1 /* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/netdevice.h> 23 #include <linux/if_arp.h> 24 #include <linux/workqueue.h> 25 #include <linux/can.h> 26 #include <linux/can/dev.h> 27 #include <linux/can/skb.h> 28 #include <linux/can/netlink.h> 29 #include <linux/can/led.h> 30 #include <net/rtnetlink.h> 31 32 #define MOD_DESC "CAN device driver interface" 33 34 MODULE_DESCRIPTION(MOD_DESC); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 37 38 /* CAN DLC to real data length conversion helpers */ 39 40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 41 8, 12, 16, 20, 24, 32, 48, 64}; 42 43 /* get data length from can_dlc with sanitized can_dlc */ can_dlc2len(u8 can_dlc)44 u8 can_dlc2len(u8 can_dlc) 45 { 46 return dlc2len[can_dlc & 0x0F]; 47 } 48 EXPORT_SYMBOL_GPL(can_dlc2len); 49 50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 51 9, 9, 9, 9, /* 9 - 12 */ 52 10, 10, 10, 10, /* 13 - 16 */ 53 11, 11, 11, 11, /* 17 - 20 */ 54 12, 12, 12, 12, /* 21 - 24 */ 55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 60 61 /* map the sanitized data length to an appropriate data length code */ can_len2dlc(u8 len)62 u8 can_len2dlc(u8 len) 63 { 64 if (unlikely(len > 64)) 65 return 0xF; 66 67 return len2dlc[len]; 68 } 69 EXPORT_SYMBOL_GPL(can_len2dlc); 70 71 #ifdef CONFIG_CAN_CALC_BITTIMING 72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 73 74 /* 75 * Bit-timing calculation derived from: 76 * 77 * Code based on LinCAN sources and H8S2638 project 78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 79 * Copyright 2005 Stanislav Marek 80 * email: pisa@cmp.felk.cvut.cz 81 * 82 * Calculates proper bit-timing parameters for a specified bit-rate 83 * and sample-point, which can then be used to set the bit-timing 84 * registers of the CAN controller. You can find more information 85 * in the header file linux/can/netlink.h. 86 */ can_update_spt(const struct can_bittiming_const * btc,int sampl_pt,int tseg,int * tseg1,int * tseg2)87 static int can_update_spt(const struct can_bittiming_const *btc, 88 int sampl_pt, int tseg, int *tseg1, int *tseg2) 89 { 90 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; 91 if (*tseg2 < btc->tseg2_min) 92 *tseg2 = btc->tseg2_min; 93 if (*tseg2 > btc->tseg2_max) 94 *tseg2 = btc->tseg2_max; 95 *tseg1 = tseg - *tseg2; 96 if (*tseg1 > btc->tseg1_max) { 97 *tseg1 = btc->tseg1_max; 98 *tseg2 = tseg - *tseg1; 99 } 100 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); 101 } 102 can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 104 const struct can_bittiming_const *btc) 105 { 106 struct can_priv *priv = netdev_priv(dev); 107 long best_error = 1000000000, error = 0; 108 int best_tseg = 0, best_brp = 0, brp = 0; 109 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; 110 int spt_error = 1000, spt = 0, sampl_pt; 111 long rate; 112 u64 v64; 113 114 /* Use CiA recommended sample points */ 115 if (bt->sample_point) { 116 sampl_pt = bt->sample_point; 117 } else { 118 if (bt->bitrate > 800000) 119 sampl_pt = 750; 120 else if (bt->bitrate > 500000) 121 sampl_pt = 800; 122 else 123 sampl_pt = 875; 124 } 125 126 /* tseg even = round down, odd = round up */ 127 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 128 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 129 tsegall = 1 + tseg / 2; 130 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 131 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 132 /* chose brp step which is possible in system */ 133 brp = (brp / btc->brp_inc) * btc->brp_inc; 134 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 135 continue; 136 rate = priv->clock.freq / (brp * tsegall); 137 error = bt->bitrate - rate; 138 /* tseg brp biterror */ 139 if (error < 0) 140 error = -error; 141 if (error > best_error) 142 continue; 143 best_error = error; 144 if (error == 0) { 145 spt = can_update_spt(btc, sampl_pt, tseg / 2, 146 &tseg1, &tseg2); 147 error = sampl_pt - spt; 148 if (error < 0) 149 error = -error; 150 if (error > spt_error) 151 continue; 152 spt_error = error; 153 } 154 best_tseg = tseg / 2; 155 best_brp = brp; 156 if (error == 0) 157 break; 158 } 159 160 if (best_error) { 161 /* Error in one-tenth of a percent */ 162 error = (best_error * 1000) / bt->bitrate; 163 if (error > CAN_CALC_MAX_ERROR) { 164 netdev_err(dev, 165 "bitrate error %ld.