1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 #include <linux/math64.h>
44
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51 DEFINE_IDA(blk_queue_ida);
52
53 /*
54 * For the allocated request tables
55 */
56 struct kmem_cache *request_cachep = NULL;
57
58 /*
59 * For queue allocation
60 */
61 struct kmem_cache *blk_requestq_cachep;
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
blk_clear_congested(struct request_list * rl,int sync)68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79 #endif
80 }
81
blk_set_congested(struct request_list * rl,int sync)82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90 #endif
91 }
92
blk_queue_congestion_threshold(struct request_queue * q)93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
blk_get_backing_dev_info(struct block_device * bdev)116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return &q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123
blk_rq_init(struct request_queue * q,struct request * rq)124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->cmd = rq->__cmd;
136 rq->cmd_len = BLK_MAX_CDB;
137 rq->tag = -1;
138 rq->start_time = jiffies;
139 set_start_time_ns(rq);
140 rq->part = NULL;
141 }
142 EXPORT_SYMBOL(blk_rq_init);
143
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,int error)144 static void req_bio_endio(struct request *rq, struct bio *bio,
145 unsigned int nbytes, int error)
146 {
147 if (error)
148 bio->bi_error = error;
149
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 bio_set_flag(bio, BIO_QUIET);
152
153 bio_advance(bio, nbytes);
154
155 /* don't actually finish bio if it's part of flush sequence */
156 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
157 bio_endio(bio);
158 }
159
blk_dump_rq_flags(struct request * rq,char * msg)160 void blk_dump_rq_flags(struct request *rq, char *msg)
161 {
162 int bit;
163
164 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 (unsigned long long) rq->cmd_flags);
167
168 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
169 (unsigned long long)blk_rq_pos(rq),
170 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
171 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
172 rq->bio, rq->biotail, blk_rq_bytes(rq));
173
174 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
175 printk(KERN_INFO " cdb: ");
176 for (bit = 0; bit < BLK_MAX_CDB; bit++)
177 printk("%02x ", rq->cmd[bit]);
178 printk("\n");
179 }
180 }
181 EXPORT_SYMBOL(blk_dump_rq_flags);
182
blk_delay_work(struct work_struct * work)183 static void blk_delay_work(struct work_struct *work)
184 {
185 struct request_queue *q;
186
187 q = container_of(work, struct request_queue, delay_work.work);
188 spin_lock_irq(q->queue_lock);
189 __blk_run_queue(q);
190 spin_unlock_irq(q->queue_lock);
191 }
192
193 /**
194 * blk_delay_queue - restart queueing after defined interval
195 * @q: The &struct request_queue in question
196 * @msecs: Delay in msecs
197 *
198 * Description:
199 * Sometimes queueing needs to be postponed for a little while, to allow
200 * resources to come back. This function will make sure that queueing is
201 * restarted around the specified time. Queue lock must be held.
202 */
blk_delay_queue(struct request_queue * q,unsigned long msecs)203 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
204 {
205 if (likely(!blk_queue_dead(q)))
206 queue_delayed_work(kblockd_workqueue, &q->delay_work,
207 msecs_to_jiffies(msecs));
208 }
209 EXPORT_SYMBOL(blk_delay_queue);
210
211 /**
212 * blk_start_queue_async - asynchronously restart a previously stopped queue
213 * @q: The &struct request_queue in question
214 *
215 * Description:
216 * blk_start_queue_async() will clear the stop flag on the queue, and
217 * ensure that the request_fn for the queue is run from an async
218 * context.
219 **/
blk_start_queue_async(struct request_queue * q)220 void blk_start_queue_async(struct request_queue *q)
221 {
222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 blk_run_queue_async(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue_async);
226
227 /**
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
blk_start_queue(struct request_queue * q)236 void blk_start_queue(struct request_queue *q)
237 {
238 WARN_ON(!in_interrupt() && !irqs_disabled());
239
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244
245 /**
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
blk_stop_queue(struct request_queue * q)259 void blk_stop_queue(struct request_queue *q)
260 {
261 cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265
266 /**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevator_exit()
281 * and blkcg_exit_queue() to be called with queue lock initialized.
282 *
283 */
blk_sync_queue(struct request_queue * q)284 void blk_sync_queue(struct request_queue *q)
285 {
286 del_timer_sync(&q->timeout);
287
288 if (q->mq_ops) {
289 struct blk_mq_hw_ctx *hctx;
290 int i;
291
292 queue_for_each_hw_ctx(q, hctx, i) {
293 cancel_delayed_work_sync(&hctx->run_work);
294 cancel_delayed_work_sync(&hctx->delay_work);
295 }
296 } else {
297 cancel_delayed_work_sync(&q->delay_work);
298 }
299 }
300 EXPORT_SYMBOL(blk_sync_queue);
301
302 /**
303 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
304 * @q: The queue to run
305 *
306 * Description:
307 * Invoke request handling on a queue if there are any pending requests.
308 * May be used to restart request handling after a request has completed.
309 * This variant runs the queue whether or not the queue has been
310 * stopped. Must be called with the queue lock held and interrupts
311 * disabled. See also @blk_run_queue.
312 */
__blk_run_queue_uncond(struct request_queue * q)313 inline void __blk_run_queue_uncond(struct request_queue *q)
314 {
315 if (unlikely(blk_queue_dead(q)))
316 return;
317
318 /*
319 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
320 * the queue lock internally. As a result multiple threads may be
321 * running such a request function concurrently. Keep track of the
322 * number of active request_fn invocations such that blk_drain_queue()
323 * can wait until all these request_fn calls have finished.
324 */
325 q->request_fn_active++;
326 q->request_fn(q);
327 q->request_fn_active--;
328 }
329 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
330
331 /**
332 * __blk_run_queue - run a single device queue
333 * @q: The queue to run
334 *
335 * Description:
336 * See @blk_run_queue. This variant must be called with the queue lock
337 * held and interrupts disabled.
338 */
__blk_run_queue(struct request_queue * q)339 void __blk_run_queue(struct request_queue *q)
340 {
341 if (unlikely(blk_queue_stopped(q)))
342 return;
343
344 __blk_run_queue_uncond(q);
345 }
346 EXPORT_SYMBOL(__blk_run_queue);
347
348 /**
349 * blk_run_queue_async - run a single device queue in workqueue context
350 * @q: The queue to run
351 *
352 * Description:
353 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
354 * of us. The caller must hold the queue lock.
355 */
blk_run_queue_async(struct request_queue * q)356 void blk_run_queue_async(struct request_queue *q)
357 {
358 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
359 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
360 }
361 EXPORT_SYMBOL(blk_run_queue_async);
362
363 /**
364 * blk_run_queue - run a single device queue
365 * @q: The queue to run
366 *
367 * Description:
368 * Invoke request handling on this queue, if it has pending work to do.
369 * May be used to restart queueing when a request has completed.
370 */
blk_run_queue(struct request_queue * q)371 void blk_run_queue(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 __blk_run_queue(q);
377 spin_unlock_irqrestore(q->queue_lock, flags);
378 }
379 EXPORT_SYMBOL(blk_run_queue);
380
blk_put_queue(struct request_queue * q)381 void blk_put_queue(struct request_queue *q)
382 {
383 kobject_put(&q->kobj);
384 }
385 EXPORT_SYMBOL(blk_put_queue);
386
387 /**
388 * __blk_drain_queue - drain requests from request_queue
389 * @q: queue to drain
390 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
391 *
392 * Drain requests from @q. If @drain_all is set, all requests are drained.
393 * If not, only ELVPRIV requests are drained. The caller is responsible
394 * for ensuring that no new requests which need to be drained are queued.
395 */
__blk_drain_queue(struct request_queue * q,bool drain_all)396 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
397 __releases(q->queue_lock)
398 __acquires(q->queue_lock)
399 {
400 int i;
401
402 lockdep_assert_held(q->queue_lock);
403
404 while (true) {
405 bool drain = false;
406
407 /*
408 * The caller might be trying to drain @q before its
409 * elevator is initialized.
410 */
411 if (q->elevator)
412 elv_drain_elevator(q);
413
414 blkcg_drain_queue(q);
415
416 /*
417 * This function might be called on a queue which failed
418 * driver init after queue creation or is not yet fully
419 * active yet. Some drivers (e.g. fd and loop) get unhappy
420 * in such cases. Kick queue iff dispatch queue has
421 * something on it and @q has request_fn set.
422 */
423 if (!list_empty(&q->queue_head) && q->request_fn)
424 __blk_run_queue(q);
425
426 drain |= q->nr_rqs_elvpriv;
427 drain |= q->request_fn_active;
428
429 /*
430 * Unfortunately, requests are queued at and tracked from
431 * multiple places and there's no single counter which can
432 * be drained. Check all the queues and counters.
433 */
434 if (drain_all) {
435 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
436 drain |= !list_empty(&q->queue_head);
437 for (i = 0; i < 2; i++) {
438 drain |= q->nr_rqs[i];
439 drain |= q->in_flight[i];
440 if (fq)
441 drain |= !list_empty(&fq->flush_queue[i]);
442 }
443 }
444
445 if (!drain)
446 break;
447
448 spin_unlock_irq(q->queue_lock);
449
450 msleep(10);
451
452 spin_lock_irq(q->queue_lock);
453 }
454
455 /*
456 * With queue marked dead, any woken up waiter will fail the
457 * allocation path, so the wakeup chaining is lost and we're
458 * left with hung waiters. We need to wake up those waiters.
459 */
460 if (q->request_fn) {
461 struct request_list *rl;
462
463 blk_queue_for_each_rl(rl, q)
464 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
465 wake_up_all(&rl->wait[i]);
466 }
467 }
468
469 /**
470 * blk_queue_bypass_start - enter queue bypass mode
471 * @q: queue of interest
472 *
473 * In bypass mode, only the dispatch FIFO queue of @q is used. This
474 * function makes @q enter bypass mode and drains all requests which were
475 * throttled or issued before. On return, it's guaranteed that no request
476 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
477 * inside queue or RCU read lock.
478 */
blk_queue_bypass_start(struct request_queue * q)479 void blk_queue_bypass_start(struct request_queue *q)
480 {
481 spin_lock_irq(q->queue_lock);
482 q->bypass_depth++;
483 queue_flag_set(QUEUE_FLAG_BYPASS, q);
484 spin_unlock_irq(q->queue_lock);
485
486 /*
487 * Queues start drained. Skip actual draining till init is
488 * complete. This avoids lenghty delays during queue init which
489 * can happen many times during boot.
490 */
491 if (blk_queue_init_done(q)) {
492 spin_lock_irq(q->queue_lock);
493 __blk_drain_queue(q, false);
494 spin_unlock_irq(q->queue_lock);
495
496 /* ensure blk_queue_bypass() is %true inside RCU read lock */
497 synchronize_rcu();
498 }
499 }
500 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
501
502 /**
503 * blk_queue_bypass_end - leave queue bypass mode
504 * @q: queue of interest
505 *
506 * Leave bypass mode and restore the normal queueing behavior.
507 */
blk_queue_bypass_end(struct request_queue * q)508 void blk_queue_bypass_end(struct request_queue *q)
509 {
510 spin_lock_irq(q->queue_lock);
511 if (!--q->bypass_depth)
512 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
513 WARN_ON_ONCE(q->bypass_depth < 0);
514 spin_unlock_irq(q->queue_lock);
515 }
516 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
517
blk_set_queue_dying(struct request_queue * q)518 void blk_set_queue_dying(struct request_queue *q)
519 {
520 spin_lock_irq(q->queue_lock);
521 queue_flag_set(QUEUE_FLAG_DYING, q);
522 spin_unlock_irq(q->queue_lock);
523
524 if (q->mq_ops)
525 blk_mq_wake_waiters(q);
526 else {
527 struct request_list *rl;
528
529 blk_queue_for_each_rl(rl, q) {
530 if (rl->rq_pool) {
531 wake_up_all(&rl->wait[BLK_RW_SYNC]);
532 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
533 }
534 }
535 }
536 }
537 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
538
539 /**
540 * blk_cleanup_queue - shutdown a request queue
541 * @q: request queue to shutdown
542 *
543 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
544 * put it. All future requests will be failed immediately with -ENODEV.
545 */
blk_cleanup_queue(struct request_queue * q)546 void blk_cleanup_queue(struct request_queue *q)
547 {
548 spinlock_t *lock = q->queue_lock;
549
550 /* mark @q DYING, no new request or merges will be allowed afterwards */
551 mutex_lock(&q->sysfs_lock);
552 blk_set_queue_dying(q);
553 spin_lock_irq(lock);
554
555 /*
556 * A dying queue is permanently in bypass mode till released. Note
557 * that, unlike blk_queue_bypass_start(), we aren't performing
558 * synchronize_rcu() after entering bypass mode to avoid the delay
559 * as some drivers create and destroy a lot of queues while
560 * probing. This is still safe because blk_release_queue() will be
561 * called only after the queue refcnt drops to zero and nothing,
562 * RCU or not, would be traversing the queue by then.
563 */
564 q->bypass_depth++;
565 queue_flag_set(QUEUE_FLAG_BYPASS, q);
566
567 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
568 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
569 queue_flag_set(QUEUE_FLAG_DYING, q);
570 spin_unlock_irq(lock);
571 mutex_unlock(&q->sysfs_lock);
572
573 /*
574 * Drain all requests queued before DYING marking. Set DEAD flag to
575 * prevent that q->request_fn() gets invoked after draining finished.
