1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
BDEV_I(struct inode * inode)42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
I_BDEV(struct inode * inode)47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
bdev_write_inode(struct block_device * bdev)53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages) {
92 invalidate_bh_lrus();
93 lru_add_drain_all(); /* make sure all lru add caches are flushed */
94 invalidate_mapping_pages(mapping, 0, -1);
95 }
96 /* 99% of the time, we don't need to flush the cleancache on the bdev.
97 * But, for the strange corners, lets be cautious
98 */
99 cleancache_invalidate_inode(mapping);
100 }
101 EXPORT_SYMBOL(invalidate_bdev);
102
set_blocksize(struct block_device * bdev,int size)103 int set_blocksize(struct block_device *bdev, int size)
104 {
105 /* Size must be a power of two, and between 512 and PAGE_SIZE */
106 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
107 return -EINVAL;
108
109 /* Size cannot be smaller than the size supported by the device */
110 if (size < bdev_logical_block_size(bdev))
111 return -EINVAL;
112
113 /* Don't change the size if it is same as current */
114 if (bdev->bd_block_size != size) {
115 sync_blockdev(bdev);
116 bdev->bd_block_size = size;
117 bdev->bd_inode->i_blkbits = blksize_bits(size);
118 kill_bdev(bdev);
119 }
120 return 0;
121 }
122
123 EXPORT_SYMBOL(set_blocksize);
124
sb_set_blocksize(struct super_block * sb,int size)125 int sb_set_blocksize(struct super_block *sb, int size)
126 {
127 if (set_blocksize(sb->s_bdev, size))
128 return 0;
129 /* If we get here, we know size is power of two
130 * and it's value is between 512 and PAGE_SIZE */
131 sb->s_blocksize = size;
132 sb->s_blocksize_bits = blksize_bits(size);
133 return sb->s_blocksize;
134 }
135
136 EXPORT_SYMBOL(sb_set_blocksize);
137
sb_min_blocksize(struct super_block * sb,int size)138 int sb_min_blocksize(struct super_block *sb, int size)
139 {
140 int minsize = bdev_logical_block_size(sb->s_bdev);
141 if (size < minsize)
142 size = minsize;
143 return sb_set_blocksize(sb, size);
144 }
145
146 EXPORT_SYMBOL(sb_min_blocksize);
147
148 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)149 blkdev_get_block(struct inode *inode, sector_t iblock,
150 struct buffer_head *bh, int create)
151 {
152 bh->b_bdev = I_BDEV(inode);
153 bh->b_blocknr = iblock;
154 set_buffer_mapped(bh);
155 return 0;
156 }
157
158 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)159 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
160 {
161 struct file *file = iocb->ki_filp;
162 struct inode *inode = file->f_mapping->host;
163
164 if (IS_DAX(inode))
165 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
166 NULL, DIO_SKIP_DIO_COUNT);
167 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
168 blkdev_get_block, NULL, NULL,
169 DIO_SKIP_DIO_COUNT);
170 }
171
__sync_blockdev(struct block_device * bdev,int wait)172 int __sync_blockdev(struct block_device *bdev, int wait)
173 {
174 if (!bdev)
175 return 0;
176 if (!wait)
177 return filemap_flush(bdev->bd_inode->i_mapping);
178 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
179 }
180
181 /*
182 * Write out and wait upon all the dirty data associated with a block
183 * device via its mapping. Does not take the superblock lock.
184 */
sync_blockdev(struct block_device * bdev)185 int sync_blockdev(struct block_device *bdev)
186 {
187 return __sync_blockdev(bdev, 1);
188 }
189 EXPORT_SYMBOL(sync_blockdev);
190
191 /*
192 * Write out and wait upon all dirty data associated with this
193 * device. Filesystem data as well as the underlying block
194 * device. Takes the superblock lock.
195 */
fsync_bdev(struct block_device * bdev)196 int fsync_bdev(struct block_device *bdev)
197 {
198 struct super_block *sb = get_super(bdev);
199 if (sb) {
200 int res = sync_filesystem(sb);
201 drop_super(sb);
202 return res;
203 }
204 return sync_blockdev(bdev);
205 }
206 EXPORT_SYMBOL(fsync_bdev);
207
208 /**
209 * freeze_bdev -- lock a filesystem and force it into a consistent state
210 * @bdev: blockdevice to lock
211 *
212 * If a superblock is found on this device, we take the s_umount semaphore
213 * on it to make sure nobody unmounts until the snapshot creation is done.
214 * The reference counter (bd_fsfreeze_count) guarantees that only the last
215 * unfreeze process can unfreeze the frozen filesystem actually when multiple
216 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
217 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
218 * actually.
219 */
freeze_bdev(struct block_device * bdev)220 struct super_block *freeze_bdev(struct block_device *bdev)
221 {
222 struct super_block *sb;
223 int error = 0;
224
225 mutex_lock(&bdev->bd_fsfreeze_mutex);
226 if (++bdev->bd_fsfreeze_count > 1) {
227 /*
228 * We don't even need to grab a reference - the first call
229 * to freeze_bdev grab an active reference and only the last
230 * thaw_bdev drops it.
231 */
232 sb = get_super(bdev);
233 drop_super(sb);
234 mutex_unlock(&bdev->bd_fsfreeze_mutex);
235 return sb;
236 }
237
238 sb = get_active_super(bdev);
239 if (!sb)
240 goto out;
241 if (sb->s_op->freeze_super)
242 error = sb->s_op->freeze_super(sb);
243 else
244 error = freeze_super(sb);
245 if (error) {
246 deactivate_super(sb);
247 bdev->bd_fsfreeze_count--;
248 mutex_unlock(&bdev->bd_fsfreeze_mutex);
249 return ERR_PTR(error);
250 }
251 deactivate_super(sb);
252 out:
253 sync_blockdev(bdev);
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return sb; /* thaw_bdev releases s->s_umount */
256 }
257 EXPORT_SYMBOL(freeze_bdev);
258
259 /**
260 * thaw_bdev -- unlock filesystem
261 * @bdev: blockdevice to unlock
262 * @sb: associated superblock
263 *
264 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
265 */
thaw_bdev(struct block_device * bdev,struct super_block * sb)266 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
267 {
268 int error = -EINVAL;
269
270 mutex_lock(&bdev->bd_fsfreeze_mutex);
271 if (!bdev->bd_fsfreeze_count)
272 goto out;
273
274 error = 0;
275 if (--bdev->bd_fsfreeze_count > 0)
276 goto out;
277
278 if (!sb)
279 goto out;
280
281 if (sb->s_op->thaw_super)
282 error = sb->s_op->thaw_super(sb);
283 else
284 error = thaw_super(sb);
285 if (error) {
286 bdev->bd_fsfreeze_count++;
287 mutex_unlock(&bdev->bd_fsfreeze_mutex);
288 return error;
289 }
290 out:
291 mutex_unlock(&bdev->bd_fsfreeze_mutex);
292 return 0;
293 }
294 EXPORT_SYMBOL(thaw_bdev);
295
blkdev_writepage(struct page * page,struct writeback_control * wbc)296 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
297 {
298 return block_write_full_page(page, blkdev_get_block, wbc);
299 }
300
blkdev_readpage(struct file * file,struct page * page)301 static int blkdev_readpage(struct file * file, struct page * page)
302 {
303 return block_read_full_page(page, blkdev_get_block);
304 }
305
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)306 static int blkdev_readpages(struct file *file, struct address_space *mapping,
307 struct list_head *pages, unsigned nr_pages)
308 {
309 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
310 }
311
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)312 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned flags,
314 struct page **pagep, void **fsdata)
315 {
316 return block_write_begin(mapping, pos, len, flags, pagep,
317 blkdev_get_block);
318 }
319
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)320 static int blkdev_write_end(struct file *file, struct address_space *mapping,
321 loff_t pos, unsigned len, unsigned copied,
322 struct page *page, void *fsdata)
323 {
324 int ret;
325 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
326
327 unlock_page(page);
328 page_cache_release(page);
329
330 return ret;
331 }
332
333 /*
334 * private llseek:
335 * for a block special file file_inode(file)->i_size is zero
336 * so we compute the size by hand (just as in block_read/write above)
337 */
block_llseek(struct file * file,loff_t offset,int whence)338 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
339 {
340 struct inode *bd_inode = file->f_mapping->host;
341 loff_t retval;
342
343 mutex_lock(&bd_inode->i_mutex);
344 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
345 mutex_unlock(&bd_inode->i_mutex);
346 return retval;
347 }
348
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)349 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
350 {
351 struct inode *bd_inode = filp->f_mapping->host;
352 struct block_device *bdev = I_BDEV(bd_inode);
353 int error;
354
355 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
356 if (error)
357 return error;
358
359 /*
360 * There is no need to serialise calls to blkdev_issue_flush with
361 * i_mutex and doing so causes performance issues with concurrent
362 * O_SYNC writers to a block device.
