536 
537 	mutex_unlock(&kvm_hyp_pgd_mutex);
538 }
539 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)540 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
541 				    unsigned long end, unsigned long pfn,
542 				    pgprot_t prot)
543 {
544 	pte_t *pte;
545 	unsigned long addr;
546 
547 	addr = start;
548 	do {
549 		pte = pte_offset_kernel(pmd, addr);
550 		kvm_set_pte(pte, pfn_pte(pfn, prot));
551 		get_page(virt_to_page(pte));
552 		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
553 		pfn++;
554 	} while (addr += PAGE_SIZE, addr != end);
555 }
556 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)557 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
558 				   unsigned long end, unsigned long pfn,
559 				   pgprot_t prot)
560 {
561 	pmd_t *pmd;
562 	pte_t *pte;
563 	unsigned long addr, next;
564 
565 	addr = start;
566 	do {
567 		pmd = pmd_offset(pud, addr);
568 
569 		BUG_ON(pmd_sect(*pmd));
570 
571 		if (pmd_none(*pmd)) {
572 			pte = pte_alloc_one_kernel(NULL, addr);
573 			if (!pte) {
574 				kvm_err("Cannot allocate Hyp pte\n");
575 				return -ENOMEM;
576 			}
577 			pmd_populate_kernel(NULL, pmd, pte);
578 			get_page(virt_to_page(pmd));
579 			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
580 		}
581 
582 		next = pmd_addr_end(addr, end);
583 
584 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
585 		pfn += (next - addr) >> PAGE_SHIFT;
586 	} while (addr = next, addr != end);
587 
588 	return 0;
589 }
590 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)591 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
592 				   unsigned long end, unsigned long pfn,
593 				   pgprot_t prot)
594 {
595 	pud_t *pud;
596 	pmd_t *pmd;
597 	unsigned long addr, next;
598 	int ret;
599 
600 	addr = start;
601 	do {
602 		pud = pud_offset(pgd, addr);
603 
604 		if (pud_none_or_clear_bad(pud)) {
605 			pmd = pmd_alloc_one(NULL, addr);
606 			if (!pmd) {
607 				kvm_err("Cannot allocate Hyp pmd\n");
608 				return -ENOMEM;
609 			}
610 			pud_populate(NULL, pud, pmd);
611 			get_page(virt_to_page(pud));
612 			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
613 		}
614 
615 		next = pud_addr_end(addr, end);
616 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
617 		if (ret)
618 			return ret;
619 		pfn += (next - addr) >> PAGE_SHIFT;
620 	} while (addr = next, addr != end);
621 
622 	return 0;
623 }
624 
__create_hyp_mappings(pgd_t * pgdp,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)625 static int __create_hyp_mappings(pgd_t *pgdp,
626 				 unsigned long start, unsigned long end,
627 				 unsigned long pfn, pgprot_t prot)
628 {
629 	pgd_t *pgd;
630 	pud_t *pud;
631 	unsigned long addr, next;
632 	int err = 0;
633 
634 	mutex_lock(&kvm_hyp_pgd_mutex);
635 	addr = start & PAGE_MASK;
636 	end = PAGE_ALIGN(end);
637 	do {
638 		pgd = pgdp + pgd_index(addr);
639 
640 		if (pgd_none(*pgd)) {
641 			pud = pud_alloc_one(NULL, addr);
642 			if (!pud) {
643 				kvm_err("Cannot allocate Hyp pud\n");
644 				err = -ENOMEM;
645 				goto out;
646 			}
647 			pgd_populate(NULL, pgd, pud);
648 			get_page(virt_to_page(pgd));
649 			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
650 		}
651 
652 		next = pgd_addr_end(addr, end);
653 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
654 		if (err)
655 			goto out;
656 		pfn += (next - addr) >> PAGE_SHIFT;
657 	} while (addr = next, addr != end);
658 out:
659 	mutex_unlock(&kvm_hyp_pgd_mutex);
660 	return err;
661 }
662 
kvm_kaddr_to_phys(void * kaddr)663 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
664 {
665 	if (!is_vmalloc_addr(kaddr)) {
666 		BUG_ON(!virt_addr_valid(kaddr));
667 		return __pa(kaddr);
668 	} else {
669 		return page_to_phys(vmalloc_to_page(kaddr)) +
670 		       offset_in_page(kaddr);
671 	}
672 }
673 
674 /**
675  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
676  * @from:	The virtual kernel start address of the range
677  * @to:		The virtual kernel end address of the range (exclusive)
678  * @prot:	The protection to be applied to this range
679  *
680  * The same virtual address as the kernel virtual address is also used
681  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
682  * physical pages.
683  */
create_hyp_mappings(void * from,void * to,pgprot_t prot)684 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
685 {
686 	phys_addr_t phys_addr;
687 	unsigned long virt_addr;
688 	unsigned long start = kern_hyp_va((unsigned long)from);
689 	unsigned long end = kern_hyp_va((unsigned long)to);
690 
691 	if (is_kernel_in_hyp_mode())
692 		return 0;
693 
694 	start = start & PAGE_MASK;
695 	end = PAGE_ALIGN(end);
696 
697 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
698 		int err;
699 
700 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
701 		err = __create_hyp_mappings(hyp_pgd, virt_addr,
702 					    virt_addr + PAGE_SIZE,
703 					    __phys_to_pfn(phys_addr),
704 					    prot);
705 		if (err)
706 			return err;
707 	}
708 
709 	return 0;
710 }
711 
712 /**
713  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
714  * @from:	The kernel start VA of the range
715  * @to:		The kernel end VA of the range (exclusive)
716  * @phys_addr:	The physical start address which gets mapped
717  *
718  * The resulting HYP VA is the same as the kernel VA, modulo
719  * HYP_PAGE_OFFSET.
