• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34 
35 struct bdev_inode {
36 	struct block_device bdev;
37 	struct inode vfs_inode;
38 };
39 
40 static const struct address_space_operations def_blk_aops;
41 
BDEV_I(struct inode * inode)42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 	return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46 
I_BDEV(struct inode * inode)47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 	return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52 
bdev_write_inode(struct block_device * bdev)53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 	struct inode *inode = bdev->bd_inode;
56 	int ret;
57 
58 	spin_lock(&inode->i_lock);
59 	while (inode->i_state & I_DIRTY) {
60 		spin_unlock(&inode->i_lock);
61 		ret = write_inode_now(inode, true);
62 		if (ret) {
63 			char name[BDEVNAME_SIZE];
64 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 					    "for block device %s (err=%d).\n",
66 					    bdevname(bdev, name), ret);
67 		}
68 		spin_lock(&inode->i_lock);
69 	}
70 	spin_unlock(&inode->i_lock);
71 }
72 
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)74 void kill_bdev(struct block_device *bdev)
75 {
76 	struct address_space *mapping = bdev->bd_inode->i_mapping;
77 
78 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 		return;
80 
81 	invalidate_bh_lrus();
82 	truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85 
86 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)87 void invalidate_bdev(struct block_device *bdev)
88 {
89 	struct address_space *mapping = bdev->bd_inode->i_mapping;
90 
91 	if (mapping->nrpages) {
92 		invalidate_bh_lrus();
93 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
94 		invalidate_mapping_pages(mapping, 0, -1);
95 	}
96 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
97 	 * But, for the strange corners, lets be cautious
98 	 */
99 	cleancache_invalidate_inode(mapping);
100 }
101 EXPORT_SYMBOL(invalidate_bdev);
102 
set_blocksize(struct block_device * bdev,int size)103 int set_blocksize(struct block_device *bdev, int size)
104 {
105 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
106 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
107 		return -EINVAL;
108 
109 	/* Size cannot be smaller than the size supported by the device */
110 	if (size < bdev_logical_block_size(bdev))
111 		return -EINVAL;
112 
113 	/* Don't change the size if it is same as current */
114 	if (bdev->bd_block_size != size) {
115 		sync_blockdev(bdev);
116 		bdev->bd_block_size = size;
117 		bdev->bd_inode->i_blkbits = blksize_bits(size);
118 		kill_bdev(bdev);
119 	}
120 	return 0;
121 }
122 
123 EXPORT_SYMBOL(set_blocksize);
124 
sb_set_blocksize(struct super_block * sb,int size)125 int sb_set_blocksize(struct super_block *sb, int size)
126 {
127 	if (set_blocksize(sb->s_bdev, size))
128 		return 0;
129 	/* If we get here, we know size is power of two
130 	 * and it's value is between 512 and PAGE_SIZE */
131 	sb->s_blocksize = size;
132 	sb->s_blocksize_bits = blksize_bits(size);
133 	return sb->s_blocksize;
134 }
135 
136 EXPORT_SYMBOL(sb_set_blocksize);
137 
sb_min_blocksize(struct super_block * sb,int size)138 int sb_min_blocksize(struct super_block *sb, int size)
139 {
140 	int minsize = bdev_logical_block_size(sb->s_bdev);
141 	if (size < minsize)
142 		size = minsize;
143 	return sb_set_blocksize(sb, size);
144 }
145 
146 EXPORT_SYMBOL(sb_min_blocksize);
147 
148 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)149 blkdev_get_block(struct inode *inode, sector_t iblock,
150 		struct buffer_head *bh, int create)
151 {
152 	bh->b_bdev = I_BDEV(inode);
153 	bh->b_blocknr = iblock;
154 	set_buffer_mapped(bh);
155 	return 0;
156 }
157 
158 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)159 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
160 {
161 	struct file *file = iocb->ki_filp;
162 	struct inode *inode = file->f_mapping->host;
163 
164 	if (IS_DAX(inode))
165 		return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
166 				NULL, DIO_SKIP_DIO_COUNT);
167 	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
168 				    blkdev_get_block, NULL, NULL,
169 				    DIO_SKIP_DIO_COUNT);
170 }
171 
__sync_blockdev(struct block_device * bdev,int wait)172 int __sync_blockdev(struct block_device *bdev, int wait)
173 {
174 	if (!bdev)
175 		return 0;
176 	if (!wait)
177 		return filemap_flush(bdev->bd_inode->i_mapping);
178 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
179 }
180 
181 /*
182  * Write out and wait upon all the dirty data associated with a block
183  * device via its mapping.  Does not take the superblock lock.
184  */
sync_blockdev(struct block_device * bdev)185 int sync_blockdev(struct block_device *bdev)
186 {
187 	return __sync_blockdev(bdev, 1);
188 }
189 EXPORT_SYMBOL(sync_blockdev);
190 
191 /*
192  * Write out and wait upon all dirty data associated with this
193  * device.   Filesystem data as well as the underlying block
194  * device.  Takes the superblock lock.
195  */
fsync_bdev(struct block_device * bdev)196 int fsync_bdev(struct block_device *bdev)
197 {
198 	struct super_block *sb = get_super(bdev);
199 	if (sb) {
200 		int res = sync_filesystem(sb);
201 		drop_super(sb);
202 		return res;
203 	}
204 	return sync_blockdev(bdev);
205 }
206 EXPORT_SYMBOL(fsync_bdev);
207 
208 /**
209  * freeze_bdev  --  lock a filesystem and force it into a consistent state
210  * @bdev:	blockdevice to lock
211  *
212  * If a superblock is found on this device, we take the s_umount semaphore
213  * on it to make sure nobody unmounts until the snapshot creation is done.
214  * The reference counter (bd_fsfreeze_count) guarantees that only the last
215  * unfreeze process can unfreeze the frozen filesystem actually when multiple
216  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
217  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
218  * actually.
219  */
freeze_bdev(struct block_device * bdev)220 struct super_block *freeze_bdev(struct block_device *bdev)
221 {
222 	struct super_block *sb;
223 	int error = 0;
224 
225 	mutex_lock(&bdev->bd_fsfreeze_mutex);
226 	if (++bdev->bd_fsfreeze_count > 1) {
227 		/*
228 		 * We don't even need to grab a reference - the first call
229 		 * to freeze_bdev grab an active reference and only the last
230 		 * thaw_bdev drops it.