363 */
364 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
365 if (error == -EOPNOTSUPP)
366 error = 0;
367
368 return error;
369 }
370 EXPORT_SYMBOL(blkdev_fsync);
371
372 /**
373 * bdev_read_page() - Start reading a page from a block device
374 * @bdev: The device to read the page from
375 * @sector: The offset on the device to read the page to (need not be aligned)
376 * @page: The page to read
377 *
378 * On entry, the page should be locked. It will be unlocked when the page
379 * has been read. If the block driver implements rw_page synchronously,
380 * that will be true on exit from this function, but it need not be.
381 *
382 * Errors returned by this function are usually "soft", eg out of memory, or
383 * queue full; callers should try a different route to read this page rather
384 * than propagate an error back up the stack.
385 *
386 * Return: negative errno if an error occurs, 0 if submission was successful.
387 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)388 int bdev_read_page(struct block_device *bdev, sector_t sector,
389 struct page *page)
390 {
391 const struct block_device_operations *ops = bdev->bd_disk->fops;
392 int result = -EOPNOTSUPP;
393
394 if (!ops->rw_page || bdev_get_integrity(bdev))
395 return result;
396
397 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
398 if (result)
399 return result;
400 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
401 blk_queue_exit(bdev->bd_queue);
402 return result;
403 }
404 EXPORT_SYMBOL_GPL(bdev_read_page);
405
406 /**
407 * bdev_write_page() - Start writing a page to a block device
408 * @bdev: The device to write the page to
409 * @sector: The offset on the device to write the page to (need not be aligned)
410 * @page: The page to write
411 * @wbc: The writeback_control for the write
412 *
413 * On entry, the page should be locked and not currently under writeback.
414 * On exit, if the write started successfully, the page will be unlocked and
415 * under writeback. If the write failed already (eg the driver failed to
416 * queue the page to the device), the page will still be locked. If the
417 * caller is a ->writepage implementation, it will need to unlock the page.
418 *
419 * Errors returned by this function are usually "soft", eg out of memory, or
420 * queue full; callers should try a different route to write this page rather
421 * than propagate an error back up the stack.
422 *
423 * Return: negative errno if an error occurs, 0 if submission was successful.
424 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)425 int bdev_write_page(struct block_device *bdev, sector_t sector,
426 struct page *page, struct writeback_control *wbc)
427 {
428 int result;
429 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
430 const struct block_device_operations *ops = bdev->bd_disk->fops;
431
432 if (!ops->rw_page || bdev_get_integrity(bdev))
433 return -EOPNOTSUPP;
434 result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
435 if (result)
436 return result;
437
438 set_page_writeback(page);
439 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
440 if (result)
441 end_page_writeback(page);
442 else
443 unlock_page(page);
444 blk_queue_exit(bdev->bd_queue);
445 return result;
446 }
447 EXPORT_SYMBOL_GPL(bdev_write_page);
448
449 /**
450 * bdev_direct_access() - Get the address for directly-accessibly memory
451 * @bdev: The device containing the memory
452 * @sector: The offset within the device
453 * @addr: Where to put the address of the memory
454 * @pfn: The Page Frame Number for the memory
455 * @size: The number of bytes requested
456 *
457 * If a block device is made up of directly addressable memory, this function
458 * will tell the caller the PFN and the address of the memory. The address
459 * may be directly dereferenced within the kernel without the need to call
460 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
461 * page tables.
462 *
463 * Return: negative errno if an error occurs, otherwise the number of bytes
464 * accessible at this address.
465 */
bdev_direct_access(struct block_device * bdev,sector_t sector,void __pmem ** addr,unsigned long * pfn,long size)466 long bdev_direct_access(struct block_device *bdev, sector_t sector,
467 void __pmem **addr, unsigned long *pfn, long size)
468 {
469 long avail;
470 const struct block_device_operations *ops = bdev->bd_disk->fops;
471
472 /*
473 * The device driver is allowed to sleep, in order to make the
474 * memory directly accessible.