720  */
create_hyp_io_mappings(void * from,void * to,phys_addr_t phys_addr)721 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
722 {
723 	unsigned long start = kern_hyp_va((unsigned long)from);
724 	unsigned long end = kern_hyp_va((unsigned long)to);
725 
726 	if (is_kernel_in_hyp_mode())
727 		return 0;
728 
729 	/* Check for a valid kernel IO mapping */
730 	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
731 		return -EINVAL;
732 
733 	return __create_hyp_mappings(hyp_pgd, start, end,
734 				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
735 }
736 
737 /**
738  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
739  * @kvm:	The KVM struct pointer for the VM.
740  *
741  * Allocates only the stage-2 HW PGD level table(s) (can support either full
742  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
743  * allocated pages.
744  *
745  * Note we don't need locking here as this is only called when the VM is
746  * created, which can only be done once.
747  */
kvm_alloc_stage2_pgd(struct kvm * kvm)748 int kvm_alloc_stage2_pgd(struct kvm *kvm)
749 {
750 	pgd_t *pgd;
751 
752 	if (kvm->arch.pgd != NULL) {
753 		kvm_err("kvm_arch already initialized?\n");
754 		return -EINVAL;
755 	}
756 
757 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
758 	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
759 	if (!pgd)
760 		return -ENOMEM;
761 
762 	kvm->arch.pgd = pgd;
763 	return 0;
764 }
765 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)766 static void stage2_unmap_memslot(struct kvm *kvm,
767 				 struct kvm_memory_slot *memslot)
768 {
769 	hva_t hva = memslot->userspace_addr;
770 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
771 	phys_addr_t size = PAGE_SIZE * memslot->npages;
772 	hva_t reg_end = hva + size;
773 
774 	/*
775 	 * A memory region could potentially cover multiple VMAs, and any holes
776 	 * between them, so iterate over all of them to find out if we should
777 	 * unmap any of them.
778 	 *
779 	 *     +--------------------------------------------+
780 	 * +---------------+----------------+   +----------------+
781 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
782 	 * +---------------+----------------+   +----------------+
783 	 *     |               memory region                |
784 	 *     +--------------------------------------------+
785 	 */
786 	do {
787 		struct vm_area_struct *vma = find_vma(current->mm, hva);
788 		hva_t vm_start, vm_end;
789 
790 		if (!vma || vma->vm_start >= reg_end)
791 			break;
792 
793 		/*
794 		 * Take the intersection of this VMA with the memory region
795 		 */
796 		vm_start = max(hva, vma->vm_start);
797 		vm_end = min(reg_end, vma->vm_end);
798 
799 		if (!(vma->vm_flags & VM_PFNMAP)) {
800 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
801 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
802 		}
803 		hva = vm_end;
804 	} while (hva < reg_end);
805 }
806 
807 /**
808  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
809  * @kvm: The struct kvm pointer
810  *
811  * Go through the memregions and unmap any reguler RAM
812  * backing memory already mapped to the VM.
813  */
stage2_unmap_vm(struct kvm * kvm)814 void stage2_unmap_vm(struct kvm *kvm)
815 {
816 	struct kvm_memslots *slots;
817 	struct kvm_memory_slot *memslot;
818 	int idx;
819 
820 	idx = srcu_read_lock(&kvm->srcu);
821 	down_read(&current->mm->mmap_sem);
822 	spin_lock(&kvm->mmu_lock);
823 
824 	slots = kvm_memslots(kvm);
825 	kvm_for_each_memslot(memslot, slots)
826 		stage2_unmap_memslot(kvm, memslot);
827 
828 	spin_unlock(&kvm->mmu_lock);
829 	up_read(&current->mm->mmap_sem);
830 	srcu_read_unlock(&kvm->srcu, idx);
831 }
832 
833 /**
834  * kvm_free_stage2_pgd - free all stage-2 tables
835  * @kvm:	The KVM struct pointer for the VM.
836  *
837  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
838  * underlying level-2 and level-3 tables before freeing the actual level-1 table
839  * and setting the struct pointer to NULL.
840  */
kvm_free_stage2_pgd(struct kvm * kvm)841 void kvm_free_stage2_pgd(struct kvm *kvm)
842 {
843 	void *pgd = NULL;
844 
845 	spin_lock(&kvm->mmu_lock);
846 	if (kvm->arch.pgd) {
847 		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
848 		pgd = READ_ONCE(kvm->arch.pgd);
849 		kvm->arch.pgd = NULL;
850 	}
851 	spin_unlock(&kvm->mmu_lock);
852 
853 	/* Free the HW pgd, one page at a time */
854 	if (pgd)
855 		free_pages_exact(pgd, S2_PGD_SIZE);
856 }
857 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)858 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859 			     phys_addr_t addr)
860 {
861 	pgd_t *pgd;
862 	pud_t *pud;
863 
864 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
865 	if (WARN_ON(stage2_pgd_none(*pgd))) {
866 		if (!cache)
867 			return NULL;
868 		pud = mmu_memory_cache_alloc(cache);
869 		stage2_pgd_populate(pgd, pud);
870 		get_page(virt_to_page(pgd));
871 	}
872 
873 	return stage2_pud_offset(pgd, addr);
874 }
875 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)876 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
877 			     phys_addr_t addr)
878 {
879 	pud_t *pud;
880 	pmd_t *pmd;
881 
882 	pud = stage2_get_pud(kvm, cache, addr);
883 	if (!pud)
884 		return NULL;
885 
886 	if (stage2_pud_none(*pud)) {
887 		if (!cache)
888 			return NULL;
889 		pmd = mmu_memory_cache_alloc(cache);
890 		stage2_pud_populate(pud, pmd);
891 		get_page(virt_to_page(pud));
892 	}
893 
894 	return stage2_pmd_offset(pud, addr);
895 }
896 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)897 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
898 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
899 {
900 	pmd_t *pmd, old_pmd;
901 
902 	pmd = stage2_get_pmd(kvm, cache, addr);
903 	VM_BUG_ON(!pmd);
904 
905 	old_pmd = *pmd;
906 	if (pmd_present(old_pmd)) {
907 		/*
908 		 * Multiple vcpus faulting on the same PMD entry, can
909 		 * lead to them sequentially updating the PMD with the
910 		 * same value. Following the break-before-make
911 		 * (pmd_clear() followed by tlb_flush()) process can
912 		 * hinder forward progress due to refaults generated
913 		 * on missing translations.
