1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)44 u8 can_dlc2len(u8 can_dlc)
45 {
46 return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)62 u8 can_len2dlc(u8 len)
63 {
64 if (unlikely(len > 64))
65 return 0xF;
66
67 return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73
74 /*
75 * Bit-timing calculation derived from:
76 *
77 * Code based on LinCAN sources and H8S2638 project
78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79 * Copyright 2005 Stanislav Marek
80 * email: pisa@cmp.felk.cvut.cz
81 *
82 * Calculates proper bit-timing parameters for a specified bit-rate
83 * and sample-point, which can then be used to set the bit-timing
84 * registers of the CAN controller. You can find more information
85 * in the header file linux/can/netlink.h.
86 */
can_update_spt(const struct can_bittiming_const * btc,int sampl_pt,int tseg,int * tseg1,int * tseg2)87 static int can_update_spt(const struct can_bittiming_const *btc,
88 int sampl_pt, int tseg, int *tseg1, int *tseg2)
89 {
90 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91 if (*tseg2 < btc->tseg2_min)
92 *tseg2 = btc->tseg2_min;
93 if (*tseg2 > btc->tseg2_max)
94 *tseg2 = btc->tseg2_max;
95 *tseg1 = tseg - *tseg2;
96 if (*tseg1 > btc->tseg1_max) {
97 *tseg1 = btc->tseg1_max;
98 *tseg2 = tseg - *tseg1;
99 }
100 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101 }
102
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
104 const struct can_bittiming_const *btc)
105 {
106 struct can_priv *priv = netdev_priv(dev);
107 long best_error = 1000000000, error = 0;
108 int best_tseg = 0, best_brp = 0, brp = 0;
109 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110 int spt_error = 1000, spt = 0, sampl_pt;
111 long rate;
112 u64 v64;
113
114 /* Use CiA recommended sample points */
115 if (bt->sample_point) {
116 sampl_pt = bt->sample_point;
117 } else {
118 if (bt->bitrate > 800000)
119 sampl_pt = 750;
120 else if (bt->bitrate > 500000)
121 sampl_pt = 800;
122 else
123 sampl_pt = 875;
124 }
125
126 /* tseg even = round down, odd = round up */
127 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
128 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
129 tsegall = 1 + tseg / 2;
130 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
131 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
132 /* chose brp step which is possible in system */
133 brp = (brp / btc->brp_inc) * btc->brp_inc;
134 if ((brp < btc->brp_min) || (brp > btc->brp_max))
135 continue;
136 rate = priv->clock.freq / (brp * tsegall);
137 error = bt->bitrate - rate;
138 /* tseg brp biterror */
139 if (error < 0)
140 error = -error;
141 if (error > best_error)
142 continue;
143 best_error = error;
144 if (error == 0) {
145 spt = can_update_spt(btc, sampl_pt, tseg / 2,
146 &tseg1, &tseg2);
147 error = sampl_pt - spt;
148 if (error < 0)
149 error = -error;
150 if (error > spt_error)
151 continue;
152 spt_error = error;
153 }
154 best_tseg = tseg / 2;
155 best_brp = brp;
156 if (error == 0)
157 break;
158 }
159
160 if (best_error) {
161 /* Error in one-tenth of a percent */
162 error = (best_error * 1000) / bt->bitrate;
163 if (error > CAN_CALC_MAX_ERROR) {
164 netdev_err(dev,
165 "bitrate error %ld.%ld%% too high\n",
166 error / 10, error % 10);
167 return -EDOM;
168 } else {
169 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170 error / 10, error % 10);
171 }
172 }
173
174 /* real sample point */
175 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176 &tseg1, &tseg2);
177
178 v64 = (u64)best_brp * 1000000000UL;
179 do_div(v64, priv->clock.freq);
180 bt->tq = (u32)v64;
181 bt->prop_seg = tseg1 / 2;
182 bt->phase_seg1 = tseg1 - bt->prop_seg;
183 bt->phase_seg2 = tseg2;
184
185 /* check for sjw user settings */
186 if (!bt->sjw || !btc->sjw_max)
187 bt->sjw = 1;
188 else {
189 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190 if (bt->sjw > btc->sjw_max)
191 bt->sjw = btc->sjw_max;
192 /* bt->sjw must not be higher than tseg2 */
193 if (tseg2 < bt->sjw)
194 bt->sjw = tseg2;
195 }
196