576 */
577 blk_freeze_queue(q);
578 spin_lock_irq(lock);
579 if (!q->mq_ops)
580 __blk_drain_queue(q, true);
581 queue_flag_set(QUEUE_FLAG_DEAD, q);
582 spin_unlock_irq(lock);
583
584 /* for synchronous bio-based driver finish in-flight integrity i/o */
585 blk_flush_integrity();
586
587 /* @q won't process any more request, flush async actions */
588 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
589 blk_sync_queue(q);
590
591 if (q->mq_ops)
592 blk_mq_free_queue(q);
593 percpu_ref_exit(&q->q_usage_counter);
594
595 spin_lock_irq(lock);
596 if (q->queue_lock != &q->__queue_lock)
597 q->queue_lock = &q->__queue_lock;
598 spin_unlock_irq(lock);
599
600 bdi_unregister(&q->backing_dev_info);
601
602 /* @q is and will stay empty, shutdown and put */
603 blk_put_queue(q);
604 }
605 EXPORT_SYMBOL(blk_cleanup_queue);
606
607 /* Allocate memory local to the request queue */
alloc_request_struct(gfp_t gfp_mask,void * data)608 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
609 {
610 int nid = (int)(long)data;
611 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
612 }
613
free_request_struct(void * element,void * unused)614 static void free_request_struct(void *element, void *unused)
615 {
616 kmem_cache_free(request_cachep, element);
617 }
618
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)619 int blk_init_rl(struct request_list *rl, struct request_queue *q,
620 gfp_t gfp_mask)
621 {
622 if (unlikely(rl->rq_pool))
623 return 0;
624
625 rl->q = q;
626 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
627 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
628 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
629 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
630
631 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
632 free_request_struct,
633 (void *)(long)q->node, gfp_mask,
634 q->node);
635 if (!rl->rq_pool)
636 return -ENOMEM;
637
638 return 0;
639 }
640
blk_exit_rl(struct request_list * rl)641 void blk_exit_rl(struct request_list *rl)
642 {
643 if (rl->rq_pool)
644 mempool_destroy(rl->rq_pool);
645 }
646
blk_alloc_queue(gfp_t gfp_mask)647 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
648 {
649 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
650 }
651 EXPORT_SYMBOL(blk_alloc_queue);
652
blk_queue_enter(struct request_queue * q,gfp_t gfp)653 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
654 {
655 while (true) {
656 if (percpu_ref_tryget_live(&q->q_usage_counter))
657 return 0;
658
659 if (!gfpflags_allow_blocking(gfp))
660 return -EBUSY;
661
662 wait_event(q->mq_freeze_wq,
663 !atomic_read(&q->mq_freeze_depth) ||
664 blk_queue_dying(q));
665 if (blk_queue_dying(q))
666 return -ENODEV;
667 }
668 }
669
blk_queue_exit(struct request_queue * q)670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
blk_queue_usage_counter_release(struct percpu_ref * ref)675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)683 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
684 {
685 struct request_queue *q;
686 int err;
687
688 q = kmem_cache_alloc_node(blk_requestq_cachep,
689 gfp_mask | __GFP_ZERO, node_id);
690 if (!q)
691 return NULL;
692
693 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
694 if (q->id < 0)
695 goto fail_q;
696
697 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 if (!q->bio_split)
699 goto fail_id;
700
701 q->backing_dev_info.ra_pages =
702 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
703 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
704 q->backing_dev_info.name = "block";
705 q->node = node_id;
706
707 err = bdi_init(&q->backing_dev_info);
708 if (err)
709 goto fail_split;
710
711 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 laptop_mode_timer_fn, (unsigned long) q);
713 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
714 INIT_LIST_HEAD(&q->queue_head);
715 INIT_LIST_HEAD(&q->timeout_list);
716 INIT_LIST_HEAD(&q->icq_list);
717 #ifdef CONFIG_BLK_CGROUP
718 INIT_LIST_HEAD(&q->blkg_list);
719 #endif
720 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
721
722 kobject_init(&q->kobj, &blk_queue_ktype);
723
724 #ifdef CONFIG_BLK_DEV_IO_TRACE
725 mutex_init(&q->blk_trace_mutex);
726 #endif
727 mutex_init(&q->sysfs_lock);
728 spin_lock_init(&q->__queue_lock);
729
730 /*
731 * By default initialize queue_lock to internal lock and driver can
732 * override it later if need be.
733 */
734 q->queue_lock = &q->__queue_lock;
735
736 /*
737 * A queue starts its life with bypass turned on to avoid
738 * unnecessary bypass on/off overhead and nasty surprises during
739 * init. The initial bypass will be finished when the queue is
740 * registered by blk_register_queue().
741 */
742 q->bypass_depth = 1;
743 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
744
745 init_waitqueue_head(&q->mq_freeze_wq);
746
747 /*
748 * Init percpu_ref in atomic mode so that it's faster to shutdown.
749 * See blk_register_queue() for details.
750 */
751 if (percpu_ref_init(&q->q_usage_counter,
752 blk_queue_usage_counter_release,
753 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
754 goto fail_bdi;
755
756 if (blkcg_init_queue(q))
757 goto fail_ref;
758
759 return q;
760
761 fail_ref:
762 percpu_ref_exit(&q->q_usage_counter);
763 fail_bdi:
764 bdi_destroy(&q->backing_dev_info);
765 fail_split:
766 bioset_free(q->bio_split);
767 fail_id:
768 ida_simple_remove(&blk_queue_ida, q->id);
769 fail_q:
770 kmem_cache_free(blk_requestq_cachep, q);
771 return NULL;
772 }
773 EXPORT_SYMBOL(blk_alloc_queue_node);
774
775 /**
776 * blk_init_queue - prepare a request queue for use with a block device
777 * @rfn: The function to be called to process requests that have been
778 * placed on the queue.
779 * @lock: Request queue spin lock
780 *
781 * Description:
782 * If a block device wishes to use the standard request handling procedures,
783 * which sorts requests and coalesces adjacent requests, then it must
784 * call blk_init_queue(). The function @rfn will be called when there
785 * are requests on the queue that need to be processed. If the device
786 * supports plugging, then @rfn may not be called immediately when requests
787 * are available on the queue, but may be called at some time later instead.
788 * Plugged queues are generally unplugged when a buffer belonging to one
789 * of the requests on the queue is needed, or due to memory pressure.
790 *
791 * @rfn is not required, or even expected, to remove all requests off the
792 * queue, but only as many as it can handle at a time. If it does leave
793 * requests on the queue, it is responsible for arranging that the requests
794 * get dealt with eventually.
795 *
796 * The queue spin lock must be held while manipulating the requests on the
797 * request queue; this lock will be taken also from interrupt context, so irq
798 * disabling is needed for it.
799 *
800 * Function returns a pointer to the initialized request queue, or %NULL if
801 * it didn't succeed.
802 *
803 * Note:
804 * blk_init_queue() must be paired with a blk_cleanup_queue() call
805 * when the block device is deactivated (such as at module unload).
806 **/
807
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)808 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
809 {
810 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
811 }
812 EXPORT_SYMBOL(blk_init_queue);
813
814 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)815 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
816 {
817 struct request_queue *uninit_q, *q;
818
819 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
820 if (!uninit_q)
821 return NULL;
822
823 q = blk_init_allocated_queue(uninit_q, rfn, lock);
824 if (!q)
825 blk_cleanup_queue(uninit_q);
826
827 return q;
828 }
829 EXPORT_SYMBOL(blk_init_queue_node);
830
831 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
832
833 struct request_queue *
blk_init_allocated_queue(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock)834 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
835 spinlock_t *lock)
836 {
837 if (!q)
838 return NULL;
839
840 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
841 if (!q->fq)
842 return NULL;
843
844 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
845 goto fail;
846
847 q->request_fn = rfn;
848 q->prep_rq_fn = NULL;
849 q->unprep_rq_fn = NULL;
850 q->queue_flags |= QUEUE_FLAG_DEFAULT;
851
852 /* Override internal queue lock with supplied lock pointer */
853 if (lock)
854 q->queue_lock = lock;
855
856 /*
857 * This also sets hw/phys segments, boundary and size
858 */
859 blk_queue_make_request(q, blk_queue_bio);
860
861 q->sg_reserved_size = INT_MAX;
862
863 /* Protect q->elevator from elevator_change */
864 mutex_lock(&q->sysfs_lock);
865
866 /* init elevator */
867 if (elevator_init(q, NULL)) {
868 mutex_unlock(&q->sysfs_lock);
869 goto fail;
870 }
871
872 mutex_unlock(&q->sysfs_lock);
873
874 return q;
875
876 fail:
877 blk_free_flush_queue(q->fq);
878 q->fq = NULL;
879 return NULL;
880 }
881 EXPORT_SYMBOL(blk_init_allocated_queue);
882
blk_get_queue(struct request_queue * q)883 bool blk_get_queue(struct request_queue *q)
884 {
885 if (likely(!blk_queue_dying(q))) {
886 __blk_get_queue(q);
887 return true;
888 }
889
890 return false;
891 }
892 EXPORT_SYMBOL(blk_get_queue);
893
blk_free_request(struct request_list * rl,struct request * rq)894 static inline void blk_free_request(struct request_list *rl, struct request *rq)
895 {
896 if (rq->cmd_flags & REQ_ELVPRIV) {
897 elv_put_request(rl->q, rq);
898 if (rq->elv.icq)
899 put_io_context(rq->elv.icq->ioc);
900 }
901
902 mempool_free(rq, rl->rq_pool);
903 }
904
905 /*
906 * ioc_batching returns true if the ioc is a valid batching request and
907 * should be given priority access to a request.
908 */
ioc_batching(struct request_queue * q,struct io_context * ioc)909 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
910 {
911 if (!ioc)
912 return 0;
913
914 /*
915 * Make sure the process is able to allocate at least 1 request
916 * even if the batch times out, otherwise we could theoretically
917 * lose wakeups.
918 */
919 return ioc->nr_batch_requests == q->nr_batching ||
920 (ioc->nr_batch_requests > 0
921 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
922 }
923
924 /*
925 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
926 * will cause the process to be a "batcher" on all queues in the system. This
927 * is the behaviour we want though - once it gets a wakeup it should be given
928 * a nice run.
929 */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)930 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
931 {
932 if (!ioc || ioc_batching(q, ioc))
933 return;
934
935 ioc->nr_batch_requests = q->nr_batching;
936 ioc->last_waited = jiffies;
937 }
938
__freed_request(struct request_list * rl,int sync)939 static void __freed_request(struct request_list *rl, int sync)
940 {
941 struct request_queue *q = rl->q;
942
943 if (rl->count[sync] < queue_congestion_off_threshold(q))
944 blk_clear_congested(rl, sync);
945
946 if (rl->count[sync] + 1 <= q->nr_requests) {
947 if (waitqueue_active(&rl->wait[sync]))
948 wake_up(&rl->wait[sync]);
949
950 blk_clear_rl_full(rl, sync);
951 }
952 }
953
954 /*
955 * A request has just been released. Account for it, update the full and
956 * congestion status, wake up any waiters. Called under q->queue_lock.
957 */
freed_request(struct request_list * rl,unsigned int flags)958 static void freed_request(struct request_list *rl, unsigned int flags)
959 {
960 struct request_queue *q = rl->q;
961 int sync = rw_is_sync(flags);
962
963 q->nr_rqs[sync]--;
964 rl->count[sync]--;
965 if (flags & REQ_ELVPRIV)
966 q->nr_rqs_elvpriv--;
967
968 __freed_request(rl, sync);
969
970 if (unlikely(rl->starved[sync ^ 1]))
971 __freed_request(rl, sync ^ 1);
972 }
973
blk_update_nr_requests(struct request_queue * q,unsigned int nr)974 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
975 {
976 struct request_list *rl;
977 int on_thresh, off_thresh;
978
979 spin_lock_irq(q->queue_lock);
980 q->nr_requests = nr;
981 blk_queue_congestion_threshold(q);
982 on_thresh = queue_congestion_on_threshold(q);
983 off_thresh = queue_congestion_off_threshold(q);
984
985 blk_queue_for_each_rl(rl, q) {
986 if (rl->count[BLK_RW_SYNC] >= on_thresh)
987 blk_set_congested(rl, BLK_RW_SYNC);
988 else if (rl->count[BLK_RW_SYNC] < off_thresh)
989 blk_clear_congested(rl, BLK_RW_SYNC);
990
991 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
992 blk_set_congested(rl, BLK_RW_ASYNC);
993 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
994 blk_clear_congested(rl, BLK_RW_ASYNC);
995
996 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
997 blk_set_rl_full(rl, BLK_RW_SYNC);
998 } else {
999 blk_clear_rl_full(rl, BLK_RW_SYNC);
1000 wake_up(&rl->wait[BLK_RW_SYNC]);
1001 }
1002
1003 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1004 blk_set_rl_full(rl, BLK_RW_ASYNC);
1005 } else {
1006 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1007 wake_up(&rl->wait[BLK_RW_ASYNC]);
1008 }
1009 }
1010
1011 spin_unlock_irq(q->queue_lock);
1012 return 0;
1013 }
1014
1015 /*
1016 * Determine if elevator data should be initialized when allocating the
1017 * request associated with @bio.
1018 */
blk_rq_should_init_elevator(struct bio * bio)1019 static bool blk_rq_should_init_elevator(struct bio *bio)
1020 {
1021 if (!bio)
1022 return true;
1023
1024 /*
1025 * Flush requests do not use the elevator so skip initialization.
1026 * This allows a request to share the flush and elevator data.
1027 */
1028 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1029 return false;
1030
1031 return true;
1032 }
1033
1034 /**
1035 * rq_ioc - determine io_context for request allocation
1036 * @bio: request being allocated is for this bio (can be %NULL)
1037 *
1038 * Determine io_context to use for request allocation for @bio. May return
1039 * %NULL if %current->io_context doesn't exist.