231 		 */
232 		sb = get_super(bdev);
233 		drop_super(sb);
234 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
235 		return sb;
236 	}
237 
238 	sb = get_active_super(bdev);
239 	if (!sb)
240 		goto out;
241 	if (sb->s_op->freeze_super)
242 		error = sb->s_op->freeze_super(sb);
243 	else
244 		error = freeze_super(sb);
245 	if (error) {
246 		deactivate_super(sb);
247 		bdev->bd_fsfreeze_count--;
248 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
249 		return ERR_PTR(error);
250 	}
251 	deactivate_super(sb);
252  out:
253 	sync_blockdev(bdev);
254 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 	return sb;	/* thaw_bdev releases s->s_umount */
256 }
257 EXPORT_SYMBOL(freeze_bdev);
258 
259 /**
260  * thaw_bdev  -- unlock filesystem
261  * @bdev:	blockdevice to unlock
262  * @sb:		associated superblock
263  *
264  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
265  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)266 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
267 {
268 	int error = -EINVAL;
269 
270 	mutex_lock(&bdev->bd_fsfreeze_mutex);
271 	if (!bdev->bd_fsfreeze_count)
272 		goto out;
273 
274 	error = 0;
275 	if (--bdev->bd_fsfreeze_count > 0)
276 		goto out;
277 
278 	if (!sb)
279 		goto out;
280 
281 	if (sb->s_op->thaw_super)
282 		error = sb->s_op->thaw_super(sb);
283 	else
284 		error = thaw_super(sb);
285 	if (error) {
286 		bdev->bd_fsfreeze_count++;
287 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
288 		return error;
289 	}
290 out:
291 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
292 	return 0;
293 }
294 EXPORT_SYMBOL(thaw_bdev);
295 
blkdev_writepage(struct page * page,struct writeback_control * wbc)296 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
297 {
298 	return block_write_full_page(page, blkdev_get_block, wbc);
299 }
300 
blkdev_readpage(struct file * file,struct page * page)301 static int blkdev_readpage(struct file * file, struct page * page)
302 {
303 	return block_read_full_page(page, blkdev_get_block);
304 }
305 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)306 static int blkdev_readpages(struct file *file, struct address_space *mapping,
307 			struct list_head *pages, unsigned nr_pages)
308 {
309 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
310 }
311 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)312 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
313 			loff_t pos, unsigned len, unsigned flags,
314 			struct page **pagep, void **fsdata)
315 {
316 	return block_write_begin(mapping, pos, len, flags, pagep,
317 				 blkdev_get_block);
318 }
319 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)320 static int blkdev_write_end(struct file *file, struct address_space *mapping,
321 			loff_t pos, unsigned len, unsigned copied,
322 			struct page *page, void *fsdata)
323 {
324 	int ret;
325 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
326 
327 	unlock_page(page);
328 	page_cache_release(page);
329 
330 	return ret;
331 }
332 
333 /*
334  * private llseek:
335  * for a block special file file_inode(file)->i_size is zero
336  * so we compute the size by hand (just as in block_read/write above)
337  */
block_llseek(struct file * file,loff_t offset,int whence)338 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
339 {
340 	struct inode *bd_inode = file->f_mapping->host;
341 	loff_t retval;
342 
343 	mutex_lock(&bd_inode->i_mutex);
344 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
345 	mutex_unlock(&bd_inode->i_mutex);
346 	return retval;
347 }
348 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)349 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
350 {
351 	struct inode *bd_inode = filp->f_mapping->host;
352 	struct block_device *bdev = I_BDEV(bd_inode);
353 	int error;
354 
355 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
356 	if (error)
357 		return error;
358 
359 	/*
360 	 * There is no need to serialise calls to blkdev_issue_flush with
361 	 * i_mutex and doing so causes performance issues with concurrent
362 	 * O_SYNC writers to a block device.
363 	 */
364 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
365 	if (error == -EOPNOTSUPP)
366 		error = 0;
367 
368 	return error;
369 }
370 EXPORT_SYMBOL(blkdev_fsync);
371 
372 /**
373  * bdev_read_page() - Start reading a page from a block device
374  * @bdev: The device to read the page from
375  * @sector: The offset on the device to read the page to (need not be aligned)
376  * @page: The page to read
377  *
378  * On entry, the page should be locked.  It will be unlocked when the page
379  * has been read.  If the block driver implements rw_page synchronously,
380  * that will be true on exit from this function, but it need not be.
381  *
382  * Errors returned by this function are usually "soft", eg out of memory, or
383  * queue full; callers should try a different route to read this page rather
384  * than propagate an error back up the stack.
385  *
386  * Return: negative errno if an error occurs, 0 if submission was successful.
387  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)388 int bdev_read_page(struct block_device *bdev, sector_t sector,
389 			struct page *page)
390 {
391 	const struct block_device_operations *ops = bdev->bd_disk->fops;
392 	int result = -EOPNOTSUPP;
393 
394 	if (!ops->rw_page || bdev_get_integrity(bdev))
395 		return result;
396 
397 	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
398 	if (result)
399 		return result;
400 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
401 	blk_queue_exit(bdev->bd_queue);
402 	return result;
403 }
404 EXPORT_SYMBOL_GPL(bdev_read_page);
405 
406 /**
407  * bdev_write_page() - Start writing a page to a block device
408  * @bdev: The device to write the page to
409  * @sector: The offset on the device to write the page to (need not be aligned)
410  * @page: The page to write
411  * @wbc: The writeback_control for the write
412  *
413  * On entry, the page should be locked and not currently under writeback.
414  * On exit, if the write started successfully, the page will be unlocked and
415  * under writeback.  If the write failed already (eg the driver failed to
416  * queue the page to the device), the page will still be locked.  If the
417  * caller is a ->writepage implementation, it will need to unlock the page.
418  *
419  * Errors returned by this function are usually "soft", eg out of memory, or
420  * queue full; callers should try a different route to write this page rather
421  * than propagate an error back up the stack.
422  *
423  * Return: negative errno if an error occurs, 0 if submission was successful.
424  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)425 int bdev_write_page(struct block_device *bdev, sector_t sector,
426 			struct page *page, struct writeback_control *wbc)
427 {
428 	int result;
429 	int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
430 	const struct block_device_operations *ops = bdev->bd_disk->fops;
431 
432 	if (!ops->rw_page || bdev_get_integrity(bdev))
433 		return -EOPNOTSUPP;
434 	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
435 	if (result)
436 		return result;
437 
438 	set_page_writeback(page);
439 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
440 	if (result)
441 		end_page_writeback(page);
442 	else
443 		unlock_page(page);
444 	blk_queue_exit(bdev->bd_queue);
445 	return result;
446 }
447 EXPORT_SYMBOL_GPL(bdev_write_page);
448 
449 /**
450  * bdev_direct_access() - Get the address for directly-accessibly memory
451  * @bdev: The device containing the memory
452  * @sector: The offset within the device
453  * @addr: Where to put the address of the memory
454  * @pfn: The Page Frame Number for the memory
455  * @size: The number of bytes requested
456  *
457  * If a block device is made up of directly addressable memory, this function
458  * will tell the caller the PFN and the address of the memory.  The address
459  * may be directly dereferenced within the kernel without the need to call
460  * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
461  * page tables.
462  *
463  * Return: negative errno if an error occurs, otherwise the number of bytes
464  * accessible at this address.
465  */
bdev_direct_access(struct block_device * bdev,sector_t sector,void __pmem ** addr,unsigned long * pfn,long size)466 long bdev_direct_access(struct block_device *bdev, sector_t sector,
467 			void __pmem **addr, unsigned long *pfn, long size)
468 {
469 	long avail;
470 	const struct block_device_operations *ops = bdev->bd_disk->fops;
471 
472 	/*
473 	 * The device driver is allowed to sleep, in order to make the
474 	 * memory directly accessible.