197 bt->brp = best_brp;
198 /* real bit-rate */
199 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201 return 0;
202 }
203 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205 const struct can_bittiming_const *btc)
206 {
207 netdev_err(dev, "bit-timing calculation not available\n");
208 return -EINVAL;
209 }
210 #endif /* CONFIG_CAN_CALC_BITTIMING */
211
212 /*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219 const struct can_bittiming_const *btc)
220 {
221 struct can_priv *priv = netdev_priv(dev);
222 int tseg1, alltseg;
223 u64 brp64;
224
225 tseg1 = bt->prop_seg + bt->phase_seg1;
226 if (!bt->sjw)
227 bt->sjw = 1;
228 if (bt->sjw > btc->sjw_max ||
229 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231 return -ERANGE;
232
233 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234 if (btc->brp_inc > 1)
235 do_div(brp64, btc->brp_inc);
236 brp64 += 500000000UL - 1;
237 do_div(brp64, 1000000000UL); /* the practicable BRP */
238 if (btc->brp_inc > 1)
239 brp64 *= btc->brp_inc;
240 bt->brp = (u32)brp64;
241
242 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243 return -EINVAL;
244
245 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249 return 0;
250 }
251
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253 const struct can_bittiming_const *btc)
254 {
255 int err;
256
257 /* Check if the CAN device has bit-timing parameters */
258 if (!btc)
259 return -EOPNOTSUPP;
260
261 /*
262 * Depending on the given can_bittiming parameter structure the CAN
263 * timing parameters are calculated based on the provided bitrate OR
264 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265 * provided directly which are then checked and fixed up.
266 */
267 if (!bt->tq && bt->bitrate)
268 err = can_calc_bittiming(dev, bt, btc);
269 else if (bt->tq && !bt->bitrate)
270 err = can_fixup_bittiming(dev, bt, btc);
271 else
272 err = -EINVAL;
273
274 return err;
275 }
276
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)277 static void can_update_state_error_stats(struct net_device *dev,
278 enum can_state new_state)
279 {
280 struct can_priv *priv = netdev_priv(dev);
281
282 if (new_state <= priv->state)
283 return;
284
285 switch (new_state) {
286 case CAN_STATE_ERROR_WARNING:
287 priv->can_stats.error_warning++;
288 break;
289 case CAN_STATE_ERROR_PASSIVE:
290 priv->can_stats.error_passive++;
291 break;
292 case CAN_STATE_BUS_OFF:
293 priv->can_stats.bus_off++;
294 break;
295 default:
296 break;
297 }
298 }
299
can_tx_state_to_frame(struct net_device * dev,enum can_state state)300 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
301 {
302 switch (state) {
303 case CAN_STATE_ERROR_ACTIVE:
304 return CAN_ERR_CRTL_ACTIVE;
305 case CAN_STATE_ERROR_WARNING:
306 return CAN_ERR_CRTL_TX_WARNING;
307 case CAN_STATE_ERROR_PASSIVE:
308 return CAN_ERR_CRTL_TX_PASSIVE;
309 default:
310 return 0;
311 }
312 }
313
can_rx_state_to_frame(struct net_device * dev,enum can_state state)314 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
315 {
316 switch (state) {
317 case CAN_STATE_ERROR_ACTIVE:
318 return CAN_ERR_CRTL_ACTIVE;
319 case CAN_STATE_ERROR_WARNING:
320 return CAN_ERR_CRTL_RX_WARNING;
321 case CAN_STATE_ERROR_PASSIVE:
322 return CAN_ERR_CRTL_RX_PASSIVE;
323 default:
324 return 0;
325 }
326 }
327
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)328 void can_change_state(struct net_device *dev, struct can_frame *cf,
329 enum can_state tx_state, enum can_state rx_state)
330 {
331 struct can_priv *priv = netdev_priv(dev);
332 enum can_state new_state = max(tx_state, rx_state);
333
334 if (unlikely(new_state == priv->state)) {
335 netdev_warn(dev, "%s: oops, state did not change", __func__);
336 return;
337 }
338
339 netdev_dbg(dev, "New error state: %d\n", new_state);
340
341 can_update_state_error_stats(dev, new_state);
342 priv->state = new_state;
343
344 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
345 cf->can_id |= CAN_ERR_BUSOFF;
346 return;
347 }
348
349 cf->can_id |= CAN_ERR_CRTL;
350 cf->data[1] |= tx_state >= rx_state ?
