• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 #include <linux/math64.h>
44 
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50 
51 DEFINE_IDA(blk_queue_ida);
52 
53 /*
54  * For the allocated request tables
55  */
56 struct kmem_cache *request_cachep = NULL;
57 
58 /*
59  * For queue allocation
60  */
61 struct kmem_cache *blk_requestq_cachep;
62 
63 /*
64  * Controlling structure to kblockd
65  */
66 static struct workqueue_struct *kblockd_workqueue;
67 
blk_clear_congested(struct request_list * rl,int sync)68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 	clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 	/*
74 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 	 * flip its congestion state for events on other blkcgs.
76 	 */
77 	if (rl == &rl->q->root_rl)
78 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79 #endif
80 }
81 
blk_set_congested(struct request_list * rl,int sync)82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 	set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 	/* see blk_clear_congested() */
88 	if (rl == &rl->q->root_rl)
89 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90 #endif
91 }
92 
blk_queue_congestion_threshold(struct request_queue * q)93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 	int nr;
96 
97 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 	if (nr > q->nr_requests)
99 		nr = q->nr_requests;
100 	q->nr_congestion_on = nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 	if (nr < 1)
104 		nr = 1;
105 	q->nr_congestion_off = nr;
106 }
107 
108 /**
109  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110  * @bdev:	device
111  *
112  * Locates the passed device's request queue and returns the address of its
113  * backing_dev_info.  This function can only be called if @bdev is opened
114  * and the return value is never NULL.
115  */
blk_get_backing_dev_info(struct block_device * bdev)116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 	struct request_queue *q = bdev_get_queue(bdev);
119 
120 	return &q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123 
blk_rq_init(struct request_queue * q,struct request * rq)124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 	memset(rq, 0, sizeof(*rq));
127 
128 	INIT_LIST_HEAD(&rq->queuelist);
129 	INIT_LIST_HEAD(&rq->timeout_list);
130 	rq->cpu = -1;
131 	rq->q = q;
132 	rq->__sector = (sector_t) -1;
133 	INIT_HLIST_NODE(&rq->hash);
134 	RB_CLEAR_NODE(&rq->rb_node);
135 	rq->cmd = rq->__cmd;
136 	rq->cmd_len = BLK_MAX_CDB;
137 	rq->tag = -1;
138 	rq->start_time = jiffies;
139 	set_start_time_ns(rq);
140 	rq->part = NULL;
141 }
142 EXPORT_SYMBOL(blk_rq_init);
143 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,int error)144 static void req_bio_endio(struct request *rq, struct bio *bio,
145 			  unsigned int nbytes, int error)
146 {
147 	if (error)
148 		bio->bi_error = error;
149 
150 	if (unlikely(rq->cmd_flags & REQ_QUIET))
151 		bio_set_flag(bio, BIO_QUIET);
152 
153 	bio_advance(bio, nbytes);
154 
155 	/* don't actually finish bio if it's part of flush sequence */
156 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
157 		bio_endio(bio);
158 }
159 
blk_dump_rq_flags(struct request * rq,char * msg)160 void blk_dump_rq_flags(struct request *rq, char *msg)
161 {
162 	int bit;
163 
164 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
165 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 		(unsigned long long) rq->cmd_flags);
167 
168 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
169 	       (unsigned long long)blk_rq_pos(rq),
170 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
171 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
172 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
173 
174 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
175 		printk(KERN_INFO "  cdb: ");
176 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
177 			printk("%02x ", rq->cmd[bit]);
178 		printk("\n");
179 	}
180 }
181 EXPORT_SYMBOL(blk_dump_rq_flags);
182 
blk_delay_work(struct work_struct * work)183 static void blk_delay_work(struct work_struct *work)
184 {
185 	struct request_queue *q;
186 
187 	q = container_of(work, struct request_queue, delay_work.work);
188 	spin_lock_irq(q->queue_lock);
189 	__blk_run_queue(q);
190 	spin_unlock_irq(q->queue_lock);
191 }
192 
193 /**
194  * blk_delay_queue - restart queueing after defined interval
195  * @q:		The &struct request_queue in question
196  * @msecs:	Delay in msecs
197  *
198  * Description:
199  *   Sometimes queueing needs to be postponed for a little while, to allow
200  *   resources to come back. This function will make sure that queueing is
201  *   restarted around the specified time. Queue lock must be held.
202  */
blk_delay_queue(struct request_queue * q,unsigned long msecs)203 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
204 {
205 	if (likely(!blk_queue_dead(q)))
206 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
207 				   msecs_to_jiffies(msecs));
208 }
209 EXPORT_SYMBOL(blk_delay_queue);
210 
211 /**
212  * blk_start_queue_async - asynchronously restart a previously stopped queue
213  * @q:    The &struct request_queue in question
214  *
215  * Description:
216  *   blk_start_queue_async() will clear the stop flag on the queue, and
217  *   ensure that the request_fn for the queue is run from an async
218  *   context.
219  **/
blk_start_queue_async(struct request_queue * q)220 void blk_start_queue_async(struct request_queue *q)
221 {
222 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 	blk_run_queue_async(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue_async);
226 
227 /**
228  * blk_start_queue - restart a previously stopped queue
229  * @q:    The &struct request_queue in question
230  *
231  * Description:
232  *   blk_start_queue() will clear the stop flag on the queue, and call
233  *   the request_fn for the queue if it was in a stopped state when
234  *   entered. Also see blk_stop_queue(). Queue lock must be held.
235  **/
blk_start_queue(struct request_queue * q)236 void blk_start_queue(struct request_queue *q)
237 {
238 	WARN_ON(!in_interrupt() && !irqs_disabled());
239 
240 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 	__blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244 
245 /**
246  * blk_stop_queue - stop a queue
247  * @q:    The &struct request_queue in question
248  *
249  * Description:
250  *   The Linux block layer assumes that a block driver will consume all
251  *   entries on the request queue when the request_fn strategy is called.
252  *   Often this will not happen, because of hardware limitations (queue
253  *   depth settings). If a device driver gets a 'queue full' response,
254  *   or if it simply chooses not to queue more I/O at one point, it can
255  *   call this function to prevent the request_fn from being called until
256  *   the driver has signalled it's ready to go again. This happens by calling
257  *   blk_start_queue() to restart queue operations. Queue lock must be held.
258  **/
blk_stop_queue(struct request_queue * q)259 void blk_stop_queue(struct request_queue *q)
260 {
261 	cancel_delayed_work(&q->delay_work);
262 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265 
266 /**
267  * blk_sync_queue - cancel any pending callbacks on a queue
268  * @q: the queue
269  *
270  * Description:
271  *     The block layer may perform asynchronous callback activity
272  *     on a queue, such as calling the unplug function after a timeout.
273  *     A block device may call blk_sync_queue to ensure that any
274  *     such activity is cancelled, thus allowing it to release resources
275  *     that the callbacks might use. The caller must already have made sure
276  *     that its ->make_request_fn will not re-add plugging prior to calling
277  *     this function.
278  *
279  *     This function does not cancel any asynchronous activity arising
280  *     out of elevator or throttling code. That would require elevator_exit()
281  *     and blkcg_exit_queue() to be called with queue lock initialized.
282  *
283  */
blk_sync_queue(struct request_queue * q)284 void blk_sync_queue(struct request_queue *q)
285 {
286 	del_timer_sync(&q->timeout);
287 
288 	if (q->mq_ops) {
289 		struct blk_mq_hw_ctx *hctx;
290 		int i;
291 
292 		queue_for_each_hw_ctx(q, hctx, i) {
293 			cancel_delayed_work_sync(&hctx->run_work);
294 			cancel_delayed_work_sync(&hctx->delay_work);
295 		}
296 	} else {
297 		cancel_delayed_work_sync(&q->delay_work);
298 	}
299 }
300 EXPORT_SYMBOL(blk_sync_queue);
301 
302 /**
303  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
304  * @q:	The queue to run
305  *
306  * Description:
307  *    Invoke request handling on a queue if there are any pending requests.
308  *    May be used to restart request handling after a request has completed.