475 	 */
476 	might_sleep();
477 
478 	if (size < 0)
479 		return size;
480 	if (!ops->direct_access)
481 		return -EOPNOTSUPP;
482 	if ((sector + DIV_ROUND_UP(size, 512)) >
483 					part_nr_sects_read(bdev->bd_part))
484 		return -ERANGE;
485 	sector += get_start_sect(bdev);
486 	if (sector % (PAGE_SIZE / 512))
487 		return -EINVAL;
488 	avail = ops->direct_access(bdev, sector, addr, pfn);
489 	if (!avail)
490 		return -ERANGE;
491 	return min(avail, size);
492 }
493 EXPORT_SYMBOL_GPL(bdev_direct_access);
494 
495 /*
496  * pseudo-fs
497  */
498 
499 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
500 static struct kmem_cache * bdev_cachep __read_mostly;
501 
bdev_alloc_inode(struct super_block * sb)502 static struct inode *bdev_alloc_inode(struct super_block *sb)
503 {
504 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
505 	if (!ei)
506 		return NULL;
507 	return &ei->vfs_inode;
508 }
509 
bdev_i_callback(struct rcu_head * head)510 static void bdev_i_callback(struct rcu_head *head)
511 {
512 	struct inode *inode = container_of(head, struct inode, i_rcu);
513 	struct bdev_inode *bdi = BDEV_I(inode);
514 
515 	kmem_cache_free(bdev_cachep, bdi);
516 }
517 
bdev_destroy_inode(struct inode * inode)518 static void bdev_destroy_inode(struct inode *inode)
519 {
520 	call_rcu(&inode->i_rcu, bdev_i_callback);
521 }
522 
init_once(void * foo)523 static void init_once(void *foo)
524 {
525 	struct bdev_inode *ei = (struct bdev_inode *) foo;
526 	struct block_device *bdev = &ei->bdev;
527 
528 	memset(bdev, 0, sizeof(*bdev));
529 	mutex_init(&bdev->bd_mutex);
530 	INIT_LIST_HEAD(&bdev->bd_inodes);
531 	INIT_LIST_HEAD(&bdev->bd_list);
532 #ifdef CONFIG_SYSFS
533 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
534 #endif
535 	inode_init_once(&ei->vfs_inode);
536 	/* Initialize mutex for freeze. */
537 	mutex_init(&bdev->bd_fsfreeze_mutex);
538 }
539 
__bd_forget(struct inode * inode)540 static inline void __bd_forget(struct inode *inode)
541 {
542 	list_del_init(&inode->i_devices);
543 	inode->i_bdev = NULL;
544 	inode->i_mapping = &inode->i_data;
545 }
546 
bdev_evict_inode(struct inode * inode)547 static void bdev_evict_inode(struct inode *inode)
548 {
549 	struct block_device *bdev = &BDEV_I(inode)->bdev;
550 	struct list_head *p;
551 	truncate_inode_pages_final(&inode->i_data);
552 	invalidate_inode_buffers(inode); /* is it needed here? */
553 	clear_inode(inode);
554 	spin_lock(&bdev_lock);
555 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
556 		__bd_forget(list_entry(p, struct inode, i_devices));
557 	}
558 	list_del_init(&bdev->bd_list);
559 	spin_unlock(&bdev_lock);
560 }
561 
562 static const struct super_operations bdev_sops = {
563 	.statfs = simple_statfs,
564 	.alloc_inode = bdev_alloc_inode,
565 	.destroy_inode = bdev_destroy_inode,
566 	.drop_inode = generic_delete_inode,
567 	.evict_inode = bdev_evict_inode,
568 };
569 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)570 static struct dentry *bd_mount(struct file_system_type *fs_type,
571 	int flags, const char *dev_name, void *data)
572 {
573 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
574 }
575 
576 static struct file_system_type bd_type = {
577 	.name		= "bdev",
578 	.mount		= bd_mount,
579 	.kill_sb	= kill_anon_super,
580 };
581 
582 struct super_block *blockdev_superblock __read_mostly;
583 EXPORT_SYMBOL_GPL(blockdev_superblock);
584 
bdev_cache_init(void)585 void __init bdev_cache_init(void)
586 {
587 	int err;
588 	static struct vfsmount *bd_mnt;
589 
590 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
591 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
592 				SLAB_MEM_SPREAD|SLAB_PANIC),
593 			init_once);
594 	err = register_filesystem(&bd_type);
595 	if (err)
596 		panic("Cannot register bdev pseudo-fs");
597 	bd_mnt = kern_mount(&bd_type);
598 	if (IS_ERR(bd_mnt))
599 		panic("Cannot create bdev pseudo-fs");
600 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
601 }
602 
603 /*
604  * Most likely _very_ bad one - but then it's hardly critical for small
605  * /dev and can be fixed when somebody will need really large one.
606  * Keep in mind that it will be fed through icache hash function too.
607  */
hash(dev_t dev)608 static inline unsigned long hash(dev_t dev)
609 {
610 	return MAJOR(dev)+MINOR(dev);
611 }
612 
bdev_test(struct inode * inode,void * data)613 static int bdev_test(struct inode *inode, void *data)
614 {
615 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
616 }
617 
bdev_set(struct inode * inode,void * data)618 static int bdev_set(struct inode *inode, void *data)
619 {
620 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
621 	return 0;
622 }
623 
624 static LIST_HEAD(all_bdevs);
625 
bdget(dev_t dev)626 struct block_device *bdget(dev_t dev)
627 {
628 	struct block_device *bdev;
629 	struct inode *inode;
630 
631 	inode = iget5_locked(blockdev_superblock, hash(dev),
632 			bdev_test, bdev_set, &dev);
633 
634 	if (!inode)
635 		return NULL;
636 
637 	bdev = &BDEV_I(inode)->bdev;
638 
639 	if (inode->i_state & I_NEW) {
640 		bdev->bd_contains = NULL;
641 		bdev->bd_super = NULL;
642 		bdev->bd_inode = inode;
643 		bdev->bd_block_size = (1 << inode->i_blkbits);
644 		bdev->bd_part_count = 0;
645 		bdev->bd_invalidated = 0;
646 		inode->i_mode = S_IFBLK;
647 		inode->i_rdev = dev;
648 		inode->i_bdev = bdev;
649 		inode->i_data.a_ops = &def_blk_aops;
650 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
651 		spin_lock(&bdev_lock);
652 		list_add(&bdev->bd_list, &all_bdevs);
653 		spin_unlock(&bdev_lock);
654 		unlock_new_inode(inode);
655 	}
656 	return bdev;
657 }
658 
659 EXPORT_SYMBOL(bdget);
660 
661 /**
662  * bdgrab -- Grab a reference to an already referenced block device
663  * @bdev:	Block device to grab a reference to.
664  */
bdgrab(struct block_device * bdev)665 struct block_device *bdgrab(struct block_device *bdev)
666 {
667 	ihold(bdev->bd_inode);
668 	return bdev;
669 }
670 EXPORT_SYMBOL(bdgrab);
671 
nr_blockdev_pages(void)672 long nr_blockdev_pages(void)
673 {
674 	struct block_device *bdev;
675 	long ret = 0;
676 	spin_lock(&bdev_lock);
677 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
678 		ret += bdev->bd_inode->i_mapping->nrpages;
679 	}
680 	spin_unlock(&bdev_lock);
681 	return ret;
682 }
683 
bdput(struct block_device * bdev)684 void bdput(struct block_device *bdev)
685 {
686 	iput(bdev->bd_inode);
687 }
688 
689 EXPORT_SYMBOL(bdput);
690 
bd_acquire(struct inode * inode)691 static struct block_device *bd_acquire(struct inode *inode)
692 {
693 	struct block_device *bdev;
694 
695 	spin_lock(&bdev_lock);
696 	bdev = inode->i_bdev;
697 	if (bdev) {
698 		ihold(bdev->bd_inode);
699 		spin_unlock(&bdev_lock);
700 		return bdev;
701 	}
702 	spin_unlock(&bdev_lock);
703 
704 	bdev = bdget(inode->i_rdev);
705 	if (bdev) {
706 		spin_lock(&bdev_lock);
707 		if (!inode->i_bdev) {
708 			/*
709 			 * We take an additional reference to bd_inode,
710 			 * and it's released in clear_inode() of inode.