351 can_tx_state_to_frame(dev, tx_state) : 0;
352 cf->data[1] |= tx_state <= rx_state ?
353 can_rx_state_to_frame(dev, rx_state) : 0;
354 }
355 EXPORT_SYMBOL_GPL(can_change_state);
356
357 /*
358 * Local echo of CAN messages
359 *
360 * CAN network devices *should* support a local echo functionality
361 * (see Documentation/networking/can.txt). To test the handling of CAN
362 * interfaces that do not support the local echo both driver types are
363 * implemented. In the case that the driver does not support the echo
364 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
365 * to perform the echo as a fallback solution.
366 */
can_flush_echo_skb(struct net_device * dev)367 static void can_flush_echo_skb(struct net_device *dev)
368 {
369 struct can_priv *priv = netdev_priv(dev);
370 struct net_device_stats *stats = &dev->stats;
371 int i;
372
373 for (i = 0; i < priv->echo_skb_max; i++) {
374 if (priv->echo_skb[i]) {
375 kfree_skb(priv->echo_skb[i]);
376 priv->echo_skb[i] = NULL;
377 stats->tx_dropped++;
378 stats->tx_aborted_errors++;
379 }
380 }
381 }
382
383 /*
384 * Put the skb on the stack to be looped backed locally lateron
385 *
386 * The function is typically called in the start_xmit function
387 * of the device driver. The driver must protect access to
388 * priv->echo_skb, if necessary.
389 */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)390 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
391 unsigned int idx)
392 {
393 struct can_priv *priv = netdev_priv(dev);
394
395 BUG_ON(idx >= priv->echo_skb_max);
396
397 /* check flag whether this packet has to be looped back */
398 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
399 (skb->protocol != htons(ETH_P_CAN) &&
400 skb->protocol != htons(ETH_P_CANFD))) {
401 kfree_skb(skb);
402 return;
403 }
404
405 if (!priv->echo_skb[idx]) {
406
407 skb = can_create_echo_skb(skb);
408 if (!skb)
409 return;
410
411 /* make settings for echo to reduce code in irq context */
412 skb->pkt_type = PACKET_BROADCAST;
413 skb->ip_summed = CHECKSUM_UNNECESSARY;
414 skb->dev = dev;
415
416 /* save this skb for tx interrupt echo handling */
417 priv->echo_skb[idx] = skb;
418 } else {
419 /* locking problem with netif_stop_queue() ?? */
420 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
421 kfree_skb(skb);
422 }
423 }
424 EXPORT_SYMBOL_GPL(can_put_echo_skb);
425
__can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)426 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
427 {
428 struct can_priv *priv = netdev_priv(dev);
429
430 if (idx >= priv->echo_skb_max) {
431 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
432 __func__, idx, priv->echo_skb_max);
433 return NULL;
434 }
435
436 if (priv->echo_skb[idx]) {
437 /* Using "struct canfd_frame::len" for the frame
438 * length is supported on both CAN and CANFD frames.