1040 */
rq_ioc(struct bio * bio)1041 static struct io_context *rq_ioc(struct bio *bio)
1042 {
1043 #ifdef CONFIG_BLK_CGROUP
1044 if (bio && bio->bi_ioc)
1045 return bio->bi_ioc;
1046 #endif
1047 return current->io_context;
1048 }
1049
1050 /**
1051 * __get_request - get a free request
1052 * @rl: request list to allocate from
1053 * @rw_flags: RW and SYNC flags
1054 * @bio: bio to allocate request for (can be %NULL)
1055 * @gfp_mask: allocation mask
1056 *
1057 * Get a free request from @q. This function may fail under memory
1058 * pressure or if @q is dead.
1059 *
1060 * Must be called with @q->queue_lock held and,
1061 * Returns ERR_PTR on failure, with @q->queue_lock held.
1062 * Returns request pointer on success, with @q->queue_lock *not held*.
1063 */
__get_request(struct request_list * rl,int rw_flags,struct bio * bio,gfp_t gfp_mask)1064 static struct request *__get_request(struct request_list *rl, int rw_flags,
1065 struct bio *bio, gfp_t gfp_mask)
1066 {
1067 struct request_queue *q = rl->q;
1068 struct request *rq;
1069 struct elevator_type *et = q->elevator->type;
1070 struct io_context *ioc = rq_ioc(bio);
1071 struct io_cq *icq = NULL;
1072 const bool is_sync = rw_is_sync(rw_flags) != 0;
1073 int may_queue;
1074
1075 if (unlikely(blk_queue_dying(q)))
1076 return ERR_PTR(-ENODEV);
1077
1078 may_queue = elv_may_queue(q, rw_flags);
1079 if (may_queue == ELV_MQUEUE_NO)
1080 goto rq_starved;
1081
1082 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1083 if (rl->count[is_sync]+1 >= q->nr_requests) {
1084 /*
1085 * The queue will fill after this allocation, so set
1086 * it as full, and mark this process as "batching".
1087 * This process will be allowed to complete a batch of
1088 * requests, others will be blocked.
1089 */
1090 if (!blk_rl_full(rl, is_sync)) {
1091 ioc_set_batching(q, ioc);
1092 blk_set_rl_full(rl, is_sync);
1093 } else {
1094 if (may_queue != ELV_MQUEUE_MUST
1095 && !ioc_batching(q, ioc)) {
1096 /*
1097 * The queue is full and the allocating
1098 * process is not a "batcher", and not
1099 * exempted by the IO scheduler
1100 */
1101 return ERR_PTR(-ENOMEM);
1102 }
1103 }
1104 }
1105 blk_set_congested(rl, is_sync);
1106 }
1107
1108 /*
1109 * Only allow batching queuers to allocate up to 50% over the defined
1110 * limit of requests, otherwise we could have thousands of requests
1111 * allocated with any setting of ->nr_requests
1112 */
1113 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1114 return ERR_PTR(-ENOMEM);
1115
1116 q->nr_rqs[is_sync]++;
1117 rl->count[is_sync]++;
1118 rl->starved[is_sync] = 0;
1119
1120 /*
1121 * Decide whether the new request will be managed by elevator. If
1122 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1123 * prevent the current elevator from being destroyed until the new
1124 * request is freed. This guarantees icq's won't be destroyed and
1125 * makes creating new ones safe.
1126 *
1127 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1128 * it will be created after releasing queue_lock.
1129 */
1130 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1131 rw_flags |= REQ_ELVPRIV;
1132 q->nr_rqs_elvpriv++;
1133 if (et->icq_cache && ioc)
1134 icq = ioc_lookup_icq(ioc, q);
1135 }
1136
1137 if (blk_queue_io_stat(q))
1138 rw_flags |= REQ_IO_STAT;
1139 spin_unlock_irq(q->queue_lock);
1140
1141 /* allocate and init request */
1142 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1143 if (!rq)
1144 goto fail_alloc;
1145
1146 blk_rq_init(q, rq);
1147 blk_rq_set_rl(rq, rl);
1148 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1149
1150 /* init elvpriv */
1151 if (rw_flags & REQ_ELVPRIV) {
1152 if (unlikely(et->icq_cache && !icq)) {
1153 if (ioc)
1154 icq = ioc_create_icq(ioc, q, gfp_mask);
1155 if (!icq)
1156 goto fail_elvpriv;
1157 }
1158
1159 rq->elv.icq = icq;
1160 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1161 goto fail_elvpriv;
1162
1163 /* @rq->elv.icq holds io_context until @rq is freed */
1164 if (icq)
1165 get_io_context(icq->ioc);
1166 }
1167 out:
1168 /*
1169 * ioc may be NULL here, and ioc_batching will be false. That's
1170 * OK, if the queue is under the request limit then requests need
1171 * not count toward the nr_batch_requests limit. There will always
1172 * be some limit enforced by BLK_BATCH_TIME.
1173 */
1174 if (ioc_batching(q, ioc))
1175 ioc->nr_batch_requests--;
1176
1177 trace_block_getrq(q, bio, rw_flags & 1);
1178 return rq;
1179
1180 fail_elvpriv:
1181 /*
1182 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1183 * and may fail indefinitely under memory pressure and thus
1184 * shouldn't stall IO. Treat this request as !elvpriv. This will
1185 * disturb iosched and blkcg but weird is bettern than dead.
1186 */
1187 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1188 __func__, dev_name(q->backing_dev_info.dev));
1189
1190 rq->cmd_flags &= ~REQ_ELVPRIV;
1191 rq->elv.icq = NULL;
1192
1193 spin_lock_irq(q->queue_lock);
1194 q->nr_rqs_elvpriv--;
1195 spin_unlock_irq(q->queue_lock);
1196 goto out;
1197
1198 fail_alloc:
1199 /*
1200 * Allocation failed presumably due to memory. Undo anything we
1201 * might have messed up.
1202 *
1203 * Allocating task should really be put onto the front of the wait
1204 * queue, but this is pretty rare.
1205 */
1206 spin_lock_irq(q->queue_lock);
1207 freed_request(rl, rw_flags);
1208
1209 /*
1210 * in the very unlikely event that allocation failed and no
1211 * requests for this direction was pending, mark us starved so that
1212 * freeing of a request in the other direction will notice
1213 * us. another possible fix would be to split the rq mempool into
1214 * READ and WRITE
1215 */
1216 rq_starved:
1217 if (unlikely(rl->count[is_sync] == 0))
1218 rl->starved[is_sync] = 1;
1219 return ERR_PTR(-ENOMEM);
1220 }
1221
1222 /**
1223 * get_request - get a free request
1224 * @q: request_queue to allocate request from
1225 * @rw_flags: RW and SYNC flags
1226 * @bio: bio to allocate request for (can be %NULL)
1227 * @gfp_mask: allocation mask
1228 *
1229 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1230 * this function keeps retrying under memory pressure and fails iff @q is dead.
1231 *
1232 * Must be called with @q->queue_lock held and,
1233 * Returns ERR_PTR on failure, with @q->queue_lock held.
1234 * Returns request pointer on success, with @q->queue_lock *not held*.
1235 */
get_request(struct request_queue * q,int rw_flags,struct bio * bio,gfp_t gfp_mask)1236 static struct request *get_request(struct request_queue *q, int rw_flags,
1237 struct bio *bio, gfp_t gfp_mask)
1238 {
1239 const bool is_sync = rw_is_sync(rw_flags) != 0;
1240 DEFINE_WAIT(wait);
1241 struct request_list *rl;
1242 struct request *rq;
1243
1244 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1245 retry:
1246 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1247 if (!IS_ERR(rq))
1248 return rq;
1249
1250 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1251 blk_put_rl(rl);
1252 return rq;
1253 }
1254
1255 /* wait on @rl and retry */
1256 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1257 TASK_UNINTERRUPTIBLE);
1258
1259 trace_block_sleeprq(q, bio, rw_flags & 1);
1260
1261 spin_unlock_irq(q->queue_lock);
1262 io_schedule();
1263
1264 /*
1265 * After sleeping, we become a "batching" process and will be able
1266 * to allocate at least one request, and up to a big batch of them
1267 * for a small period time. See ioc_batching, ioc_set_batching
1268 */
1269 ioc_set_batching(q, current->io_context);
1270
1271 spin_lock_irq(q->queue_lock);
1272 finish_wait(&rl->wait[is_sync], &wait);
1273
1274 goto retry;
1275 }
1276
blk_old_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)1277 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1278 gfp_t gfp_mask)
1279 {
1280 struct request *rq;
1281
1282 BUG_ON(rw != READ && rw != WRITE);
1283
1284 /* create ioc upfront */
1285 create_io_context(gfp_mask, q->node);
1286
1287 spin_lock_irq(q->queue_lock);
1288 rq = get_request(q, rw, NULL, gfp_mask);
1289 if (IS_ERR(rq))
1290 spin_unlock_irq(q->queue_lock);
1291 /* q->queue_lock is unlocked at this point */
1292
1293 return rq;
1294 }
1295
blk_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)1296 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1297 {
1298 if (q->mq_ops)
1299 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1300 else
1301 return blk_old_get_request(q, rw, gfp_mask);
1302 }
1303 EXPORT_SYMBOL(blk_get_request);
1304
1305 /**
1306 * blk_make_request - given a bio, allocate a corresponding struct request.
1307 * @q: target request queue
1308 * @bio: The bio describing the memory mappings that will be submitted for IO.
1309 * It may be a chained-bio properly constructed by block/bio layer.
1310 * @gfp_mask: gfp flags to be used for memory allocation
1311 *
1312 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1313 * type commands. Where the struct request needs to be farther initialized by
1314 * the caller. It is passed a &struct bio, which describes the memory info of
1315 * the I/O transfer.
1316 *
1317 * The caller of blk_make_request must make sure that bi_io_vec
1318 * are set to describe the memory buffers. That bio_data_dir() will return
1319 * the needed direction of the request. (And all bio's in the passed bio-chain
1320 * are properly set accordingly)
1321 *
1322 * If called under none-sleepable conditions, mapped bio buffers must not
1323 * need bouncing, by calling the appropriate masked or flagged allocator,
1324 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1325 * BUG.
1326 *
1327 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1328 * given to how you allocate bios. In particular, you cannot use
1329 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1330 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1331 * thus resulting in a deadlock. Alternatively bios should be allocated using
1332 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1333 * If possible a big IO should be split into smaller parts when allocation
1334 * fails. Partial allocation should not be an error, or you risk a live-lock.
1335 */
blk_make_request(struct request_queue * q,struct bio * bio,gfp_t gfp_mask)1336 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1337 gfp_t gfp_mask)
1338 {
1339 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1340
1341 if (IS_ERR(rq))
1342 return rq;
1343
1344 blk_rq_set_block_pc(rq);
1345
1346 for_each_bio(bio) {
1347 struct bio *bounce_bio = bio;
1348 int ret;
1349
1350 blk_queue_bounce(q, &bounce_bio);
1351 ret = blk_rq_append_bio(q, rq, bounce_bio);
1352 if (unlikely(ret)) {
1353 blk_put_request(rq);
1354 return ERR_PTR(ret);
1355 }
1356 }
1357
1358 return rq;
1359 }
1360 EXPORT_SYMBOL(blk_make_request);
1361
1362 /**
1363 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1364 * @rq: request to be initialized
1365 *
1366 */
blk_rq_set_block_pc(struct request * rq)1367 void blk_rq_set_block_pc(struct request *rq)
1368 {
1369 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1370 rq->__data_len = 0;
1371 rq->__sector = (sector_t) -1;
1372 rq->bio = rq->biotail = NULL;
1373 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1374 }
1375 EXPORT_SYMBOL(blk_rq_set_block_pc);
1376
1377 /**
1378 * blk_requeue_request - put a request back on queue
1379 * @q: request queue where request should be inserted
1380 * @rq: request to be inserted
1381 *
1382 * Description:
1383 * Drivers often keep queueing requests until the hardware cannot accept
1384 * more, when that condition happens we need to put the request back
1385 * on the queue. Must be called with queue lock held.
1386 */
blk_requeue_request(struct request_queue * q,struct request * rq)1387 void blk_requeue_request(struct request_queue *q, struct request *rq)
1388 {
1389 blk_delete_timer(rq);
1390 blk_clear_rq_complete(rq);
1391 trace_block_rq_requeue(q, rq);
1392
1393 if (rq->cmd_flags & REQ_QUEUED)
1394 blk_queue_end_tag(q, rq);
1395
1396 BUG_ON(blk_queued_rq(rq));
1397
1398 elv_requeue_request(q, rq);
1399 }
1400 EXPORT_SYMBOL(blk_requeue_request);
1401
add_acct_request(struct request_queue * q,struct request * rq,int where)1402 static void add_acct_request(struct request_queue *q, struct request *rq,
1403 int where)
1404 {
1405 blk_account_io_start(rq, true);
1406 __elv_add_request(q, rq, where);
1407 }
1408
part_round_stats_single(int cpu,struct hd_struct * part,unsigned long now)1409 static void part_round_stats_single(int cpu, struct hd_struct *part,
1410 unsigned long now)
1411 {
1412 int inflight;
1413
1414 if (now == part->stamp)
1415 return;
1416
1417 inflight = part_in_flight(part);
1418 if (inflight) {
1419 __part_stat_add(cpu, part, time_in_queue,
1420 inflight * (now - part->stamp));
1421 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1422 }
1423 part->stamp = now;
1424 }
1425
1426 /**
1427 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1428 * @cpu: cpu number for stats access
1429 * @part: target partition
1430 *
1431 * The average IO queue length and utilisation statistics are maintained
1432 * by observing the current state of the queue length and the amount of
1433 * time it has been in this state for.
1434 *
1435 * Normally, that accounting is done on IO completion, but that can result
1436 * in more than a second's worth of IO being accounted for within any one
1437 * second, leading to >100% utilisation. To deal with that, we call this
1438 * function to do a round-off before returning the results when reading
1439 * /proc/diskstats. This accounts immediately for all queue usage up to
1440 * the current jiffies and restarts the counters again.