309  *    This variant runs the queue whether or not the queue has been
310  *    stopped. Must be called with the queue lock held and interrupts
311  *    disabled. See also @blk_run_queue.
312  */
__blk_run_queue_uncond(struct request_queue * q)313 inline void __blk_run_queue_uncond(struct request_queue *q)
314 {
315 	if (unlikely(blk_queue_dead(q)))
316 		return;
317 
318 	/*
319 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
320 	 * the queue lock internally. As a result multiple threads may be
321 	 * running such a request function concurrently. Keep track of the
322 	 * number of active request_fn invocations such that blk_drain_queue()
323 	 * can wait until all these request_fn calls have finished.
324 	 */
325 	q->request_fn_active++;
326 	q->request_fn(q);
327 	q->request_fn_active--;
328 }
329 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
330 
331 /**
332  * __blk_run_queue - run a single device queue
333  * @q:	The queue to run
334  *
335  * Description:
336  *    See @blk_run_queue. This variant must be called with the queue lock
337  *    held and interrupts disabled.
338  */
__blk_run_queue(struct request_queue * q)339 void __blk_run_queue(struct request_queue *q)
340 {
341 	if (unlikely(blk_queue_stopped(q)))
342 		return;
343 
344 	__blk_run_queue_uncond(q);
345 }
346 EXPORT_SYMBOL(__blk_run_queue);
347 
348 /**
349  * blk_run_queue_async - run a single device queue in workqueue context
350  * @q:	The queue to run
351  *
352  * Description:
353  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
354  *    of us. The caller must hold the queue lock.
355  */
blk_run_queue_async(struct request_queue * q)356 void blk_run_queue_async(struct request_queue *q)
357 {
358 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
359 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
360 }
361 EXPORT_SYMBOL(blk_run_queue_async);
362 
363 /**
364  * blk_run_queue - run a single device queue
365  * @q: The queue to run
366  *
367  * Description:
368  *    Invoke request handling on this queue, if it has pending work to do.
369  *    May be used to restart queueing when a request has completed.
370  */
blk_run_queue(struct request_queue * q)371 void blk_run_queue(struct request_queue *q)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(q->queue_lock, flags);
376 	__blk_run_queue(q);
377 	spin_unlock_irqrestore(q->queue_lock, flags);
378 }
379 EXPORT_SYMBOL(blk_run_queue);
380 
blk_put_queue(struct request_queue * q)381 void blk_put_queue(struct request_queue *q)
382 {
383 	kobject_put(&q->kobj);
384 }
385 EXPORT_SYMBOL(blk_put_queue);
386 
387 /**
388  * __blk_drain_queue - drain requests from request_queue
389  * @q: queue to drain
390  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
391  *
392  * Drain requests from @q.  If @drain_all is set, all requests are drained.
393  * If not, only ELVPRIV requests are drained.  The caller is responsible
394  * for ensuring that no new requests which need to be drained are queued.
395  */
__blk_drain_queue(struct request_queue * q,bool drain_all)396 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
397 	__releases(q->queue_lock)
398 	__acquires(q->queue_lock)
399 {
400 	int i;
401 
402 	lockdep_assert_held(q->queue_lock);
403 
404 	while (true) {
405 		bool drain = false;
406 
407 		/*
408 		 * The caller might be trying to drain @q before its
409 		 * elevator is initialized.
410 		 */
411 		if (q->elevator)
412 			elv_drain_elevator(q);
413 
414 		blkcg_drain_queue(q);
415 
416 		/*
417 		 * This function might be called on a queue which failed
418 		 * driver init after queue creation or is not yet fully
419 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
420 		 * in such cases.  Kick queue iff dispatch queue has
421 		 * something on it and @q has request_fn set.
422 		 */
423 		if (!list_empty(&q->queue_head) && q->request_fn)
424 			__blk_run_queue(q);
425 
426 		drain |= q->nr_rqs_elvpriv;
427 		drain |= q->request_fn_active;
428 
429 		/*
430 		 * Unfortunately, requests are queued at and tracked from
431 		 * multiple places and there's no single counter which can
432 		 * be drained.  Check all the queues and counters.
433 		 */
434 		if (drain_all) {
435 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
436 			drain |= !list_empty(&q->queue_head);
437 			for (i = 0; i < 2; i++) {
438 				drain |= q->nr_rqs[i];
439 				drain |= q->in_flight[i];
440 				if (fq)
441 				    drain |= !list_empty(&fq->flush_queue[i]);
442 			}
443 		}
444 
445 		if (!drain)
446 			break;
447 
448 		spin_unlock_irq(q->queue_lock);
449 
450 		msleep(10);
451 
452 		spin_lock_irq(q->queue_lock);
453 	}
454 
455 	/*
456 	 * With queue marked dead, any woken up waiter will fail the
457 	 * allocation path, so the wakeup chaining is lost and we're
458 	 * left with hung waiters. We need to wake up those waiters.
459 	 */
460 	if (q->request_fn) {
461 		struct request_list *rl;
462 
463 		blk_queue_for_each_rl(rl, q)
464 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
465 				wake_up_all(&rl->wait[i]);
466 	}
467 }
468 
469 /**
470  * blk_queue_bypass_start - enter queue bypass mode
471  * @q: queue of interest
472  *
473  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
474  * function makes @q enter bypass mode and drains all requests which were
475  * throttled or issued before.  On return, it's guaranteed that no request
476  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
477  * inside queue or RCU read lock.
478  */
blk_queue_bypass_start(struct request_queue * q)479 void blk_queue_bypass_start(struct request_queue *q)
480 {
481 	spin_lock_irq(q->queue_lock);
482 	q->bypass_depth++;
483 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
484 	spin_unlock_irq(q->queue_lock);
485 
486 	/*
487 	 * Queues start drained.  Skip actual draining till init is
488 	 * complete.  This avoids lenghty delays during queue init which
489 	 * can happen many times during boot.
490 	 */
491 	if (blk_queue_init_done(q)) {
492 		spin_lock_irq(q->queue_lock);
493 		__blk_drain_queue(q, false);
494 		spin_unlock_irq(q->queue_lock);
495 
496 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
497 		synchronize_rcu();
498 	}
499 }
500 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
501 
502 /**
503  * blk_queue_bypass_end - leave queue bypass mode
504  * @q: queue of interest
505  *
506  * Leave bypass mode and restore the normal queueing behavior.
507  */
blk_queue_bypass_end(struct request_queue * q)508 void blk_queue_bypass_end(struct request_queue *q)
509 {
510 	spin_lock_irq(q->queue_lock);
511 	if (!--q->bypass_depth)
512 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
513 	WARN_ON_ONCE(q->bypass_depth < 0);
514 	spin_unlock_irq(q->queue_lock);
515 }
516 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
517 
blk_set_queue_dying(struct request_queue * q)518 void blk_set_queue_dying(struct request_queue *q)
519 {
520 	spin_lock_irq(q->queue_lock);
521 	queue_flag_set(QUEUE_FLAG_DYING, q);
522 	spin_unlock_irq(q->queue_lock);
523 
524 	if (q->mq_ops)
525 		blk_mq_wake_waiters(q);
526 	else {
527 		struct request_list *rl;
528 
529 		blk_queue_for_each_rl(rl, q) {
530 			if (rl->rq_pool) {
531 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
532 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
533 			}
534 		}
535 	}
536 }
537 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
538 
539 /**
540  * blk_cleanup_queue - shutdown a request queue
541  * @q: request queue to shutdown
542  *
543  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
544  * put it.  All future requests will be failed immediately with -ENODEV.
545  */
blk_cleanup_queue(struct request_queue * q)546 void blk_cleanup_queue(struct request_queue *q)
547 {
548 	spinlock_t *lock = q->queue_lock;
549 
550 	/* mark @q DYING, no new request or merges will be allowed afterwards */
551 	mutex_lock(&q->sysfs_lock);
552 	blk_set_queue_dying(q);
553 	spin_lock_irq(lock);
554 
555 	/*
556 	 * A dying queue is permanently in bypass mode till released.  Note
557 	 * that, unlike blk_queue_bypass_start(), we aren't performing
558 	 * synchronize_rcu() after entering bypass mode to avoid the delay
559 	 * as some drivers create and destroy a lot of queues while
560 	 * probing.  This is still safe because blk_release_queue() will be
561 	 * called only after the queue refcnt drops to zero and nothing,
562 	 * RCU or not, would be traversing the queue by then.