439 */
440 struct sk_buff *skb = priv->echo_skb[idx];
441 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
442
443 /* get the real payload length for netdev statistics */
444 if (cf->can_id & CAN_RTR_FLAG)
445 *len_ptr = 0;
446 else
447 *len_ptr = cf->len;
448
449 priv->echo_skb[idx] = NULL;
450
451 return skb;
452 }
453
454 return NULL;
455 }
456
457 /*
458 * Get the skb from the stack and loop it back locally
459 *
460 * The function is typically called when the TX done interrupt
461 * is handled in the device driver. The driver must protect
462 * access to priv->echo_skb, if necessary.
463 */
can_get_echo_skb(struct net_device * dev,unsigned int idx)464 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
465 {
466 struct sk_buff *skb;
467 u8 len;
468
469 skb = __can_get_echo_skb(dev, idx, &len);
470 if (!skb)
471 return 0;
472
473 skb_get(skb);
474 if (netif_rx(skb) == NET_RX_SUCCESS)
475 dev_consume_skb_any(skb);
476 else
477 dev_kfree_skb_any(skb);
478
479 return len;
480 }
481 EXPORT_SYMBOL_GPL(can_get_echo_skb);
482
483 /*
484 * Remove the skb from the stack and free it.
485 *
486 * The function is typically called when TX failed.
487 */
can_free_echo_skb(struct net_device * dev,unsigned int idx)488 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
489 {
490 struct can_priv *priv = netdev_priv(dev);
491
492 BUG_ON(idx >= priv->echo_skb_max);
493
494 if (priv->echo_skb[idx]) {
495 dev_kfree_skb_any(priv->echo_skb[idx]);
496 priv->echo_skb[idx] = NULL;
497 }
498 }
499 EXPORT_SYMBOL_GPL(can_free_echo_skb);
500
501 /*
502 * CAN device restart for bus-off recovery
503 */
can_restart(struct net_device * dev)504 static void can_restart(struct net_device *dev)
505 {
506 struct can_priv *priv = netdev_priv(dev);
507 struct net_device_stats *stats = &dev->stats;
508 struct sk_buff *skb;
509 struct can_frame *cf;
510 int err;
511
512 BUG_ON(netif_carrier_ok(dev));
513
514 /*
515 * No synchronization needed because the device is bus-off and
516 * no messages can come in or go out.
517 */
518 can_flush_echo_skb(dev);
519
520 /* send restart message upstream */
521 skb = alloc_can_err_skb(dev, &cf);
522 if (skb == NULL) {
523 err = -ENOMEM;
524 goto restart;
525 }
526 cf->can_id |= CAN_ERR_RESTARTED;
527
528 stats->rx_packets++;
529 stats->rx_bytes += cf->can_dlc;
530
531 netif_rx_ni(skb);
532
533 restart:
534 netdev_dbg(dev, "restarted\n");
535 priv->can_stats.restarts++;
536
537 /* Now restart the device */
538 err = priv->do_set_mode(dev, CAN_MODE_START);
539
540 netif_carrier_on(dev);
541 if (err)
542 netdev_err(dev, "Error %d during restart", err);
543 }
544
can_restart_work(struct work_struct * work)545 static void can_restart_work(struct work_struct *work)
546 {
547 struct delayed_work *dwork = to_delayed_work(work);
548 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
549
550 can_restart(priv->dev);
551 }
552
can_restart_now(struct net_device * dev)553 int can_restart_now(struct net_device *dev)
554 {
555 struct can_priv *priv = netdev_priv(dev);
556
557 /*
558 * A manual restart is only permitted if automatic restart is
559 * disabled and the device is in the bus-off state
560 */
561 if (priv->restart_ms)
562 return -EINVAL;
563 if (priv->state != CAN_STATE_BUS_OFF)
564 return -EBUSY;
565
566 cancel_delayed_work_sync(&priv->restart_work);
567 can_restart(dev);
568
569 return 0;
570 }
571
572 /*
573 * CAN bus-off
574 *
575 * This functions should be called when the device goes bus-off to
576 * tell the netif layer that no more packets can be sent or received.
577 * If enabled, a timer is started to trigger bus-off recovery.