%ld%% too high\n", 166 error / 10, error % 10); 167 return -EDOM; 168 } else { 169 netdev_warn(dev, "bitrate error %ld.%ld%%\n", 170 error / 10, error % 10); 171 } 172 } 173 174 /* real sample point */ 175 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, 176 &tseg1, &tseg2); 177 178 v64 = (u64)best_brp * 1000000000UL; 179 do_div(v64, priv->clock.freq); 180 bt->tq = (u32)v64; 181 bt->prop_seg = tseg1 / 2; 182 bt->phase_seg1 = tseg1 - bt->prop_seg; 183 bt->phase_seg2 = tseg2; 184 185 /* check for sjw user settings */ 186 if (!bt->sjw || !btc->sjw_max) 187 bt->sjw = 1; 188 else { 189 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 190 if (bt->sjw > btc->sjw_max) 191 bt->sjw = btc->sjw_max; 192 /* bt->sjw must not be higher than tseg2 */ 193 if (tseg2 < bt->sjw) 194 bt->sjw = tseg2; 195 } 196 197 bt->brp = best_brp; 198 /* real bit-rate */ 199 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); 200 201 return 0; 202 } 203 #else /* !CONFIG_CAN_CALC_BITTIMING */ can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 205 const struct can_bittiming_const *btc) 206 { 207 netdev_err(dev, "bit-timing calculation not available\n"); 208 return -EINVAL; 209 } 210 #endif /* CONFIG_CAN_CALC_BITTIMING */ 211 212 /* 213 * Checks the validity of the specified bit-timing parameters prop_seg, 214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 215 * prescaler value brp. You can find more information in the header 216 * file linux/can/netlink.h. 217 */ can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 219 const struct can_bittiming_const *btc) 220 { 221 struct can_priv *priv = netdev_priv(dev); 222 int tseg1, alltseg; 223 u64 brp64; 224 225 tseg1 = bt->prop_seg + bt->phase_seg1; 226 if (!bt->sjw) 227 bt->sjw = 1; 228 if (bt->sjw > btc->sjw_max || 229 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 230 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 231 return -ERANGE; 232 233 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 234 if (btc->brp_inc > 1) 235 do_div(brp64, btc->brp_inc); 236 brp64 += 500000000UL - 1; 237 do_div(brp64, 1000000000UL); /* the practicable BRP */ 238 if (btc->brp_inc > 1) 239 brp64 *= btc->brp_inc; 240 bt->brp = (u32)brp64; 241 242 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 243 return -EINVAL; 244 245 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 246 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 247 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 248 249 return 0; 250 } 251 can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 253 const struct can_bittiming_const *btc) 254 { 255 int err; 256 257 /* Check if the CAN device has bit-timing parameters */ 258 if (!btc) 259 return -EOPNOTSUPP; 260 261 /* 262 * Depending on the given can_bittiming parameter structure the CAN 263 * timing parameters are calculated based on the provided bitrate OR 264 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 265 * provided directly which are then checked and fixed up. 266 */ 267 if (!bt->tq && bt->bitrate) 268 err = can_calc_bittiming(dev, bt, btc); 269 else if (bt->tq && !bt->bitrate) 270 err = can_fixup_bittiming(dev, bt, btc); 271 else 272 err = -EINVAL; 273 274 return err; 275 } 276 can_update_state_error_stats(struct net_device * dev,enum can_state new_state)277 static void can_update_state_error_stats(struct net_device *dev, 278 enum can_state new_state) 279 { 280 struct can_priv *priv = netdev_priv(dev); 281 282 if (new_state <= priv->state) 283 return; 284 285 switch (new_state) { 286 case CAN_STATE_ERROR_WARNING: 287 priv->can_stats.error_warning++; 288 break; 289 case CAN_STATE_ERROR_PASSIVE: 290 priv->can_stats.error_passive++; 291 break; 292 case CAN_STATE_BUS_OFF: 293 priv->can_stats.bus_off++; 294 break; 295 default: 296 