563 	 */
564 	q->bypass_depth++;
565 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
566 
567 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
568 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
569 	queue_flag_set(QUEUE_FLAG_DYING, q);
570 	spin_unlock_irq(lock);
571 	mutex_unlock(&q->sysfs_lock);
572 
573 	/*
574 	 * Drain all requests queued before DYING marking. Set DEAD flag to
575 	 * prevent that q->request_fn() gets invoked after draining finished.
576 	 */
577 	blk_freeze_queue(q);
578 	spin_lock_irq(lock);
579 	if (!q->mq_ops)
580 		__blk_drain_queue(q, true);
581 	queue_flag_set(QUEUE_FLAG_DEAD, q);
582 	spin_unlock_irq(lock);
583 
584 	/* for synchronous bio-based driver finish in-flight integrity i/o */
585 	blk_flush_integrity();
586 
587 	/* @q won't process any more request, flush async actions */
588 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
589 	blk_sync_queue(q);
590 
591 	if (q->mq_ops)
592 		blk_mq_free_queue(q);
593 	percpu_ref_exit(&q->q_usage_counter);
594 
595 	spin_lock_irq(lock);
596 	if (q->queue_lock != &q->__queue_lock)
597 		q->queue_lock = &q->__queue_lock;
598 	spin_unlock_irq(lock);
599 
600 	bdi_unregister(&q->backing_dev_info);
601 
602 	/* @q is and will stay empty, shutdown and put */
603 	blk_put_queue(q);
604 }
605 EXPORT_SYMBOL(blk_cleanup_queue);
606 
607 /* Allocate memory local to the request queue */
alloc_request_struct(gfp_t gfp_mask,void * data)608 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
609 {
610 	int nid = (int)(long)data;
611 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
612 }
613 
free_request_struct(void * element,void * unused)614 static void free_request_struct(void *element, void *unused)
615 {
616 	kmem_cache_free(request_cachep, element);
617 }
618 
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)619 int blk_init_rl(struct request_list *rl, struct request_queue *q,
620 		gfp_t gfp_mask)
621 {
622 	if (unlikely(rl->rq_pool))
623 		return 0;
624 
625 	rl->q = q;
626 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
627 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
628 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
629 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
630 
631 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
632 					  free_request_struct,
633 					  (void *)(long)q->node, gfp_mask,
634 					  q->node);
635 	if (!rl->rq_pool)
636 		return -ENOMEM;
637 
638 	return 0;
639 }
640 
blk_exit_rl(struct request_list * rl)641 void blk_exit_rl(struct request_list *rl)
642 {
643 	if (rl->rq_pool)
644 		mempool_destroy(rl->rq_pool);
645 }
646 
blk_alloc_queue(gfp_t gfp_mask)647 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
648 {
649 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
650 }
651 EXPORT_SYMBOL(blk_alloc_queue);
652 
blk_queue_enter(struct request_queue * q,gfp_t gfp)653 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
654 {
655 	while (true) {
656 		if (percpu_ref_tryget_live(&q->q_usage_counter))
657 			return 0;
658 
659 		if (!gfpflags_allow_blocking(gfp))
660 			return -EBUSY;
661 
662 		wait_event(q->mq_freeze_wq,
663 			   !atomic_read(&q->mq_freeze_depth) ||
664 			   blk_queue_dying(q));
665 		if (blk_queue_dying(q))
666 			return -ENODEV;
667 	}
668 }
669 
blk_queue_exit(struct request_queue * q)670 void blk_queue_exit(struct request_queue *q)
671 {
672 	percpu_ref_put(&q->q_usage_counter);
673 }
674 
blk_queue_usage_counter_release(struct percpu_ref * ref)675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 	struct request_queue *q =
678 		container_of(ref, struct request_queue, q_usage_counter);
679 
680 	wake_up_all(&q->mq_freeze_wq);
681 }
682 
blk_alloc_queue_node(gfp_t gfp_mask,int node_id)683 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
684 {
685 	struct request_queue *q;
686 	int err;
687 
688 	q = kmem_cache_alloc_node(blk_requestq_cachep,
689 				gfp_mask | __GFP_ZERO, node_id);
690 	if (!q)
691 		return NULL;
692 
693 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
694 	if (q->id < 0)
695 		goto fail_q;
696 
697 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 	if (!q->bio_split)
699 		goto fail_id;
700 
701 	q->backing_dev_info.ra_pages =
702 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
703 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
704 	q->backing_dev_info.name = "block";
705 	q->node = node_id;
706 
707 	err = bdi_init(&q->backing_dev_info);
708 	if (err)
709 		goto fail_split;
710 
711 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 		    laptop_mode_timer_fn, (unsigned long) q);
713 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
714 	INIT_LIST_HEAD(&q->queue_head);
715 	INIT_LIST_HEAD(&q->timeout_list);
716 	INIT_LIST_HEAD(&q->icq_list);
717 #ifdef CONFIG_BLK_CGROUP
718 	INIT_LIST_HEAD(&q->blkg_list);
719 #endif
720 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
721 
722 	kobject_init(&q->kobj, &blk_queue_ktype);
723 
724 #ifdef CONFIG_BLK_DEV_IO_TRACE
725 	mutex_init(&q->blk_trace_mutex);
726 #endif
727 	mutex_init(&q->sysfs_lock);
728 	spin_lock_init(&q->__queue_lock);
729 
730 	/*
731 	 * By default initialize queue_lock to internal lock and driver can
732 	 * override it later if need be.
733 	 */
734 	q->queue_lock = &q->__queue_lock;
735 
736 	/*
737 	 * A queue starts its life with bypass turned on to avoid
738 	 * unnecessary bypass on/off overhead and nasty surprises during
739 	 * init.  The initial bypass will be finished when the queue is
740 	 * registered by blk_register_queue().
741 	 */
742 	q->bypass_depth = 1;
743 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
744 
745 	init_waitqueue_head(&q->mq_freeze_wq);
746 
747 	/*
748 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
749 	 * See blk_register_queue() for details.
750 	 */
751 	if (percpu_ref_init(&q->q_usage_counter,
752 				blk_queue_usage_counter_release,
753 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
754 		goto fail_bdi;
755 
756 	if (blkcg_init_queue(q))
757 		goto fail_ref;
758 
759 	return q;
760 
761 fail_ref:
762 	percpu_ref_exit(&q->q_usage_counter);
763 fail_bdi:
764 	bdi_destroy(&q->backing_dev_info);
765 fail_split:
766 	bioset_free(q->bio_split);
767 fail_id:
768 	ida_simple_remove(&blk_queue_ida, q->id);
769 fail_q:
770 	kmem_cache_free(blk_requestq_cachep, q);
771 	return NULL;
772 }
773 EXPORT_SYMBOL(blk_alloc_queue_node);
774 
775 /**
776  * blk_init_queue  - prepare a request queue for use with a block device
777  * @rfn:  The function to be called to process requests that have been
778  *        placed on the queue.
779  * @lock: Request queue spin lock
780  *
781  * Description:
782  *    If a block device wishes to use the standard request handling procedures,
783  *    which sorts requests and coalesces adjacent requests, then it must
784  *    call blk_init_queue().  The function @rfn will be called when there
785  *    are requests on the queue that need to be processed.  If the device
786  *    supports plugging, then @rfn may not be called immediately when requests
787  *    are available on the queue, but may be called at some time later instead.
788  *    Plugged queues are generally unplugged when a buffer belonging to one
789  *    of the requests on the queue is needed, or due to memory pressure.
790  *
791  *    @rfn is not required, or even expected, to remove all requests off the
792  *    queue, but only as many as it can handle at a time.  If it does leave
793  *    requests on the queue, it is responsible for arranging that the requests
794  *    get dealt with eventually.