578 */
can_bus_off(struct net_device * dev)579 void can_bus_off(struct net_device *dev)
580 {
581 struct can_priv *priv = netdev_priv(dev);
582
583 netdev_dbg(dev, "bus-off\n");
584
585 netif_carrier_off(dev);
586
587 if (priv->restart_ms)
588 schedule_delayed_work(&priv->restart_work,
589 msecs_to_jiffies(priv->restart_ms));
590 }
591 EXPORT_SYMBOL_GPL(can_bus_off);
592
can_setup(struct net_device * dev)593 static void can_setup(struct net_device *dev)
594 {
595 dev->type = ARPHRD_CAN;
596 dev->mtu = CAN_MTU;
597 dev->hard_header_len = 0;
598 dev->addr_len = 0;
599 dev->tx_queue_len = 10;
600
601 /* New-style flags. */
602 dev->flags = IFF_NOARP;
603 dev->features = NETIF_F_HW_CSUM;
604 }
605
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)606 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
607 {
608 struct sk_buff *skb;
609
610 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
611 sizeof(struct can_frame));
612 if (unlikely(!skb))
613 return NULL;
614
615 skb->protocol = htons(ETH_P_CAN);
616 skb->pkt_type = PACKET_BROADCAST;
617 skb->ip_summed = CHECKSUM_UNNECESSARY;
618
619 skb_reset_mac_header(skb);
620 skb_reset_network_header(skb);
621 skb_reset_transport_header(skb);
622
623 can_skb_reserve(skb);
624 can_skb_prv(skb)->ifindex = dev->ifindex;
625 can_skb_prv(skb)->skbcnt = 0;
626
627 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
628 memset(*cf, 0, sizeof(struct can_frame));
629
630 return skb;
631 }
632 EXPORT_SYMBOL_GPL(alloc_can_skb);
633
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)634 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
635 struct canfd_frame **cfd)
636 {
637 struct sk_buff *skb;
638
639 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
640 sizeof(struct canfd_frame));
641 if (unlikely(!skb))
642 return NULL;
643
644 skb->protocol = htons(ETH_P_CANFD);
645 skb->pkt_type = PACKET_BROADCAST;
646 skb->ip_summed = CHECKSUM_UNNECESSARY;
647
648 skb_reset_mac_header(skb);
649 skb_reset_network_header(skb);
650 skb_reset_transport_header(skb);
651
652 can_skb_reserve(skb);
653 can_skb_prv(skb)->ifindex = dev->ifindex;
654 can_skb_prv(skb)->skbcnt = 0;
655
656 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
657 memset(*cfd, 0, sizeof(struct canfd_frame));
658
659 return skb;
660 }
661 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
662
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)663 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
664 {
665 struct sk_buff *skb;
666
667 skb = alloc_can_skb(dev, cf);
668 if (unlikely(!skb))
669 return NULL;
670
671 (*cf)->can_id = CAN_ERR_FLAG;
672 (*cf)->can_dlc = CAN_ERR_DLC;
673
674 return skb;
675 }
676 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
677
678 /*
679 * Allocate and setup space for the CAN network device
680 */
alloc_candev(int sizeof_priv,unsigned int echo_skb_max)681 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
682 {
683 struct net_device *dev;
684 struct can_priv *priv;
685 int size;
686
687 if (echo_skb_max)
688 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
689 echo_skb_max * sizeof(struct sk_buff *);
690 else
691 size = sizeof_priv;
692
693 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
694 if (!dev)
695 return NULL;
696
697 priv = netdev_priv(dev);
698 priv->dev = dev;
699
700 if (echo_skb_max) {
701 priv->echo_skb_max = echo_skb_max;
702 priv->echo_skb = (void *)priv +
703 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
704 }
705
706 priv->state = CAN_STATE_STOPPED;
707
708 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
709
710 return dev;
711 }
712 EXPORT_SYMBOL_GPL(alloc_candev);
713
714 /*
715 * Free space of the CAN network device
716 */
free_candev(struct net_device * dev)717 void free_candev(struct net_device *dev)
718 {
719 free_netdev(dev);
720 }
721 EXPORT_SYMBOL_GPL(free_candev);
722
723 /*
724 * changing MTU and control mode for CAN/CANFD devices
725 */
can_change_mtu(struct net_device * dev,int new_mtu)726 int can_change_mtu(struct net_device *dev, int new_mtu)
727 {
728 struct can_priv *priv = netdev_priv(dev);
729
730 /* Do not allow changing the MTU while running */
731 if (dev->flags & IFF_UP)
732 return -EBUSY;
733
734 /* allow change of MTU according to the CANFD ability of the device */
735 switch (new_mtu) {
736 case CAN_MTU:
737 /* 'CANFD-only' controllers can not switch to CAN_MTU */
738 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
739 return -EINVAL;
740
741 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
742 break;
743
744 case CANFD_MTU:
745 /* check for potential CANFD ability */
746 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
747 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
748 return -EINVAL;
749
750 priv->ctrlmode |= CAN_CTRLMODE_FD;
751 break;
752
753 default:
754 return -EINVAL;
755 }
756
757 dev->mtu = new_mtu;
758 return 0;
759 }
760 EXPORT_SYMBOL_GPL(can_change_mtu);
761
762 /*
763 * Common open function when the device gets opened.