break; 297 } 298 } 299 can_tx_state_to_frame(struct net_device * dev,enum can_state state)300 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 301 { 302 switch (state) { 303 case CAN_STATE_ERROR_ACTIVE: 304 return CAN_ERR_CRTL_ACTIVE; 305 case CAN_STATE_ERROR_WARNING: 306 return CAN_ERR_CRTL_TX_WARNING; 307 case CAN_STATE_ERROR_PASSIVE: 308 return CAN_ERR_CRTL_TX_PASSIVE; 309 default: 310 return 0; 311 } 312 } 313 can_rx_state_to_frame(struct net_device * dev,enum can_state state)314 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 315 { 316 switch (state) { 317 case CAN_STATE_ERROR_ACTIVE: 318 return CAN_ERR_CRTL_ACTIVE; 319 case CAN_STATE_ERROR_WARNING: 320 return CAN_ERR_CRTL_RX_WARNING; 321 case CAN_STATE_ERROR_PASSIVE: 322 return CAN_ERR_CRTL_RX_PASSIVE; 323 default: 324 return 0; 325 } 326 } 327 can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)328 void can_change_state(struct net_device *dev, struct can_frame *cf, 329 enum can_state tx_state, enum can_state rx_state) 330 { 331 struct can_priv *priv = netdev_priv(dev); 332 enum can_state new_state = max(tx_state, rx_state); 333 334 if (unlikely(new_state == priv->state)) { 335 netdev_warn(dev, "%s: oops, state did not change", __func__); 336 return; 337 } 338 339 netdev_dbg(dev, "New error state: %d\n", new_state); 340 341 can_update_state_error_stats(dev, new_state); 342 priv->state = new_state; 343 344 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 345 cf->can_id |= CAN_ERR_BUSOFF; 346 return; 347 } 348 349 cf->can_id |= CAN_ERR_CRTL; 350 cf->data[1] |= tx_state >= rx_state ? 351 can_tx_state_to_frame(dev, tx_state) : 0; 352 cf->data[1] |= tx_state <= rx_state ? 353 can_rx_state_to_frame(dev, rx_state) : 0; 354 } 355 EXPORT_SYMBOL_GPL(can_change_state); 356 357 /* 358 * Local echo of CAN messages 359 * 360 * CAN network devices *should* support a local echo functionality 361 * (see Documentation/networking/can.txt). To test the handling of CAN 362 * interfaces that do not support the local echo both driver types are 363 * implemented. In the case that the driver does not support the echo 364 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 365 * to perform the echo as a fallback solution. 366 */ can_flush_echo_skb(struct net_device * dev)367 static void can_flush_echo_skb(struct net_device *dev) 368 { 369 struct can_priv *priv = netdev_priv(dev); 370 struct net_device_stats *stats = &dev->stats; 371 int i; 372 373 for (i = 0; i < priv->echo_skb_max; i++) { 374 if (priv->echo_skb[i]) { 375 kfree_skb(priv->echo_skb[i]); 376 priv->echo_skb[i] = NULL; 377 stats->tx_dropped++; 378 stats->tx_aborted_errors++; 379 } 380 } 381 } 382 383 /* 384 * Put the skb on the stack to be looped backed locally lateron 385 * 386 * The function is typically called in the start_xmit function 387 * of the device driver. The driver must protect access to 388 * priv->echo_skb, if necessary. 389 */ can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)390 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 391 unsigned int idx) 392 { 393 struct can_priv *priv = netdev_priv(dev); 394 395 BUG_ON(idx >= priv->echo_skb_max); 396 397 /* check flag whether this packet has to be looped back */ 398 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 399 (skb->protocol != htons(ETH_P_CAN) && 400 skb->protocol != htons(ETH_P_CANFD))) { 401 kfree_skb(skb); 402 return; 403 } 404 405 if (!priv->echo_skb[idx]) { 406 407 skb = can_create_echo_skb(skb); 408 if (!skb) 409 return; 410 411 /* make settings for echo to reduce code in irq context */ 412 skb->pkt_type = PACKET_BROADCAST; 413 skb->ip_summed = CHECKSUM_UNNECESSARY; 414 skb->dev = dev; 415 416 /* save this skb for tx interrupt echo handling */ 417 priv->echo_skb[idx] = skb; 418 } else { 419 /* locking problem with netif_stop_queue() ?? */ 420 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 421 kfree_skb(skb); 422 } 423 } 424 EXPORT_SYMBOL_GPL(can_put_echo_skb); 425 __can_get_echo_skb(struct net_device * dev,unsigned int idx,u8 * len_ptr)426 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 427 { 428 struct can_priv *priv = netdev_priv(dev); 429 430 if (idx >= priv->echo_skb_max) { 431 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 432 __func__, idx, priv->echo_skb_max); 433 return NULL; 434 } 435 436 if (priv->echo_skb[idx]) { 437 /* Using "struct canfd_frame::len" for the frame 438 * length is supported on both CAN and CANFD frames. 