795  *
796  *    The queue spin lock must be held while manipulating the requests on the
797  *    request queue; this lock will be taken also from interrupt context, so irq
798  *    disabling is needed for it.
799  *
800  *    Function returns a pointer to the initialized request queue, or %NULL if
801  *    it didn't succeed.
802  *
803  * Note:
804  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
805  *    when the block device is deactivated (such as at module unload).
806  **/
807 
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)808 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
809 {
810 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
811 }
812 EXPORT_SYMBOL(blk_init_queue);
813 
814 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)815 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
816 {
817 	struct request_queue *uninit_q, *q;
818 
819 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
820 	if (!uninit_q)
821 		return NULL;
822 
823 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
824 	if (!q)
825 		blk_cleanup_queue(uninit_q);
826 
827 	return q;
828 }
829 EXPORT_SYMBOL(blk_init_queue_node);
830 
831 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
832 
833 struct request_queue *
blk_init_allocated_queue(struct request_queue * q,request_fn_proc * rfn,spinlock_t * lock)834 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
835 			 spinlock_t *lock)
836 {
837 	if (!q)
838 		return NULL;
839 
840 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
841 	if (!q->fq)
842 		return NULL;
843 
844 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
845 		goto fail;
846 
847 	q->request_fn		= rfn;
848 	q->prep_rq_fn		= NULL;
849 	q->unprep_rq_fn		= NULL;
850 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
851 
852 	/* Override internal queue lock with supplied lock pointer */
853 	if (lock)
854 		q->queue_lock		= lock;
855 
856 	/*
857 	 * This also sets hw/phys segments, boundary and size
858 	 */
859 	blk_queue_make_request(q, blk_queue_bio);
860 
861 	q->sg_reserved_size = INT_MAX;
862 
863 	/* Protect q->elevator from elevator_change */
864 	mutex_lock(&q->sysfs_lock);
865 
866 	/* init elevator */
867 	if (elevator_init(q, NULL)) {
868 		mutex_unlock(&q->sysfs_lock);
869 		goto fail;
870 	}
871 
872 	mutex_unlock(&q->sysfs_lock);
873 
874 	return q;
875 
876 fail:
877 	blk_free_flush_queue(q->fq);
878 	q->fq = NULL;
879 	return NULL;
880 }
881 EXPORT_SYMBOL(blk_init_allocated_queue);
882 
blk_get_queue(struct request_queue * q)883 bool blk_get_queue(struct request_queue *q)
884 {
885 	if (likely(!blk_queue_dying(q))) {
886 		__blk_get_queue(q);
887 		return true;
888 	}
889 
890 	return false;
891 }
892 EXPORT_SYMBOL(blk_get_queue);
893 
blk_free_request(struct request_list * rl,struct request * rq)894 static inline void blk_free_request(struct request_list *rl, struct request *rq)
895 {
896 	if (rq->cmd_flags & REQ_ELVPRIV) {
897 		elv_put_request(rl->q, rq);
898 		if (rq->elv.icq)
899 			put_io_context(rq->elv.icq->ioc);
900 	}
901 
902 	mempool_free(rq, rl->rq_pool);
903 }
904 
905 /*
906  * ioc_batching returns true if the ioc is a valid batching request and
907  * should be given priority access to a request.
908  */
ioc_batching(struct request_queue * q,struct io_context * ioc)909 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
910 {
911 	if (!ioc)
912 		return 0;
913 
914 	/*
915 	 * Make sure the process is able to allocate at least 1 request
916 	 * even if the batch times out, otherwise we could theoretically
917 	 * lose wakeups.
918 	 */
919 	return ioc->nr_batch_requests == q->nr_batching ||
920 		(ioc->nr_batch_requests > 0
921 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
922 }
923 
924 /*
925  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
926  * will cause the process to be a "batcher" on all queues in the system. This
927  * is the behaviour we want though - once it gets a wakeup it should be given
928  * a nice run.
929  */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)930 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
931 {
932 	if (!ioc || ioc_batching(q, ioc))
933 		return;
934 
935 	ioc->nr_batch_requests = q->nr_batching;
936 	ioc->last_waited = jiffies;
937 }
938 
__freed_request(struct request_list * rl,int sync)939 static void __freed_request(struct request_list *rl, int sync)
940 {
941 	struct request_queue *q = rl->q;
942 
943 	if (rl->count[sync] < queue_congestion_off_threshold(q))
944 		blk_clear_congested(rl, sync);
945 
946 	if (rl->count[sync] + 1 <= q->nr_requests) {
947 		if (waitqueue_active(&rl->wait[sync]))
948 			wake_up(&rl->wait[sync]);
949 
950 		blk_clear_rl_full(rl, sync);
951 	}
952 }
953 
954 /*
955  * A request has just been released.  Account for it, update the full and
956  * congestion status, wake up any waiters.   Called under q->queue_lock.
957  */
freed_request(struct request_list * rl,unsigned int flags)958 static void freed_request(struct request_list *rl, unsigned int flags)
959 {
960 	struct request_queue *q = rl->q;
961 	int sync = rw_is_sync(flags);
962 
963 	q->nr_rqs[sync]--;
964 	rl->count[sync]--;
965 	if (flags & REQ_ELVPRIV)
966 		q->nr_rqs_elvpriv--;
967 
968 	__freed_request(rl, sync);
969 
970 	if (unlikely(rl->starved[sync ^ 1]))
971 		__freed_request(rl, sync ^ 1);
972 }
973 
blk_update_nr_requests(struct request_queue * q,unsigned int nr)974 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
975 {
976 	struct request_list *rl;
977 	int on_thresh, off_thresh;
978 
979 	spin_lock_irq(q->queue_lock);
980 	q->nr_requests = nr;
981 	blk_queue_congestion_threshold(q);
982 	on_thresh = queue_congestion_on_threshold(q);
983 	off_thresh = queue_congestion_off_threshold(q);
984 
985 	blk_queue_for_each_rl(rl, q) {
986 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
987 			blk_set_congested(rl, BLK_RW_SYNC);
988 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
989 			blk_clear_congested(rl, BLK_RW_SYNC);
990 
991 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
992 			blk_set_congested(rl, BLK_RW_ASYNC);
993 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
994 			blk_clear_congested(rl, BLK_RW_ASYNC);
995 
996 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
997 			blk_set_rl_full(rl, BLK_RW_SYNC);
998 		} else {
999 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1000 			wake_up(&rl->wait[BLK_RW_SYNC]);
1001 		}
1002 
1003 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1004 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1005 		} else {
1006 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1007 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1008 		}
1009 	}
1010 
1011 	spin_unlock_irq(q->queue_lock);
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Determine if elevator data should be initialized when allocating the
1017  * request associated with @bio.
1018  */
blk_rq_should_init_elevator(struct bio * bio)1019 static bool blk_rq_should_init_elevator(struct bio *bio)
1020 {
1021 	if (!bio)
1022 		return true;
1023 
1024 	/*
1025 	 * Flush requests do not use the elevator so skip initialization.
1026 	 * This allows a request to share the flush and elevator data.
1027 	 */
1028 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1029 		return false;
1030 
1031 	return true;
1032 }
1033 
1034 /**
1035  * rq_ioc - determine io_context for request allocation
1036  * @bio: request being allocated is for this bio (can be %NULL)
1037  *
1038  * Determine io_context to use for request allocation for @bio.  May return
1039  * %NULL if %current->io_context doesn't exist.
1040  */
rq_ioc(struct bio * bio)1041 static struct io_context *rq_ioc(struct bio *bio)
1042 {
1043 #ifdef CONFIG_BLK_CGROUP
1044 	if (bio && bio->bi_ioc)
1045 		return bio->bi_ioc;
1046 #endif
1047 	return current->io_context;
1048 }
1049 
1050 /**
1051  * __get_request - get a free request
1052  * @rl: request list to allocate from
1053  * @rw_flags: RW and SYNC flags
1054  * @bio: bio to allocate request for (can be %NULL)
1055  * @gfp_mask: allocation mask
1056  *
1057  * Get a free request from @q.  This function may fail under memory
1058  * pressure or if @q is dead.