1441 */
part_round_stats(int cpu,struct hd_struct * part)1442 void part_round_stats(int cpu, struct hd_struct *part)
1443 {
1444 unsigned long now = jiffies;
1445
1446 if (part->partno)
1447 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1448 part_round_stats_single(cpu, part, now);
1449 }
1450 EXPORT_SYMBOL_GPL(part_round_stats);
1451
1452 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1453 static void blk_pm_put_request(struct request *rq)
1454 {
1455 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1456 pm_runtime_mark_last_busy(rq->q->dev);
1457 }
1458 #else
blk_pm_put_request(struct request * rq)1459 static inline void blk_pm_put_request(struct request *rq) {}
1460 #endif
1461
1462 /*
1463 * queue lock must be held
1464 */
__blk_put_request(struct request_queue * q,struct request * req)1465 void __blk_put_request(struct request_queue *q, struct request *req)
1466 {
1467 if (unlikely(!q))
1468 return;
1469
1470 if (q->mq_ops) {
1471 blk_mq_free_request(req);
1472 return;
1473 }
1474
1475 blk_pm_put_request(req);
1476
1477 elv_completed_request(q, req);
1478
1479 /* this is a bio leak */
1480 WARN_ON(req->bio != NULL);
1481
1482 /*
1483 * Request may not have originated from ll_rw_blk. if not,
1484 * it didn't come out of our reserved rq pools
1485 */
1486 if (req->cmd_flags & REQ_ALLOCED) {
1487 unsigned int flags = req->cmd_flags;
1488 struct request_list *rl = blk_rq_rl(req);
1489
1490 BUG_ON(!list_empty(&req->queuelist));
1491 BUG_ON(ELV_ON_HASH(req));
1492
1493 blk_free_request(rl, req);
1494 freed_request(rl, flags);
1495 blk_put_rl(rl);
1496 }
1497 }
1498 EXPORT_SYMBOL_GPL(__blk_put_request);
1499
blk_put_request(struct request * req)1500 void blk_put_request(struct request *req)
1501 {
1502 struct request_queue *q = req->q;
1503
1504 if (q->mq_ops)
1505 blk_mq_free_request(req);
1506 else {
1507 unsigned long flags;
1508
1509 spin_lock_irqsave(q->queue_lock, flags);
1510 __blk_put_request(q, req);
1511 spin_unlock_irqrestore(q->queue_lock, flags);
1512 }
1513 }
1514 EXPORT_SYMBOL(blk_put_request);
1515
1516 /**
1517 * blk_add_request_payload - add a payload to a request
1518 * @rq: request to update
1519 * @page: page backing the payload
1520 * @len: length of the payload.
1521 *
1522 * This allows to later add a payload to an already submitted request by
1523 * a block driver. The driver needs to take care of freeing the payload
1524 * itself.
1525 *
1526 * Note that this is a quite horrible hack and nothing but handling of
1527 * discard requests should ever use it.
1528 */
blk_add_request_payload(struct request * rq,struct page * page,unsigned int len)1529 void blk_add_request_payload(struct request *rq, struct page *page,
1530 unsigned int len)
1531 {
1532 struct bio *bio = rq->bio;
1533
1534 bio->bi_io_vec->bv_page = page;
1535 bio->bi_io_vec->bv_offset = 0;
1536 bio->bi_io_vec->bv_len = len;
1537
1538 bio->bi_iter.bi_size = len;
1539 bio->bi_vcnt = 1;
1540 bio->bi_phys_segments = 1;
1541
1542 rq->__data_len = rq->resid_len = len;
1543 rq->nr_phys_segments = 1;
1544 }
1545 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1546
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1547 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1548 struct bio *bio)
1549 {
1550 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1551
1552 if (!ll_back_merge_fn(q, req, bio))
1553 return false;
1554
1555 trace_block_bio_backmerge(q, req, bio);
1556
1557 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1558 blk_rq_set_mixed_merge(req);
1559
1560 req->biotail->bi_next = bio;
1561 req->biotail = bio;
1562 req->__data_len += bio->bi_iter.bi_size;
1563 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1564
1565 blk_account_io_start(req, false);
1566 return true;
1567 }
1568
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1569 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1570 struct bio *bio)
1571 {
1572 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1573
1574 if (!ll_front_merge_fn(q, req, bio))
1575 return false;
1576
1577 trace_block_bio_frontmerge(q, req, bio);
1578
1579 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1580 blk_rq_set_mixed_merge(req);
1581
1582 bio->bi_next = req->bio;
1583 req->bio = bio;
1584
1585 req->__sector = bio->bi_iter.bi_sector;
1586 req->__data_len += bio->bi_iter.bi_size;
1587 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1588
1589 blk_account_io_start(req, false);
1590 return true;
1591 }
1592
1593 /**
1594 * blk_attempt_plug_merge - try to merge with %current's plugged list
1595 * @q: request_queue new bio is being queued at
1596 * @bio: new bio being queued
1597 * @request_count: out parameter for number of traversed plugged requests
1598 * @same_queue_rq: pointer to &struct request that gets filled in when
1599 * another request associated with @q is found on the plug list
1600 * (optional, may be %NULL)
1601 *
1602 * Determine whether @bio being queued on @q can be merged with a request
1603 * on %current's plugged list. Returns %true if merge was successful,
1604 * otherwise %false.
1605 *
1606 * Plugging coalesces IOs from the same issuer for the same purpose without
1607 * going through @q->queue_lock. As such it's more of an issuing mechanism
1608 * than scheduling, and the request, while may have elvpriv data, is not
1609 * added on the elevator at this point. In addition, we don't have
1610 * reliable access to the elevator outside queue lock. Only check basic
1611 * merging parameters without querying the elevator.
1612 *
1613 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1614 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1615 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1616 unsigned int *request_count,
1617 struct request **same_queue_rq)
1618 {
1619 struct blk_plug *plug;
1620 struct request *rq;
1621 bool ret = false;
1622 struct list_head *plug_list;
1623
1624 plug = current->plug;
1625 if (!plug)
1626 goto out;
1627 *request_count = 0;
1628
1629 if (q->mq_ops)
1630 plug_list = &plug->mq_list;
1631 else
1632 plug_list = &plug->list;
1633
1634 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1635 int el_ret;
1636
1637 if (rq->q == q) {
1638 (*request_count)++;
1639 /*
1640 * Only blk-mq multiple hardware queues case checks the
1641 * rq in the same queue, there should be only one such
1642 * rq in a queue
1643 **/
1644 if (same_queue_rq)
1645 *same_queue_rq = rq;
1646 }
1647
1648 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1649 continue;
1650
1651 el_ret = blk_try_merge(rq, bio);
1652 if (el_ret == ELEVATOR_BACK_MERGE) {
1653 ret = bio_attempt_back_merge(q, rq, bio);
1654 if (ret)
1655 break;
1656 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1657 ret = bio_attempt_front_merge(q, rq, bio);
1658 if (ret)
1659 break;
1660 }
1661 }
1662 out:
1663 return ret;
1664 }
1665
blk_plug_queued_count(struct request_queue * q)1666 unsigned int blk_plug_queued_count(struct request_queue *q)
1667 {
1668 struct blk_plug *plug;
1669 struct request *rq;
1670 struct list_head *plug_list;
1671 unsigned int ret = 0;
1672
1673 plug = current->plug;
1674 if (!plug)
1675 goto out;
1676
1677 if (q->mq_ops)
1678 plug_list = &plug->mq_list;
1679 else
1680 plug_list = &plug->list;
1681
1682 list_for_each_entry(rq, plug_list, queuelist) {
1683 if (rq->q == q)
1684 ret++;
1685 }
1686 out:
1687 return ret;
1688 }
1689
init_request_from_bio(struct request * req,struct bio * bio)1690 void init_request_from_bio(struct request *req, struct bio *bio)
1691 {
1692 req->cmd_type = REQ_TYPE_FS;
1693
1694 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1695 if (bio->bi_rw & REQ_RAHEAD)
1696 req->cmd_flags |= REQ_FAILFAST_MASK;
1697
1698 req->errors = 0;
1699 req->__sector = bio->bi_iter.bi_sector;
1700 req->ioprio = bio_prio(bio);
1701 blk_rq_bio_prep(req->q, req, bio);
1702 }
1703
blk_queue_bio(struct request_queue * q,struct bio * bio)1704 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1705 {
1706 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1707 struct blk_plug *plug;
1708 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1709 struct request *req;
1710 unsigned int request_count = 0;
1711
1712 /*
1713 * low level driver can indicate that it wants pages above a
1714 * certain limit bounced to low memory (ie for highmem, or even
1715 * ISA dma in theory)
1716 */
1717 blk_queue_bounce(q, &bio);
1718
1719 blk_queue_split(q, &bio, q->bio_split);
1720
1721 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1722 bio->bi_error = -EIO;
1723 bio_endio(bio);
1724 return BLK_QC_T_NONE;
1725 }
1726
1727 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1728 spin_lock_irq(q->queue_lock);
1729 where = ELEVATOR_INSERT_FLUSH;
1730 goto get_rq;
1731 }
1732
1733 /*
1734 * Check if we can merge with the plugged list before grabbing
1735 * any locks.
1736 */
1737 if (!blk_queue_nomerges(q)) {
1738 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1739 return BLK_QC_T_NONE;
1740 } else
1741 request_count = blk_plug_queued_count(q);
1742
1743 spin_lock_irq(q->queue_lock);
1744
1745 el_ret = elv_merge(q, &req, bio);
1746 if (el_ret == ELEVATOR_BACK_MERGE) {
1747 if (bio_attempt_back_merge(q, req, bio)) {
1748 elv_bio_merged(q, req, bio);
1749 if (!attempt_back_merge(q, req))
1750 elv_merged_request(q, req, el_ret);
1751 goto out_unlock;
1752 }
1753 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1754 if (bio_attempt_front_merge(q, req, bio)) {
1755 elv_bio_merged(q, req, bio);
1756 if (!attempt_front_merge(q, req))
1757 elv_merged_request(q, req, el_ret);
1758 goto out_unlock;
1759 }
1760 }
1761
1762 get_rq:
1763 /*
1764 * This sync check and mask will be re-done in init_request_from_bio(),
1765 * but we need to set it earlier to expose the sync flag to the
1766 * rq allocator and io schedulers.
1767 */
1768 rw_flags = bio_data_dir(bio);
1769 if (sync)
1770 rw_flags |= REQ_SYNC;
1771
1772 /*
1773 * Grab a free request. This is might sleep but can not fail.
1774 * Returns with the queue unlocked.
1775 */
1776 req = get_request(q, rw_flags, bio, GFP_NOIO);
1777 if (IS_ERR(req)) {
1778 bio->bi_error = PTR_ERR(req);
1779 bio_endio(bio);
1780 goto out_unlock;
1781 }
1782
1783 /*
1784 * After dropping the lock and possibly sleeping here, our request
1785 * may now be mergeable after it had proven unmergeable (above).
1786 * We don't worry about that case for efficiency. It won't happen
1787 * often, and the elevators are able to handle it.
1788 */
1789 init_request_from_bio(req, bio);
1790
1791 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1792 req->cpu = raw_smp_processor_id();
1793
1794 plug = current->plug;
1795 if (plug) {
1796 /*
1797 * If this is the first request added after a plug, fire
1798 * of a plug trace.
1799 */
1800 if (!request_count)
1801 trace_block_plug(q);
1802 else {
1803 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1804 blk_flush_plug_list(plug, false);
1805 trace_block_plug(q);
1806 }
1807 }
1808 list_add_tail(&req->queuelist, &plug->list);
1809 blk_account_io_start(req, true);
1810 } else {
1811 spin_lock_irq(q->queue_lock);
1812 add_acct_request(q, req, where);
1813 __blk_run_queue(q);
1814 out_unlock:
1815 spin_unlock_irq(q->queue_lock);
1816 }
1817
1818 return BLK_QC_T_NONE;
1819 }
1820
1821 /*
1822 * If bio->bi_dev is a partition, remap the location
1823 */
blk_partition_remap(struct bio * bio)1824 static inline void blk_partition_remap(struct bio *bio)
1825 {
1826 struct block_device *bdev = bio->bi_bdev;
1827
1828 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1829 struct hd_struct *p = bdev->bd_part;
1830
1831 bio->bi_iter.bi_sector += p->start_sect;
1832 bio->bi_bdev = bdev->bd_contains;
1833
1834 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1835 bdev->bd_dev,
1836 bio->bi_iter.bi_sector - p->start_sect);
1837 }
1838 }
1839
handle_bad_sector(struct bio * bio)1840 static void handle_bad_sector(struct bio *bio)
1841 {
1842 char b[BDEVNAME_SIZE];
1843
1844 printk(KERN_INFO "attempt to access beyond end of device\n");
1845 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1846 bdevname(bio->bi_bdev, b),
1847 bio->bi_rw,
1848 (unsigned long long)bio_end_sector(bio),
1849 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1850 }
1851
1852 #ifdef CONFIG_FAIL_MAKE_REQUEST
1853
1854 static DECLARE_FAULT_ATTR(fail_make_request);
1855
setup_fail_make_request(char * str)1856 static int __init setup_fail_make_request(char *str)
1857 {
1858 return setup_fault_attr(&fail_make_request, str);
1859 }
1860 __setup("fail_make_request=", setup_fail_make_request);
1861
should_fail_request(struct hd_struct * part,unsigned int bytes)1862 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1863 {
1864 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1865 }
1866
fail_make_request_debugfs(void)1867 static int __init fail_make_request_debugfs(void)
1868 {
1869 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1870 NULL, &fail_make_request);
1871
1872 return PTR_ERR_OR_ZERO(dir);
1873 }
1874
1875 late_initcall(fail_make_request_debugfs);
1876
1877 #else /* CONFIG_FAIL_MAKE_REQUEST */
1878
should_fail_request(struct hd_struct * part,unsigned int bytes)1879 static inline bool should_fail_request(struct hd_struct *part,
1880 unsigned int bytes)
1881 {
1882 return false;
1883 }
1884
1885 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1886
1887 /*
1888 * Check whether this bio extends beyond the end of the device.