914 		 *
915 		 * Skip updating the page table if the entry is
916 		 * unchanged.
917 		 */
918 		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
919 			return 0;
920 
921 		/*
922 		 * Mapping in huge pages should only happen through a
923 		 * fault.  If a page is merged into a transparent huge
924 		 * page, the individual subpages of that huge page
925 		 * should be unmapped through MMU notifiers before we
926 		 * get here.
927 		 *
928 		 * Merging of CompoundPages is not supported; they
929 		 * should become splitting first, unmapped, merged,
930 		 * and mapped back in on-demand.
931 		 */
932 		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
933 
934 		pmd_clear(pmd);
935 		kvm_tlb_flush_vmid_ipa(kvm, addr);
936 	} else {
937 		get_page(virt_to_page(pmd));
938 	}
939 
940 	kvm_set_pmd(pmd, *new_pmd);
941 	return 0;
942 }
943 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)944 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
945 			  phys_addr_t addr, const pte_t *new_pte,
946 			  unsigned long flags)
947 {
948 	pmd_t *pmd;
949 	pte_t *pte, old_pte;
950 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
951 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
952 
953 	VM_BUG_ON(logging_active && !cache);
954 
955 	/* Create stage-2 page table mapping - Levels 0 and 1 */
956 	pmd = stage2_get_pmd(kvm, cache, addr);
957 	if (!pmd) {
958 		/*
959 		 * Ignore calls from kvm_set_spte_hva for unallocated
960 		 * address ranges.
961 		 */
962 		return 0;
963 	}
964 
965 	/*
966 	 * While dirty page logging - dissolve huge PMD, then continue on to
967 	 * allocate page.
968 	 */
969 	if (logging_active)
970 		stage2_dissolve_pmd(kvm, addr, pmd);
971 
972 	/* Create stage-2 page mappings - Level 2 */
973 	if (pmd_none(*pmd)) {
974 		if (!cache)
975 			return 0; /* ignore calls from kvm_set_spte_hva */
976 		pte = mmu_memory_cache_alloc(cache);
977 		pmd_populate_kernel(NULL, pmd, pte);
978 		get_page(virt_to_page(pmd));
979 	}
980 
981 	pte = pte_offset_kernel(pmd, addr);
982 
983 	if (iomap && pte_present(*pte))
984 		return -EFAULT;
985 
986 	/* Create 2nd stage page table mapping - Level 3 */
987 	old_pte = *pte;
988 	if (pte_present(old_pte)) {
989 		/* Skip page table update if there is no change */
990 		if (pte_val(old_pte) == pte_val(*new_pte))
991 			return 0;
992 
993 		kvm_set_pte(pte, __pte(0));
994 		kvm_tlb_flush_vmid_ipa(kvm, addr);
995 	} else {
996 		get_page(virt_to_page(pte));
997 	}
998 
999 	kvm_set_pte(pte, *new_pte);
1000 	return 0;
1001 }
1002 
1003 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1004 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1005 {
1006 	if (pte_young(*pte)) {
1007 		*pte = pte_mkold(*pte);
1008 		return 1;
1009 	}
1010 	return 0;
1011 }
1012 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1013 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1014 {
1015 	return __ptep_test_and_clear_young(pte);
1016 }
1017 #endif
1018 
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1019 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1020 {
1021 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1022 }
1023 
1024 /**
1025  * kvm_phys_addr_ioremap - map a device range to guest IPA
1026  *
1027  * @kvm:	The KVM pointer
1028  * @guest_ipa:	The IPA at which to insert the mapping
1029  * @pa:		The physical address of the device
1030  * @size:	The size of the mapping
1031  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1032 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1033 			  phys_addr_t pa, unsigned long size, bool writable)
1034 {
1035 	phys_addr_t addr, end;
1036 	int ret = 0;
1037 	unsigned long pfn;
1038 	struct kvm_mmu_memory_cache cache = { 0, };
1039 
1040 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1041 	pfn = __phys_to_pfn(pa);
1042 
1043 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1044 		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1045 
1046 		if (writable)
1047 			pte = kvm_s2pte_mkwrite(pte);
1048 
1049 		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1050 						KVM_NR_MEM_OBJS);
1051 		if (ret)
1052 			goto out;
1053 		spin_lock(&kvm->mmu_lock);
1054 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1055 						KVM_S2PTE_FLAG_IS_IOMAP);
1056 		spin_unlock(&kvm->mmu_lock);
1057 		if (ret)
1058 			goto out;
1059 
1060 		pfn++;
1061 	}
1062 
1063 out:
1064 	mmu_free_memory_cache(&cache);
1065 	return ret;
1066 }
1067 
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1068 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1069 {
1070 	kvm_pfn_t pfn = *pfnp;
1071 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1072 	struct page *page = pfn_to_page(pfn);
1073 
1074 	/*
1075 	 * PageTransCompoungMap() returns true for THP and
1076 	 * hugetlbfs. Make sure the adjustment is done only for THP
1077 	 * pages.
1078 	 */
1079 	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1080 		unsigned long mask;
1081 		/*
1082 		 * The address we faulted on is backed by a transparent huge
1083 		 * page.  However, because we map the compound huge page and
1084 		 * not the individual tail page, we need to transfer the
1085 		 * refcount to the head page.  We have to be careful that the
1086 		 * THP doesn't start to split while we are adjusting the
1087 		 * refcounts.
1088 		 *
1089 		 * We are sure this doesn't happen, because mmu_notifier_retry
1090 		 * was successful and we are holding the mmu_lock, so if this
1091 		 * THP is trying to split, it will be blocked in the mmu
1092 		 * notifier before touching any of the pages, specifically
1093 		 * before being able to call __split_huge_page_refcount().