1059  *
1060  * Must be called with @q->queue_lock held and,
1061  * Returns ERR_PTR on failure, with @q->queue_lock held.
1062  * Returns request pointer on success, with @q->queue_lock *not held*.
1063  */
__get_request(struct request_list * rl,int rw_flags,struct bio * bio,gfp_t gfp_mask)1064 static struct request *__get_request(struct request_list *rl, int rw_flags,
1065 				     struct bio *bio, gfp_t gfp_mask)
1066 {
1067 	struct request_queue *q = rl->q;
1068 	struct request *rq;
1069 	struct elevator_type *et = q->elevator->type;
1070 	struct io_context *ioc = rq_ioc(bio);
1071 	struct io_cq *icq = NULL;
1072 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1073 	int may_queue;
1074 
1075 	if (unlikely(blk_queue_dying(q)))
1076 		return ERR_PTR(-ENODEV);
1077 
1078 	may_queue = elv_may_queue(q, rw_flags);
1079 	if (may_queue == ELV_MQUEUE_NO)
1080 		goto rq_starved;
1081 
1082 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1083 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1084 			/*
1085 			 * The queue will fill after this allocation, so set
1086 			 * it as full, and mark this process as "batching".
1087 			 * This process will be allowed to complete a batch of
1088 			 * requests, others will be blocked.
1089 			 */
1090 			if (!blk_rl_full(rl, is_sync)) {
1091 				ioc_set_batching(q, ioc);
1092 				blk_set_rl_full(rl, is_sync);
1093 			} else {
1094 				if (may_queue != ELV_MQUEUE_MUST
1095 						&& !ioc_batching(q, ioc)) {
1096 					/*
1097 					 * The queue is full and the allocating
1098 					 * process is not a "batcher", and not
1099 					 * exempted by the IO scheduler
1100 					 */
1101 					return ERR_PTR(-ENOMEM);
1102 				}
1103 			}
1104 		}
1105 		blk_set_congested(rl, is_sync);
1106 	}
1107 
1108 	/*
1109 	 * Only allow batching queuers to allocate up to 50% over the defined
1110 	 * limit of requests, otherwise we could have thousands of requests
1111 	 * allocated with any setting of ->nr_requests
1112 	 */
1113 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1114 		return ERR_PTR(-ENOMEM);
1115 
1116 	q->nr_rqs[is_sync]++;
1117 	rl->count[is_sync]++;
1118 	rl->starved[is_sync] = 0;
1119 
1120 	/*
1121 	 * Decide whether the new request will be managed by elevator.  If
1122 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1123 	 * prevent the current elevator from being destroyed until the new
1124 	 * request is freed.  This guarantees icq's won't be destroyed and
1125 	 * makes creating new ones safe.
1126 	 *
1127 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1128 	 * it will be created after releasing queue_lock.
1129 	 */
1130 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1131 		rw_flags |= REQ_ELVPRIV;
1132 		q->nr_rqs_elvpriv++;
1133 		if (et->icq_cache && ioc)
1134 			icq = ioc_lookup_icq(ioc, q);
1135 	}
1136 
1137 	if (blk_queue_io_stat(q))
1138 		rw_flags |= REQ_IO_STAT;
1139 	spin_unlock_irq(q->queue_lock);
1140 
1141 	/* allocate and init request */
1142 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1143 	if (!rq)
1144 		goto fail_alloc;
1145 
1146 	blk_rq_init(q, rq);
1147 	blk_rq_set_rl(rq, rl);
1148 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1149 
1150 	/* init elvpriv */
1151 	if (rw_flags & REQ_ELVPRIV) {
1152 		if (unlikely(et->icq_cache && !icq)) {
1153 			if (ioc)
1154 				icq = ioc_create_icq(ioc, q, gfp_mask);
1155 			if (!icq)
1156 				goto fail_elvpriv;
1157 		}
1158 
1159 		rq->elv.icq = icq;
1160 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1161 			goto fail_elvpriv;
1162 
1163 		/* @rq->elv.icq holds io_context until @rq is freed */
1164 		if (icq)
1165 			get_io_context(icq->ioc);
1166 	}
1167 out:
1168 	/*
1169 	 * ioc may be NULL here, and ioc_batching will be false. That's
1170 	 * OK, if the queue is under the request limit then requests need
1171 	 * not count toward the nr_batch_requests limit. There will always
1172 	 * be some limit enforced by BLK_BATCH_TIME.
1173 	 */
1174 	if (ioc_batching(q, ioc))
1175 		ioc->nr_batch_requests--;
1176 
1177 	trace_block_getrq(q, bio, rw_flags & 1);
1178 	return rq;
1179 
1180 fail_elvpriv:
1181 	/*
1182 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1183 	 * and may fail indefinitely under memory pressure and thus
1184 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1185 	 * disturb iosched and blkcg but weird is bettern than dead.
1186 	 */
1187 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1188 			   __func__, dev_name(q->backing_dev_info.dev));
1189 
1190 	rq->cmd_flags &= ~REQ_ELVPRIV;
1191 	rq->elv.icq = NULL;
1192 
1193 	spin_lock_irq(q->queue_lock);
1194 	q->nr_rqs_elvpriv--;
1195 	spin_unlock_irq(q->queue_lock);
1196 	goto out;
1197 
1198 fail_alloc:
1199 	/*
1200 	 * Allocation failed presumably due to memory. Undo anything we
1201 	 * might have messed up.
1202 	 *
1203 	 * Allocating task should really be put onto the front of the wait
1204 	 * queue, but this is pretty rare.
1205 	 */
1206 	spin_lock_irq(q->queue_lock);
1207 	freed_request(rl, rw_flags);
1208 
1209 	/*
1210 	 * in the very unlikely event that allocation failed and no
1211 	 * requests for this direction was pending, mark us starved so that
1212 	 * freeing of a request in the other direction will notice
1213 	 * us. another possible fix would be to split the rq mempool into
1214 	 * READ and WRITE
1215 	 */
1216 rq_starved:
1217 	if (unlikely(rl->count[is_sync] == 0))
1218 		rl->starved[is_sync] = 1;
1219 	return ERR_PTR(-ENOMEM);
1220 }
1221 
1222 /**
1223  * get_request - get a free request
1224  * @q: request_queue to allocate request from
1225  * @rw_flags: RW and SYNC flags
1226  * @bio: bio to allocate request for (can be %NULL)
1227  * @gfp_mask: allocation mask
1228  *
1229  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1230  * this function keeps retrying under memory pressure and fails iff @q is dead.
1231  *
1232  * Must be called with @q->queue_lock held and,
1233  * Returns ERR_PTR on failure, with @q->queue_lock held.
1234  * Returns request pointer on success, with @q->queue_lock *not held*.
1235  */
get_request(struct request_queue * q,int rw_flags,struct bio * bio,gfp_t gfp_mask)1236 static struct request *get_request(struct request_queue *q, int rw_flags,
1237 				   struct bio *bio, gfp_t gfp_mask)
1238 {
1239 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1240 	DEFINE_WAIT(wait);
1241 	struct request_list *rl;
1242 	struct request *rq;
1243 
1244 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1245 retry:
1246 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1247 	if (!IS_ERR(rq))
1248 		return rq;
1249 
1250 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1251 		blk_put_rl(rl);
1252 		return rq;
1253 	}
1254 
1255 	/* wait on @rl and retry */
1256 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1257 				  TASK_UNINTERRUPTIBLE);
1258 
1259 	trace_block_sleeprq(q, bio, rw_flags & 1);
1260 
1261 	spin_unlock_irq(q->queue_lock);
1262 	io_schedule();
1263 
1264 	/*
1265 	 * After sleeping, we become a "batching" process and will be able
1266 	 * to allocate at least one request, and up to a big batch of them
1267 	 * for a small period time.  See ioc_batching, ioc_set_batching
1268 	 */
1269 	ioc_set_batching(q, current->io_context);
1270 
1271 	spin_lock_irq(q->queue_lock);
1272 	finish_wait(&rl->wait[is_sync], &wait);
1273 
1274 	goto retry;
1275 }
1276 
blk_old_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)1277 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1278 		gfp_t gfp_mask)
1279 {
1280 	struct request *rq;
1281 
1282 	BUG_ON(rw != READ && rw != WRITE);
1283 
1284 	/* create ioc upfront */
1285 	create_io_context(gfp_mask, q->node);
1286 
1287 	spin_lock_irq(q->queue_lock);
1288 	rq = get_request(q, rw, NULL, gfp_mask);
1289 	if (IS_ERR(rq))
1290 		spin_unlock_irq(q->queue_lock);
1291 	/* q->queue_lock is unlocked at this point */
1292 
1293 	return rq;
1294 }
1295 
blk_get_request(struct request_queue * q,int rw,gfp_t gfp_mask)1296 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1297 {
1298 	if (q->mq_ops)
1299 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1300 	else
1301 		return blk_old_get_request(q, rw, gfp_mask);
1302 }
1303 EXPORT_SYMBOL(blk_get_request);
1304 
1305 /**
1306  * blk_make_request - given a bio, allocate a corresponding struct request.