439 */ 440 struct sk_buff *skb = priv->echo_skb[idx]; 441 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 442 443 /* get the real payload length for netdev statistics */ 444 if (cf->can_id & CAN_RTR_FLAG) 445 *len_ptr = 0; 446 else 447 *len_ptr = cf->len; 448 449 priv->echo_skb[idx] = NULL; 450 451 return skb; 452 } 453 454 return NULL; 455 } 456 457 /* 458 * Get the skb from the stack and loop it back locally 459 * 460 * The function is typically called when the TX done interrupt 461 * is handled in the device driver. The driver must protect 462 * access to priv->echo_skb, if necessary. 463 */ can_get_echo_skb(struct net_device * dev,unsigned int idx)464 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 465 { 466 struct sk_buff *skb; 467 u8 len; 468 469 skb = __can_get_echo_skb(dev, idx, &len); 470 if (!skb) 471 return 0; 472 473 skb_get(skb); 474 if (netif_rx(skb) == NET_RX_SUCCESS) 475 dev_consume_skb_any(skb); 476 else 477 dev_kfree_skb_any(skb); 478 479 return len; 480 } 481 EXPORT_SYMBOL_GPL(can_get_echo_skb); 482 483 /* 484 * Remove the skb from the stack and free it. 485 * 486 * The function is typically called when TX failed. 487 */ can_free_echo_skb(struct net_device * dev,unsigned int idx)488 void can_free_echo_skb(struct net_device *dev, unsigned int idx) 489 { 490 struct can_priv *priv = netdev_priv(dev); 491 492 BUG_ON(idx >= priv->echo_skb_max); 493 494 if (priv->echo_skb[idx]) { 495 dev_kfree_skb_any(priv->echo_skb[idx]); 496 priv->echo_skb[idx] = NULL; 497 } 498 } 499 EXPORT_SYMBOL_GPL(can_free_echo_skb); 500 501 /* 502 * CAN device restart for bus-off recovery 503 */ can_restart(struct net_device * dev)504 static void can_restart(struct net_device *dev) 505 { 506 struct can_priv *priv = netdev_priv(dev); 507 struct net_device_stats *stats = &dev->stats; 508 struct sk_buff *skb; 509 struct can_frame *cf; 510 int err; 511 512 BUG_ON(netif_carrier_ok(dev)); 513 514 /* 515 * No synchronization needed because the device is bus-off and 516 * no messages can come in or go out. 517 */ 518 can_flush_echo_skb(dev); 519 520 /* send restart message upstream */ 521 skb = alloc_can_err_skb(dev, &cf); 522 if (skb == NULL) { 523 err = -ENOMEM; 524 goto restart; 525 } 526 cf->can_id |= CAN_ERR_RESTARTED; 527 528 stats->rx_packets++; 529 stats->rx_bytes += cf->can_dlc; 530 531 netif_rx_ni(skb); 532 533 restart: 534 netdev_dbg(dev, "restarted\n"); 535 priv->can_stats.restarts++; 536 537 /* Now restart the device */ 538 err = priv->do_set_mode(dev, CAN_MODE_START); 539 540 netif_carrier_on(dev); 541 if (err) 542 netdev_err(dev, "Error %d during restart", err); 543 } 544 can_restart_work(struct work_struct * work)545 static void can_restart_work(struct work_struct *work) 546 { 547 struct delayed_work *dwork = to_delayed_work(work); 548 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 549 550 can_restart(priv->dev); 551 } 552 can_restart_now(struct net_device * dev)553 int can_restart_now(struct net_device *dev) 554 { 555 struct can_priv *priv = netdev_priv(dev); 556 557 /* 558 * A manual restart is only permitted if automatic restart is 559 * disabled and the device is in the bus-off state 560 */ 561 if (priv->restart_ms) 562 return -EINVAL; 563 if (priv->state != CAN_STATE_BUS_OFF) 564 return -EBUSY; 565 566 cancel_delayed_work_sync(&priv->restart_work); 567 can_restart(dev); 568 569 return 0; 570 } 571 572 /* 573 * CAN bus-off 574 * 575 * This functions should be called when the device goes bus-off to 576 * tell the netif layer that no more packets can be sent or received. 577 * If enabled, a timer is started to trigger bus-off recovery. 