1889 */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)1890 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1891 {
1892 sector_t maxsector;
1893
1894 if (!nr_sectors)
1895 return 0;
1896
1897 /* Test device or partition size, when known. */
1898 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1899 if (maxsector) {
1900 sector_t sector = bio->bi_iter.bi_sector;
1901
1902 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1903 /*
1904 * This may well happen - the kernel calls bread()
1905 * without checking the size of the device, e.g., when
1906 * mounting a device.
1907 */
1908 handle_bad_sector(bio);
1909 return 1;
1910 }
1911 }
1912
1913 return 0;
1914 }
1915
1916 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)1917 generic_make_request_checks(struct bio *bio)
1918 {
1919 struct request_queue *q;
1920 int nr_sectors = bio_sectors(bio);
1921 int err = -EIO;
1922 char b[BDEVNAME_SIZE];
1923 struct hd_struct *part;
1924
1925 might_sleep();
1926
1927 if (bio_check_eod(bio, nr_sectors))
1928 goto end_io;
1929
1930 q = bdev_get_queue(bio->bi_bdev);
1931 if (unlikely(!q)) {
1932 printk(KERN_ERR
1933 "generic_make_request: Trying to access "
1934 "nonexistent block-device %s (%Lu)\n",
1935 bdevname(bio->bi_bdev, b),
1936 (long long) bio->bi_iter.bi_sector);
1937 goto end_io;
1938 }
1939
1940 part = bio->bi_bdev->bd_part;
1941 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1942 should_fail_request(&part_to_disk(part)->part0,
1943 bio->bi_iter.bi_size))
1944 goto end_io;
1945
1946 /*
1947 * If this device has partitions, remap block n
1948 * of partition p to block n+start(p) of the disk.
1949 */
1950 blk_partition_remap(bio);
1951
1952 if (bio_check_eod(bio, nr_sectors))
1953 goto end_io;
1954
1955 /*
1956 * Filter flush bio's early so that make_request based
1957 * drivers without flush support don't have to worry
1958 * about them.
1959 */
1960 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1961 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1962 if (!nr_sectors) {
1963 err = 0;
1964 goto end_io;
1965 }
1966 }
1967
1968 if ((bio->bi_rw & REQ_DISCARD) &&
1969 (!blk_queue_discard(q) ||
1970 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1971 err = -EOPNOTSUPP;
1972 goto end_io;
1973 }
1974
1975 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1976 err = -EOPNOTSUPP;
1977 goto end_io;
1978 }
1979
1980 /*
1981 * Various block parts want %current->io_context and lazy ioc
1982 * allocation ends up trading a lot of pain for a small amount of
1983 * memory. Just allocate it upfront. This may fail and block
1984 * layer knows how to live with it.
1985 */
1986 create_io_context(GFP_ATOMIC, q->node);
1987
1988 if (!blkcg_bio_issue_check(q, bio))
1989 return false;
1990
1991 trace_block_bio_queue(q, bio);
1992 return true;
1993
1994 end_io:
1995 bio->bi_error = err;
1996 bio_endio(bio);
1997 return false;
1998 }
1999
2000 /**
2001 * generic_make_request - hand a buffer to its device driver for I/O
2002 * @bio: The bio describing the location in memory and on the device.
2003 *
2004 * generic_make_request() is used to make I/O requests of block
2005 * devices. It is passed a &struct bio, which describes the I/O that needs
2006 * to be done.
2007 *
2008 * generic_make_request() does not return any status. The
2009 * success/failure status of the request, along with notification of
2010 * completion, is delivered asynchronously through the bio->bi_end_io
2011 * function described (one day) else where.
2012 *
2013 * The caller of generic_make_request must make sure that bi_io_vec
2014 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2015 * set to describe the device address, and the
2016 * bi_end_io and optionally bi_private are set to describe how
2017 * completion notification should be signaled.
2018 *
2019 * generic_make_request and the drivers it calls may use bi_next if this
2020 * bio happens to be merged with someone else, and may resubmit the bio to
2021 * a lower device by calling into generic_make_request recursively, which
2022 * means the bio should NOT be touched after the call to ->make_request_fn.
2023 */
generic_make_request(struct bio * bio)2024 blk_qc_t generic_make_request(struct bio *bio)
2025 {
2026 /*
2027 * bio_list_on_stack[0] contains bios submitted by the current
2028 * make_request_fn.
2029 * bio_list_on_stack[1] contains bios that were submitted before
2030 * the current make_request_fn, but that haven't been processed
2031 * yet.
2032 */
2033 struct bio_list bio_list_on_stack[2];
2034 blk_qc_t ret = BLK_QC_T_NONE;
2035
2036 if (!generic_make_request_checks(bio))
2037 goto out;
2038
2039 /*
2040 * We only want one ->make_request_fn to be active at a time, else
2041 * stack usage with stacked devices could be a problem. So use
2042 * current->bio_list to keep a list of requests submited by a
2043 * make_request_fn function. current->bio_list is also used as a
2044 * flag to say if generic_make_request is currently active in this
2045 * task or not. If it is NULL, then no make_request is active. If
2046 * it is non-NULL, then a make_request is active, and new requests
2047 * should be added at the tail
2048 */
2049 if (current->bio_list) {
2050 bio_list_add(¤t->bio_list[0], bio);
2051 goto out;
2052 }
2053
2054 /* following loop may be a bit non-obvious, and so deserves some
2055 * explanation.
2056 * Before entering the loop, bio->bi_next is NULL (as all callers
2057 * ensure that) so we have a list with a single bio.
2058 * We pretend that we have just taken it off a longer list, so
2059 * we assign bio_list to a pointer to the bio_list_on_stack,
2060 * thus initialising the bio_list of new bios to be
2061 * added. ->make_request() may indeed add some more bios
2062 * through a recursive call to generic_make_request. If it
2063 * did, we find a non-NULL value in bio_list and re-enter the loop
2064 * from the top. In this case we really did just take the bio
2065 * of the top of the list (no pretending) and so remove it from
2066 * bio_list, and call into ->make_request() again.
2067 */
2068 BUG_ON(bio->bi_next);
2069 bio_list_init(&bio_list_on_stack[0]);
2070 current->bio_list = bio_list_on_stack;
2071 do {
2072 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2073
2074 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2075 struct bio_list lower, same;
2076
2077 /* Create a fresh bio_list for all subordinate requests */
2078 bio_list_on_stack[1] = bio_list_on_stack[0];
2079 bio_list_init(&bio_list_on_stack[0]);
2080
2081 ret = q->make_request_fn(q, bio);
2082
2083 blk_queue_exit(q);
2084 /* sort new bios into those for a lower level
2085 * and those for the same level
2086 */
2087 bio_list_init(&lower);
2088 bio_list_init(&same);
2089 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2090 if (q == bdev_get_queue(bio->bi_bdev))
2091 bio_list_add(&same, bio);
2092 else
2093 bio_list_add(&lower, bio);
2094 /* now assemble so we handle the lowest level first */
2095 bio_list_merge(&bio_list_on_stack[0], &lower);
2096 bio_list_merge(&bio_list_on_stack[0], &same);
2097 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2098 } else {
2099 bio_io_error(bio);
2100 }
2101 bio = bio_list_pop(&bio_list_on_stack[0]);
2102 } while (bio);
2103 current->bio_list = NULL; /* deactivate */
2104
2105 out:
2106 return ret;
2107 }
2108 EXPORT_SYMBOL(generic_make_request);
2109
2110 /**
2111 * submit_bio - submit a bio to the block device layer for I/O
2112 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2113 * @bio: The &struct bio which describes the I/O
2114 *
2115 * submit_bio() is very similar in purpose to generic_make_request(), and
2116 * uses that function to do most of the work. Both are fairly rough
2117 * interfaces; @bio must be presetup and ready for I/O.
2118 *
2119 */
submit_bio(int rw,struct bio * bio)2120 blk_qc_t submit_bio(int rw, struct bio *bio)
2121 {
2122 bio->bi_rw |= rw;
2123
2124 /*
2125 * If it's a regular read/write or a barrier with data attached,
2126 * go through the normal accounting stuff before submission.
2127 */
2128 if (bio_has_data(bio)) {
2129 unsigned int count;
2130
2131 if (unlikely(rw & REQ_WRITE_SAME))
2132 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2133 else
2134 count = bio_sectors(bio);
2135
2136 if (rw & WRITE) {
2137 count_vm_events(PGPGOUT, count);
2138 } else {
2139 task_io_account_read(bio->bi_iter.bi_size);
2140 count_vm_events(PGPGIN, count);
2141 }
2142
2143 if (unlikely(block_dump)) {
2144 char b[BDEVNAME_SIZE];
2145 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2146 current->comm, task_pid_nr(current),
2147 (rw & WRITE) ? "WRITE" : "READ",
2148 (unsigned long long)bio->bi_iter.bi_sector,
2149 bdevname(bio->bi_bdev, b),
2150 count);
2151 }
2152 }
2153
2154 return generic_make_request(bio);
2155 }
2156 EXPORT_SYMBOL(submit_bio);
2157
2158 /**
2159 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2160 * for new the queue limits
2161 * @q: the queue
2162 * @rq: the request being checked
2163 *
2164 * Description:
2165 * @rq may have been made based on weaker limitations of upper-level queues
2166 * in request stacking drivers, and it may violate the limitation of @q.
2167 * Since the block layer and the underlying device driver trust @rq
2168 * after it is inserted to @q, it should be checked against @q before
2169 * the insertion using this generic function.
2170 *
2171 * Request stacking drivers like request-based dm may change the queue
2172 * limits when retrying requests on other queues. Those requests need
2173 * to be checked against the new queue limits again during dispatch.
2174 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2175 static int blk_cloned_rq_check_limits(struct request_queue *q,
2176 struct request *rq)
2177 {
2178 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2179 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2180 return -EIO;
2181 }
2182
2183 /*
2184 * queue's settings related to segment counting like q->bounce_pfn
2185 * may differ from that of other stacking queues.
2186 * Recalculate it to check the request correctly on this queue's
2187 * limitation.
2188 */
2189 blk_recalc_rq_segments(rq);
2190 if (rq->nr_phys_segments > queue_max_segments(q)) {
2191 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2192 return -EIO;
2193 }
2194
2195 return 0;
2196 }
2197
2198 /**
2199 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2200 * @q: the queue to submit the request
2201 * @rq: the request being queued
2202 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2203 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2204 {
2205 unsigned long flags;
2206 int where = ELEVATOR_INSERT_BACK;
2207
2208 if (blk_cloned_rq_check_limits(q, rq))
2209 return -EIO;
2210
2211 if (rq->rq_disk &&
2212 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2213 return -EIO;
2214
2215 if (q->mq_ops) {
2216 if (blk_queue_io_stat(q))
2217 blk_account_io_start(rq, true);
2218 blk_mq_insert_request(rq, false, true, false);
2219 return 0;
2220 }
2221
2222 spin_lock_irqsave(q->queue_lock, flags);
2223 if (unlikely(blk_queue_dying(q))) {
2224 spin_unlock_irqrestore(q->queue_lock, flags);
2225 return -ENODEV;
2226 }
2227
2228 /*
2229 * Submitting request must be dequeued before calling this function
2230 * because it will be linked to another request_queue
2231 */
2232 BUG_ON(blk_queued_rq(rq));
2233
2234 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2235 where = ELEVATOR_INSERT_FLUSH;
2236
2237 add_acct_request(q, rq, where);
2238 if (where == ELEVATOR_INSERT_FLUSH)
2239 __blk_run_queue(q);
2240 spin_unlock_irqrestore(q->queue_lock, flags);
2241
2242 return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2245
2246 /**
2247 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2248 * @rq: request to examine
2249 *
2250 * Description:
2251 * A request could be merge of IOs which require different failure
2252 * handling. This function determines the number of bytes which
2253 * can be failed from the beginning of the request without
2254 * crossing into area which need to be retried further.
2255 *
2256 * Return:
2257 * The number of bytes to fail.
2258 *
2259 * Context:
2260 * queue_lock must be held.
2261 */
blk_rq_err_bytes(const struct request * rq)2262 unsigned int blk_rq_err_bytes(const struct request *rq)
2263 {
2264 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2265 unsigned int bytes = 0;
2266 struct bio *bio;
2267
2268 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2269 return blk_rq_bytes(rq);
2270
2271 /*
2272 * Currently the only 'mixing' which can happen is between
2273 * different fastfail types. We can safely fail portions
2274 * which have all the failfast bits that the first one has -
2275 * the ones which are at least as eager to fail as the first
2276 * one.
2277 */
2278 for (bio = rq->bio; bio; bio = bio->bi_next) {
2279 if ((bio->bi_rw & ff) != ff)
2280 break;
2281 bytes += bio->bi_iter.bi_size;
2282 }
2283
2284 /* this could lead to infinite loop */
2285 BUG_ON(blk_rq_bytes(rq) && !bytes);
2286 return bytes;
2287 }
2288 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2289
blk_account_io_completion(struct request * req,unsigned int bytes)2290 void blk_account_io_completion(struct request *req, unsigned int bytes)
2291 {
2292 if (blk_do_io_stat(req)) {
2293 const int rw = rq_data_dir(req);
2294 struct hd_struct *part;
2295 int cpu;
2296
2297 cpu = part_stat_lock();
2298 part = req->part;
2299 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2300 part_stat_unlock();
2301 }
2302 }
2303
blk_account_io_done(struct request * req)2304 void blk_account_io_done(struct request *req)
2305 {
2306 /*
2307 * Account IO completion. flush_rq isn't accounted as a
2308 * normal IO on queueing nor completion. Accounting the
2309 * containing request is enough.