1094 		 *
1095 		 * We can therefore safely transfer the refcount from PG_tail
1096 		 * to PG_head and switch the pfn from a tail page to the head
1097 		 * page accordingly.
1098 		 */
1099 		mask = PTRS_PER_PMD - 1;
1100 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1101 		if (pfn & mask) {
1102 			*ipap &= PMD_MASK;
1103 			kvm_release_pfn_clean(pfn);
1104 			pfn &= ~mask;
1105 			kvm_get_pfn(pfn);
1106 			*pfnp = pfn;
1107 		}
1108 
1109 		return true;
1110 	}
1111 
1112 	return false;
1113 }
1114 
kvm_is_write_fault(struct kvm_vcpu * vcpu)1115 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1116 {
1117 	if (kvm_vcpu_trap_is_iabt(vcpu))
1118 		return false;
1119 
1120 	return kvm_vcpu_dabt_iswrite(vcpu);
1121 }
1122 
1123 /**
1124  * stage2_wp_ptes - write protect PMD range
1125  * @pmd:	pointer to pmd entry
1126  * @addr:	range start address
1127  * @end:	range end address
1128  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1129 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1130 {
1131 	pte_t *pte;
1132 
1133 	pte = pte_offset_kernel(pmd, addr);
1134 	do {
1135 		if (!pte_none(*pte)) {
1136 			if (!kvm_s2pte_readonly(pte))
1137 				kvm_set_s2pte_readonly(pte);
1138 		}
1139 	} while (pte++, addr += PAGE_SIZE, addr != end);
1140 }
1141 
1142 /**
1143  * stage2_wp_pmds - write protect PUD range
1144  * @pud:	pointer to pud entry
1145  * @addr:	range start address
1146  * @end:	range end address
1147  */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1148 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1149 {
1150 	pmd_t *pmd;
1151 	phys_addr_t next;
1152 
1153 	pmd = stage2_pmd_offset(pud, addr);
1154 
1155 	do {
1156 		next = stage2_pmd_addr_end(addr, end);
1157 		if (!pmd_none(*pmd)) {
1158 			if (pmd_thp_or_huge(*pmd)) {
1159 				if (!kvm_s2pmd_readonly(pmd))
1160 					kvm_set_s2pmd_readonly(pmd);
1161 			} else {
1162 				stage2_wp_ptes(pmd, addr, next);
1163 			}
1164 		}
1165 	} while (pmd++, addr = next, addr != end);
1166 }
1167 
1168 /**
1169   * stage2_wp_puds - write protect PGD range
1170   * @pgd:	pointer to pgd entry
1171   * @addr:	range start address
1172   * @end:	range end address
1173   *
1174   * Process PUD entries, for a huge PUD we cause a panic.
1175   */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1176 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1177 {
1178 	pud_t *pud;
1179 	phys_addr_t next;
1180 
1181 	pud = stage2_pud_offset(pgd, addr);
1182 	do {
1183 		next = stage2_pud_addr_end(addr, end);
1184 		if (!stage2_pud_none(*pud)) {
1185 			/* TODO:PUD not supported, revisit later if supported */
1186 			BUG_ON(stage2_pud_huge(*pud));
1187 			stage2_wp_pmds(pud, addr, next);
1188 		}
1189 	} while (pud++, addr = next, addr != end);
1190 }
1191 
1192 /**
1193  * stage2_wp_range() - write protect stage2 memory region range
1194  * @kvm:	The KVM pointer
1195  * @addr:	Start address of range
1196  * @end:	End address of range
1197  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1198 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1199 {
1200 	pgd_t *pgd;
1201 	phys_addr_t next;
1202 
1203 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1204 	do {
1205 		/*
1206 		 * Release kvm_mmu_lock periodically if the memory region is
1207 		 * large. Otherwise, we may see kernel panics with
1208 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1209 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1210 		 * will also starve other vCPUs. We have to also make sure
1211 		 * that the page tables are not freed while we released
1212 		 * the lock.
1213 		 */
1214 		cond_resched_lock(&kvm->mmu_lock);
1215 		if (!READ_ONCE(kvm->arch.pgd))
1216 			break;
1217 		next = stage2_pgd_addr_end(addr, end);
1218 		if (stage2_pgd_present(*pgd))
1219 			stage2_wp_puds(pgd, addr, next);
1220 	} while (pgd++, addr = next, addr != end);
1221 }
1222 
1223 /**
1224  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1225  * @kvm:	The KVM pointer
1226  * @slot:	The memory slot to write protect
1227  *
1228  * Called to start logging dirty pages after memory region
1229  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1230  * all present PMD and PTEs are write protected in the memory region.
1231  * Afterwards read of dirty page log can be called.
1232  *
1233  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1234  * serializing operations for VM memory regions.
1235  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1236 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1237 {
1238 	struct kvm_memslots *slots = kvm_memslots(kvm);
1239 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1240 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1241 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1242 
1243 	spin_lock(&kvm->mmu_lock);
1244 	stage2_wp_range(kvm, start, end);
1245 	spin_unlock(&kvm->mmu_lock);
1246 	kvm_flush_remote_tlbs(kvm);
1247 }
1248 
1249 /**
1250  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1251  * @kvm:	The KVM pointer
1252  * @slot:	The memory slot associated with mask
1253  * @gfn_offset:	The gfn offset in memory slot
1254  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1255  *		slot to be write protected
1256  *
1257  * Walks bits set in mask write protects the associated pte's. Caller must
1258  * acquire kvm_mmu_lock.
1259  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1260 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1261 		struct kvm_memory_slot *slot,
1262 		gfn_t gfn_offset, unsigned long mask)
1263 {
1264 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1265 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1266 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1267 
1268 	stage2_wp_range(kvm, start, end);
1269 }
1270 
1271 /*
1272  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273  * dirty pages.