475 */
476 might_sleep();
477
478 if (size < 0)
479 return size;
480 if (!ops->direct_access)
481 return -EOPNOTSUPP;
482 if ((sector + DIV_ROUND_UP(size, 512)) >
483 part_nr_sects_read(bdev->bd_part))
484 return -ERANGE;
485 sector += get_start_sect(bdev);
486 if (sector % (PAGE_SIZE / 512))
487 return -EINVAL;
488 avail = ops->direct_access(bdev, sector, addr, pfn);
489 if (!avail)
490 return -ERANGE;
491 return min(avail, size);
492 }
493 EXPORT_SYMBOL_GPL(bdev_direct_access);
494
495 /*
496 * pseudo-fs
497 */
498
499 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
500 static struct kmem_cache * bdev_cachep __read_mostly;
501
bdev_alloc_inode(struct super_block * sb)502 static struct inode *bdev_alloc_inode(struct super_block *sb)
503 {
504 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
505 if (!ei)
506 return NULL;
507 return &ei->vfs_inode;
508 }
509
bdev_i_callback(struct rcu_head * head)510 static void bdev_i_callback(struct rcu_head *head)
511 {
512 struct inode *inode = container_of(head, struct inode, i_rcu);
513 struct bdev_inode *bdi = BDEV_I(inode);
514
515 kmem_cache_free(bdev_cachep, bdi);
516 }
517
bdev_destroy_inode(struct inode * inode)518 static void bdev_destroy_inode(struct inode *inode)
519 {
520 call_rcu(&inode->i_rcu, bdev_i_callback);
521 }
522
init_once(void * foo)523 static void init_once(void *foo)
524 {
525 struct bdev_inode *ei = (struct bdev_inode *) foo;
526 struct block_device *bdev = &ei->bdev;
527
528 memset(bdev, 0, sizeof(*bdev));
529 mutex_init(&bdev->bd_mutex);
530 INIT_LIST_HEAD(&bdev->bd_inodes);
531 INIT_LIST_HEAD(&bdev->bd_list);
532 #ifdef CONFIG_SYSFS
533 INIT_LIST_HEAD(&bdev->bd_holder_disks);
534 #endif
535 inode_init_once(&ei->vfs_inode);
536 /* Initialize mutex for freeze. */
537 mutex_init(&bdev->bd_fsfreeze_mutex);
538 }
539
__bd_forget(struct inode * inode)540 static inline void __bd_forget(struct inode *inode)
541 {
542 list_del_init(&inode->i_devices);
543 inode->i_bdev = NULL;
544 inode->i_mapping = &inode->i_data;
545 }
546
bdev_evict_inode(struct inode * inode)547 static void bdev_evict_inode(struct inode *inode)
548 {
549 struct block_device *bdev = &BDEV_I(inode)->bdev;
550 struct list_head *p;
551 truncate_inode_pages_final(&inode->i_data);
552 invalidate_inode_buffers(inode); /* is it needed here? */
553 clear_inode(inode);
554 spin_lock(&bdev_lock);
555 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
556 __bd_forget(list_entry(p, struct inode, i_devices));
557 }
558 list_del_init(&bdev->bd_list);
559 spin_unlock(&bdev_lock);
560 }
561
562 static const struct super_operations bdev_sops = {
563 .statfs = simple_statfs,
564 .alloc_inode = bdev_alloc_inode,
565 .destroy_inode = bdev_destroy_inode,
566 .drop_inode = generic_delete_inode,
567 .evict_inode = bdev_evict_inode,
568 };
569
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)570 static struct dentry *bd_mount(struct file_system_type *fs_type,
571 int flags, const char *dev_name, void *data)
572 {
573 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
574 }
575
576 static struct file_system_type bd_type = {
577 .name = "bdev",
578 .mount = bd_mount,
579 .kill_sb = kill_anon_super,
580 };
581
582 struct super_block *blockdev_superblock __read_mostly;
583 EXPORT_SYMBOL_GPL(blockdev_superblock);
584
bdev_cache_init(void)585 void __init bdev_cache_init(void)
586 {
587 int err;
588 static struct vfsmount *bd_mnt;
589
590 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
591 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
592 SLAB_MEM_SPREAD|SLAB_PANIC),
593 init_once);
594 err = register_filesystem(&bd_type);
595 if (err)
596 panic("Cannot register bdev pseudo-fs");
597 bd_mnt = kern_mount(&bd_type);
598 if (IS_ERR(bd_mnt))
599 panic("Cannot create bdev pseudo-fs");
600 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
601 }
602
603 /*
604 * Most likely _very_ bad one - but then it's hardly critical for small
605 * /dev and can be fixed when somebody will need really large one.
606 * Keep in mind that it will be fed through icache hash function too.
607 */
hash(dev_t dev)608 static inline unsigned long hash(dev_t dev)
609 {
610 return MAJOR(dev)+MINOR(dev);
611 }
612
bdev_test(struct inode * inode,void * data)613 static int bdev_test(struct inode *inode, void *data)
614 {
615 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
616 }
617
bdev_set(struct inode * inode,void * data)618 static int bdev_set(struct inode *inode, void *data)
619 {
620 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
621 return 0;
622 }
623
624 static LIST_HEAD(all_bdevs);
625
bdget(dev_t dev)626 struct block_device *bdget(dev_t dev)
627 {
628 struct block_device *bdev;
629 struct inode *inode;
630
631 inode = iget5_locked(blockdev_superblock, hash(dev),
632 bdev_test, bdev_set, &dev);
633
634 if (!inode)
635 return NULL;
636
637 bdev = &BDEV_I(inode)->bdev;
638
639 if (inode->i_state & I_NEW) {
640 bdev->bd_contains = NULL;
641 bdev->bd_super = NULL;
642 bdev->bd_inode = inode;
643 bdev->bd_block_size = (1 << inode->i_blkbits);
644 bdev->bd_part_count = 0;
645 bdev->bd_invalidated = 0;
646 inode->i_mode = S_IFBLK;
647 inode->i_rdev = dev;
648 inode->i_bdev = bdev;
649 inode->i_data.a_ops = &def_blk_aops;
650 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
651 spin_lock(&bdev_lock);
652 list_add(&bdev->bd_list, &all_bdevs);
653 spin_unlock(&bdev_lock);
654 unlock_new_inode(inode);
655 }
656 return bdev;
657 }
658
659 EXPORT_SYMBOL(bdget);
660
661 /**
662 * bdgrab -- Grab a reference to an already referenced block device
663 * @bdev: Block device to grab a reference to.
664 */
bdgrab(struct block_device * bdev)665 struct block_device *bdgrab(struct block_device *bdev)
666 {
667 ihold(bdev->bd_inode);
668 return bdev;
669 }
670 EXPORT_SYMBOL(bdgrab);
671
nr_blockdev_pages(void)672 long nr_blockdev_pages(void)
673 {
674 struct block_device *bdev;
675 long ret = 0;
676 spin_lock(&bdev_lock);
677 list_for_each_entry(bdev, &all_bdevs, bd_list) {
678 ret += bdev->bd_inode->i_mapping->nrpages;
679 }
680 spin_unlock(&bdev_lock);
681 return ret;
682 }
683
bdput(struct block_device * bdev)684 void bdput(struct block_device *bdev)
685 {
686 iput(bdev->bd_inode);
687 }
688
689 EXPORT_SYMBOL(bdput);
690
bd_acquire(struct inode * inode)691 static struct block_device *bd_acquire(struct inode *inode)
692 {
693 struct block_device *bdev;
694
695 spin_lock(&bdev_lock);
696 bdev = inode->i_bdev;
697 if (bdev) {
698 ihold(bdev->bd_inode);
699 spin_unlock(&bdev_lock);
700 return bdev;
701 }
702 spin_unlock(&bdev_lock);
703
704 bdev = bdget(inode->i_rdev);
705 if (bdev) {
706 spin_lock(&bdev_lock);
707 if (!inode->i_bdev) {
708 /*
709 * We take an additional reference to bd_inode,
710 * and it's released in clear_inode() of inode.
711 * So, we can access it via ->i_mapping always
712 * without igrab().