578 */ can_bus_off(struct net_device * dev)579 void can_bus_off(struct net_device *dev) 580 { 581 struct can_priv *priv = netdev_priv(dev); 582 583 netdev_dbg(dev, "bus-off\n"); 584 585 netif_carrier_off(dev); 586 587 if (priv->restart_ms) 588 schedule_delayed_work(&priv->restart_work, 589 msecs_to_jiffies(priv->restart_ms)); 590 } 591 EXPORT_SYMBOL_GPL(can_bus_off); 592 can_setup(struct net_device * dev)593 static void can_setup(struct net_device *dev) 594 { 595 dev->type = ARPHRD_CAN; 596 dev->mtu = CAN_MTU; 597 dev->hard_header_len = 0; 598 dev->addr_len = 0; 599 dev->tx_queue_len = 10; 600 601 /* New-style flags. */ 602 dev->flags = IFF_NOARP; 603 dev->features = NETIF_F_HW_CSUM; 604 } 605 alloc_can_skb(struct net_device * dev,struct can_frame ** cf)606 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 607 { 608 struct sk_buff *skb; 609 610 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 611 sizeof(struct can_frame)); 612 if (unlikely(!skb)) 613 return NULL; 614 615 skb->protocol = htons(ETH_P_CAN); 616 skb->pkt_type = PACKET_BROADCAST; 617 skb->ip_summed = CHECKSUM_UNNECESSARY; 618 619 skb_reset_mac_header(skb); 620 skb_reset_network_header(skb); 621 skb_reset_transport_header(skb); 622 623 can_skb_reserve(skb); 624 can_skb_prv(skb)->ifindex = dev->ifindex; 625 can_skb_prv(skb)->skbcnt = 0; 626 627 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); 628 memset(*cf, 0, sizeof(struct can_frame)); 629 630 return skb; 631 } 632 EXPORT_SYMBOL_GPL(alloc_can_skb); 633 alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)634 struct sk_buff *alloc_canfd_skb(struct net_device *dev, 635 struct canfd_frame **cfd) 636 { 637 struct sk_buff *skb; 638 639 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 640 sizeof(struct canfd_frame)); 641 if (unlikely(!skb)) 642 return NULL; 643 644 skb->protocol = htons(ETH_P_CANFD); 645 skb->pkt_type = PACKET_BROADCAST; 646 skb->ip_summed = CHECKSUM_UNNECESSARY; 647 648 skb_reset_mac_header(skb); 649 skb_reset_network_header(skb); 650 skb_reset_transport_header(skb); 651 652 can_skb_reserve(skb); 653 can_skb_prv(skb)->ifindex = dev->ifindex; 654 can_skb_prv(skb)->skbcnt = 0; 655 656 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame)); 657 memset(*cfd, 0, sizeof(struct canfd_frame)); 658 659 return skb; 660 } 661 EXPORT_SYMBOL_GPL(alloc_canfd_skb); 662 alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)663 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 664 { 665 struct sk_buff *skb; 666 667 skb = alloc_can_skb(dev, cf); 668 if (unlikely(!skb)) 669 return NULL; 670 671 (*cf)->can_id = CAN_ERR_FLAG; 672 (*cf)->can_dlc = CAN_ERR_DLC; 673 674 return skb; 675 } 676 EXPORT_SYMBOL_GPL(alloc_can_err_skb); 677 678 /* 679 * Allocate and setup space for the CAN network device 680 */ alloc_candev(int sizeof_priv,unsigned int echo_skb_max)681 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 682 { 683 struct net_device *dev; 684 struct can_priv *priv; 685 int size; 686 687 if (echo_skb_max) 688 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 689 echo_skb_max * sizeof(struct sk_buff *); 690 else 691 size = sizeof_priv; 692 693 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 694 if (!dev) 695 return NULL; 696 697 priv = netdev_priv(dev); 698 priv->dev = dev; 699 700 if (echo_skb_max) { 701 priv->echo_skb_max = echo_skb_max; 702 priv->echo_skb = (void *)priv + 703 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 704 } 705 706 priv->state = CAN_STATE_STOPPED; 707 708 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 709 710 return dev; 711 } 712 EXPORT_SYMBOL_GPL(alloc_candev); 713 714 /* 715 * Free space of the CAN network device 716 */ free_candev(struct net_device * dev)717 void free_candev(struct net_device *dev) 718 { 719 free_netdev(dev); 720 } 721 EXPORT_SYMBOL_GPL(free_candev); 722 723 /* 724 * changing MTU and control mode for CAN/CANFD devices 725 */ can_change_mtu(struct net_device * dev,int new_mtu)726 int can_change_mtu(struct net_device *dev, int new_mtu) 727 { 728 struct can_priv *priv = netdev_priv(dev); 729 730 /* Do not allow changing the MTU while running */ 731 if (dev->flags & IFF_UP) 732 return -EBUSY; 733 734 /* allow change of MTU according to the CANFD ability of the device */ 735 switch (new_mtu) { 736 case CAN_MTU: 737 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 738 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 739 return -EINVAL; 740 741 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 742 break; 743 744 case CANFD_MTU: 745 /* check for potential CANFD ability */ 746 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 747 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 748 return -EINVAL; 749 750 priv->ctrlmode |= CAN_CTRLMODE_FD; 751 break; 752 753 default: 754 return -EINVAL; 755 } 756 757 dev->mtu = new_mtu; 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(can_change_mtu); 761 762 /* 763 * Common open function when the device gets opened. 764 * 765 * This function should be called in the open function of the device 766 * driver. 767 */ open_candev(struct net_device * dev)768 int open_candev(struct net_device *dev) 769 { 770 struct can_priv *priv = netdev_priv(dev); 771 772 if (!priv->bittiming.bitrate) { 773 netdev_err(dev, "bit-timing not yet defined\n"); 774 return -EINVAL; 775 } 776 777 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 778 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 779 (!priv->data_bittiming.bitrate || 780 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 781 netdev_err(dev, "incorrect/missing data bit-timing\n"); 782 return -EINVAL; 783 } 784 785 /* Switch carrier on if device was stopped while in bus-off state */ 786 if (!netif_carrier_ok(dev)) 787 netif_carrier_on(dev); 788 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(open_candev); 792 793 /* 794 * Common close function for cleanup before the device gets closed. 795 * 796 * This function should be called in the close function of the device 797 * driver. 798 */ close_candev(struct net_device * dev)799 void close_candev(struct net_device *dev) 800 { 801 struct can_priv *priv = netdev_priv(dev); 802 803 cancel_delayed_work_sync(&priv->restart_work); 804 can_flush_echo_skb(dev); 805 } 806 EXPORT_SYMBOL_GPL(close_candev); 807 808 /* 809 * CAN netlink interface 810 */ 811 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 812 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 813 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 814 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 815 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 816 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 817 [IFLA_CAN_BITTIMING_CONST] 818 = { .len = sizeof(struct can_bittiming_const) }, 819 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 820 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 821 [IFLA_CAN_DATA_BITTIMING] 822 = { .len = sizeof(struct can_bittiming) }, 823 [IFLA_CAN_DATA_BITTIMING_CONST] 824 = { .len = sizeof(struct can_bittiming_const) }, 825 }; 826 can_validate(struct nlattr * tb[],struct nlattr * data[])827 static int can_validate(struct nlattr *tb[], struct nlattr *data[]) 828 { 829 bool is_can_fd = false; 830 831 /* Make sure that valid CAN FD configurations always consist of 832 * - nominal/arbitration bittiming 833 * - data bittiming 834 * - control mode with CAN_CTRLMODE_FD set 835 */ 836 837 if (!data) 838 return 0; 839 840 if (data[IFLA_CAN_CTRLMODE]) { 841 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 842 843 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 844 } 845 846 if (is_can_fd) { 847 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 848 return -EOPNOTSUPP; 849 } 850 851 if (data[IFLA_CAN_DATA_BITTIMING]) { 852 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 853 return -EOPNOTSUPP; 854 } 855 856 return 0; 857 } 858 can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])859 static int can_changelink(struct net_device *dev, 860 struct nlattr *tb[], struct nlattr *data[]) 861 { 862 struct can_priv *priv = netdev_priv(dev); 863 int err; 864 865 /* We need synchronization