764 *
765 * This function should be called in the open function of the device
766 * driver.
767 */
open_candev(struct net_device * dev)768 int open_candev(struct net_device *dev)
769 {
770 struct can_priv *priv = netdev_priv(dev);
771
772 if (!priv->bittiming.bitrate) {
773 netdev_err(dev, "bit-timing not yet defined\n");
774 return -EINVAL;
775 }
776
777 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
778 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
779 (!priv->data_bittiming.bitrate ||
780 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
781 netdev_err(dev, "incorrect/missing data bit-timing\n");
782 return -EINVAL;
783 }
784
785 /* Switch carrier on if device was stopped while in bus-off state */
786 if (!netif_carrier_ok(dev))
787 netif_carrier_on(dev);
788
789 return 0;
790 }
791 EXPORT_SYMBOL_GPL(open_candev);
792
793 /*
794 * Common close function for cleanup before the device gets closed.
795 *
796 * This function should be called in the close function of the device
797 * driver.
798 */
close_candev(struct net_device * dev)799 void close_candev(struct net_device *dev)
800 {
801 struct can_priv *priv = netdev_priv(dev);
802
803 cancel_delayed_work_sync(&priv->restart_work);
804 can_flush_echo_skb(dev);
805 }
806 EXPORT_SYMBOL_GPL(close_candev);
807
808 /*
809 * CAN netlink interface
810 */
811 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
812 [IFLA_CAN_STATE] = { .type = NLA_U32 },
813 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
814 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
815 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
816 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
817 [IFLA_CAN_BITTIMING_CONST]
818 = { .len = sizeof(struct can_bittiming_const) },
819 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
820 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
821 [IFLA_CAN_DATA_BITTIMING]
822 = { .len = sizeof(struct can_bittiming) },
823 [IFLA_CAN_DATA_BITTIMING_CONST]
824 = { .len = sizeof(struct can_bittiming_const) },
825 };
826
can_validate(struct nlattr * tb[],struct nlattr * data[])827 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
828 {
829 bool is_can_fd = false;
830
831 /* Make sure that valid CAN FD configurations always consist of
832 * - nominal/arbitration bittiming
833 * - data bittiming
834 * - control mode with CAN_CTRLMODE_FD set
835 */
836
837 if (!data)
838 return 0;
839
840 if (data[IFLA_CAN_CTRLMODE]) {
841 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
842
843 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
844 }
845
846 if (is_can_fd) {
847 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
848 return -EOPNOTSUPP;
849 }
850
851 if (data[IFLA_CAN_DATA_BITTIMING]) {
852 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
853 return -EOPNOTSUPP;
854 }
855
856 return 0;
857 }
858
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])859 static int can_changelink(struct net_device *dev,
860 struct nlattr *tb[], struct nlattr *data[])
861 {
862 struct can_priv *priv = netdev_priv(dev);
863 int err;
864
865 /* We need synchronization with dev->stop() */
866 ASSERT_RTNL();
867
868 if (data[IFLA_CAN_BITTIMING]) {
869 struct can_bittiming bt;
870
871 /* Do not allow changing bittiming while running */
872 if (dev->flags & IFF_UP)
873 return -EBUSY;
874 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
875 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
876 if (err)
877 return err;
878 memcpy(&priv->bittiming, &bt, sizeof(bt));
879
880 if (priv->do_set_bittiming) {
881 /* Finally, set the bit-timing registers */
882 err = priv->do_set_bittiming(dev);
883 if (err)
884 return err;
885 }
886 }
887
888 if (data[IFLA_CAN_CTRLMODE]) {