713 */
714 ihold(bdev->bd_inode);
715 inode->i_bdev = bdev;
716 inode->i_mapping = bdev->bd_inode->i_mapping;
717 list_add(&inode->i_devices, &bdev->bd_inodes);
718 }
719 spin_unlock(&bdev_lock);
720 }
721 return bdev;
722 }
723
724 /* Call when you free inode */
725
bd_forget(struct inode * inode)726 void bd_forget(struct inode *inode)
727 {
728 struct block_device *bdev = NULL;
729
730 spin_lock(&bdev_lock);
731 if (!sb_is_blkdev_sb(inode->i_sb))
732 bdev = inode->i_bdev;
733 __bd_forget(inode);
734 spin_unlock(&bdev_lock);
735
736 if (bdev)
737 iput(bdev->bd_inode);
738 }
739
740 /**
741 * bd_may_claim - test whether a block device can be claimed
742 * @bdev: block device of interest
743 * @whole: whole block device containing @bdev, may equal @bdev
744 * @holder: holder trying to claim @bdev
745 *
746 * Test whether @bdev can be claimed by @holder.
747 *
748 * CONTEXT:
749 * spin_lock(&bdev_lock).
750 *
751 * RETURNS:
752 * %true if @bdev can be claimed, %false otherwise.
753 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)754 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
755 void *holder)
756 {
757 if (bdev->bd_holder == holder)
758 return true; /* already a holder */
759 else if (bdev->bd_holder != NULL)
760 return false; /* held by someone else */
761 else if (whole == bdev)
762 return true; /* is a whole device which isn't held */
763
764 else if (whole->bd_holder == bd_may_claim)
765 return true; /* is a partition of a device that is being partitioned */
766 else if (whole->bd_holder != NULL)
767 return false; /* is a partition of a held device */
768 else
769 return true; /* is a partition of an un-held device */
770 }
771
772 /**
773 * bd_prepare_to_claim - prepare to claim a block device
774 * @bdev: block device of interest
775 * @whole: the whole device containing @bdev, may equal @bdev
776 * @holder: holder trying to claim @bdev
777 *
778 * Prepare to claim @bdev. This function fails if @bdev is already
779 * claimed by another holder and waits if another claiming is in
780 * progress. This function doesn't actually claim. On successful
781 * return, the caller has ownership of bd_claiming and bd_holder[s].
782 *
783 * CONTEXT:
784 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
785 * it multiple times.
786 *
787 * RETURNS:
788 * 0 if @bdev can be claimed, -EBUSY otherwise.
789 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)790 static int bd_prepare_to_claim(struct block_device *bdev,
791 struct block_device *whole, void *holder)
792 {
793 retry:
794 /* if someone else claimed, fail */
795 if (!bd_may_claim(bdev, whole, holder))
796 return -EBUSY;
797
798 /* if claiming is already in progress, wait for it to finish */
799 if (whole->bd_claiming) {
800 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
801 DEFINE_WAIT(wait);
802
803 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
804 spin_unlock(&bdev_lock);
805 schedule();
806 finish_wait(wq, &wait);
807 spin_lock(&bdev_lock);
808 goto retry;
809 }
810
811 /* yay, all mine */
812 return 0;
813 }
814
815 /**
816 * bd_start_claiming - start claiming a block device
817 * @bdev: block device of interest
818 * @holder: holder trying to claim @bdev
819 *
820 * @bdev is about to be opened exclusively. Check @bdev can be opened
821 * exclusively and mark that an exclusive open is in progress. Each
822 * successful call to this function must be matched with a call to
823 * either bd_finish_claiming() or bd_abort_claiming() (which do not
824 * fail).
825 *
826 * This function is used to gain exclusive access to the block device
827 * without actually causing other exclusive open attempts to fail. It
828 * should be used when the open sequence itself requires exclusive
829 * access but may subsequently fail.
830 *
831 * CONTEXT:
832 * Might sleep.
833 *
834 * RETURNS:
835 * Pointer to the block device containing @bdev on success, ERR_PTR()
836 * value on failure.
837 */
bd_start_claiming(struct block_device * bdev,void * holder)838 static struct block_device *bd_start_claiming(struct block_device *bdev,
839 void *holder)
840 {
841 struct gendisk *disk;
842 struct block_device *whole;
843 int partno, err;
844
845 might_sleep();
846
847 /*
848 * @bdev might not have been initialized properly yet, look up
849 * and grab the outer block device the hard way.
850 */
851 disk = get_gendisk(bdev->bd_dev, &partno);
852 if (!disk)
853 return ERR_PTR(-ENXIO);
854
855 /*
856 * Normally, @bdev should equal what's returned from bdget_disk()
857 * if partno is 0; however, some drivers (floppy) use multiple
858 * bdev's for the same physical device and @bdev may be one of the
859 * aliases. Keep @bdev if partno is 0. This means claimer
860 * tracking is broken for those devices but it has always been that
861 * way.
862 */
863 if (partno)
864 whole = bdget_disk(disk, 0);
865 else
866 whole = bdgrab(bdev);
867
868 module_put(disk->fops->owner);
869 put_disk(disk);
870 if (!whole)
871 return ERR_PTR(-ENOMEM);
872
873 /* prepare to claim, if successful, mark claiming in progress */
874 spin_lock(&bdev_lock);
875
876 err = bd_prepare_to_claim(bdev, whole, holder);
877 if (err == 0) {
878 whole->bd_claiming = holder;
879 spin_unlock(&bdev_lock);
880 return whole;
881 } else {
882 spin_unlock(&bdev_lock);
883 bdput(whole);
884 return ERR_PTR(err);
885 }
886 }
887
888 #ifdef CONFIG_SYSFS
889 struct bd_holder_disk {
890 struct list_head list;
891 struct gendisk *disk;
892 int refcnt;
893 };
894
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)895 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
896 struct gendisk *disk)
897 {
898 struct bd_holder_disk *holder;
899
900 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
901 if (holder->disk == disk)
902 return holder;
903 return NULL;
904 }
905
add_symlink(struct kobject * from,struct kobject * to)906 static int add_symlink(struct kobject *from, struct kobject *to)
907 {
908 return sysfs_create_link(from, to, kobject_name(to));
909 }
910
del_symlink(struct kobject * from,struct kobject * to)911 static void del_symlink(struct kobject *from, struct kobject *to)
912 {
913 sysfs_remove_link(from, kobject_name(to));
914 }
915
916 /**
917 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
918 * @bdev: the claimed slave bdev
919 * @disk: the holding disk
920 *
921 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
922 *
923 * This functions creates the following sysfs symlinks.
924 *
925 * - from "slaves" directory of the holder @disk to the claimed @bdev
926 * - from "holders" directory of the @bdev to the holder @disk
927 *
928 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
929 * passed to bd_link_disk_holder(), then:
930 *
931 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
932 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
933 *
934 * The caller must have claimed @bdev before calling this function and
935 * ensure that both @bdev and @disk are valid during the creation and
936 * lifetime of these symlinks.
937 *
938 * CONTEXT:
939 * Might sleep.
940 *
941 * RETURNS:
942 * 0 on success, -errno on failure.