with dev->stop() */ 866 ASSERT_RTNL(); 867 868 if (data[IFLA_CAN_BITTIMING]) { 869 struct can_bittiming bt; 870 871 /* Do not allow changing bittiming while running */ 872 if (dev->flags & IFF_UP) 873 return -EBUSY; 874 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 875 err = can_get_bittiming(dev, &bt, priv->bittiming_const); 876 if (err) 877 return err; 878 memcpy(&priv->bittiming, &bt, sizeof(bt)); 879 880 if (priv->do_set_bittiming) { 881 /* Finally, set the bit-timing registers */ 882 err = priv->do_set_bittiming(dev); 883 if (err) 884 return err; 885 } 886 } 887 888 if (data[IFLA_CAN_CTRLMODE]) { 889 struct can_ctrlmode *cm; 890 u32 ctrlstatic; 891 u32 maskedflags; 892 893 /* Do not allow changing controller mode while running */ 894 if (dev->flags & IFF_UP) 895 return -EBUSY; 896 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 897 ctrlstatic = priv->ctrlmode_static; 898 maskedflags = cm->flags & cm->mask; 899 900 /* check whether provided bits are allowed to be passed */ 901 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 902 return -EOPNOTSUPP; 903 904 /* do not check for static fd-non-iso if 'fd' is disabled */ 905 if (!(maskedflags & CAN_CTRLMODE_FD)) 906 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 907 908 /* make sure static options are provided by configuration */ 909 if ((maskedflags & ctrlstatic) != ctrlstatic) 910 return -EOPNOTSUPP; 911 912 /* clear bits to be modified and copy the flag values */ 913 priv->ctrlmode &= ~cm->mask; 914 priv->ctrlmode |= maskedflags; 915 916 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 917 if (priv->ctrlmode & CAN_CTRLMODE_FD) 918 dev->mtu = CANFD_MTU; 919 else 920 dev->mtu = CAN_MTU; 921 } 922 923 if (data[IFLA_CAN_RESTART_MS]) { 924 /* Do not allow changing restart delay while running */ 925 if (dev->flags & IFF_UP) 926 return -EBUSY; 927 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 928 } 929 930 if (data[IFLA_CAN_RESTART]) { 931 /* Do not allow a restart while not running */ 932 if (!(dev->flags & IFF_UP)) 933 return -EINVAL; 934 err = can_restart_now(dev); 935 if (err) 936 return err; 937 } 938 939 if (data[IFLA_CAN_DATA_BITTIMING]) { 940 struct can_bittiming dbt; 941 942 /* Do not allow changing bittiming while running */ 943 if (dev->flags & IFF_UP) 944 return -EBUSY; 945 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 946 sizeof(dbt)); 947 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const); 948 if (err) 949 return err; 950 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 951 952 if (priv->do_set_data_bittiming) { 953 /* Finally, set the bit-timing registers */ 954 err = priv->do_set_data_bittiming(dev); 955 if (err) 956 return err; 957 } 958 } 959 960 return 0; 961 } 962 can_get_size(const struct net_device * dev)963 static size_t can_get_size(const struct net_device *dev) 964 { 965 struct can_priv *priv = netdev_priv(dev); 966 size_t size = 0; 967 968 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 969 size += nla_total_size(sizeof(struct can_bittiming)); 970 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 971 size += nla_total_size(sizeof(struct can_bittiming_const)); 972 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 973 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 974 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 975 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 976 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 977 size += nla_total_size(sizeof(struct can_berr_counter)); 978 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 979 size += nla_total_size(sizeof(struct can_bittiming)); 980 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 981 size += nla_total_size(sizeof(struct can_bittiming_const)); 982 983 return size; 984 } 985 can_fill_info(struct sk_buff * skb,const struct net_device * dev)986 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 987 { 988 struct can_priv *priv = netdev_priv(dev); 989 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 990 struct can_berr_counter