1274  *
1275  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276  * enable dirty logging for them.
1277  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1278 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1279 		struct kvm_memory_slot *slot,
1280 		gfn_t gfn_offset, unsigned long mask)
1281 {
1282 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1283 }
1284 
coherent_cache_guest_page(struct kvm_vcpu * vcpu,kvm_pfn_t pfn,unsigned long size)1285 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1286 				      unsigned long size)
1287 {
1288 	__coherent_cache_guest_page(vcpu, pfn, size);
1289 }
1290 
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1291 static void kvm_send_hwpoison_signal(unsigned long address,
1292 				     struct vm_area_struct *vma)
1293 {
1294 	siginfo_t info;
1295 
1296 	info.si_signo   = SIGBUS;
1297 	info.si_errno   = 0;
1298 	info.si_code    = BUS_MCEERR_AR;
1299 	info.si_addr    = (void __user *)address;
1300 
1301 	if (is_vm_hugetlb_page(vma))
1302 		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1303 	else
1304 		info.si_addr_lsb = PAGE_SHIFT;
1305 
1306 	send_sig_info(SIGBUS, &info, current);
1307 }
1308 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1309 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1310 			  struct kvm_memory_slot *memslot, unsigned long hva,
1311 			  unsigned long fault_status)
1312 {
1313 	int ret;
1314 	bool write_fault, writable, hugetlb = false, force_pte = false;
1315 	unsigned long mmu_seq;
1316 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1317 	struct kvm *kvm = vcpu->kvm;
1318 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1319 	struct vm_area_struct *vma;
1320 	kvm_pfn_t pfn;
1321 	pgprot_t mem_type = PAGE_S2;
1322 	bool logging_active = memslot_is_logging(memslot);
1323 	unsigned long flags = 0;
1324 
1325 	write_fault = kvm_is_write_fault(vcpu);
1326 	if (fault_status == FSC_PERM && !write_fault) {
1327 		kvm_err("Unexpected L2 read permission error\n");
1328 		return -EFAULT;
1329 	}
1330 
1331 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1332 	down_read(&current->mm->mmap_sem);
1333 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1334 	if (unlikely(!vma)) {
1335 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1336 		up_read(&current->mm->mmap_sem);
1337 		return -EFAULT;
1338 	}
1339 
1340 	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1341 		hugetlb = true;
1342 		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1343 	} else {
1344 		/*
1345 		 * Pages belonging to memslots that don't have the same
1346 		 * alignment for userspace and IPA cannot be mapped using
1347 		 * block descriptors even if the pages belong to a THP for
1348 		 * the process, because the stage-2 block descriptor will
1349 		 * cover more than a single THP and we loose atomicity for
1350 		 * unmapping, updates, and splits of the THP or other pages
1351 		 * in the stage-2 block range.
1352 		 */
1353 		if ((memslot->userspace_addr & ~PMD_MASK) !=
1354 		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1355 			force_pte = true;
1356 	}
1357 	up_read(&current->mm->mmap_sem);
1358 
1359 	/* We need minimum second+third level pages */
1360 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1361 				     KVM_NR_MEM_OBJS);
1362 	if (ret)
1363 		return ret;
1364 
1365 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1366 	/*
1367 	 * Ensure the read of mmu_notifier_seq happens before we call
1368 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1369 	 * the page we just got a reference to gets unmapped before we have a
1370 	 * chance to grab the mmu_lock, which ensure that if the page gets
1371 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1372 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1373 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1374 	 */
1375 	smp_rmb();
1376 
1377 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1378 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1379 		kvm_send_hwpoison_signal(hva, vma);
1380 		return 0;
1381 	}
1382 	if (is_error_noslot_pfn(pfn))
1383 		return -EFAULT;
1384 
1385 	if (kvm_is_device_pfn(pfn)) {
1386 		mem_type = PAGE_S2_DEVICE;
1387 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1388 	} else if (logging_active) {
1389 		/*
1390 		 * Faults on pages in a memslot with logging enabled
1391 		 * should not be mapped with huge pages (it introduces churn
1392 		 * and performance degradation), so force a pte mapping.
1393 		 */
1394 		force_pte = true;
1395 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1396 
1397 		/*
1398 		 * Only actually map the page as writable if this was a write
1399 		 * fault.
1400 		 */
1401 		if (!write_fault)
1402 			writable = false;
1403 	}
1404 
1405 	spin_lock(&kvm->mmu_lock);
1406 	if (mmu_notifier_retry(kvm, mmu_seq))
1407 		goto out_unlock;
1408 
1409 	if (!hugetlb && !force_pte)
1410 		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1411 
1412 	if (hugetlb) {
1413 		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1414 		new_pmd = pmd_mkhuge(new_pmd);
1415 		if (writable) {
1416 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1417 			kvm_set_pfn_dirty(pfn);
1418 		}
1419 		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1420 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1421 	} else {
1422 		pte_t new_pte = pfn_pte(pfn, mem_type);
1423 
1424 		if (writable) {
1425 			new_pte = kvm_s2pte_mkwrite(new_pte);
1426 			kvm_set_pfn_dirty(pfn);
1427 			mark_page_dirty(kvm, gfn);
1428 		}
1429 		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1430 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1431 	}
1432 
1433 out_unlock:
1434 	spin_unlock(&kvm->mmu_lock);
1435 	kvm_set_pfn_accessed(pfn);
1436 	kvm_release_pfn_clean(pfn);
1437 	return ret;
1438 }
1439 
1440 /*
1441  * Resolve the access fault by making the page young again.
1442  * Note that because the faulting entry is guaranteed not to be
1443  * cached in the TLB, we don't need to invalidate anything.