889 struct can_ctrlmode *cm;
890 u32 ctrlstatic;
891 u32 maskedflags;
892
893 /* Do not allow changing controller mode while running */
894 if (dev->flags & IFF_UP)
895 return -EBUSY;
896 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
897 ctrlstatic = priv->ctrlmode_static;
898 maskedflags = cm->flags & cm->mask;
899
900 /* check whether provided bits are allowed to be passed */
901 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
902 return -EOPNOTSUPP;
903
904 /* do not check for static fd-non-iso if 'fd' is disabled */
905 if (!(maskedflags & CAN_CTRLMODE_FD))
906 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
907
908 /* make sure static options are provided by configuration */
909 if ((maskedflags & ctrlstatic) != ctrlstatic)
910 return -EOPNOTSUPP;
911
912 /* clear bits to be modified and copy the flag values */
913 priv->ctrlmode &= ~cm->mask;
914 priv->ctrlmode |= maskedflags;
915
916 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
917 if (priv->ctrlmode & CAN_CTRLMODE_FD)
918 dev->mtu = CANFD_MTU;
919 else
920 dev->mtu = CAN_MTU;
921 }
922
923 if (data[IFLA_CAN_RESTART_MS]) {
924 /* Do not allow changing restart delay while running */
925 if (dev->flags & IFF_UP)
926 return -EBUSY;
927 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
928 }
929
930 if (data[IFLA_CAN_RESTART]) {
931 /* Do not allow a restart while not running */
932 if (!(dev->flags & IFF_UP))
933 return -EINVAL;
934 err = can_restart_now(dev);
935 if (err)
936 return err;
937 }
938
939 if (data[IFLA_CAN_DATA_BITTIMING]) {
940 struct can_bittiming dbt;
941
942 /* Do not allow changing bittiming while running */
943 if (dev->flags & IFF_UP)
944 return -EBUSY;
945 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
946 sizeof(dbt));
947 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
948 if (err)
949 return err;
950 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
951
952 if (priv->do_set_data_bittiming) {
953 /* Finally, set the bit-timing registers */
954 err = priv->do_set_data_bittiming(dev);
955 if (err)
956 return err;
957 }
958 }
959
960 return 0;
961 }
962
can_get_size(const struct net_device * dev)963 static size_t can_get_size(const struct net_device *dev)
964 {
965 struct can_priv *priv = netdev_priv(dev);
966 size_t size = 0;
967
968 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
969 size += nla_total_size(sizeof(struct can_bittiming));
970 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
971 size += nla_total_size(sizeof(struct can_bittiming_const));
972 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
973 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
974 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
975 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
976 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
977 size += nla_total_size(sizeof(struct can_berr_counter));
978 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
979 size += nla_total_size(sizeof(struct can_bittiming));
980 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
981 size += nla_total_size(sizeof(struct can_bittiming_const));
982
983 return size;
984 }
985
can_fill_info(struct sk_buff * skb,const struct net_device * dev)986 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
987 {
988 struct can_priv *priv = netdev_priv(dev);
989 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
990 struct can_berr_counter bec = { };
991 enum can_state state = priv->state;
992
993 if (priv->do_get_state)
994 priv->do_get_state(dev, &state);
995
996 if ((priv->bittiming.bitrate &&
997 nla_put(skb, IFLA_CAN_BITTIMING,
998 sizeof(priv->bittiming), &priv->bittiming)) ||
999
1000 (priv->bittiming_const &&