711 			 * So, we can access it via ->i_mapping always
712 			 * without igrab().
713 			 */
714 			ihold(bdev->bd_inode);
715 			inode->i_bdev = bdev;
716 			inode->i_mapping = bdev->bd_inode->i_mapping;
717 			list_add(&inode->i_devices, &bdev->bd_inodes);
718 		}
719 		spin_unlock(&bdev_lock);
720 	}
721 	return bdev;
722 }
723 
724 /* Call when you free inode */
725 
bd_forget(struct inode * inode)726 void bd_forget(struct inode *inode)
727 {
728 	struct block_device *bdev = NULL;
729 
730 	spin_lock(&bdev_lock);
731 	if (!sb_is_blkdev_sb(inode->i_sb))
732 		bdev = inode->i_bdev;
733 	__bd_forget(inode);
734 	spin_unlock(&bdev_lock);
735 
736 	if (bdev)
737 		iput(bdev->bd_inode);
738 }
739 
740 /**
741  * bd_may_claim - test whether a block device can be claimed
742  * @bdev: block device of interest
743  * @whole: whole block device containing @bdev, may equal @bdev
744  * @holder: holder trying to claim @bdev
745  *
746  * Test whether @bdev can be claimed by @holder.
747  *
748  * CONTEXT:
749  * spin_lock(&bdev_lock).
750  *
751  * RETURNS:
752  * %true if @bdev can be claimed, %false otherwise.
753  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)754 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
755 			 void *holder)
756 {
757 	if (bdev->bd_holder == holder)
758 		return true;	 /* already a holder */
759 	else if (bdev->bd_holder != NULL)
760 		return false; 	 /* held by someone else */
761 	else if (whole == bdev)
762 		return true;  	 /* is a whole device which isn't held */
763 
764 	else if (whole->bd_holder == bd_may_claim)
765 		return true; 	 /* is a partition of a device that is being partitioned */
766 	else if (whole->bd_holder != NULL)
767 		return false;	 /* is a partition of a held device */
768 	else
769 		return true;	 /* is a partition of an un-held device */
770 }
771 
772 /**
773  * bd_prepare_to_claim - prepare to claim a block device
774  * @bdev: block device of interest
775  * @whole: the whole device containing @bdev, may equal @bdev
776  * @holder: holder trying to claim @bdev
777  *
778  * Prepare to claim @bdev.  This function fails if @bdev is already
779  * claimed by another holder and waits if another claiming is in
780  * progress.  This function doesn't actually claim.  On successful
781  * return, the caller has ownership of bd_claiming and bd_holder[s].
782  *
783  * CONTEXT:
784  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
785  * it multiple times.
786  *
787  * RETURNS:
788  * 0 if @bdev can be claimed, -EBUSY otherwise.
789  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)790 static int bd_prepare_to_claim(struct block_device *bdev,
791 			       struct block_device *whole, void *holder)
792 {
793 retry:
794 	/* if someone else claimed, fail */
795 	if (!bd_may_claim(bdev, whole, holder))
796 		return -EBUSY;
797 
798 	/* if claiming is already in progress, wait for it to finish */
799 	if (whole->bd_claiming) {
800 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
801 		DEFINE_WAIT(wait);
802 
803 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
804 		spin_unlock(&bdev_lock);
805 		schedule();
806 		finish_wait(wq, &wait);
807 		spin_lock(&bdev_lock);
808 		goto retry;
809 	}
810 
811 	/* yay, all mine */
812 	return 0;
813 }
814 
815 /**
816  * bd_start_claiming - start claiming a block device
817  * @bdev: block device of interest
818  * @holder: holder trying to claim @bdev
819  *
820  * @bdev is about to be opened exclusively.  Check @bdev can be opened
821  * exclusively and mark that an exclusive open is in progress.  Each
822  * successful call to this function must be matched with a call to
823  * either bd_finish_claiming() or bd_abort_claiming() (which do not
824  * fail).
825  *
826  * This function is used to gain exclusive access to the block device
827  * without actually causing other exclusive open attempts to fail. It
828  * should be used when the open sequence itself requires exclusive
829  * access but may subsequently fail.
830  *
831  * CONTEXT:
832  * Might sleep.
833  *
834  * RETURNS:
835  * Pointer to the block device containing @bdev on success, ERR_PTR()
836  * value on failure.
837  */
bd_start_claiming(struct block_device * bdev,void * holder)838 static struct block_device *bd_start_claiming(struct block_device *bdev,
839 					      void *holder)
840 {
841 	struct gendisk *disk;
842 	struct block_device *whole;
843 	int partno, err;
844 
845 	might_sleep();
846 
847 	/*
848 	 * @bdev might not have been initialized properly yet, look up
849 	 * and grab the outer block device the hard way.
850 	 */
851 	disk = get_gendisk(bdev->bd_dev, &partno);
852 	if (!disk)
853 		return ERR_PTR(-ENXIO);
854 
855 	/*
856 	 * Normally, @bdev should equal what's returned from bdget_disk()
857 	 * if partno is 0; however, some drivers (floppy) use multiple
858 	 * bdev's for the same physical device and @bdev may be one of the
859 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
860 	 * tracking is broken for those devices but it has always been that
861 	 * way.
862 	 */
863 	if (partno)
864 		whole = bdget_disk(disk, 0);
865 	else
866 		whole = bdgrab(bdev);
867 
868 	module_put(disk->fops->owner);
869 	put_disk(disk);
870 	if (!whole)
871 		return ERR_PTR(-ENOMEM);
872 
873 	/* prepare to claim, if successful, mark claiming in progress */
874 	spin_lock(&bdev_lock);
875 
876 	err = bd_prepare_to_claim(bdev, whole, holder);
877 	if (err == 0) {
878 		whole->bd_claiming = holder;
879 		spin_unlock(&bdev_lock);
880 		return whole;
881 	} else {
882 		spin_unlock(&bdev_lock);
883 		bdput(whole);
884 		return ERR_PTR(err);
885 	}
886 }
887 
888 #ifdef CONFIG_SYSFS
889 struct bd_holder_disk {
890 	struct list_head	list;
891 	struct gendisk		*disk;
892 	int			refcnt;
893 };
894 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)895 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
896 						  struct gendisk *disk)
897 {
898 	struct bd_holder_disk *holder;
899 
900 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
901 		if (holder->disk == disk)
902 			return holder;
903 	return NULL;
904 }
905 
add_symlink(struct kobject * from,struct kobject * to)906 static int add_symlink(struct kobject *from, struct kobject *to)
907 {
908 	return sysfs_create_link(from, to, kobject_name(to));
909 }
910 
del_symlink(struct kobject * from,struct kobject * to)911 static void del_symlink(struct kobject *from, struct kobject *to)
912 {
913 	sysfs_remove_link(from, kobject_name(to));
914 }
915 
916 /**
917  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
918  * @bdev: the claimed slave bdev
919  * @disk: the holding disk
920  *
921  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
922  *
923  * This functions creates the following sysfs symlinks.
924  *
925  * - from "slaves" directory of the holder @disk to the claimed @bdev
926  * - from "holders" directory of the @bdev to the holder @disk
927  *
928  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
929  * passed to bd_link_disk_holder(), then:
930  *
931  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
932  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
933  *
934  * The caller must have claimed @bdev before calling this function and
935  * ensure that both @bdev and @disk are valid during the creation and
936  * lifetime of these symlinks.
937  *
938  * CONTEXT:
939  * Might sleep.
940  *
941  * RETURNS:
942  * 0 on success, -errno on failure.