943 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)944 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
945 {
946 struct bd_holder_disk *holder;
947 int ret = 0;
948
949 mutex_lock(&bdev->bd_mutex);
950
951 WARN_ON_ONCE(!bdev->bd_holder);
952
953 /* FIXME: remove the following once add_disk() handles errors */
954 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
955 goto out_unlock;
956
957 holder = bd_find_holder_disk(bdev, disk);
958 if (holder) {
959 holder->refcnt++;
960 goto out_unlock;
961 }
962
963 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
964 if (!holder) {
965 ret = -ENOMEM;
966 goto out_unlock;
967 }
968
969 INIT_LIST_HEAD(&holder->list);
970 holder->disk = disk;
971 holder->refcnt = 1;
972
973 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
974 if (ret)
975 goto out_free;
976
977 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
978 if (ret)
979 goto out_del;
980 /*
981 * bdev could be deleted beneath us which would implicitly destroy
982 * the holder directory. Hold on to it.
983 */
984 kobject_get(bdev->bd_part->holder_dir);
985
986 list_add(&holder->list, &bdev->bd_holder_disks);
987 goto out_unlock;
988
989 out_del:
990 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
991 out_free:
992 kfree(holder);
993 out_unlock:
994 mutex_unlock(&bdev->bd_mutex);
995 return ret;
996 }
997 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
998
999 /**
1000 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1001 * @bdev: the calimed slave bdev
1002 * @disk: the holding disk
1003 *
1004 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1005 *
1006 * CONTEXT:
1007 * Might sleep.
1008 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1009 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1010 {
1011 struct bd_holder_disk *holder;
1012
1013 mutex_lock(&bdev->bd_mutex);
1014
1015 holder = bd_find_holder_disk(bdev, disk);
1016
1017 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1018 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1019 del_symlink(bdev->bd_part->holder_dir,
1020 &disk_to_dev(disk)->kobj);
1021 kobject_put(bdev->bd_part->holder_dir);
1022 list_del_init(&holder->list);
1023 kfree(holder);
1024 }
1025
1026 mutex_unlock(&bdev->bd_mutex);
1027 }
1028 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1029 #endif
1030
1031 /**
1032 * flush_disk - invalidates all buffer-cache entries on a disk
1033 *
1034 * @bdev: struct block device to be flushed
1035 * @kill_dirty: flag to guide handling of dirty inodes
1036 *
1037 * Invalidates all buffer-cache entries on a disk. It should be called
1038 * when a disk has been changed -- either by a media change or online
1039 * resize.
1040 */
flush_disk(struct block_device * bdev,bool kill_dirty)1041 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1042 {
1043 if (__invalidate_device(bdev, kill_dirty)) {
1044 char name[BDEVNAME_SIZE] = "";
1045
1046 if (bdev->bd_disk)
1047 disk_name(bdev->bd_disk, 0, name);
1048 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1049 "resized disk %s\n", name);
1050 }
1051
1052 if (!bdev->bd_disk)
1053 return;
1054 if (disk_part_scan_enabled(bdev->bd_disk))
1055 bdev->bd_invalidated = 1;
1056 }
1057
1058 /**
1059 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1060 * @disk: struct gendisk to check
1061 * @bdev: struct bdev to adjust.
1062 *
1063 * This routine checks to see if the bdev size does not match the disk size
1064 * and adjusts it if it differs.
1065 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1066 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1067 {
1068 loff_t disk_size, bdev_size;
1069
1070 disk_size = (loff_t)get_capacity(disk) << 9;
1071 bdev_size = i_size_read(bdev->bd_inode);
1072 if (disk_size != bdev_size) {
1073 char name[BDEVNAME_SIZE];
1074
1075 disk_name(disk, 0, name);
1076 printk(KERN_INFO
1077 "%s: detected capacity change from %lld to %lld\n",
1078 name, bdev_size, disk_size);
1079 i_size_write(bdev->bd_inode, disk_size);
1080 flush_disk(bdev, false);
1081 }
1082 }
1083 EXPORT_SYMBOL(check_disk_size_change);
1084
1085 /**
1086 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1087 * @disk: struct gendisk to be revalidated
1088 *
1089 * This routine is a wrapper for lower-level driver's revalidate_disk
1090 * call-backs. It is used to do common pre and post operations needed
1091 * for all revalidate_disk operations.
1092 */
revalidate_disk(struct gendisk * disk)1093 int revalidate_disk(struct gendisk *disk)
1094 {
1095 struct block_device *bdev;
1096 int ret = 0;
1097
1098 if (disk->fops->revalidate_disk)
1099 ret = disk->fops->revalidate_disk(disk);
1100 bdev = bdget_disk(disk, 0);
1101 if (!bdev)
1102 return ret;
1103
1104 mutex_lock(&bdev->bd_mutex);
1105 check_disk_size_change(disk, bdev);
1106 bdev->bd_invalidated = 0;
1107 mutex_unlock(&bdev->bd_mutex);
1108 bdput(bdev);
1109 return ret;
1110 }
1111 EXPORT_SYMBOL(revalidate_disk);
1112
1113 /*
1114 * This routine checks whether a removable media has been changed,
1115 * and invalidates all buffer-cache-entries in that case. This
1116 * is a relatively slow routine, so we have to try to minimize using
1117 * it. Thus it is called only upon a 'mount' or 'open'. This
1118 * is the best way of combining speed and utility, I think.
1119 * People changing diskettes in the middle of an operation deserve
1120 * to lose :-)
1121 */
check_disk_change(struct block_device * bdev)1122 int check_disk_change(struct block_device *bdev)
1123 {
1124 struct gendisk *disk = bdev->bd_disk;
1125 const struct block_device_operations *bdops = disk->fops;
1126 unsigned int events;
1127
1128 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1129 DISK_EVENT_EJECT_REQUEST);
1130 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1131 return 0;
1132
1133 flush_disk(bdev, true);
1134 if (bdops->revalidate_disk)
1135 bdops->revalidate_disk(bdev->bd_disk);
1136 return 1;
1137 }
1138
1139 EXPORT_SYMBOL(check_disk_change);
1140
bd_set_size(struct block_device * bdev,loff_t size)1141 void bd_set_size(struct block_device *bdev, loff_t size)
1142 {
1143 unsigned bsize = bdev_logical_block_size(bdev);
1144
1145 mutex_lock(&bdev->bd_inode->i_mutex);
1146 i_size_write(bdev->bd_inode, size);
1147 mutex_unlock(&bdev->bd_inode->i_mutex);
1148 while (bsize < PAGE_CACHE_SIZE) {
1149 if (size & bsize)
1150 break;
1151 bsize <<= 1;
1152 }
1153 bdev->bd_block_size = bsize;
1154 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1155 }
1156 EXPORT_SYMBOL(bd_set_size);
1157
1158 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1159
1160 /*
1161 * bd_mutex locking:
1162 *
1163 * mutex_lock(part->bd_mutex)
1164 * mutex_lock_nested(whole->bd_mutex, 1)
1165 */
1166
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1167 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1168 {
1169 struct gendisk *disk;
1170 struct module *owner;
1171 int ret;
1172 int partno;
1173 int perm = 0;
1174
1175 if (mode & FMODE_READ)
1176 perm |= MAY_READ;
1177 if (mode & FMODE_WRITE)
1178 perm |= MAY_WRITE;
1179 /*
1180 * hooks: /n/, see "layering violations".