1001 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1002 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1003
1004 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1005 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1006 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1007 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1008
1009 (priv->do_get_berr_counter &&
1010 !priv->do_get_berr_counter(dev, &bec) &&
1011 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1012
1013 (priv->data_bittiming.bitrate &&
1014 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1015 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1016
1017 (priv->data_bittiming_const &&
1018 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1019 sizeof(*priv->data_bittiming_const),
1020 priv->data_bittiming_const)))
1021 return -EMSGSIZE;
1022
1023 return 0;
1024 }
1025
can_get_xstats_size(const struct net_device * dev)1026 static size_t can_get_xstats_size(const struct net_device *dev)
1027 {
1028 return sizeof(struct can_device_stats);
1029 }
1030
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1031 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1032 {
1033 struct can_priv *priv = netdev_priv(dev);
1034
1035 if (nla_put(skb, IFLA_INFO_XSTATS,
1036 sizeof(priv->can_stats), &priv->can_stats))
1037 goto nla_put_failure;
1038 return 0;
1039
1040 nla_put_failure:
1041 return -EMSGSIZE;
1042 }
1043
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])1044 static int can_newlink(struct net *src_net, struct net_device *dev,
1045 struct nlattr *tb[], struct nlattr *data[])
1046 {
1047 return -EOPNOTSUPP;
1048 }
1049
can_dellink(struct net_device * dev,struct list_head * head)1050 static void can_dellink(struct net_device *dev, struct list_head *head)
1051 {
1052 return;
1053 }
1054
1055 static struct rtnl_link_ops can_link_ops __read_mostly = {
1056 .kind = "can",
1057 .netns_refund = true,
1058 .maxtype = IFLA_CAN_MAX,
1059 .policy = can_policy,
1060 .setup = can_setup,
1061 .validate = can_validate,
1062 .newlink = can_newlink,
1063 .changelink = can_changelink,
1064 .dellink = can_dellink,
1065 .get_size = can_get_size,
1066 .fill_info = can_fill_info,
1067 .get_xstats_size = can_get_xstats_size,
1068 .fill_xstats = can_fill_xstats,
1069 };
1070
1071 /*
1072 * Register the CAN network device
1073 */
register_candev(struct net_device * dev)1074 int register_candev(struct net_device *dev)
1075 {
1076 dev->rtnl_link_ops = &can_link_ops;
1077 netif_carrier_off(dev);
1078
1079 return register_netdev(dev);
1080 }
1081 EXPORT_SYMBOL_GPL(register_candev);
1082
1083 /*
1084 * Unregister the CAN network device
1085 */
unregister_candev(struct net_device * dev)1086 void unregister_candev(struct net_device *dev)
1087 {
1088 unregister_netdev(dev);
1089 }
1090 EXPORT_SYMBOL_GPL(unregister_candev);
1091
1092 /*
1093 * Test if a network device is a candev based device
1094 * and return the can_priv* if so.
1095 */
safe_candev_priv(struct net_device * dev)1096 struct can_priv *safe_candev_priv(struct net_device *dev)
1097 {
1098 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1099 return NULL;
1100
1101 return netdev_priv(dev);
1102 }
1103 EXPORT_SYMBOL_GPL(safe_candev_priv);
1104
can_dev_init(void)1105 static __init int can_dev_init(void)
1106 {
1107 int err;
1108
1109 can_led_notifier_init();
1110
1111 err = rtnl_link_register(&can_link_ops);
1112 if (!err)
1113 printk(KERN_INFO MOD_DESC "\n");
1114
1115 return err;
1116 }
1117 module_init(can_dev_init);
1118
can_dev_exit(void)1119 static __exit void can_dev_exit(void)
1120 {
1121 rtnl_link_unregister(&can_link_ops);
1122
1123 can_led_notifier_exit();
1124 }
1125 module_exit(can_dev_exit);
1126
1127 MODULE_ALIAS_RTNL_LINK("can");
1128