943  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)944 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
945 {
946 	struct bd_holder_disk *holder;
947 	int ret = 0;
948 
949 	mutex_lock(&bdev->bd_mutex);
950 
951 	WARN_ON_ONCE(!bdev->bd_holder);
952 
953 	/* FIXME: remove the following once add_disk() handles errors */
954 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
955 		goto out_unlock;
956 
957 	holder = bd_find_holder_disk(bdev, disk);
958 	if (holder) {
959 		holder->refcnt++;
960 		goto out_unlock;
961 	}
962 
963 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
964 	if (!holder) {
965 		ret = -ENOMEM;
966 		goto out_unlock;
967 	}
968 
969 	INIT_LIST_HEAD(&holder->list);
970 	holder->disk = disk;
971 	holder->refcnt = 1;
972 
973 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
974 	if (ret)
975 		goto out_free;
976 
977 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
978 	if (ret)
979 		goto out_del;
980 	/*
981 	 * bdev could be deleted beneath us which would implicitly destroy
982 	 * the holder directory.  Hold on to it.
983 	 */
984 	kobject_get(bdev->bd_part->holder_dir);
985 
986 	list_add(&holder->list, &bdev->bd_holder_disks);
987 	goto out_unlock;
988 
989 out_del:
990 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
991 out_free:
992 	kfree(holder);
993 out_unlock:
994 	mutex_unlock(&bdev->bd_mutex);
995 	return ret;
996 }
997 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
998 
999 /**
1000  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1001  * @bdev: the calimed slave bdev
1002  * @disk: the holding disk
1003  *
1004  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1005  *
1006  * CONTEXT:
1007  * Might sleep.
1008  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1009 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1010 {
1011 	struct bd_holder_disk *holder;
1012 
1013 	mutex_lock(&bdev->bd_mutex);
1014 
1015 	holder = bd_find_holder_disk(bdev, disk);
1016 
1017 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1018 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1019 		del_symlink(bdev->bd_part->holder_dir,
1020 			    &disk_to_dev(disk)->kobj);
1021 		kobject_put(bdev->bd_part->holder_dir);
1022 		list_del_init(&holder->list);
1023 		kfree(holder);
1024 	}
1025 
1026 	mutex_unlock(&bdev->bd_mutex);
1027 }
1028 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1029 #endif
1030 
1031 /**
1032  * flush_disk - invalidates all buffer-cache entries on a disk
1033  *
1034  * @bdev:      struct block device to be flushed
1035  * @kill_dirty: flag to guide handling of dirty inodes
1036  *
1037  * Invalidates all buffer-cache entries on a disk. It should be called
1038  * when a disk has been changed -- either by a media change or online
1039  * resize.
1040  */
flush_disk(struct block_device * bdev,bool kill_dirty)1041 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1042 {
1043 	if (__invalidate_device(bdev, kill_dirty)) {
1044 		char name[BDEVNAME_SIZE] = "";
1045 
1046 		if (bdev->bd_disk)
1047 			disk_name(bdev->bd_disk, 0, name);
1048 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1049 		       "resized disk %s\n", name);
1050 	}
1051 
1052 	if (!bdev->bd_disk)
1053 		return;
1054 	if (disk_part_scan_enabled(bdev->bd_disk))
1055 		bdev->bd_invalidated = 1;
1056 }
1057 
1058 /**
1059  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1060  * @disk: struct gendisk to check
1061  * @bdev: struct bdev to adjust.
1062  *
1063  * This routine checks to see if the bdev size does not match the disk size
1064  * and adjusts it if it differs.
1065  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1066 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1067 {
1068 	loff_t disk_size, bdev_size;
1069 
1070 	disk_size = (loff_t)get_capacity(disk) << 9;
1071 	bdev_size = i_size_read(bdev->bd_inode);
1072 	if (disk_size != bdev_size) {
1073 		char name[BDEVNAME_SIZE];
1074 
1075 		disk_name(disk, 0, name);
1076 		printk(KERN_INFO
1077 		       "%s: detected capacity change from %lld to %lld\n",
1078 		       name, bdev_size, disk_size);
1079 		i_size_write(bdev->bd_inode, disk_size);
1080 		flush_disk(bdev, false);
1081 	}
1082 }
1083 EXPORT_SYMBOL(check_disk_size_change);
1084 
1085 /**
1086  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1087  * @disk: struct gendisk to be revalidated
1088  *
1089  * This routine is a wrapper for lower-level driver's revalidate_disk
1090  * call-backs.  It is used to do common pre and post operations needed
1091  * for all revalidate_disk operations.
1092  */
revalidate_disk(struct gendisk * disk)1093 int revalidate_disk(struct gendisk *disk)
1094 {
1095 	struct block_device *bdev;
1096 	int ret = 0;
1097 
1098 	if (disk->fops->revalidate_disk)
1099 		ret = disk->fops->revalidate_disk(disk);
1100 	bdev = bdget_disk(disk, 0);
1101 	if (!bdev)
1102 		return ret;
1103 
1104 	mutex_lock(&bdev->bd_mutex);
1105 	check_disk_size_change(disk, bdev);
1106 	bdev->bd_invalidated = 0;
1107 	mutex_unlock(&bdev->bd_mutex);
1108 	bdput(bdev);
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL(revalidate_disk);
1112 
1113 /*
1114  * This routine checks whether a removable media has been changed,
1115  * and invalidates all buffer-cache-entries in that case. This
1116  * is a relatively slow routine, so we have to try to minimize using
1117  * it. Thus it is called only upon a 'mount' or 'open'. This
1118  * is the best way of combining speed and utility, I think.
1119  * People changing diskettes in the middle of an operation deserve
1120  * to lose :-)
1121  */
check_disk_change(struct block_device * bdev)1122 int check_disk_change(struct block_device *bdev)
1123 {
1124 	struct gendisk *disk = bdev->bd_disk;
1125 	const struct block_device_operations *bdops = disk->fops;
1126 	unsigned int events;
1127 
1128 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1129 				   DISK_EVENT_EJECT_REQUEST);
1130 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1131 		return 0;
1132 
1133 	flush_disk(bdev, true);
1134 	if (bdops->revalidate_disk)
1135 		bdops->revalidate_disk(bdev->bd_disk);
1136 	return 1;
1137 }
1138 
1139 EXPORT_SYMBOL(check_disk_change);
1140 
bd_set_size(struct block_device * bdev,loff_t size)1141 void bd_set_size(struct block_device *bdev, loff_t size)
1142 {
1143 	unsigned bsize = bdev_logical_block_size(bdev);
1144 
1145 	mutex_lock(&bdev->bd_inode->i_mutex);
1146 	i_size_write(bdev->bd_inode, size);
1147 	mutex_unlock(&bdev->bd_inode->i_mutex);
1148 	while (bsize < PAGE_CACHE_SIZE) {
1149 		if (size & bsize)
1150 			break;
1151 		bsize <<= 1;
1152 	}
1153 	bdev->bd_block_size = bsize;
1154 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1155 }
1156 EXPORT_SYMBOL(bd_set_size);
1157 
1158 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1159 
1160 /*
1161  * bd_mutex locking:
1162  *
1163  *  mutex_lock(part->bd_mutex)
1164  *    mutex_lock_nested(whole->bd_mutex, 1)
1165  */
1166 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1167 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1168 {
1169 	struct gendisk *disk;
1170 	struct module *owner;
1171 	int ret;
1172 	int partno;
1173 	int perm = 0;
1174 
1175 	if (mode & FMODE_READ)
1176 		perm |= MAY_READ;
1177 	if (mode & FMODE_WRITE)
1178 		perm |= MAY_WRITE;
1179 	/*
1180 	 * hooks: /n/, see "layering violations".