1181 */
1182 if (!for_part) {
1183 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1184 if (ret != 0)
1185 return ret;
1186 }
1187
1188 restart:
1189
1190 ret = -ENXIO;
1191 disk = get_gendisk(bdev->bd_dev, &partno);
1192 if (!disk)
1193 goto out;
1194 owner = disk->fops->owner;
1195
1196 disk_block_events(disk);
1197 mutex_lock_nested(&bdev->bd_mutex, for_part);
1198 if (!bdev->bd_openers) {
1199 bdev->bd_disk = disk;
1200 bdev->bd_queue = disk->queue;
1201 bdev->bd_contains = bdev;
1202 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1203 if (!partno) {
1204 ret = -ENXIO;
1205 bdev->bd_part = disk_get_part(disk, partno);
1206 if (!bdev->bd_part)
1207 goto out_clear;
1208
1209 ret = 0;
1210 if (disk->fops->open) {
1211 ret = disk->fops->open(bdev, mode);
1212 if (ret == -ERESTARTSYS) {
1213 /* Lost a race with 'disk' being
1214 * deleted, try again.
1215 * See md.c
1216 */
1217 disk_put_part(bdev->bd_part);
1218 bdev->bd_part = NULL;
1219 bdev->bd_disk = NULL;
1220 bdev->bd_queue = NULL;
1221 mutex_unlock(&bdev->bd_mutex);
1222 disk_unblock_events(disk);
1223 put_disk(disk);
1224 module_put(owner);
1225 goto restart;
1226 }
1227 }
1228
1229 if (!ret)
1230 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1231
1232 /*
1233 * If the device is invalidated, rescan partition
1234 * if open succeeded or failed with -ENOMEDIUM.
1235 * The latter is necessary to prevent ghost
1236 * partitions on a removed medium.
1237 */
1238 if (bdev->bd_invalidated) {
1239 if (!ret)
1240 rescan_partitions(disk, bdev);
1241 else if (ret == -ENOMEDIUM)
1242 invalidate_partitions(disk, bdev);
1243 }
1244 if (ret)
1245 goto out_clear;
1246 } else {
1247 struct block_device *whole;
1248 whole = bdget_disk(disk, 0);
1249 ret = -ENOMEM;
1250 if (!whole)
1251 goto out_clear;
1252 BUG_ON(for_part);
1253 ret = __blkdev_get(whole, mode, 1);
1254 if (ret) {
1255 bdput(whole);
1256 goto out_clear;
1257 }
1258 bdev->bd_contains = whole;
1259 bdev->bd_part = disk_get_part(disk, partno);
1260 if (!(disk->flags & GENHD_FL_UP) ||
1261 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1262 ret = -ENXIO;
1263 goto out_clear;
1264 }
1265 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1266 /*
1267 * If the partition is not aligned on a page
1268 * boundary, we can't do dax I/O to it.
1269 */
1270 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1271 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1272 bdev->bd_inode->i_flags &= ~S_DAX;
1273 }
1274 } else {
1275 if (bdev->bd_contains == bdev) {
1276 ret = 0;
1277 if (bdev->bd_disk->fops->open)
1278 ret = bdev->bd_disk->fops->open(bdev, mode);
1279 /* the same as first opener case, read comment there */
1280 if (bdev->bd_invalidated) {
1281 if (!ret)
1282 rescan_partitions(bdev->bd_disk, bdev);
1283 else if (ret == -ENOMEDIUM)
1284 invalidate_partitions(bdev->bd_disk, bdev);
1285 }
1286 if (ret)
1287 goto out_unlock_bdev;
1288 }
1289 /* only one opener holds refs to the module and disk */
1290 put_disk(disk);
1291 module_put(owner);
1292 }
1293 bdev->bd_openers++;
1294 if (for_part)
1295 bdev->bd_part_count++;
1296 mutex_unlock(&bdev->bd_mutex);
1297 disk_unblock_events(disk);
1298 return 0;
1299
1300 out_clear:
1301 disk_put_part(bdev->bd_part);
1302 bdev->bd_disk = NULL;
1303 bdev->bd_part = NULL;
1304 bdev->bd_queue = NULL;
1305 if (bdev != bdev->bd_contains)
1306 __blkdev_put(bdev->bd_contains, mode, 1);
1307 bdev->bd_contains = NULL;
1308 out_unlock_bdev:
1309 mutex_unlock(&bdev->bd_mutex);
1310 disk_unblock_events(disk);
1311 put_disk(disk);
1312 module_put(owner);
1313 out:
1314
1315 return ret;
1316 }
1317
1318 /**
1319 * blkdev_get - open a block device
1320 * @bdev: block_device to open
1321 * @mode: FMODE_* mask
1322 * @holder: exclusive holder identifier
1323 *
1324 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1325 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1326 * @holder is invalid. Exclusive opens may nest for the same @holder.
1327 *
1328 * On success, the reference count of @bdev is unchanged. On failure,
1329 * @bdev is put.
1330 *
1331 * CONTEXT:
1332 * Might sleep.
1333 *
1334 * RETURNS:
1335 * 0 on success, -errno on failure.
1336 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1337 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1338 {
1339 struct block_device *whole = NULL;
1340 int res;
1341
1342 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1343
1344 if ((mode & FMODE_EXCL) && holder) {
1345 whole = bd_start_claiming(bdev, holder);
1346 if (IS_ERR(whole)) {
1347 bdput(bdev);
1348 return PTR_ERR(whole);
1349 }
1350 }
1351
1352 res = __blkdev_get(bdev, mode, 0);
1353
1354 if (whole) {
1355 struct gendisk *disk = whole->bd_disk;
1356
1357 /* finish claiming */
1358 mutex_lock(&bdev->bd_mutex);
1359 spin_lock(&bdev_lock);
1360
1361 if (!res) {
1362 BUG_ON(!bd_may_claim(bdev, whole, holder));
1363 /*
1364 * Note that for a whole device bd_holders
1365 * will be incremented twice, and bd_holder
1366 * will be set to bd_may_claim before being
1367 * set to holder
1368 */
1369 whole->bd_holders++;
1370 whole->bd_holder = bd_may_claim;
1371 bdev->bd_holders++;
1372 bdev->bd_holder = holder;
1373 }
1374
1375 /* tell others that we're done */
1376 BUG_ON(whole->bd_claiming != holder);
1377 whole->bd_claiming = NULL;
1378 wake_up_bit(&whole->bd_claiming, 0);
1379
1380 spin_unlock(&bdev_lock);
1381
1382 /*
1383 * Block event polling for write claims if requested. Any
1384 * write holder makes the write_holder state stick until
1385 * all are released. This is good enough and tracking
1386 * individual writeable reference is too fragile given the
1387 * way @mode is used in blkdev_get/put().
1388 */
1389 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1390 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1391 bdev->bd_write_holder = true;
1392 disk_block_events(disk);
1393 }
1394
1395 mutex_unlock(&bdev->bd_mutex);
1396 bdput(whole);
1397 }
1398
1399 if (res)
1400 bdput(bdev);
1401
1402 return res;
1403 }
1404 EXPORT_SYMBOL(blkdev_get);
1405
1406 /**
1407 * blkdev_get_by_path - open a block device by name
1408 * @path: path to the block device to open
1409 * @mode: FMODE_* mask
1410 * @holder: exclusive holder identifier
1411 *
1412 * Open the blockdevice described by the device file at @path. @mode
1413 * and @holder are identical to blkdev_get().