bec = { }; 991 enum can_state state = priv->state; 992 993 if (priv->do_get_state) 994 priv->do_get_state(dev, &state); 995 996 if ((priv->bittiming.bitrate && 997 nla_put(skb, IFLA_CAN_BITTIMING, 998 sizeof(priv->bittiming), &priv->bittiming)) || 999 1000 (priv->bittiming_const && 1001 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1002 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1003 1004 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1005 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1006 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1007 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1008 1009 (priv->do_get_berr_counter && 1010 !priv->do_get_berr_counter(dev, &bec) && 1011 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1012 1013 (priv->data_bittiming.bitrate && 1014 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1015 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1016 1017 (priv->data_bittiming_const && 1018 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1019 sizeof(*priv->data_bittiming_const), 1020 priv->data_bittiming_const))) 1021 return -EMSGSIZE; 1022 1023 return 0; 1024 } 1025 can_get_xstats_size(const struct net_device * dev)1026 static size_t can_get_xstats_size(const struct net_device *dev) 1027 { 1028 return sizeof(struct can_device_stats); 1029 } 1030 can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1031 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1032 { 1033 struct can_priv *priv = netdev_priv(dev); 1034 1035 if (nla_put(skb, IFLA_INFO_XSTATS, 1036 sizeof(priv->can_stats), &priv->can_stats)) 1037 goto nla_put_failure; 1038 return 0; 1039 1040 nla_put_failure: 1041 return -EMSGSIZE; 1042 } 1043 can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])1044 static int can_newlink(struct net *src_net, struct net_device *dev, 1045 struct nlattr *tb[], struct nlattr *data[]) 1046 { 1047 return -EOPNOTSUPP; 1048 } 1049 can_dellink(struct net_device * dev,struct list_head * head)1050 static void can_dellink(struct net_device *dev, struct list_head *head) 1051 { 1052 return; 1053 } 1054 1055 static struct rtnl_link_ops can_link_ops __read_mostly = { 1056 .kind = "can", 1057 .netns_refund = true, 1058 .maxtype = IFLA_CAN_MAX, 1059 .policy = can_policy, 1060 .setup = can_setup, 1061 .validate = can_validate, 1062 .newlink = can_newlink, 1063 .changelink = can_changelink, 1064 .dellink = can_dellink, 1065 .get_size = can_get_size, 1066 .fill_info = can_fill_info, 1067 .get_xstats_size = can_get_xstats_size, 1068 .fill_xstats = can_fill_xstats, 1069 }; 1070 1071 /* 1072 * Register the CAN network device 1073 */ register_candev(struct net_device * dev)1074 int register_candev(struct net_device *dev) 1075 { 1076 dev->rtnl_link_ops = &can_link_ops; 1077 netif_carrier_off(dev); 1078 1079 return register_netdev(dev); 1080 } 1081 EXPORT_SYMBOL_GPL(register_candev); 1082 1083 /* 1084 * Unregister the CAN network device 1085 */ unregister_candev(struct net_device * dev)1086 void unregister_candev(struct net_device *dev) 1087 { 1088 unregister_netdev(dev); 1089 } 1090 EXPORT_SYMBOL_GPL(unregister_candev); 1091 1092 /* 1093 * Test if a network device is a candev based device 1094 * and return the can_priv* if so. 1095 */ safe_candev_priv(struct net_device * dev)1096 struct can_priv *safe_candev_priv(struct net_device *dev) 1097 { 1098 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1099 return NULL; 1100 1101 return netdev_priv(dev); 1102 } 1103 EXPORT_SYMBOL_GPL(safe_candev_priv); 1104 can_dev_init(void)1105 static __init int can_dev_init(void) 1106 { 1107 int err; 1108 1109 can_led_notifier_init(); 1110 1111 err = rtnl_link_register(&can_link_ops); 1112 if (!err) 1113 printk(KERN_INFO MOD_DESC "\n"); 1114 1115 return err; 1116 } 1117 module_init(can_dev_init); 1118 can_dev_exit(void)1119 static __exit void can_dev_exit(void) 1120 { 1121 rtnl_link_unregister(&can_link_ops); 1122 1123 can_led_notifier_exit(); 1124 } 1125 module_exit(can_dev_exit); 1126 1127 MODULE_ALIAS_RTNL_LINK("can"); 1128