1444  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1445  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1446  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1447 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1448 {
1449 	pmd_t *pmd;
1450 	pte_t *pte;
1451 	kvm_pfn_t pfn;
1452 	bool pfn_valid = false;
1453 
1454 	trace_kvm_access_fault(fault_ipa);
1455 
1456 	spin_lock(&vcpu->kvm->mmu_lock);
1457 
1458 	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1459 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1460 		goto out;
1461 
1462 	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1463 		*pmd = pmd_mkyoung(*pmd);
1464 		pfn = pmd_pfn(*pmd);
1465 		pfn_valid = true;
1466 		goto out;
1467 	}
1468 
1469 	pte = pte_offset_kernel(pmd, fault_ipa);
1470 	if (pte_none(*pte))		/* Nothing there either */
1471 		goto out;
1472 
1473 	*pte = pte_mkyoung(*pte);	/* Just a page... */
1474 	pfn = pte_pfn(*pte);
1475 	pfn_valid = true;
1476 out:
1477 	spin_unlock(&vcpu->kvm->mmu_lock);
1478 	if (pfn_valid)
1479 		kvm_set_pfn_accessed(pfn);
1480 }
1481 
1482 /**
1483  * kvm_handle_guest_abort - handles all 2nd stage aborts
1484  * @vcpu:	the VCPU pointer
1485  * @run:	the kvm_run structure
1486  *
1487  * Any abort that gets to the host is almost guaranteed to be caused by a
1488  * missing second stage translation table entry, which can mean that either the
1489  * guest simply needs more memory and we must allocate an appropriate page or it
1490  * can mean that the guest tried to access I/O memory, which is emulated by user
1491  * space. The distinction is based on the IPA causing the fault and whether this
1492  * memory region has been registered as standard RAM by user space.
1493  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1494 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1495 {
1496 	unsigned long fault_status;
1497 	phys_addr_t fault_ipa;
1498 	struct kvm_memory_slot *memslot;
1499 	unsigned long hva;
1500 	bool is_iabt, write_fault, writable;
1501 	gfn_t gfn;
1502 	int ret, idx;
1503 
1504 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1505 
1506 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1507 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1508 
1509 	/* Synchronous External Abort? */
1510 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1511 		/*
1512 		 * For RAS the host kernel may handle this abort.
1513 		 * There is no need to pass the error into the guest.
1514 		 */
1515 		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1516 			return 1;
1517 
1518 		if (unlikely(!is_iabt)) {
1519 			kvm_inject_vabt(vcpu);
1520 			return 1;
1521 		}
1522 	}
1523 
1524 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1525 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1526 
1527 	/* Check the stage-2 fault is trans. fault or write fault */
1528 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1529 	    fault_status != FSC_ACCESS) {
1530 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1531 			kvm_vcpu_trap_get_class(vcpu),
1532 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1533 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1534 		return -EFAULT;
1535 	}
1536 
1537 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1538 
1539 	gfn = fault_ipa >> PAGE_SHIFT;
1540 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1541 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1542 	write_fault = kvm_is_write_fault(vcpu);
1543 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1544 		if (is_iabt) {
1545 			/* Prefetch Abort on I/O address */
1546 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1547 			ret = 1;
1548 			goto out_unlock;
1549 		}
1550 
1551 		/*
1552 		 * Check for a cache maintenance operation. Since we
1553 		 * ended-up here, we know it is outside of any memory
1554 		 * slot. But we can't find out if that is for a device,
1555 		 * or if the guest is just being stupid. The only thing
1556 		 * we know for sure is that this range cannot be cached.
1557 		 *
1558 		 * So let's assume that the guest is just being
1559 		 * cautious, and skip the instruction.
1560 		 */
1561 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1562 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1563 			ret = 1;
1564 			goto out_unlock;
1565 		}
1566 
1567 		/*
1568 		 * The IPA is reported as [MAX:12], so we need to
1569 		 * complement it with the bottom 12 bits from the
1570 		 * faulting VA. This is always 12 bits, irrespective
1571 		 * of the page size.
1572 		 */
1573 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1574 		ret = io_mem_abort(vcpu, run, fault_ipa);
1575 		goto out_unlock;
1576 	}
1577 
1578 	/* Userspace should not be able to register out-of-bounds IPAs */
1579 	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1580 
1581 	if (fault_status == FSC_ACCESS) {
1582 		handle_access_fault(vcpu, fault_ipa);
1583 		ret = 1;
1584 		goto out_unlock;
1585 	}
1586 
1587 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1588 	if (ret == 0)
1589 		ret = 1;
1590 out_unlock:
1591 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1592 	return ret;
1593 }
1594 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1595 static int handle_hva_to_gpa(struct kvm *kvm,
1596 			     unsigned long start,
1597 			     unsigned long end,
1598 			     int (*handler)(struct kvm *kvm,
1599 					    gpa_t gpa, u64 size,
1600 					    void *data),
1601 			     void *data)
1602 {
1603 	struct kvm_memslots *slots;
1604 	struct kvm_memory_slot *memslot;
1605 	int ret = 0;
1606 
1607 	slots = kvm_memslots(kvm);
1608 
1609 	/* we only care about the pages that the guest sees */
1610 	kvm_for_each_memslot(memslot, slots) {
1611 		unsigned long hva_start, hva_end;
1612 		gfn_t gpa;
1613 
1614 		hva_start = max(start, memslot->userspace_addr);
1615 		hva_end = min(end, memslot->userspace_addr +
1616 					(memslot->npages << PAGE_SHIFT));
1617 		if (hva_start >= hva_end)
1618 			continue;
1619 
1620 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1621 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1622 	}
1623 
1624 	return ret;
1625 }
1626 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1627 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1628 {
1629 	unmap_stage2_range(kvm, gpa, size);
1630 	return 0;
1631 }
1632 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1633 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1634 {
1635 	unsigned long end = hva + PAGE_SIZE;
1636 
1637 	if (!kvm->arch.pgd)
1638 		return 0;
1639 
1640 	trace_kvm_unmap_hva(hva);
1641 	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1642 	return 0;
1643 }
1644 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1645 int kvm_unmap_hva_range(struct kvm *kvm,
1646 			unsigned long start, unsigned long end)
1647 {
1648 	if (!kvm->arch.pgd)
1649 		return 0;
1650 
1651 	trace_kvm_unmap_hva_range(start, end);
1652 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1653 	return 0;
1654 }
1655 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1656 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1657 {
1658 	pte_t *pte = (pte_t *)data;
1659 
1660 	WARN_ON(size != PAGE_SIZE);
1661 	/*
1662 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1663 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1664 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1665 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1666 	 * through this calling path.