1414 *
1415 * On success, the returned block_device has reference count of one.
1416 *
1417 * CONTEXT:
1418 * Might sleep.
1419 *
1420 * RETURNS:
1421 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 void *holder)
1425 {
1426 struct block_device *bdev;
1427 int err;
1428
1429 bdev = lookup_bdev(path);
1430 if (IS_ERR(bdev))
1431 return bdev;
1432
1433 err = blkdev_get(bdev, mode, holder);
1434 if (err)
1435 return ERR_PTR(err);
1436
1437 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 blkdev_put(bdev, mode);
1439 return ERR_PTR(-EACCES);
1440 }
1441
1442 return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1445
1446 /**
1447 * blkdev_get_by_dev - open a block device by device number
1448 * @dev: device number of block device to open
1449 * @mode: FMODE_* mask
1450 * @holder: exclusive holder identifier
1451 *
1452 * Open the blockdevice described by device number @dev. @mode and
1453 * @holder are identical to blkdev_get().
1454 *
1455 * Use it ONLY if you really do not have anything better - i.e. when
1456 * you are behind a truly sucky interface and all you are given is a
1457 * device number. _Never_ to be used for internal purposes. If you
1458 * ever need it - reconsider your API.
1459 *
1460 * On success, the returned block_device has reference count of one.
1461 *
1462 * CONTEXT:
1463 * Might sleep.
1464 *
1465 * RETURNS:
1466 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469 {
1470 struct block_device *bdev;
1471 int err;
1472
1473 bdev = bdget(dev);
1474 if (!bdev)
1475 return ERR_PTR(-ENOMEM);
1476
1477 err = blkdev_get(bdev, mode, holder);
1478 if (err)
1479 return ERR_PTR(err);
1480
1481 return bdev;
1482 }
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1484
blkdev_open(struct inode * inode,struct file * filp)1485 static int blkdev_open(struct inode * inode, struct file * filp)
1486 {
1487 struct block_device *bdev;
1488
1489 /*
1490 * Preserve backwards compatibility and allow large file access
1491 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 * binary needs it. We might want to drop this workaround
1493 * during an unstable branch.
1494 */
1495 filp->f_flags |= O_LARGEFILE;
1496
1497 if (filp->f_flags & O_NDELAY)
1498 filp->f_mode |= FMODE_NDELAY;
1499 if (filp->f_flags & O_EXCL)
1500 filp->f_mode |= FMODE_EXCL;
1501 if ((filp->f_flags & O_ACCMODE) == 3)
1502 filp->f_mode |= FMODE_WRITE_IOCTL;
1503
1504 bdev = bd_acquire(inode);
1505 if (bdev == NULL)
1506 return -ENOMEM;
1507
1508 filp->f_mapping = bdev->bd_inode->i_mapping;
1509
1510 return blkdev_get(bdev, filp->f_mode, filp);
1511 }
1512
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514 {
1515 struct gendisk *disk = bdev->bd_disk;
1516 struct block_device *victim = NULL;
1517
1518 /*
1519 * Sync early if it looks like we're the last one. If someone else
1520 * opens the block device between now and the decrement of bd_openers
1521 * then we did a sync that we didn't need to, but that's not the end
1522 * of the world and we want to avoid long (could be several minute)
1523 * syncs while holding the mutex.
1524 */
1525 if (bdev->bd_openers == 1)
1526 sync_blockdev(bdev);
1527
1528 mutex_lock_nested(&bdev->bd_mutex, for_part);
1529 if (for_part)
1530 bdev->bd_part_count--;
1531
1532 if (!--bdev->bd_openers) {
1533 WARN_ON_ONCE(bdev->bd_holders);
1534 sync_blockdev(bdev);
1535 kill_bdev(bdev);
1536
1537 bdev_write_inode(bdev);
1538 /*
1539 * Detaching bdev inode from its wb in __destroy_inode()
1540 * is too late: the queue which embeds its bdi (along with
1541 * root wb) can be gone as soon as we put_disk() below.
1542 */
1543 inode_detach_wb(bdev->bd_inode);
1544 }
1545 if (bdev->bd_contains == bdev) {
1546 if (disk->fops->release)
1547 disk->fops->release(disk, mode);
1548 }
1549 if (!bdev->bd_openers) {
1550 struct module *owner = disk->fops->owner;
1551
1552 disk_put_part(bdev->bd_part);
1553 bdev->bd_part = NULL;
1554 bdev->bd_disk = NULL;
1555 if (bdev != bdev->bd_contains)
1556 victim = bdev->bd_contains;
1557 bdev->bd_contains = NULL;
1558
1559 put_disk(disk);
1560 module_put(owner);
1561 }
1562 mutex_unlock(&bdev->bd_mutex);
1563 bdput(bdev);
1564 if (victim)
1565 __blkdev_put(victim, mode, 1);
1566 }
1567
blkdev_put(struct block_device * bdev,fmode_t mode)1568 void blkdev_put(struct block_device *bdev, fmode_t mode)
1569 {
1570 mutex_lock(&bdev->bd_mutex);
1571
1572 if (mode & FMODE_EXCL) {
1573 bool bdev_free;
1574
1575 /*
1576 * Release a claim on the device. The holder fields
1577 * are protected with bdev_lock. bd_mutex is to
1578 * synchronize disk_holder unlinking.
1579 */
1580 spin_lock(&bdev_lock);
1581
1582 WARN_ON_ONCE(--bdev->bd_holders < 0);
1583 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1584
1585 /* bd_contains might point to self, check in a separate step */
1586 if ((bdev_free = !bdev->bd_holders))
1587 bdev->bd_holder = NULL;
1588 if (!bdev->bd_contains->bd_holders)
1589 bdev->bd_contains->bd_holder = NULL;
1590
1591 spin_unlock(&bdev_lock);
1592
1593 /*
1594 * If this was the last claim, remove holder link and
1595 * unblock evpoll if it was a write holder.
1596 */
1597 if (bdev_free && bdev->bd_write_holder) {
1598 disk_unblock_events(bdev->bd_disk);
1599 bdev->bd_write_holder = false;
1600 }
1601 }
1602
1603 /*
1604 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1605 * event. This is to ensure detection of media removal commanded
1606 * from userland - e.g. eject(1).
1607 */
1608 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1609
1610 mutex_unlock(&bdev->bd_mutex);
1611
1612 __blkdev_put(bdev, mode, 0);
1613 }
1614 EXPORT_SYMBOL(blkdev_put);
1615
blkdev_close(struct inode * inode,struct file * filp)1616 static int blkdev_close(struct inode * inode, struct file * filp)
1617 {
1618 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1619 blkdev_put(bdev, filp->f_mode);
1620 return 0;
1621 }
1622
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1623 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1624 {
1625 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1626 fmode_t mode = file->f_mode;
1627
1628 /*
1629 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1630 * to updated it before every ioctl.