1181 	 */
1182 	if (!for_part) {
1183 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1184 		if (ret != 0)
1185 			return ret;
1186 	}
1187 
1188  restart:
1189 
1190 	ret = -ENXIO;
1191 	disk = get_gendisk(bdev->bd_dev, &partno);
1192 	if (!disk)
1193 		goto out;
1194 	owner = disk->fops->owner;
1195 
1196 	disk_block_events(disk);
1197 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1198 	if (!bdev->bd_openers) {
1199 		bdev->bd_disk = disk;
1200 		bdev->bd_queue = disk->queue;
1201 		bdev->bd_contains = bdev;
1202 		bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1203 		if (!partno) {
1204 			ret = -ENXIO;
1205 			bdev->bd_part = disk_get_part(disk, partno);
1206 			if (!bdev->bd_part)
1207 				goto out_clear;
1208 
1209 			ret = 0;
1210 			if (disk->fops->open) {
1211 				ret = disk->fops->open(bdev, mode);
1212 				if (ret == -ERESTARTSYS) {
1213 					/* Lost a race with 'disk' being
1214 					 * deleted, try again.
1215 					 * See md.c
1216 					 */
1217 					disk_put_part(bdev->bd_part);
1218 					bdev->bd_part = NULL;
1219 					bdev->bd_disk = NULL;
1220 					bdev->bd_queue = NULL;
1221 					mutex_unlock(&bdev->bd_mutex);
1222 					disk_unblock_events(disk);
1223 					put_disk(disk);
1224 					module_put(owner);
1225 					goto restart;
1226 				}
1227 			}
1228 
1229 			if (!ret)
1230 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1231 
1232 			/*
1233 			 * If the device is invalidated, rescan partition
1234 			 * if open succeeded or failed with -ENOMEDIUM.
1235 			 * The latter is necessary to prevent ghost
1236 			 * partitions on a removed medium.
1237 			 */
1238 			if (bdev->bd_invalidated) {
1239 				if (!ret)
1240 					rescan_partitions(disk, bdev);
1241 				else if (ret == -ENOMEDIUM)
1242 					invalidate_partitions(disk, bdev);
1243 			}
1244 			if (ret)
1245 				goto out_clear;
1246 		} else {
1247 			struct block_device *whole;
1248 			whole = bdget_disk(disk, 0);
1249 			ret = -ENOMEM;
1250 			if (!whole)
1251 				goto out_clear;
1252 			BUG_ON(for_part);
1253 			ret = __blkdev_get(whole, mode, 1);
1254 			if (ret) {
1255 				bdput(whole);
1256 				goto out_clear;
1257 			}
1258 			bdev->bd_contains = whole;
1259 			bdev->bd_part = disk_get_part(disk, partno);
1260 			if (!(disk->flags & GENHD_FL_UP) ||
1261 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1262 				ret = -ENXIO;
1263 				goto out_clear;
1264 			}
1265 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1266 			/*
1267 			 * If the partition is not aligned on a page
1268 			 * boundary, we can't do dax I/O to it.
1269 			 */
1270 			if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1271 			    (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1272 				bdev->bd_inode->i_flags &= ~S_DAX;
1273 		}
1274 	} else {
1275 		if (bdev->bd_contains == bdev) {
1276 			ret = 0;
1277 			if (bdev->bd_disk->fops->open)
1278 				ret = bdev->bd_disk->fops->open(bdev, mode);
1279 			/* the same as first opener case, read comment there */
1280 			if (bdev->bd_invalidated) {
1281 				if (!ret)
1282 					rescan_partitions(bdev->bd_disk, bdev);
1283 				else if (ret == -ENOMEDIUM)
1284 					invalidate_partitions(bdev->bd_disk, bdev);
1285 			}
1286 			if (ret)
1287 				goto out_unlock_bdev;
1288 		}
1289 		/* only one opener holds refs to the module and disk */
1290 		put_disk(disk);
1291 		module_put(owner);
1292 	}
1293 	bdev->bd_openers++;
1294 	if (for_part)
1295 		bdev->bd_part_count++;
1296 	mutex_unlock(&bdev->bd_mutex);
1297 	disk_unblock_events(disk);
1298 	return 0;
1299 
1300  out_clear:
1301 	disk_put_part(bdev->bd_part);
1302 	bdev->bd_disk = NULL;
1303 	bdev->bd_part = NULL;
1304 	bdev->bd_queue = NULL;
1305 	if (bdev != bdev->bd_contains)
1306 		__blkdev_put(bdev->bd_contains, mode, 1);
1307 	bdev->bd_contains = NULL;
1308  out_unlock_bdev:
1309 	mutex_unlock(&bdev->bd_mutex);
1310 	disk_unblock_events(disk);
1311 	put_disk(disk);
1312 	module_put(owner);
1313  out:
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  * blkdev_get - open a block device
1320  * @bdev: block_device to open
1321  * @mode: FMODE_* mask
1322  * @holder: exclusive holder identifier
1323  *
1324  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1325  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1326  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1327  *
1328  * On success, the reference count of @bdev is unchanged.  On failure,
1329  * @bdev is put.
1330  *
1331  * CONTEXT:
1332  * Might sleep.
1333  *
1334  * RETURNS:
1335  * 0 on success, -errno on failure.
1336  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1337 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1338 {
1339 	struct block_device *whole = NULL;
1340 	int res;
1341 
1342 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1343 
1344 	if ((mode & FMODE_EXCL) && holder) {
1345 		whole = bd_start_claiming(bdev, holder);
1346 		if (IS_ERR(whole)) {
1347 			bdput(bdev);
1348 			return PTR_ERR(whole);
1349 		}
1350 	}
1351 
1352 	res = __blkdev_get(bdev, mode, 0);
1353 
1354 	if (whole) {
1355 		struct gendisk *disk = whole->bd_disk;
1356 
1357 		/* finish claiming */
1358 		mutex_lock(&bdev->bd_mutex);
1359 		spin_lock(&bdev_lock);
1360 
1361 		if (!res) {
1362 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1363 			/*
1364 			 * Note that for a whole device bd_holders
1365 			 * will be incremented twice, and bd_holder
1366 			 * will be set to bd_may_claim before being
1367 			 * set to holder
1368 			 */
1369 			whole->bd_holders++;
1370 			whole->bd_holder = bd_may_claim;
1371 			bdev->bd_holders++;
1372 			bdev->bd_holder = holder;
1373 		}
1374 
1375 		/* tell others that we're done */
1376 		BUG_ON(whole->bd_claiming != holder);
1377 		whole->bd_claiming = NULL;
1378 		wake_up_bit(&whole->bd_claiming, 0);
1379 
1380 		spin_unlock(&bdev_lock);
1381 
1382 		/*
1383 		 * Block event polling for write claims if requested.  Any
1384 		 * write holder makes the write_holder state stick until
1385 		 * all are released.  This is good enough and tracking
1386 		 * individual writeable reference is too fragile given the
1387 		 * way @mode is used in blkdev_get/put().