1667 	 */
1668 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1669 	return 0;
1670 }
1671 
1672 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1673 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1674 {
1675 	unsigned long end = hva + PAGE_SIZE;
1676 	pte_t stage2_pte;
1677 
1678 	if (!kvm->arch.pgd)
1679 		return;
1680 
1681 	trace_kvm_set_spte_hva(hva);
1682 	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1683 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1684 }
1685 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1686 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1687 {
1688 	pmd_t *pmd;
1689 	pte_t *pte;
1690 
1691 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1692 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1693 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1694 		return 0;
1695 
1696 	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
1697 		return stage2_pmdp_test_and_clear_young(pmd);
1698 
1699 	pte = pte_offset_kernel(pmd, gpa);
1700 	if (pte_none(*pte))
1701 		return 0;
1702 
1703 	return stage2_ptep_test_and_clear_young(pte);
1704 }
1705 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1706 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1707 {
1708 	pmd_t *pmd;
1709 	pte_t *pte;
1710 
1711 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1712 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1713 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1714 		return 0;
1715 
1716 	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1717 		return pmd_young(*pmd);
1718 
1719 	pte = pte_offset_kernel(pmd, gpa);
1720 	if (!pte_none(*pte))		/* Just a page... */
1721 		return pte_young(*pte);
1722 
1723 	return 0;
1724 }
1725 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1726 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1727 {
1728 	if (!kvm->arch.pgd)
1729 		return 0;
1730 	trace_kvm_age_hva(start, end);
1731 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1732 }
1733 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1734 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1735 {
1736 	if (!kvm->arch.pgd)
1737 		return 0;
1738 	trace_kvm_test_age_hva(hva);
1739 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1740 				 kvm_test_age_hva_handler, NULL);
1741 }
1742 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1743 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1744 {
1745 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1746 }
1747 
kvm_mmu_get_httbr(void)1748 phys_addr_t kvm_mmu_get_httbr(void)
1749 {
1750 	if (__kvm_cpu_uses_extended_idmap())
1751 		return virt_to_phys(merged_hyp_pgd);
1752 	else
1753 		return virt_to_phys(hyp_pgd);
1754 }
1755 
kvm_get_idmap_vector(void)1756 phys_addr_t kvm_get_idmap_vector(void)
1757 {
1758 	return hyp_idmap_vector;
1759 }
1760 
kvm_map_idmap_text(pgd_t * pgd)1761 static int kvm_map_idmap_text(pgd_t *pgd)
1762 {
1763 	int err;
1764 
1765 	/* Create the idmap in the boot page tables */
1766 	err = 	__create_hyp_mappings(pgd,
1767 				      hyp_idmap_start, hyp_idmap_end,
1768 				      __phys_to_pfn(hyp_idmap_start),
1769 				      PAGE_HYP_EXEC);
1770 	if (err)
1771 		kvm_err("Failed to idmap %lx-%lx\n",
1772 			hyp_idmap_start, hyp_idmap_end);
1773 
1774 	return err;
1775 }
1776 
kvm_mmu_init(void)1777 int kvm_mmu_init(void)
1778 {
1779 	int err;
1780 
1781 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1782 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1783 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1784 
1785 	/*
1786 	 * We rely on the linker script to ensure at build time that the HYP
1787 	 * init code does not cross a page boundary.
1788 	 */
1789 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1790 
1791 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1792 	kvm_debug("HYP VA range: %lx:%lx\n",
1793 		  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1794 
1795 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1796 	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
1797 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1798 		/*
1799 		 * The idmap page is intersecting with the VA space,
1800 		 * it is not safe to continue further.
1801 		 */
1802 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1803 		err = -EINVAL;
1804 		goto out;
1805 	}
1806 
1807 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1808 	if (!hyp_pgd) {
1809 		kvm_err("Hyp mode PGD not allocated\n");
1810 		err = -ENOMEM;
1811 		goto out;
1812 	}
1813 
1814 	if (__kvm_cpu_uses_extended_idmap()) {
1815 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1816 							 hyp_pgd_order);
1817 		if (!boot_hyp_pgd) {
1818 			kvm_err("Hyp boot PGD not allocated\n");
1819 			err = -ENOMEM;
1820 			goto out;
1821 		}
1822 
1823 		err = kvm_map_idmap_text(boot_hyp_pgd);
1824 		if (err)
1825 			goto out;
1826 
1827 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1828 		if (!merged_hyp_pgd) {
1829 			kvm_err("Failed to allocate extra HYP pgd\n");
1830 			goto out;
1831 		}
1832 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1833 				    hyp_idmap_start);
1834 	} else {
1835 		err = kvm_map_idmap_text(hyp_pgd);
1836 		if (err)
1837 			goto out;
1838 	}
1839 
1840 	return 0;
1841 out:
1842 	free_hyp_pgds();
1843 	return err;
1844 }
1845 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1846 void kvm_arch_commit_memory_region(struct kvm *kvm,
1847 				   const struct kvm_userspace_memory_region *mem,
1848 				   const struct kvm_memory_slot *old,
1849 				   const struct kvm_memory_slot *new,
1850 				   enum kvm_mr_change change)
1851 {
1852 	/*
1853 	 * At this point memslot has been committed and there is an
1854 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1855 	 * memory slot is write protected.