2310 */
2311 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2312 unsigned long duration = jiffies - req->start_time;
2313 const int rw = rq_data_dir(req);
2314 struct hd_struct *part;
2315 int cpu;
2316
2317 cpu = part_stat_lock();
2318 part = req->part;
2319
2320 part_stat_inc(cpu, part, ios[rw]);
2321 part_stat_add(cpu, part, ticks[rw], duration);
2322 part_round_stats(cpu, part);
2323 part_dec_in_flight(part, rw);
2324
2325 hd_struct_put(part);
2326 part_stat_unlock();
2327 }
2328 }
2329
2330 #ifdef CONFIG_PM
2331 /*
2332 * Don't process normal requests when queue is suspended
2333 * or in the process of suspending/resuming
2334 */
blk_pm_peek_request(struct request_queue * q,struct request * rq)2335 static struct request *blk_pm_peek_request(struct request_queue *q,
2336 struct request *rq)
2337 {
2338 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2339 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2340 return NULL;
2341 else
2342 return rq;
2343 }
2344 #else
blk_pm_peek_request(struct request_queue * q,struct request * rq)2345 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2346 struct request *rq)
2347 {
2348 return rq;
2349 }
2350 #endif
2351
blk_account_io_start(struct request * rq,bool new_io)2352 void blk_account_io_start(struct request *rq, bool new_io)
2353 {
2354 struct hd_struct *part;
2355 int rw = rq_data_dir(rq);
2356 int cpu;
2357
2358 if (!blk_do_io_stat(rq))
2359 return;
2360
2361 cpu = part_stat_lock();
2362
2363 if (!new_io) {
2364 part = rq->part;
2365 part_stat_inc(cpu, part, merges[rw]);
2366 } else {
2367 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2368 if (!hd_struct_try_get(part)) {
2369 /*
2370 * The partition is already being removed,
2371 * the request will be accounted on the disk only
2372 *
2373 * We take a reference on disk->part0 although that
2374 * partition will never be deleted, so we can treat
2375 * it as any other partition.
2376 */
2377 part = &rq->rq_disk->part0;
2378 hd_struct_get(part);
2379 }
2380 part_round_stats(cpu, part);
2381 part_inc_in_flight(part, rw);
2382 rq->part = part;
2383 }
2384
2385 part_stat_unlock();
2386 }
2387
2388 /**
2389 * blk_peek_request - peek at the top of a request queue
2390 * @q: request queue to peek at
2391 *
2392 * Description:
2393 * Return the request at the top of @q. The returned request
2394 * should be started using blk_start_request() before LLD starts
2395 * processing it.
2396 *
2397 * Return:
2398 * Pointer to the request at the top of @q if available. Null
2399 * otherwise.
2400 *
2401 * Context:
2402 * queue_lock must be held.
2403 */
blk_peek_request(struct request_queue * q)2404 struct request *blk_peek_request(struct request_queue *q)
2405 {
2406 struct request *rq;
2407 int ret;
2408
2409 while ((rq = __elv_next_request(q)) != NULL) {
2410
2411 rq = blk_pm_peek_request(q, rq);
2412 if (!rq)
2413 break;
2414
2415 if (!(rq->cmd_flags & REQ_STARTED)) {
2416 /*
2417 * This is the first time the device driver
2418 * sees this request (possibly after
2419 * requeueing). Notify IO scheduler.
2420 */
2421 if (rq->cmd_flags & REQ_SORTED)
2422 elv_activate_rq(q, rq);
2423
2424 /*
2425 * just mark as started even if we don't start
2426 * it, a request that has been delayed should
2427 * not be passed by new incoming requests
2428 */
2429 rq->cmd_flags |= REQ_STARTED;
2430 trace_block_rq_issue(q, rq);
2431 }
2432
2433 if (!q->boundary_rq || q->boundary_rq == rq) {
2434 q->end_sector = rq_end_sector(rq);
2435 q->boundary_rq = NULL;
2436 }
2437
2438 if (rq->cmd_flags & REQ_DONTPREP)
2439 break;
2440
2441 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2442 /*
2443 * make sure space for the drain appears we
2444 * know we can do this because max_hw_segments
2445 * has been adjusted to be one fewer than the
2446 * device can handle
2447 */
2448 rq->nr_phys_segments++;
2449 }
2450
2451 if (!q->prep_rq_fn)
2452 break;
2453
2454 ret = q->prep_rq_fn(q, rq);
2455 if (ret == BLKPREP_OK) {
2456 break;
2457 } else if (ret == BLKPREP_DEFER) {
2458 /*
2459 * the request may have been (partially) prepped.
2460 * we need to keep this request in the front to
2461 * avoid resource deadlock. REQ_STARTED will
2462 * prevent other fs requests from passing this one.
2463 */
2464 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2465 !(rq->cmd_flags & REQ_DONTPREP)) {
2466 /*
2467 * remove the space for the drain we added
2468 * so that we don't add it again
2469 */
2470 --rq->nr_phys_segments;
2471 }
2472
2473 rq = NULL;
2474 break;
2475 } else if (ret == BLKPREP_KILL) {
2476 rq->cmd_flags |= REQ_QUIET;
2477 /*
2478 * Mark this request as started so we don't trigger
2479 * any debug logic in the end I/O path.
2480 */
2481 blk_start_request(rq);
2482 __blk_end_request_all(rq, -EIO);
2483 } else {
2484 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2485 break;
2486 }
2487 }
2488
2489 return rq;
2490 }
2491 EXPORT_SYMBOL(blk_peek_request);
2492
blk_dequeue_request(struct request * rq)2493 void blk_dequeue_request(struct request *rq)
2494 {
2495 struct request_queue *q = rq->q;
2496
2497 BUG_ON(list_empty(&rq->queuelist));
2498 BUG_ON(ELV_ON_HASH(rq));
2499
2500 list_del_init(&rq->queuelist);
2501
2502 /*
2503 * the time frame between a request being removed from the lists
2504 * and to it is freed is accounted as io that is in progress at
2505 * the driver side.
2506 */
2507 if (blk_account_rq(rq)) {
2508 q->in_flight[rq_is_sync(rq)]++;
2509 set_io_start_time_ns(rq);
2510 }
2511 }
2512
2513 /**
2514 * blk_start_request - start request processing on the driver
2515 * @req: request to dequeue
2516 *
2517 * Description:
2518 * Dequeue @req and start timeout timer on it. This hands off the
2519 * request to the driver.
2520 *
2521 * Block internal functions which don't want to start timer should
2522 * call blk_dequeue_request().
2523 *
2524 * Context:
2525 * queue_lock must be held.
2526 */
blk_start_request(struct request * req)2527 void blk_start_request(struct request *req)
2528 {
2529 blk_dequeue_request(req);
2530
2531 /*
2532 * We are now handing the request to the hardware, initialize
2533 * resid_len to full count and add the timeout handler.
2534 */
2535 req->resid_len = blk_rq_bytes(req);
2536 if (unlikely(blk_bidi_rq(req)))
2537 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2538
2539 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2540 blk_add_timer(req);
2541 }
2542 EXPORT_SYMBOL(blk_start_request);
2543
2544 /**
2545 * blk_fetch_request - fetch a request from a request queue
2546 * @q: request queue to fetch a request from
2547 *
2548 * Description:
2549 * Return the request at the top of @q. The request is started on
2550 * return and LLD can start processing it immediately.
2551 *
2552 * Return:
2553 * Pointer to the request at the top of @q if available. Null
2554 * otherwise.
2555 *
2556 * Context:
2557 * queue_lock must be held.
2558 */
blk_fetch_request(struct request_queue * q)2559 struct request *blk_fetch_request(struct request_queue *q)
2560 {
2561 struct request *rq;
2562
2563 rq = blk_peek_request(q);
2564 if (rq)
2565 blk_start_request(rq);
2566 return rq;
2567 }
2568 EXPORT_SYMBOL(blk_fetch_request);
2569
2570 /**
2571 * blk_update_request - Special helper function for request stacking drivers
2572 * @req: the request being processed
2573 * @error: %0 for success, < %0 for error
2574 * @nr_bytes: number of bytes to complete @req
2575 *
2576 * Description:
2577 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2578 * the request structure even if @req doesn't have leftover.
2579 * If @req has leftover, sets it up for the next range of segments.
2580 *
2581 * This special helper function is only for request stacking drivers
2582 * (e.g. request-based dm) so that they can handle partial completion.
2583 * Actual device drivers should use blk_end_request instead.
2584 *
2585 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2586 * %false return from this function.
2587 *
2588 * Return:
2589 * %false - this request doesn't have any more data
2590 * %true - this request has more data
2591 **/
blk_update_request(struct request * req,int error,unsigned int nr_bytes)2592 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2593 {
2594 int total_bytes;
2595
2596 trace_block_rq_complete(req->q, req, nr_bytes);
2597
2598 if (!req->bio)
2599 return false;
2600
2601 /*
2602 * For fs requests, rq is just carrier of independent bio's
2603 * and each partial completion should be handled separately.
2604 * Reset per-request error on each partial completion.
2605 *
2606 * TODO: tj: This is too subtle. It would be better to let
2607 * low level drivers do what they see fit.
2608 */
2609 if (req->cmd_type == REQ_TYPE_FS)
2610 req->errors = 0;
2611
2612 if (error && req->cmd_type == REQ_TYPE_FS &&
2613 !(req->cmd_flags & REQ_QUIET)) {
2614 char *error_type;
2615
2616 switch (error) {
2617 case -ENOLINK:
2618 error_type = "recoverable transport";
2619 break;
2620 case -EREMOTEIO:
2621 error_type = "critical target";
2622 break;
2623 case -EBADE:
2624 error_type = "critical nexus";
2625 break;
2626 case -ETIMEDOUT:
2627 error_type = "timeout";
2628 break;
2629 case -ENOSPC:
2630 error_type = "critical space allocation";
2631 break;
2632 case -ENODATA:
2633 error_type = "critical medium";
2634 break;
2635 case -EIO:
2636 default:
2637 error_type = "I/O";
2638 break;
2639 }
2640 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2641 __func__, error_type, req->rq_disk ?
2642 req->rq_disk->disk_name : "?",
2643 (unsigned long long)blk_rq_pos(req));
2644
2645 }
2646
2647 blk_account_io_completion(req, nr_bytes);
2648
2649 total_bytes = 0;
2650 while (req->bio) {
2651 struct bio *bio = req->bio;
2652 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2653
2654 if (bio_bytes == bio->bi_iter.bi_size)
2655 req->bio = bio->bi_next;
2656
2657 req_bio_endio(req, bio, bio_bytes, error);
2658
2659 total_bytes += bio_bytes;
2660 nr_bytes -= bio_bytes;
2661
2662 if (!nr_bytes)
2663 break;
2664 }
2665
2666 /*
2667 * completely done
2668 */
2669 if (!req->bio) {
2670 /*
2671 * Reset counters so that the request stacking driver
2672 * can find how many bytes remain in the request
2673 * later.
2674 */
2675 req->__data_len = 0;
2676 return false;
2677 }
2678
2679 req->__data_len -= total_bytes;
2680
2681 /* update sector only for requests with clear definition of sector */
2682 if (req->cmd_type == REQ_TYPE_FS)
2683 req->__sector += total_bytes >> 9;
2684
2685 /* mixed attributes always follow the first bio */
2686 if (req->cmd_flags & REQ_MIXED_MERGE) {
2687 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2688 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2689 }
2690
2691 /*
2692 * If total number of sectors is less than the first segment
2693 * size, something has gone terribly wrong.
2694 */
2695 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2696 blk_dump_rq_flags(req, "request botched");
2697 req->__data_len = blk_rq_cur_bytes(req);
2698 }
2699
2700 /* recalculate the number of segments */
2701 blk_recalc_rq_segments(req);
2702
2703 return true;
2704 }
2705 EXPORT_SYMBOL_GPL(blk_update_request);
2706
blk_update_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2707 static bool blk_update_bidi_request(struct request *rq, int error,
2708 unsigned int nr_bytes,
2709 unsigned int bidi_bytes)
2710 {
2711 if (blk_update_request(rq, error, nr_bytes))
2712 return true;
2713
2714 /* Bidi request must be completed as a whole */
2715 if (unlikely(blk_bidi_rq(rq)) &&
2716 blk_update_request(rq->next_rq, error, bidi_bytes))
2717 return true;
2718
2719 if (blk_queue_add_random(rq->q))
2720 add_disk_randomness(rq->rq_disk);
2721
2722 return false;
2723 }
2724
2725 /**
2726 * blk_unprep_request - unprepare a request
2727 * @req: the request
2728 *
2729 * This function makes a request ready for complete resubmission (or
2730 * completion). It happens only after all error handling is complete,
2731 * so represents the appropriate moment to deallocate any resources
2732 * that were allocated to the request in the prep_rq_fn. The queue
2733 * lock is held when calling this.
2734 */
blk_unprep_request(struct request * req)2735 void blk_unprep_request(struct request *req)
2736 {
2737 struct request_queue *q = req->q;
2738
2739 req->cmd_flags &= ~REQ_DONTPREP;
2740 if (q->unprep_rq_fn)
2741 q->unprep_rq_fn(q, req);
2742 }
2743 EXPORT_SYMBOL_GPL(blk_unprep_request);
2744
2745 /*
2746 * queue lock must be held
2747 */
blk_finish_request(struct request * req,int error)2748 void blk_finish_request(struct request *req, int error)
2749 {
2750 if (req->cmd_flags & REQ_QUEUED)
2751 blk_queue_end_tag(req->q, req);
2752
2753 BUG_ON(blk_queued_rq(req));
2754
2755 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2756 laptop_io_completion(&req->q->backing_dev_info);
2757
2758 blk_delete_timer(req);
2759
2760 if (req->cmd_flags & REQ_DONTPREP)
2761 blk_unprep_request(req);
2762
2763 blk_account_io_done(req);
2764
2765 if (req->end_io)
2766 req->end_io(req, error);
2767 else {
2768 if (blk_bidi_rq(req))
2769 __blk_put_request(req->next_rq->q, req->next_rq);
2770
2771 __blk_put_request(req->q, req);
2772 }
2773 }
2774 EXPORT_SYMBOL(blk_finish_request);
2775
2776 /**
2777 * blk_end_bidi_request - Complete a bidi request
2778 * @rq: the request to complete
2779 * @error: %0 for success, < %0 for error
2780 * @nr_bytes: number of bytes to complete @rq
2781 * @bidi_bytes: number of bytes to complete @rq->next_rq
2782 *
2783 * Description:
2784 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2785 * Drivers that supports bidi can safely call this member for any
2786 * type of request, bidi or uni. In the later case @bidi_bytes is
2787 * just ignored.