1307  * @q: target request queue
1308  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1309  *        It may be a chained-bio properly constructed by block/bio layer.
1310  * @gfp_mask: gfp flags to be used for memory allocation
1311  *
1312  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1313  * type commands. Where the struct request needs to be farther initialized by
1314  * the caller. It is passed a &struct bio, which describes the memory info of
1315  * the I/O transfer.
1316  *
1317  * The caller of blk_make_request must make sure that bi_io_vec
1318  * are set to describe the memory buffers. That bio_data_dir() will return
1319  * the needed direction of the request. (And all bio's in the passed bio-chain
1320  * are properly set accordingly)
1321  *
1322  * If called under none-sleepable conditions, mapped bio buffers must not
1323  * need bouncing, by calling the appropriate masked or flagged allocator,
1324  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1325  * BUG.
1326  *
1327  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1328  * given to how you allocate bios. In particular, you cannot use
1329  * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1330  * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1331  * thus resulting in a deadlock. Alternatively bios should be allocated using
1332  * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1333  * If possible a big IO should be split into smaller parts when allocation
1334  * fails. Partial allocation should not be an error, or you risk a live-lock.
1335  */
blk_make_request(struct request_queue * q,struct bio * bio,gfp_t gfp_mask)1336 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1337 				 gfp_t gfp_mask)
1338 {
1339 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1340 
1341 	if (IS_ERR(rq))
1342 		return rq;
1343 
1344 	blk_rq_set_block_pc(rq);
1345 
1346 	for_each_bio(bio) {
1347 		struct bio *bounce_bio = bio;
1348 		int ret;
1349 
1350 		blk_queue_bounce(q, &bounce_bio);
1351 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1352 		if (unlikely(ret)) {
1353 			blk_put_request(rq);
1354 			return ERR_PTR(ret);
1355 		}
1356 	}
1357 
1358 	return rq;
1359 }
1360 EXPORT_SYMBOL(blk_make_request);
1361 
1362 /**
1363  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1364  * @rq:		request to be initialized
1365  *
1366  */
blk_rq_set_block_pc(struct request * rq)1367 void blk_rq_set_block_pc(struct request *rq)
1368 {
1369 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1370 	rq->__data_len = 0;
1371 	rq->__sector = (sector_t) -1;
1372 	rq->bio = rq->biotail = NULL;
1373 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1374 }
1375 EXPORT_SYMBOL(blk_rq_set_block_pc);
1376 
1377 /**
1378  * blk_requeue_request - put a request back on queue
1379  * @q:		request queue where request should be inserted
1380  * @rq:		request to be inserted
1381  *
1382  * Description:
1383  *    Drivers often keep queueing requests until the hardware cannot accept
1384  *    more, when that condition happens we need to put the request back
1385  *    on the queue. Must be called with queue lock held.
1386  */
blk_requeue_request(struct request_queue * q,struct request * rq)1387 void blk_requeue_request(struct request_queue *q, struct request *rq)
1388 {
1389 	blk_delete_timer(rq);
1390 	blk_clear_rq_complete(rq);
1391 	trace_block_rq_requeue(q, rq);
1392 
1393 	if (rq->cmd_flags & REQ_QUEUED)
1394 		blk_queue_end_tag(q, rq);
1395 
1396 	BUG_ON(blk_queued_rq(rq));
1397 
1398 	elv_requeue_request(q, rq);
1399 }
1400 EXPORT_SYMBOL(blk_requeue_request);
1401 
add_acct_request(struct request_queue * q,struct request * rq,int where)1402 static void add_acct_request(struct request_queue *q, struct request *rq,
1403 			     int where)
1404 {
1405 	blk_account_io_start(rq, true);
1406 	__elv_add_request(q, rq, where);
1407 }
1408 
part_round_stats_single(int cpu,struct hd_struct * part,unsigned long now)1409 static void part_round_stats_single(int cpu, struct hd_struct *part,
1410 				    unsigned long now)
1411 {
1412 	int inflight;
1413 
1414 	if (now == part->stamp)
1415 		return;
1416 
1417 	inflight = part_in_flight(part);
1418 	if (inflight) {
1419 		__part_stat_add(cpu, part, time_in_queue,
1420 				inflight * (now - part->stamp));
1421 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1422 	}
1423 	part->stamp = now;
1424 }
1425 
1426 /**
1427  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1428  * @cpu: cpu number for stats access
1429  * @part: target partition
1430  *
1431  * The average IO queue length and utilisation statistics are maintained
1432  * by observing the current state of the queue length and the amount of
1433  * time it has been in this state for.
1434  *
1435  * Normally, that accounting is done on IO completion, but that can result
1436  * in more than a second's worth of IO being accounted for within any one
1437  * second, leading to >100% utilisation.  To deal with that, we call this
1438  * function to do a round-off before returning the results when reading
1439  * /proc/diskstats.  This accounts immediately for all queue usage up to
1440  * the current jiffies and restarts the counters again.
1441  */
part_round_stats(int cpu,struct hd_struct * part)1442 void part_round_stats(int cpu, struct hd_struct *part)
1443 {
1444 	unsigned long now = jiffies;
1445 
1446 	if (part->partno)
1447 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1448 	part_round_stats_single(cpu, part, now);
1449 }
1450 EXPORT_SYMBOL_GPL(part_round_stats);
1451 
1452 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1453 static void blk_pm_put_request(struct request *rq)
1454 {
1455 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1456 		pm_runtime_mark_last_busy(rq->q->dev);
1457 }
1458 #else
blk_pm_put_request(struct request * rq)1459 static inline void blk_pm_put_request(struct request *rq) {}
1460 #endif
1461 
1462 /*
1463  * queue lock must be held
1464  */
__blk_put_request(struct request_queue * q,struct request * req)1465 void __blk_put_request(struct request_queue *q, struct request *req)
1466 {
1467 	if (unlikely(!q))
1468 		return;
1469 
1470 	if (q->mq_ops) {
1471 		blk_mq_free_request(req);
1472 		return;
1473 	}
1474 
1475 	blk_pm_put_request(req);
1476 
1477 	elv_completed_request(q, req);
1478 
1479 	/* this is a bio leak */
1480 	WARN_ON(req->bio != NULL);
1481 
1482 	/*
1483 	 * Request may not have originated from ll_rw_blk. if not,
1484 	 * it didn't come out of our reserved rq pools
1485 	 */
1486 	if (req->cmd_flags & REQ_ALLOCED) {
1487 		unsigned int flags = req->cmd_flags;
1488 		struct request_list *rl = blk_rq_rl(req);
1489 
1490 		BUG_ON(!list_empty(&req->queuelist));
1491 		BUG_ON(ELV_ON_HASH(req));
1492 
1493 		blk_free_request(rl, req);
1494 		freed_request(rl, flags);
1495 		blk_put_rl(rl);
1496 	}
1497 }
1498 EXPORT_SYMBOL_GPL(__blk_put_request);
1499 
blk_put_request(struct request * req)1500 void blk_put_request(struct request *req)
1501 {
1502 	struct request_queue *q = req->q;
1503 
1504 	if (q->mq_ops)
1505 		blk_mq_free_request(req);
1506 	else {
1507 		unsigned long flags;
1508 
1509 		spin_lock_irqsave(q->queue_lock, flags);
1510 		__blk_put_request(q, req);
1511 		spin_unlock_irqrestore(q->queue_lock, flags);
1512 	}
1513 }
1514 EXPORT_SYMBOL(blk_put_request);
1515 
1516 /**
1517  * blk_add_request_payload - add a payload to a request
1518  * @rq: request to update
1519  * @page: page backing the payload
1520  * @len: length of the payload.