1856 	 */
1857 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1858 		kvm_mmu_wp_memory_region(kvm, mem->slot);
1859 }
1860 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1861 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1862 				   struct kvm_memory_slot *memslot,
1863 				   const struct kvm_userspace_memory_region *mem,
1864 				   enum kvm_mr_change change)
1865 {
1866 	hva_t hva = mem->userspace_addr;
1867 	hva_t reg_end = hva + mem->memory_size;
1868 	bool writable = !(mem->flags & KVM_MEM_READONLY);
1869 	int ret = 0;
1870 
1871 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1872 			change != KVM_MR_FLAGS_ONLY)
1873 		return 0;
1874 
1875 	/*
1876 	 * Prevent userspace from creating a memory region outside of the IPA
1877 	 * space addressable by the KVM guest IPA space.
1878 	 */
1879 	if (memslot->base_gfn + memslot->npages >=
1880 	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
1881 		return -EFAULT;
1882 
1883 	down_read(&current->mm->mmap_sem);
1884 	/*
1885 	 * A memory region could potentially cover multiple VMAs, and any holes
1886 	 * between them, so iterate over all of them to find out if we can map
1887 	 * any of them right now.
1888 	 *
1889 	 *     +--------------------------------------------+
1890 	 * +---------------+----------------+   +----------------+
1891 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1892 	 * +---------------+----------------+   +----------------+
1893 	 *     |               memory region                |
1894 	 *     +--------------------------------------------+
1895 	 */
1896 	do {
1897 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1898 		hva_t vm_start, vm_end;
1899 
1900 		if (!vma || vma->vm_start >= reg_end)
1901 			break;
1902 
1903 		/*
1904 		 * Mapping a read-only VMA is only allowed if the
1905 		 * memory region is configured as read-only.
1906 		 */
1907 		if (writable && !(vma->vm_flags & VM_WRITE)) {
1908 			ret = -EPERM;
1909 			break;
1910 		}
1911 
1912 		/*
1913 		 * Take the intersection of this VMA with the memory region
1914 		 */
1915 		vm_start = max(hva, vma->vm_start);
1916 		vm_end = min(reg_end, vma->vm_end);
1917 
1918 		if (vma->vm_flags & VM_PFNMAP) {
1919 			gpa_t gpa = mem->guest_phys_addr +
1920 				    (vm_start - mem->userspace_addr);
1921 			phys_addr_t pa;
1922 
1923 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1924 			pa += vm_start - vma->vm_start;
1925 
1926 			/* IO region dirty page logging not allowed */
1927 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1928 				ret = -EINVAL;
1929 				goto out;
1930 			}
1931 
1932 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1933 						    vm_end - vm_start,
1934 						    writable);
1935 			if (ret)
1936 				break;
1937 		}
1938 		hva = vm_end;
1939 	} while (hva < reg_end);
1940 
1941 	if (change == KVM_MR_FLAGS_ONLY)
1942 		goto out;
1943 
1944 	spin_lock(&kvm->mmu_lock);
1945 	if (ret)
1946 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1947 	else
1948 		stage2_flush_memslot(kvm, memslot);
1949 	spin_unlock(&kvm->mmu_lock);
1950 out:
1951 	up_read(&current->mm->mmap_sem);
1952 	return ret;
1953 }
1954 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)1955 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1956 			   struct kvm_memory_slot *dont)
1957 {
1958 }
1959 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)1960 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1961 			    unsigned long npages)
1962 {
1963 	return 0;
1964 }
1965 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1966 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1967 {
1968 }
1969 
kvm_arch_flush_shadow_all(struct kvm * kvm)1970 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1971 {
1972 	kvm_free_stage2_pgd(kvm);
1973 }
1974 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1975 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1976 				   struct kvm_memory_slot *slot)
1977 {
1978 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1979 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1980 
1981 	spin_lock(&kvm->mmu_lock);
1982 	unmap_stage2_range(kvm, gpa, size);
1983 	spin_unlock(&kvm->mmu_lock);
1984 }
1985 
1986 /*
1987  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1988  *
1989  * Main problems:
1990  * - S/W ops are local to a CPU (not broadcast)
1991  * - We have line migration behind our back (speculation)
1992  * - System caches don't support S/W at all (damn!)
1993  *
1994  * In the face of the above, the best we can do is to try and convert
1995  * S/W ops to VA ops. Because the guest is not allowed to infer the
1996  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1997  * which is a rather good thing for us.
1998  *
1999  * Also, it is only used when turning caches on/off ("The expected
2000  * usage of the cache maintenance instructions that operate by set/way
2001  * is associated with the cache maintenance instructions associated
2002  * with the powerdown and powerup of caches, if this is required by
2003  * the implementation.").
2004  *
2005  * We use the following policy:
2006  *
2007  * - If we trap a S/W operation, we enable VM trapping to detect
2008  *   caches being turned on/off, and do a full clean.
2009  *
2010  * - We flush the caches on both caches being turned on and off.
2011  *
2012  * - Once the caches are enabled, we stop trapping VM ops.
2013  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2014 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2015 {
2016 	unsigned long hcr = vcpu_get_hcr(vcpu);
2017 
2018 	/*
2019 	 * If this is the first time we do a S/W operation
2020 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2021 	 * VM trapping.
2022 	 *
2023 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2024 	 * Caches to be turned off. At that point, we'll be able to
2025 	 * clean the caches again.
2026 	 */
2027 	if (!(hcr & HCR_TVM)) {
2028 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2029 					vcpu_has_cache_enabled(vcpu));
2030 		stage2_flush_vm(vcpu->kvm);
2031 		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
2032 	}
2033 }
2034 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2035 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2036 {
2037 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2038 
2039 	/*
2040 	 * If switching the MMU+caches on, need to invalidate the caches.
2041 	 * If switching it off, need to clean the caches.
2042 	 * Clean + invalidate does the trick always.
2043 	 */
2044 	if (now_enabled != was_enabled)
2045 		stage2_flush_vm(vcpu->kvm);
2046 
2047 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2048 	if (now_enabled)
2049 		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2050 
2051 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2052 }
2053