2788 *
2789 * Return:
2790 * %false - we are done with this request
2791 * %true - still buffers pending for this request
2792 **/
blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2793 static bool blk_end_bidi_request(struct request *rq, int error,
2794 unsigned int nr_bytes, unsigned int bidi_bytes)
2795 {
2796 struct request_queue *q = rq->q;
2797 unsigned long flags;
2798
2799 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2800 return true;
2801
2802 spin_lock_irqsave(q->queue_lock, flags);
2803 blk_finish_request(rq, error);
2804 spin_unlock_irqrestore(q->queue_lock, flags);
2805
2806 return false;
2807 }
2808
2809 /**
2810 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2811 * @rq: the request to complete
2812 * @error: %0 for success, < %0 for error
2813 * @nr_bytes: number of bytes to complete @rq
2814 * @bidi_bytes: number of bytes to complete @rq->next_rq
2815 *
2816 * Description:
2817 * Identical to blk_end_bidi_request() except that queue lock is
2818 * assumed to be locked on entry and remains so on return.
2819 *
2820 * Return:
2821 * %false - we are done with this request
2822 * %true - still buffers pending for this request
2823 **/
__blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2824 bool __blk_end_bidi_request(struct request *rq, int error,
2825 unsigned int nr_bytes, unsigned int bidi_bytes)
2826 {
2827 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2828 return true;
2829
2830 blk_finish_request(rq, error);
2831
2832 return false;
2833 }
2834
2835 /**
2836 * blk_end_request - Helper function for drivers to complete the request.
2837 * @rq: the request being processed
2838 * @error: %0 for success, < %0 for error
2839 * @nr_bytes: number of bytes to complete
2840 *
2841 * Description:
2842 * Ends I/O on a number of bytes attached to @rq.
2843 * If @rq has leftover, sets it up for the next range of segments.
2844 *
2845 * Return:
2846 * %false - we are done with this request
2847 * %true - still buffers pending for this request
2848 **/
blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2849 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2850 {
2851 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2852 }
2853 EXPORT_SYMBOL(blk_end_request);
2854
2855 /**
2856 * blk_end_request_all - Helper function for drives to finish the request.
2857 * @rq: the request to finish
2858 * @error: %0 for success, < %0 for error
2859 *
2860 * Description:
2861 * Completely finish @rq.
2862 */
blk_end_request_all(struct request * rq,int error)2863 void blk_end_request_all(struct request *rq, int error)
2864 {
2865 bool pending;
2866 unsigned int bidi_bytes = 0;
2867
2868 if (unlikely(blk_bidi_rq(rq)))
2869 bidi_bytes = blk_rq_bytes(rq->next_rq);
2870
2871 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2872 BUG_ON(pending);
2873 }
2874 EXPORT_SYMBOL(blk_end_request_all);
2875
2876 /**
2877 * blk_end_request_cur - Helper function to finish the current request chunk.
2878 * @rq: the request to finish the current chunk for
2879 * @error: %0 for success, < %0 for error
2880 *
2881 * Description:
2882 * Complete the current consecutively mapped chunk from @rq.
2883 *
2884 * Return:
2885 * %false - we are done with this request
2886 * %true - still buffers pending for this request
2887 */
blk_end_request_cur(struct request * rq,int error)2888 bool blk_end_request_cur(struct request *rq, int error)
2889 {
2890 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2891 }
2892 EXPORT_SYMBOL(blk_end_request_cur);
2893
2894 /**
2895 * blk_end_request_err - Finish a request till the next failure boundary.
2896 * @rq: the request to finish till the next failure boundary for
2897 * @error: must be negative errno
2898 *
2899 * Description:
2900 * Complete @rq till the next failure boundary.
2901 *
2902 * Return:
2903 * %false - we are done with this request
2904 * %true - still buffers pending for this request
2905 */
blk_end_request_err(struct request * rq,int error)2906 bool blk_end_request_err(struct request *rq, int error)
2907 {
2908 WARN_ON(error >= 0);
2909 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2910 }
2911 EXPORT_SYMBOL_GPL(blk_end_request_err);
2912
2913 /**
2914 * __blk_end_request - Helper function for drivers to complete the request.
2915 * @rq: the request being processed
2916 * @error: %0 for success, < %0 for error
2917 * @nr_bytes: number of bytes to complete
2918 *
2919 * Description:
2920 * Must be called with queue lock held unlike blk_end_request().
2921 *
2922 * Return:
2923 * %false - we are done with this request
2924 * %true - still buffers pending for this request
2925 **/
__blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2926 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2927 {
2928 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2929 }
2930 EXPORT_SYMBOL(__blk_end_request);
2931
2932 /**
2933 * __blk_end_request_all - Helper function for drives to finish the request.
2934 * @rq: the request to finish
2935 * @error: %0 for success, < %0 for error
2936 *
2937 * Description:
2938 * Completely finish @rq. Must be called with queue lock held.
2939 */
__blk_end_request_all(struct request * rq,int error)2940 void __blk_end_request_all(struct request *rq, int error)
2941 {
2942 bool pending;
2943 unsigned int bidi_bytes = 0;
2944
2945 if (unlikely(blk_bidi_rq(rq)))
2946 bidi_bytes = blk_rq_bytes(rq->next_rq);
2947
2948 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2949 BUG_ON(pending);
2950 }
2951 EXPORT_SYMBOL(__blk_end_request_all);
2952
2953 /**
2954 * __blk_end_request_cur - Helper function to finish the current request chunk.
2955 * @rq: the request to finish the current chunk for
2956 * @error: %0 for success, < %0 for error
2957 *
2958 * Description:
2959 * Complete the current consecutively mapped chunk from @rq. Must
2960 * be called with queue lock held.
2961 *
2962 * Return:
2963 * %false - we are done with this request
2964 * %true - still buffers pending for this request
2965 */
__blk_end_request_cur(struct request * rq,int error)2966 bool __blk_end_request_cur(struct request *rq, int error)
2967 {
2968 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2969 }
2970 EXPORT_SYMBOL(__blk_end_request_cur);
2971
2972 /**
2973 * __blk_end_request_err - Finish a request till the next failure boundary.
2974 * @rq: the request to finish till the next failure boundary for
2975 * @error: must be negative errno
2976 *
2977 * Description:
2978 * Complete @rq till the next failure boundary. Must be called
2979 * with queue lock held.
2980 *
2981 * Return:
2982 * %false - we are done with this request
2983 * %true - still buffers pending for this request
2984 */
__blk_end_request_err(struct request * rq,int error)2985 bool __blk_end_request_err(struct request *rq, int error)
2986 {
2987 WARN_ON(error >= 0);
2988 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2989 }
2990 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2991
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)2992 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2993 struct bio *bio)
2994 {
2995 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2996 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2997
2998 if (bio_has_data(bio))
2999 rq->nr_phys_segments = bio_phys_segments(q, bio);
3000
3001 rq->__data_len = bio->bi_iter.bi_size;
3002 rq->bio = rq->biotail = bio;
3003
3004 if (bio->bi_bdev)
3005 rq->rq_disk = bio->bi_bdev->bd_disk;
3006 }
3007
3008 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3009 /**
3010 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3011 * @rq: the request to be flushed
3012 *
3013 * Description:
3014 * Flush all pages in @rq.
3015 */
rq_flush_dcache_pages(struct request * rq)3016 void rq_flush_dcache_pages(struct request *rq)
3017 {
3018 struct req_iterator iter;
3019 struct bio_vec bvec;
3020
3021 rq_for_each_segment(bvec, rq, iter)
3022 flush_dcache_page(bvec.bv_page);
3023 }
3024 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3025 #endif
3026
3027 /**
3028 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3029 * @q : the queue of the device being checked
3030 *
3031 * Description:
3032 * Check if underlying low-level drivers of a device are busy.
3033 * If the drivers want to export their busy state, they must set own
3034 * exporting function using blk_queue_lld_busy() first.
3035 *
3036 * Basically, this function is used only by request stacking drivers
3037 * to stop dispatching requests to underlying devices when underlying
3038 * devices are busy. This behavior helps more I/O merging on the queue
3039 * of the request stacking driver and prevents I/O throughput regression
3040 * on burst I/O load.
3041 *
3042 * Return:
3043 * 0 - Not busy (The request stacking driver should dispatch request)
3044 * 1 - Busy (The request stacking driver should stop dispatching request)
3045 */
blk_lld_busy(struct request_queue * q)3046 int blk_lld_busy(struct request_queue *q)
3047 {
3048 if (q->lld_busy_fn)
3049 return q->lld_busy_fn(q);
3050
3051 return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(blk_lld_busy);
3054
3055 /**
3056 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3057 * @rq: the clone request to be cleaned up
3058 *
3059 * Description:
3060 * Free all bios in @rq for a cloned request.
3061 */
blk_rq_unprep_clone(struct request * rq)3062 void blk_rq_unprep_clone(struct request *rq)
3063 {
3064 struct bio *bio;
3065
3066 while ((bio = rq->bio) != NULL) {
3067 rq->bio = bio->bi_next;
3068
3069 bio_put(bio);
3070 }
3071 }
3072 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3073
3074 /*
3075 * Copy attributes of the original request to the clone request.
3076 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3077 */
__blk_rq_prep_clone(struct request * dst,struct request * src)3078 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3079 {
3080 dst->cpu = src->cpu;
3081 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3082 dst->cmd_type = src->cmd_type;
3083 dst->__sector = blk_rq_pos(src);
3084 dst->__data_len = blk_rq_bytes(src);
3085 dst->nr_phys_segments = src->nr_phys_segments;
3086 dst->ioprio = src->ioprio;
3087 dst->extra_len = src->extra_len;
3088 }
3089
3090 /**
3091 * blk_rq_prep_clone - Helper function to setup clone request
3092 * @rq: the request to be setup
3093 * @rq_src: original request to be cloned
3094 * @bs: bio_set that bios for clone are allocated from
3095 * @gfp_mask: memory allocation mask for bio
3096 * @bio_ctr: setup function to be called for each clone bio.
3097 * Returns %0 for success, non %0 for failure.
3098 * @data: private data to be passed to @bio_ctr
3099 *
3100 * Description:
3101 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3102 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3103 * are not copied, and copying such parts is the caller's responsibility.
3104 * Also, pages which the original bios are pointing to are not copied
3105 * and the cloned bios just point same pages.
3106 * So cloned bios must be completed before original bios, which means
3107 * the caller must complete @rq before @rq_src.
3108 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3109 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3110 struct bio_set *bs, gfp_t gfp_mask,
3111 int (*bio_ctr)(struct bio *, struct bio *, void *),
3112 void *data)
3113 {
3114 struct bio *bio, *bio_src;
3115
3116 if (!bs)
3117 bs = fs_bio_set;
3118
3119 __rq_for_each_bio(bio_src, rq_src) {
3120 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3121 if (!bio)
3122 goto free_and_out;
3123
3124 if (bio_ctr && bio_ctr(bio, bio_src, data))
3125 goto free_and_out;
3126
3127 if (rq->bio) {
3128 rq->biotail->bi_next = bio;
3129 rq->biotail = bio;
3130 } else
3131 rq->bio = rq->biotail = bio;
3132 }
3133
3134 __blk_rq_prep_clone(rq, rq_src);
3135
3136 return 0;
3137
3138 free_and_out:
3139 if (bio)
3140 bio_put(bio);
3141 blk_rq_unprep_clone(rq);
3142
3143 return -ENOMEM;
3144 }
3145 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3146
kblockd_schedule_work(struct work_struct * work)3147 int kblockd_schedule_work(struct work_struct *work)
3148 {
3149 return queue_work(kblockd_workqueue, work);
3150 }
3151 EXPORT_SYMBOL(kblockd_schedule_work);
3152
kblockd_schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)3153 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3154 unsigned long delay)
3155 {
3156 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3157 }
3158 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3159
kblockd_schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3160 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3161 unsigned long delay)
3162 {
3163 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3164 }
3165 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3166
3167 /**
3168 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3169 * @plug: The &struct blk_plug that needs to be initialized
3170 *
3171 * Description:
3172 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3173 * pending I/O should the task end up blocking between blk_start_plug() and
3174 * blk_finish_plug(). This is important from a performance perspective, but
3175 * also ensures that we don't deadlock. For instance, if the task is blocking
3176 * for a memory allocation, memory reclaim could end up wanting to free a
3177 * page belonging to that request that is currently residing in our private
3178 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3179 * this kind of deadlock.
3180 */
blk_start_plug(struct blk_plug * plug)3181 void blk_start_plug(struct blk_plug *plug)
3182 {
3183 struct task_struct *tsk = current;
3184
3185 /*
3186 * If this is a nested plug, don't actually assign it.