1521  *
1522  * This allows to later add a payload to an already submitted request by
1523  * a block driver.  The driver needs to take care of freeing the payload
1524  * itself.
1525  *
1526  * Note that this is a quite horrible hack and nothing but handling of
1527  * discard requests should ever use it.
1528  */
blk_add_request_payload(struct request * rq,struct page * page,unsigned int len)1529 void blk_add_request_payload(struct request *rq, struct page *page,
1530 		unsigned int len)
1531 {
1532 	struct bio *bio = rq->bio;
1533 
1534 	bio->bi_io_vec->bv_page = page;
1535 	bio->bi_io_vec->bv_offset = 0;
1536 	bio->bi_io_vec->bv_len = len;
1537 
1538 	bio->bi_iter.bi_size = len;
1539 	bio->bi_vcnt = 1;
1540 	bio->bi_phys_segments = 1;
1541 
1542 	rq->__data_len = rq->resid_len = len;
1543 	rq->nr_phys_segments = 1;
1544 }
1545 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1546 
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1547 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1548 			    struct bio *bio)
1549 {
1550 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1551 
1552 	if (!ll_back_merge_fn(q, req, bio))
1553 		return false;
1554 
1555 	trace_block_bio_backmerge(q, req, bio);
1556 
1557 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1558 		blk_rq_set_mixed_merge(req);
1559 
1560 	req->biotail->bi_next = bio;
1561 	req->biotail = bio;
1562 	req->__data_len += bio->bi_iter.bi_size;
1563 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1564 
1565 	blk_account_io_start(req, false);
1566 	return true;
1567 }
1568 
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1569 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1570 			     struct bio *bio)
1571 {
1572 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1573 
1574 	if (!ll_front_merge_fn(q, req, bio))
1575 		return false;
1576 
1577 	trace_block_bio_frontmerge(q, req, bio);
1578 
1579 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1580 		blk_rq_set_mixed_merge(req);
1581 
1582 	bio->bi_next = req->bio;
1583 	req->bio = bio;
1584 
1585 	req->__sector = bio->bi_iter.bi_sector;
1586 	req->__data_len += bio->bi_iter.bi_size;
1587 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1588 
1589 	blk_account_io_start(req, false);
1590 	return true;
1591 }
1592 
1593 /**
1594  * blk_attempt_plug_merge - try to merge with %current's plugged list
1595  * @q: request_queue new bio is being queued at
1596  * @bio: new bio being queued
1597  * @request_count: out parameter for number of traversed plugged requests
1598  * @same_queue_rq: pointer to &struct request that gets filled in when
1599  * another request associated with @q is found on the plug list
1600  * (optional, may be %NULL)
1601  *
1602  * Determine whether @bio being queued on @q can be merged with a request
1603  * on %current's plugged list.  Returns %true if merge was successful,
1604  * otherwise %false.
1605  *
1606  * Plugging coalesces IOs from the same issuer for the same purpose without
1607  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1608  * than scheduling, and the request, while may have elvpriv data, is not
1609  * added on the elevator at this point.  In addition, we don't have
1610  * reliable access to the elevator outside queue lock.  Only check basic
1611  * merging parameters without querying the elevator.
1612  *
1613  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1614  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1615 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1616 			    unsigned int *request_count,
1617 			    struct request **same_queue_rq)
1618 {
1619 	struct blk_plug *plug;
1620 	struct request *rq;
1621 	bool ret = false;
1622 	struct list_head *plug_list;
1623 
1624 	plug = current->plug;
1625 	if (!plug)
1626 		goto out;
1627 	*request_count = 0;
1628 
1629 	if (q->mq_ops)
1630 		plug_list = &plug->mq_list;
1631 	else
1632 		plug_list = &plug->list;
1633 
1634 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1635 		int el_ret;
1636 
1637 		if (rq->q == q) {
1638 			(*request_count)++;
1639 			/*
1640 			 * Only blk-mq multiple hardware queues case checks the
1641 			 * rq in the same queue, there should be only one such
1642 			 * rq in a queue
1643 			 **/
1644 			if (same_queue_rq)
1645 				*same_queue_rq = rq;
1646 		}
1647 
1648 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1649 			continue;
1650 
1651 		el_ret = blk_try_merge(rq, bio);
1652 		if (el_ret == ELEVATOR_BACK_MERGE) {
1653 			ret = bio_attempt_back_merge(q, rq, bio);
1654 			if (ret)
1655 				break;
1656 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1657 			ret = bio_attempt_front_merge(q, rq, bio);
1658 			if (ret)
1659 				break;
1660 		}
1661 	}
1662 out:
1663 	return ret;
1664 }
1665 
blk_plug_queued_count(struct request_queue * q)1666 unsigned int blk_plug_queued_count(struct request_queue *q)
1667 {
1668 	struct blk_plug *plug;
1669 	struct request *rq;
1670 	struct list_head *plug_list;
1671 	unsigned int ret = 0;
1672 
1673 	plug = current->plug;
1674 	if (!plug)
1675 		goto out;
1676 
1677 	if (q->mq_ops)
1678 		plug_list = &plug->mq_list;
1679 	else
1680 		plug_list = &plug->list;
1681 
1682 	list_for_each_entry(rq, plug_list, queuelist) {
1683 		if (rq->q == q)
1684 			ret++;
1685 	}
1686 out:
1687 	return ret;
1688 }
1689 
init_request_from_bio(struct request * req,struct bio * bio)1690 void init_request_from_bio(struct request *req, struct bio *bio)
1691 {
1692 	req->cmd_type = REQ_TYPE_FS;
1693 
1694 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1695 	if (bio->bi_rw & REQ_RAHEAD)
1696 		req->cmd_flags |= REQ_FAILFAST_MASK;
1697 
1698 	req->errors = 0;
1699 	req->__sector = bio->bi_iter.bi_sector;
1700 	req->ioprio = bio_prio(bio);
1701 	blk_rq_bio_prep(req->q, req, bio);
1702 }
1703 
blk_queue_bio(struct request_queue * q,struct bio * bio)1704 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1705 {
1706 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1707 	struct blk_plug *plug;
1708 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1709 	struct request *req;
1710 	unsigned int request_count = 0;
1711 
1712 	/*
1713 	 * low level driver can indicate that it wants pages above a
1714 	 * certain limit bounced to low memory (ie for highmem, or even
1715 	 * ISA dma in theory)
1716 	 */
1717 	blk_queue_bounce(q, &bio);
1718 
1719 	blk_queue_split(q, &bio, q->bio_split);
1720 
1721 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1722 		bio->bi_error = -EIO;
1723 		bio_endio(bio);
1724 		return BLK_QC_T_NONE;
1725 	}
1726 
1727 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1728 		spin_lock_irq(q->queue_lock);
1729 		where = ELEVATOR_INSERT_FLUSH;
1730 		goto get_rq;
1731 	}
1732 
1733 	/*
1734 	 * Check if we can merge with the plugged list before grabbing
1735 	 * any locks.