1388 		 */
1389 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1390 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1391 			bdev->bd_write_holder = true;
1392 			disk_block_events(disk);
1393 		}
1394 
1395 		mutex_unlock(&bdev->bd_mutex);
1396 		bdput(whole);
1397 	}
1398 
1399 	if (res)
1400 		bdput(bdev);
1401 
1402 	return res;
1403 }
1404 EXPORT_SYMBOL(blkdev_get);
1405 
1406 /**
1407  * blkdev_get_by_path - open a block device by name
1408  * @path: path to the block device to open
1409  * @mode: FMODE_* mask
1410  * @holder: exclusive holder identifier
1411  *
1412  * Open the blockdevice described by the device file at @path.  @mode
1413  * and @holder are identical to blkdev_get().
1414  *
1415  * On success, the returned block_device has reference count of one.
1416  *
1417  * CONTEXT:
1418  * Might sleep.
1419  *
1420  * RETURNS:
1421  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 					void *holder)
1425 {
1426 	struct block_device *bdev;
1427 	int err;
1428 
1429 	bdev = lookup_bdev(path);
1430 	if (IS_ERR(bdev))
1431 		return bdev;
1432 
1433 	err = blkdev_get(bdev, mode, holder);
1434 	if (err)
1435 		return ERR_PTR(err);
1436 
1437 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 		blkdev_put(bdev, mode);
1439 		return ERR_PTR(-EACCES);
1440 	}
1441 
1442 	return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1445 
1446 /**
1447  * blkdev_get_by_dev - open a block device by device number
1448  * @dev: device number of block device to open
1449  * @mode: FMODE_* mask
1450  * @holder: exclusive holder identifier
1451  *
1452  * Open the blockdevice described by device number @dev.  @mode and
1453  * @holder are identical to blkdev_get().
1454  *
1455  * Use it ONLY if you really do not have anything better - i.e. when
1456  * you are behind a truly sucky interface and all you are given is a
1457  * device number.  _Never_ to be used for internal purposes.  If you
1458  * ever need it - reconsider your API.
1459  *
1460  * On success, the returned block_device has reference count of one.
1461  *
1462  * CONTEXT:
1463  * Might sleep.
1464  *
1465  * RETURNS:
1466  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469 {
1470 	struct block_device *bdev;
1471 	int err;
1472 
1473 	bdev = bdget(dev);
1474 	if (!bdev)
1475 		return ERR_PTR(-ENOMEM);
1476 
1477 	err = blkdev_get(bdev, mode, holder);
1478 	if (err)
1479 		return ERR_PTR(err);
1480 
1481 	return bdev;
1482 }
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1484 
blkdev_open(struct inode * inode,struct file * filp)1485 static int blkdev_open(struct inode * inode, struct file * filp)
1486 {
1487 	struct block_device *bdev;
1488 
1489 	/*
1490 	 * Preserve backwards compatibility and allow large file access
1491 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 	 * binary needs it. We might want to drop this workaround
1493 	 * during an unstable branch.
1494 	 */
1495 	filp->f_flags |= O_LARGEFILE;
1496 
1497 	if (filp->f_flags & O_NDELAY)
1498 		filp->f_mode |= FMODE_NDELAY;
1499 	if (filp->f_flags & O_EXCL)
1500 		filp->f_mode |= FMODE_EXCL;
1501 	if ((filp->f_flags & O_ACCMODE) == 3)
1502 		filp->f_mode |= FMODE_WRITE_IOCTL;
1503 
1504 	bdev = bd_acquire(inode);
1505 	if (bdev == NULL)
1506 		return -ENOMEM;
1507 
1508 	filp->f_mapping = bdev->bd_inode->i_mapping;
1509 
1510 	return blkdev_get(bdev, filp->f_mode, filp);
1511 }
1512 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514 {
1515 	struct gendisk *disk = bdev->bd_disk;
1516 	struct block_device *victim = NULL;
1517 
1518 	/*
1519 	 * Sync early if it looks like we're the last one.  If someone else
1520 	 * opens the block device between now and the decrement of bd_openers
1521 	 * then we did a sync that we didn't need to, but that's not the end
1522 	 * of the world and we want to avoid long (could be several minute)
1523 	 * syncs while holding the mutex.
1524 	 */
1525 	if (bdev->bd_openers == 1)
1526 		sync_blockdev(bdev);
1527 
1528 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1529 	if (for_part)
1530 		bdev->bd_part_count--;
1531 
1532 	if (!--bdev->bd_openers) {
1533 		WARN_ON_ONCE(bdev->bd_holders);
1534 		sync_blockdev(bdev);
1535 		kill_bdev(bdev);
1536 
1537 		bdev_write_inode(bdev);
1538 		/*
1539 		 * Detaching bdev inode from its wb in __destroy_inode()
1540 		 * is too late: the queue which embeds its bdi (along with
1541 		 * root wb) can be gone as soon as we put_disk() below.
1542 		 */
1543 		inode_detach_wb(bdev->bd_inode);
1544 	}
1545 	if (bdev->bd_contains == bdev) {
1546 		if (disk->fops->release)
1547 			disk->fops->release(disk, mode);
1548 	}
1549 	if (!bdev->bd_openers) {
1550 		struct module *owner = disk->fops->owner;
1551 
1552 		disk_put_part(bdev->bd_part);
1553 		bdev->bd_part = NULL;
1554 		bdev->bd_disk = NULL;
1555 		if (bdev != bdev->bd_contains)
1556 			victim = bdev->bd_contains;
1557 		bdev->bd_contains = NULL;
1558 
1559 		put_disk(disk);
1560 		module_put(owner);
1561 	}
1562 	mutex_unlock(&bdev->bd_mutex);
1563 	bdput(bdev);
1564 	if (victim)
1565 		__blkdev_put(victim, mode, 1);
1566 }
1567 
blkdev_put(struct block_device * bdev,fmode_t mode)1568 void blkdev_put(struct block_device *bdev, fmode_t mode)
1569 {
1570 	mutex_lock(&bdev->bd_mutex);
1571 
1572 	if (mode & FMODE_EXCL) {
1573 		bool bdev_free;
1574 
1575 		/*
1576 		 * Release a claim on the device.  The holder fields
1577 		 * are protected with bdev_lock.  bd_mutex is to
1578 		 * synchronize disk_holder unlinking.
1579 		 */
1580 		spin_lock(&bdev_lock);
1581 
1582 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1583 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1584 
1585 		/* bd_contains might point to self, check in a separate step */
1586 		if ((bdev_free = !bdev->bd_holders))
1587 			bdev->bd_holder = NULL;
1588 		if (!bdev->bd_contains->bd_holders)
1589 			bdev->bd_contains->bd_holder = NULL;
1590 
1591 		spin_unlock(&bdev_lock);
1592 
1593 		/*
1594 		 * If this was the last claim, remove holder link and
1595 		 * unblock evpoll if it was a write holder.
1596 		 */
1597 		if (bdev_free && bdev->bd_write_holder) {
1598 			disk_unblock_events(bdev->bd_disk);
1599 			bdev->bd_write_holder = false;
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1605 	 * event.  This is to ensure detection of media removal commanded
1606 	 * from userland - e.g. eject(1).
1607 	 */
1608 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1609 
1610 	mutex_unlock(&bdev->bd_mutex);
1611 
1612 	__blkdev_put(bdev, mode, 0);
1613 }
1614 EXPORT_SYMBOL(blkdev_put);
1615 
blkdev_close(struct inode * inode,struct file * filp)1616 static int blkdev_close(struct inode * inode, struct file * filp)
1617 {
1618 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1619 	blkdev_put(bdev, filp->f_mode);
1620 	return 0;
1621 }
1622 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1623 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1624 {
1625 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1626 	fmode_t mode = file->f_mode;
1627 
1628 	/*
1629 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1630 	 * to updated it before every ioctl.