3187 */
3188 if (tsk->plug)
3189 return;
3190
3191 INIT_LIST_HEAD(&plug->list);
3192 INIT_LIST_HEAD(&plug->mq_list);
3193 INIT_LIST_HEAD(&plug->cb_list);
3194 /*
3195 * Store ordering should not be needed here, since a potential
3196 * preempt will imply a full memory barrier
3197 */
3198 tsk->plug = plug;
3199 }
3200 EXPORT_SYMBOL(blk_start_plug);
3201
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3202 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3203 {
3204 struct request *rqa = container_of(a, struct request, queuelist);
3205 struct request *rqb = container_of(b, struct request, queuelist);
3206
3207 return !(rqa->q < rqb->q ||
3208 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3209 }
3210
3211 /*
3212 * If 'from_schedule' is true, then postpone the dispatch of requests
3213 * until a safe kblockd context. We due this to avoid accidental big
3214 * additional stack usage in driver dispatch, in places where the originally
3215 * plugger did not intend it.
3216 */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3217 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3218 bool from_schedule)
3219 __releases(q->queue_lock)
3220 {
3221 trace_block_unplug(q, depth, !from_schedule);
3222
3223 if (from_schedule)
3224 blk_run_queue_async(q);
3225 else
3226 __blk_run_queue(q);
3227 spin_unlock(q->queue_lock);
3228 }
3229
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3230 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3231 {
3232 LIST_HEAD(callbacks);
3233
3234 while (!list_empty(&plug->cb_list)) {
3235 list_splice_init(&plug->cb_list, &callbacks);
3236
3237 while (!list_empty(&callbacks)) {
3238 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3239 struct blk_plug_cb,
3240 list);
3241 list_del(&cb->list);
3242 cb->callback(cb, from_schedule);
3243 }
3244 }
3245 }
3246
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3247 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3248 int size)
3249 {
3250 struct blk_plug *plug = current->plug;
3251 struct blk_plug_cb *cb;
3252
3253 if (!plug)
3254 return NULL;
3255
3256 list_for_each_entry(cb, &plug->cb_list, list)
3257 if (cb->callback == unplug && cb->data == data)
3258 return cb;
3259
3260 /* Not currently on the callback list */
3261 BUG_ON(size < sizeof(*cb));
3262 cb = kzalloc(size, GFP_ATOMIC);
3263 if (cb) {
3264 cb->data = data;
3265 cb->callback = unplug;
3266 list_add(&cb->list, &plug->cb_list);
3267 }
3268 return cb;
3269 }
3270 EXPORT_SYMBOL(blk_check_plugged);
3271
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3272 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3273 {
3274 struct request_queue *q;
3275 unsigned long flags;
3276 struct request *rq;
3277 LIST_HEAD(list);
3278 unsigned int depth;
3279
3280 flush_plug_callbacks(plug, from_schedule);
3281
3282 if (!list_empty(&plug->mq_list))
3283 blk_mq_flush_plug_list(plug, from_schedule);
3284
3285 if (list_empty(&plug->list))
3286 return;
3287
3288 list_splice_init(&plug->list, &list);
3289
3290 list_sort(NULL, &list, plug_rq_cmp);
3291
3292 q = NULL;
3293 depth = 0;
3294
3295 /*
3296 * Save and disable interrupts here, to avoid doing it for every
3297 * queue lock we have to take.
3298 */
3299 local_irq_save(flags);
3300 while (!list_empty(&list)) {
3301 rq = list_entry_rq(list.next);
3302 list_del_init(&rq->queuelist);
3303 BUG_ON(!rq->q);
3304 if (rq->q != q) {
3305 /*
3306 * This drops the queue lock
3307 */
3308 if (q)
3309 queue_unplugged(q, depth, from_schedule);
3310 q = rq->q;
3311 depth = 0;
3312 spin_lock(q->queue_lock);
3313 }
3314
3315 /*
3316 * Short-circuit if @q is dead
3317 */
3318 if (unlikely(blk_queue_dying(q))) {
3319 __blk_end_request_all(rq, -ENODEV);
3320 continue;
3321 }
3322
3323 /*
3324 * rq is already accounted, so use raw insert
3325 */
3326 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3327 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3328 else
3329 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3330
3331 depth++;
3332 }
3333
3334 /*
3335 * This drops the queue lock
3336 */
3337 if (q)
3338 queue_unplugged(q, depth, from_schedule);
3339
3340 local_irq_restore(flags);
3341 }
3342
blk_finish_plug(struct blk_plug * plug)3343 void blk_finish_plug(struct blk_plug *plug)
3344 {
3345 if (plug != current->plug)
3346 return;
3347 blk_flush_plug_list(plug, false);
3348
3349 current->plug = NULL;
3350 }
3351 EXPORT_SYMBOL(blk_finish_plug);
3352
blk_poll(struct request_queue * q,blk_qc_t cookie)3353 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3354 {
3355 struct blk_plug *plug;
3356 long state;
3357
3358 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3359 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3360 return false;
3361
3362 plug = current->plug;
3363 if (plug)
3364 blk_flush_plug_list(plug, false);
3365
3366 state = current->state;
3367 while (!need_resched()) {
3368 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3369 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3370 int ret;
3371
3372 hctx->poll_invoked++;
3373
3374 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3375 if (ret > 0) {
3376 hctx->poll_success++;
3377 set_current_state(TASK_RUNNING);
3378 return true;
3379 }
3380
3381 if (signal_pending_state(state, current))
3382 set_current_state(TASK_RUNNING);
3383
3384 if (current->state == TASK_RUNNING)
3385 return true;
3386 if (ret < 0)
3387 break;
3388 cpu_relax();
3389 }
3390
3391 return false;
3392 }
3393
3394 #ifdef CONFIG_PM
3395 /**
3396 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3397 * @q: the queue of the device
3398 * @dev: the device the queue belongs to
3399 *
3400 * Description:
3401 * Initialize runtime-PM-related fields for @q and start auto suspend for
3402 * @dev. Drivers that want to take advantage of request-based runtime PM
3403 * should call this function after @dev has been initialized, and its
3404 * request queue @q has been allocated, and runtime PM for it can not happen
3405 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3406 * cases, driver should call this function before any I/O has taken place.
3407 *
3408 * This function takes care of setting up using auto suspend for the device,
3409 * the autosuspend delay is set to -1 to make runtime suspend impossible
3410 * until an updated value is either set by user or by driver. Drivers do
3411 * not need to touch other autosuspend settings.
3412 *
3413 * The block layer runtime PM is request based, so only works for drivers
3414 * that use request as their IO unit instead of those directly use bio's.
3415 */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3416 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3417 {
3418 q->dev = dev;
3419 q->rpm_status = RPM_ACTIVE;
3420 pm_runtime_set_autosuspend_delay(q->dev, -1);
3421 pm_runtime_use_autosuspend(q->dev);
3422 }
3423 EXPORT_SYMBOL(blk_pm_runtime_init);
3424
3425 /**
3426 * blk_pre_runtime_suspend - Pre runtime suspend check
3427 * @q: the queue of the device
3428 *
3429 * Description:
3430 * This function will check if runtime suspend is allowed for the device
3431 * by examining if there are any requests pending in the queue. If there
3432 * are requests pending, the device can not be runtime suspended; otherwise,
3433 * the queue's status will be updated to SUSPENDING and the driver can
3434 * proceed to suspend the device.
3435 *
3436 * For the not allowed case, we mark last busy for the device so that
3437 * runtime PM core will try to autosuspend it some time later.
3438 *
3439 * This function should be called near the start of the device's
3440 * runtime_suspend callback.
3441 *
3442 * Return:
3443 * 0 - OK to runtime suspend the device
3444 * -EBUSY - Device should not be runtime suspended
3445 */
blk_pre_runtime_suspend(struct request_queue * q)3446 int blk_pre_runtime_suspend(struct request_queue *q)
3447 {
3448 int ret = 0;
3449
3450 if (!q->dev)
3451 return ret;
3452
3453 spin_lock_irq(q->queue_lock);
3454 if (q->nr_pending) {
3455 ret = -EBUSY;
3456 pm_runtime_mark_last_busy(q->dev);
3457 } else {
3458 q->rpm_status = RPM_SUSPENDING;
3459 }
3460 spin_unlock_irq(q->queue_lock);
3461 return ret;
3462 }
3463 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3464
3465 /**
3466 * blk_post_runtime_suspend - Post runtime suspend processing
3467 * @q: the queue of the device
3468 * @err: return value of the device's runtime_suspend function
3469 *
3470 * Description:
3471 * Update the queue's runtime status according to the return value of the
3472 * device's runtime suspend function and mark last busy for the device so
3473 * that PM core will try to auto suspend the device at a later time.
3474 *
3475 * This function should be called near the end of the device's
3476 * runtime_suspend callback.
3477 */
blk_post_runtime_suspend(struct request_queue * q,int err)3478 void blk_post_runtime_suspend(struct request_queue *q, int err)
3479 {
3480 if (!q->dev)
3481 return;
3482
3483 spin_lock_irq(q->queue_lock);
3484 if (!err) {
3485 q->rpm_status = RPM_SUSPENDED;
3486 } else {
3487 q->rpm_status = RPM_ACTIVE;
3488 pm_runtime_mark_last_busy(q->dev);
3489 }
3490 spin_unlock_irq(q->queue_lock);
3491 }
3492 EXPORT_SYMBOL(blk_post_runtime_suspend);
3493
3494 /**
3495 * blk_pre_runtime_resume - Pre runtime resume processing
3496 * @q: the queue of the device
3497 *
3498 * Description:
3499 * Update the queue's runtime status to RESUMING in preparation for the
3500 * runtime resume of the device.
3501 *
3502 * This function should be called near the start of the device's
3503 * runtime_resume callback.
3504 */
blk_pre_runtime_resume(struct request_queue * q)3505 void blk_pre_runtime_resume(struct request_queue *q)
3506 {
3507 if (!q->dev)
3508 return;
3509
3510 spin_lock_irq(q->queue_lock);
3511 q->rpm_status = RPM_RESUMING;
3512 spin_unlock_irq(q->queue_lock);
3513 }
3514 EXPORT_SYMBOL(blk_pre_runtime_resume);
3515
3516 /**
3517 * blk_post_runtime_resume - Post runtime resume processing
3518 * @q: the queue of the device
3519 * @err: return value of the device's runtime_resume function
3520 *
3521 * Description:
3522 * Update the queue's runtime status according to the return value of the
3523 * device's runtime_resume function. If it is successfully resumed, process
3524 * the requests that are queued into the device's queue when it is resuming
3525 * and then mark last busy and initiate autosuspend for it.
3526 *
3527 * This function should be called near the end of the device's
3528 * runtime_resume callback.
3529 */
blk_post_runtime_resume(struct request_queue * q,int err)3530 void blk_post_runtime_resume(struct request_queue *q, int err)
3531 {
3532 if (!q->dev)
3533 return;
3534
3535 spin_lock_irq(q->queue_lock);
3536 if (!err) {
3537 q->rpm_status = RPM_ACTIVE;
3538 __blk_run_queue(q);
3539 pm_runtime_mark_last_busy(q->dev);
3540 pm_request_autosuspend(q->dev);
3541 } else {
3542 q->rpm_status = RPM_SUSPENDED;
3543 }
3544 spin_unlock_irq(q->queue_lock);
3545 }
3546 EXPORT_SYMBOL(blk_post_runtime_resume);
3547 #endif
3548
blk_dev_init(void)3549 int __init blk_dev_init(void)
3550 {
3551 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3552 FIELD_SIZEOF(struct request, cmd_flags));
3553
3554 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3555 kblockd_workqueue = alloc_workqueue("kblockd",
3556 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3557 if (!kblockd_workqueue)
3558 panic("Failed to create kblockd\n");
3559
3560 request_cachep = kmem_cache_create("blkdev_requests",
3561 sizeof(struct request), 0, SLAB_PANIC, NULL);
3562
3563 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3564 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3565
3566 return 0;
3567 }
3568
3569 /*
3570 * Blk IO latency support. We want this to be as cheap as possible, so doing
3571 * this lockless (and avoiding atomics), a few off by a few errors in this
3572 * code is not harmful, and we don't want to do anything that is
3573 * perf-impactful.
3574 * TODO : If necessary, we can make the histograms per-cpu and aggregate
3575 * them when printing them out.
3576 */
3577 ssize_t
blk_latency_hist_show(char * name,struct io_latency_state * s,char * buf,int buf_size)3578 blk_latency_hist_show(char* name, struct io_latency_state *s, char *buf,
3579 int buf_size)
3580 {
3581 int i;
3582 int bytes_written = 0;
3583 u_int64_t num_elem, elem;
3584 int pct;
3585 u_int64_t average;
3586
3587 num_elem = s->latency_elems;
3588 if (num_elem > 0) {
3589 average = div64_u64(s->latency_sum, s->latency_elems);
3590 bytes_written += scnprintf(buf + bytes_written,
3591 buf_size - bytes_written,
3592 "IO svc_time %s Latency Histogram (n = %llu,"
3593 " average = %llu):\n", name, num_elem, average);
3594 for (i = 0;
3595 i < ARRAY_SIZE(latency_x_axis_us);
3596 i++) {
3597 elem = s->latency_y_axis[i];
3598 pct = div64_u64(elem * 100, num_elem);
3599 bytes_written += scnprintf(buf + bytes_written,
3600 PAGE_SIZE - bytes_written,
3601 "\t< %6lluus%15llu%15d%%\n",
3602 latency_x_axis_us[i],
3603 elem, pct);
3604 }
3605 /* Last element in y-axis table is overflow */
3606 elem = s->latency_y_axis[i];
3607 pct = div64_u64(elem * 100, num_elem);
3608 bytes_written += scnprintf(buf + bytes_written,
3609 PAGE_SIZE - bytes_written,
3610 "\t>=%6lluus%15llu%15d%%\n",
3611 latency_x_axis_us[i - 1], elem, pct);
3612 }
3613
3614 return bytes_written;
3615 }
3616 EXPORT_SYMBOL(blk_latency_hist_show);
3617