1631 */
1632 if (file->f_flags & O_NDELAY)
1633 mode |= FMODE_NDELAY;
1634 else
1635 mode &= ~FMODE_NDELAY;
1636
1637 return blkdev_ioctl(bdev, mode, cmd, arg);
1638 }
1639
1640 /*
1641 * Write data to the block device. Only intended for the block device itself
1642 * and the raw driver which basically is a fake block device.
1643 *
1644 * Does not take i_mutex for the write and thus is not for general purpose
1645 * use.
1646 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1647 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1648 {
1649 struct file *file = iocb->ki_filp;
1650 struct inode *bd_inode = file->f_mapping->host;
1651 loff_t size = i_size_read(bd_inode);
1652 struct blk_plug plug;
1653 ssize_t ret;
1654
1655 if (bdev_read_only(I_BDEV(bd_inode)))
1656 return -EPERM;
1657
1658 if (!iov_iter_count(from))
1659 return 0;
1660
1661 if (iocb->ki_pos >= size)
1662 return -ENOSPC;
1663
1664 iov_iter_truncate(from, size - iocb->ki_pos);
1665
1666 blk_start_plug(&plug);
1667 ret = __generic_file_write_iter(iocb, from);
1668 if (ret > 0) {
1669 ssize_t err;
1670 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1671 if (err < 0)
1672 ret = err;
1673 }
1674 blk_finish_plug(&plug);
1675 return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1678
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1679 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1680 {
1681 struct file *file = iocb->ki_filp;
1682 struct inode *bd_inode = file->f_mapping->host;
1683 loff_t size = i_size_read(bd_inode);
1684 loff_t pos = iocb->ki_pos;
1685
1686 if (pos >= size)
1687 return 0;
1688
1689 size -= pos;
1690 iov_iter_truncate(to, size);
1691 return generic_file_read_iter(iocb, to);
1692 }
1693 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1694
1695 /*
1696 * Try to release a page associated with block device when the system
1697 * is under memory pressure.
1698 */
blkdev_releasepage(struct page * page,gfp_t wait)1699 static int blkdev_releasepage(struct page *page, gfp_t wait)
1700 {
1701 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1702
1703 if (super && super->s_op->bdev_try_to_free_page)
1704 return super->s_op->bdev_try_to_free_page(super, page, wait);
1705
1706 return try_to_free_buffers(page);
1707 }
1708
1709 static const struct address_space_operations def_blk_aops = {
1710 .readpage = blkdev_readpage,
1711 .readpages = blkdev_readpages,
1712 .writepage = blkdev_writepage,
1713 .write_begin = blkdev_write_begin,
1714 .write_end = blkdev_write_end,
1715 .writepages = generic_writepages,
1716 .releasepage = blkdev_releasepage,
1717 .direct_IO = blkdev_direct_IO,
1718 .is_dirty_writeback = buffer_check_dirty_writeback,
1719 };
1720
1721 const struct file_operations def_blk_fops = {
1722 .open = blkdev_open,
1723 .release = blkdev_close,
1724 .llseek = block_llseek,
1725 .read_iter = blkdev_read_iter,
1726 .write_iter = blkdev_write_iter,
1727 .mmap = generic_file_mmap,
1728 .fsync = blkdev_fsync,
1729 .unlocked_ioctl = block_ioctl,
1730 #ifdef CONFIG_COMPAT
1731 .compat_ioctl = compat_blkdev_ioctl,
1732 #endif
1733 .splice_read = generic_file_splice_read,
1734 .splice_write = iter_file_splice_write,
1735 };
1736
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1737 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1738 {
1739 int res;
1740 mm_segment_t old_fs = get_fs();
1741 set_fs(KERNEL_DS);
1742 res = blkdev_ioctl(bdev, 0, cmd, arg);
1743 set_fs(old_fs);
1744 return res;
1745 }
1746
1747 EXPORT_SYMBOL(ioctl_by_bdev);
1748
1749 /**
1750 * lookup_bdev - lookup a struct block_device by name
1751 * @pathname: special file representing the block device
1752 *
1753 * Get a reference to the blockdevice at @pathname in the current
1754 * namespace if possible and return it. Return ERR_PTR(error)
1755 * otherwise.
1756 */
lookup_bdev(const char * pathname)1757 struct block_device *lookup_bdev(const char *pathname)
1758 {
1759 struct block_device *bdev;
1760 struct inode *inode;
1761 struct path path;
1762 int error;
1763
1764 if (!pathname || !*pathname)
1765 return ERR_PTR(-EINVAL);
1766
1767 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1768 if (error)
1769 return ERR_PTR(error);
1770
1771 inode = d_backing_inode(path.dentry);
1772 error = -ENOTBLK;
1773 if (!S_ISBLK(inode->i_mode))
1774 goto fail;
1775 error = -EACCES;
1776 if (path.mnt->mnt_flags & MNT_NODEV)
1777 goto fail;
1778 error = -ENOMEM;
1779 bdev = bd_acquire(inode);
1780 if (!bdev)
1781 goto fail;
1782 out:
1783 path_put(&path);
1784 return bdev;
1785 fail:
1786 bdev = ERR_PTR(error);
1787 goto out;
1788 }
1789 EXPORT_SYMBOL(lookup_bdev);
1790
__invalidate_device(struct block_device * bdev,bool kill_dirty)1791 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1792 {
1793 struct super_block *sb = get_super(bdev);
1794 int res = 0;
1795
1796 if (sb) {
1797 /*
1798 * no need to lock the super, get_super holds the
1799 * read mutex so the filesystem cannot go away
1800 * under us (->put_super runs with the write lock
1801 * hold).
1802 */
1803 shrink_dcache_sb(sb);
1804 res = invalidate_inodes(sb, kill_dirty);
1805 drop_super(sb);
1806 }
1807 invalidate_bdev(bdev);
1808 return res;
1809 }
1810 EXPORT_SYMBOL(__invalidate_device);
1811
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1812 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1813 {
1814 struct inode *inode, *old_inode = NULL;
1815
1816 spin_lock(&blockdev_superblock->s_inode_list_lock);
1817 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1818 struct address_space *mapping = inode->i_mapping;
1819 struct block_device *bdev;
1820
1821 spin_lock(&inode->i_lock);
1822 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1823 mapping->nrpages == 0) {
1824 spin_unlock(&inode->i_lock);
1825 continue;
1826 }
1827 __iget(inode);
1828 spin_unlock(&inode->i_lock);
1829 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1830 /*
1831 * We hold a reference to 'inode' so it couldn't have been
1832 * removed from s_inodes list while we dropped the
1833 * s_inode_list_lock We cannot iput the inode now as we can
1834 * be holding the last reference and we cannot iput it under
1835 * s_inode_list_lock. So we keep the reference and iput it
1836 * later.
1837 */
1838 iput(old_inode);
1839 old_inode = inode;
1840 bdev = I_BDEV(inode);
1841
1842 mutex_lock(&bdev->bd_mutex);
1843 if (bdev->bd_openers)
1844 func(bdev, arg);
1845 mutex_unlock(&bdev->bd_mutex);
1846
1847 spin_lock(&blockdev_superblock->s_inode_list_lock);
1848 }
1849 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1850 iput(old_inode);
1851 }
1852