1631 	 */
1632 	if (file->f_flags & O_NDELAY)
1633 		mode |= FMODE_NDELAY;
1634 	else
1635 		mode &= ~FMODE_NDELAY;
1636 
1637 	return blkdev_ioctl(bdev, mode, cmd, arg);
1638 }
1639 
1640 /*
1641  * Write data to the block device.  Only intended for the block device itself
1642  * and the raw driver which basically is a fake block device.
1643  *
1644  * Does not take i_mutex for the write and thus is not for general purpose
1645  * use.
1646  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1647 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1648 {
1649 	struct file *file = iocb->ki_filp;
1650 	struct inode *bd_inode = file->f_mapping->host;
1651 	loff_t size = i_size_read(bd_inode);
1652 	struct blk_plug plug;
1653 	ssize_t ret;
1654 
1655 	if (bdev_read_only(I_BDEV(bd_inode)))
1656 		return -EPERM;
1657 
1658 	if (!iov_iter_count(from))
1659 		return 0;
1660 
1661 	if (iocb->ki_pos >= size)
1662 		return -ENOSPC;
1663 
1664 	iov_iter_truncate(from, size - iocb->ki_pos);
1665 
1666 	blk_start_plug(&plug);
1667 	ret = __generic_file_write_iter(iocb, from);
1668 	if (ret > 0) {
1669 		ssize_t err;
1670 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1671 		if (err < 0)
1672 			ret = err;
1673 	}
1674 	blk_finish_plug(&plug);
1675 	return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1678 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1679 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1680 {
1681 	struct file *file = iocb->ki_filp;
1682 	struct inode *bd_inode = file->f_mapping->host;
1683 	loff_t size = i_size_read(bd_inode);
1684 	loff_t pos = iocb->ki_pos;
1685 
1686 	if (pos >= size)
1687 		return 0;
1688 
1689 	size -= pos;
1690 	iov_iter_truncate(to, size);
1691 	return generic_file_read_iter(iocb, to);
1692 }
1693 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1694 
1695 /*
1696  * Try to release a page associated with block device when the system
1697  * is under memory pressure.
1698  */
blkdev_releasepage(struct page * page,gfp_t wait)1699 static int blkdev_releasepage(struct page *page, gfp_t wait)
1700 {
1701 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1702 
1703 	if (super && super->s_op->bdev_try_to_free_page)
1704 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1705 
1706 	return try_to_free_buffers(page);
1707 }
1708 
1709 static const struct address_space_operations def_blk_aops = {
1710 	.readpage	= blkdev_readpage,
1711 	.readpages	= blkdev_readpages,
1712 	.writepage	= blkdev_writepage,
1713 	.write_begin	= blkdev_write_begin,
1714 	.write_end	= blkdev_write_end,
1715 	.writepages	= generic_writepages,
1716 	.releasepage	= blkdev_releasepage,
1717 	.direct_IO	= blkdev_direct_IO,
1718 	.is_dirty_writeback = buffer_check_dirty_writeback,
1719 };
1720 
1721 const struct file_operations def_blk_fops = {
1722 	.open		= blkdev_open,
1723 	.release	= blkdev_close,
1724 	.llseek		= block_llseek,
1725 	.read_iter	= blkdev_read_iter,
1726 	.write_iter	= blkdev_write_iter,
1727 	.mmap		= generic_file_mmap,
1728 	.fsync		= blkdev_fsync,
1729 	.unlocked_ioctl	= block_ioctl,
1730 #ifdef CONFIG_COMPAT
1731 	.compat_ioctl	= compat_blkdev_ioctl,
1732 #endif
1733 	.splice_read	= generic_file_splice_read,
1734 	.splice_write	= iter_file_splice_write,
1735 };
1736 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1737 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1738 {
1739 	int res;
1740 	mm_segment_t old_fs = get_fs();
1741 	set_fs(KERNEL_DS);
1742 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1743 	set_fs(old_fs);
1744 	return res;
1745 }
1746 
1747 EXPORT_SYMBOL(ioctl_by_bdev);
1748 
1749 /**
1750  * lookup_bdev  - lookup a struct block_device by name
1751  * @pathname:	special file representing the block device
1752  *
1753  * Get a reference to the blockdevice at @pathname in the current
1754  * namespace if possible and return it.  Return ERR_PTR(error)
1755  * otherwise.
1756  */
lookup_bdev(const char * pathname)1757 struct block_device *lookup_bdev(const char *pathname)
1758 {
1759 	struct block_device *bdev;
1760 	struct inode *inode;
1761 	struct path path;
1762 	int error;
1763 
1764 	if (!pathname || !*pathname)
1765 		return ERR_PTR(-EINVAL);
1766 
1767 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1768 	if (error)
1769 		return ERR_PTR(error);
1770 
1771 	inode = d_backing_inode(path.dentry);
1772 	error = -ENOTBLK;
1773 	if (!S_ISBLK(inode->i_mode))
1774 		goto fail;
1775 	error = -EACCES;
1776 	if (path.mnt->mnt_flags & MNT_NODEV)
1777 		goto fail;
1778 	error = -ENOMEM;
1779 	bdev = bd_acquire(inode);
1780 	if (!bdev)
1781 		goto fail;
1782 out:
1783 	path_put(&path);
1784 	return bdev;
1785 fail:
1786 	bdev = ERR_PTR(error);
1787 	goto out;
1788 }
1789 EXPORT_SYMBOL(lookup_bdev);
1790 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1791 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1792 {
1793 	struct super_block *sb = get_super(bdev);
1794 	int res = 0;
1795 
1796 	if (sb) {
1797 		/*
1798 		 * no need to lock the super, get_super holds the
1799 		 * read mutex so the filesystem cannot go away
1800 		 * under us (->put_super runs with the write lock
1801 		 * hold).
1802 		 */
1803 		shrink_dcache_sb(sb);
1804 		res = invalidate_inodes(sb, kill_dirty);
1805 		drop_super(sb);
1806 	}
1807 	invalidate_bdev(bdev);
1808 	return res;
1809 }
1810 EXPORT_SYMBOL(__invalidate_device);
1811 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1812 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1813 {
1814 	struct inode *inode, *old_inode = NULL;
1815 
1816 	spin_lock(&blockdev_superblock->s_inode_list_lock);
1817 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1818 		struct address_space *mapping = inode->i_mapping;
1819 		struct block_device *bdev;
1820 
1821 		spin_lock(&inode->i_lock);
1822 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1823 		    mapping->nrpages == 0) {
1824 			spin_unlock(&inode->i_lock);
1825 			continue;
1826 		}
1827 		__iget(inode);
1828 		spin_unlock(&inode->i_lock);
1829 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1830 		/*
1831 		 * We hold a reference to 'inode' so it couldn't have been
1832 		 * removed from s_inodes list while we dropped the
1833 		 * s_inode_list_lock  We cannot iput the inode now as we can
1834 		 * be holding the last reference and we cannot iput it under
1835 		 * s_inode_list_lock. So we keep the reference and iput it
1836 		 * later.
1837 		 */
1838 		iput(old_inode);
1839 		old_inode = inode;
1840 		bdev = I_BDEV(inode);
1841 
1842 		mutex_lock(&bdev->bd_mutex);
1843 		if (bdev->bd_openers)
1844 			func(bdev, arg);
1845 		mutex_unlock(&bdev->bd_mutex);
1846 
1847 		spin_lock(&blockdev_superblock->s_inode_list_lock);
1848 	}
1849 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1850 	iput(old_inode);
1851 }
1852