1736 	 */
1737 	if (!blk_queue_nomerges(q)) {
1738 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1739 			return BLK_QC_T_NONE;
1740 	} else
1741 		request_count = blk_plug_queued_count(q);
1742 
1743 	spin_lock_irq(q->queue_lock);
1744 
1745 	el_ret = elv_merge(q, &req, bio);
1746 	if (el_ret == ELEVATOR_BACK_MERGE) {
1747 		if (bio_attempt_back_merge(q, req, bio)) {
1748 			elv_bio_merged(q, req, bio);
1749 			if (!attempt_back_merge(q, req))
1750 				elv_merged_request(q, req, el_ret);
1751 			goto out_unlock;
1752 		}
1753 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1754 		if (bio_attempt_front_merge(q, req, bio)) {
1755 			elv_bio_merged(q, req, bio);
1756 			if (!attempt_front_merge(q, req))
1757 				elv_merged_request(q, req, el_ret);
1758 			goto out_unlock;
1759 		}
1760 	}
1761 
1762 get_rq:
1763 	/*
1764 	 * This sync check and mask will be re-done in init_request_from_bio(),
1765 	 * but we need to set it earlier to expose the sync flag to the
1766 	 * rq allocator and io schedulers.
1767 	 */
1768 	rw_flags = bio_data_dir(bio);
1769 	if (sync)
1770 		rw_flags |= REQ_SYNC;
1771 
1772 	/*
1773 	 * Grab a free request. This is might sleep but can not fail.
1774 	 * Returns with the queue unlocked.
1775 	 */
1776 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1777 	if (IS_ERR(req)) {
1778 		bio->bi_error = PTR_ERR(req);
1779 		bio_endio(bio);
1780 		goto out_unlock;
1781 	}
1782 
1783 	/*
1784 	 * After dropping the lock and possibly sleeping here, our request
1785 	 * may now be mergeable after it had proven unmergeable (above).
1786 	 * We don't worry about that case for efficiency. It won't happen
1787 	 * often, and the elevators are able to handle it.
1788 	 */
1789 	init_request_from_bio(req, bio);
1790 
1791 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1792 		req->cpu = raw_smp_processor_id();
1793 
1794 	plug = current->plug;
1795 	if (plug) {
1796 		/*
1797 		 * If this is the first request added after a plug, fire
1798 		 * of a plug trace.
1799 		 */
1800 		if (!request_count)
1801 			trace_block_plug(q);
1802 		else {
1803 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1804 				blk_flush_plug_list(plug, false);
1805 				trace_block_plug(q);
1806 			}
1807 		}
1808 		list_add_tail(&req->queuelist, &plug->list);
1809 		blk_account_io_start(req, true);
1810 	} else {
1811 		spin_lock_irq(q->queue_lock);
1812 		add_acct_request(q, req, where);
1813 		__blk_run_queue(q);
1814 out_unlock:
1815 		spin_unlock_irq(q->queue_lock);
1816 	}
1817 
1818 	return BLK_QC_T_NONE;
1819 }
1820 
1821 /*
1822  * If bio->bi_dev is a partition, remap the location
1823  */
blk_partition_remap(struct bio * bio)1824 static inline void blk_partition_remap(struct bio *bio)
1825 {
1826 	struct block_device *bdev = bio->bi_bdev;
1827 
1828 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1829 		struct hd_struct *p = bdev->bd_part;
1830 
1831 		bio->bi_iter.bi_sector += p->start_sect;
1832 		bio->bi_bdev = bdev->bd_contains;
1833 
1834 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1835 				      bdev->bd_dev,
1836 				      bio->bi_iter.bi_sector - p->start_sect);
1837 	}
1838 }
1839 
handle_bad_sector(struct bio * bio)1840 static void handle_bad_sector(struct bio *bio)
1841 {
1842 	char b[BDEVNAME_SIZE];
1843 
1844 	printk(KERN_INFO "attempt to access beyond end of device\n");
1845 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1846 			bdevname(bio->bi_bdev, b),
1847 			bio->bi_rw,
1848 			(unsigned long long)bio_end_sector(bio),
1849 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1850 }
1851 
1852 #ifdef CONFIG_FAIL_MAKE_REQUEST
1853 
1854 static DECLARE_FAULT_ATTR(fail_make_request);
1855 
setup_fail_make_request(char * str)1856 static int __init setup_fail_make_request(char *str)
1857 {
1858 	return setup_fault_attr(&fail_make_request, str);
1859 }
1860 __setup("fail_make_request=", setup_fail_make_request);
1861 
should_fail_request(struct hd_struct * part,unsigned int bytes)1862 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1863 {
1864 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1865 }
1866 
fail_make_request_debugfs(void)1867 static int __init fail_make_request_debugfs(void)
1868 {
1869 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1870 						NULL, &fail_make_request);
1871 
1872 	return PTR_ERR_OR_ZERO(dir);
1873 }
1874 
1875 late_initcall(fail_make_request_debugfs);
1876 
1877 #else /* CONFIG_FAIL_MAKE_REQUEST */
1878 
should_fail_request(struct hd_struct * part,unsigned int bytes)1879 static inline bool should_fail_request(struct hd_struct *part,
1880 					unsigned int bytes)
1881 {
1882 	return false;
1883 }
1884 
1885 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1886 
1887 /*
1888  * Check whether this bio extends beyond the end of the device.
1889  */
bio_check_eod(struct bio * bio,unsigned int nr_sectors)1890 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1891 {
1892 	sector_t maxsector;
1893 
1894 	if (!nr_sectors)
1895 		return 0;
1896 
1897 	/* Test device or partition size, when known. */
1898 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1899 	if (maxsector) {
1900 		sector_t sector = bio->bi_iter.bi_sector;
1901 
1902 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1903 			/*
1904 			 * This may well happen - the kernel calls bread()
1905 			 * without checking the size of the device, e.g., when
1906 			 * mounting a device.
1907 			 */
1908 			handle_bad_sector(bio);
1909 			return 1;
1910 		}
1911 	}
1912 
1913 	return 0;
1914 }
1915 
1916 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)1917 generic_make_request_checks(struct bio *bio)
1918 {
1919 	struct request_queue *q;
1920 	int nr_sectors = bio_sectors(bio);
1921 	int err = -EIO;
1922 	char b[BDEVNAME_SIZE];
1923 	struct hd_struct *part;
1924 
1925 	might_sleep();
1926 
1927 	if (bio_check_eod(bio, nr_sectors))
1928 		goto end_io;
1929 
1930 	q = bdev_get_queue(bio->bi_bdev);
1931 	if (unlikely(!q)) {
1932 		printk(KERN_ERR
1933 		       "generic_make_request: Trying to access "
1934 			"nonexistent block-device %s (%Lu)\n",
1935 			bdevname(bio->bi_bdev, b),
1936 			(long long) bio->bi_iter.bi_sector);
1937 		goto end_io;
1938 	}
1939 
1940 	part = bio->bi_bdev->bd_part;
1941 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1942 	    should_fail_request(&part_to_disk(part)->part0,
1943 				bio->bi_iter.bi_size))
1944 		goto end_io;
1945 
1946 	/*
1947 	 * If this device has partitions, remap block n
1948 	 * of partition p to block n+start(p) of the disk.
1949 	 */
1950 	blk_partition_remap(bio);
1951 
1952 	if (bio_check_eod(bio, nr_sectors))
1953 		goto end_io;
1954 
1955 	/*
1956 	 * Filter flush bio's early so that make_request based
1957 	 * drivers without flush support don't have to worry
1958 	 * about them.
1959 	 */
1960 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1961 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1962 		if (!nr_sectors) {
1963 			err = 0;
1964 			goto end_io;
1965 		}
1966 	}
1967 
1968 	if ((bio->bi_rw & REQ_DISCARD) &&
1969 	    (!blk_queue_discard(q) ||
1970 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1971 		err = -EOPNOTSUPP;
1972 		goto end_io;
1973 	}
1974 
1975 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1976 		err = -EOPNOTSUPP;
1977 		goto end_io;
1978 	}
1979 
1980 	/*
1981 	 * Various block parts want %current->io_context and lazy ioc
1982 	 * allocation ends up trading a lot of pain for a small amount of
1983 	 * memory.  Just allocate it upfront.  This may fail and block
1984 	 * layer knows how to live with it.
1985 	 */
1986 	create_io_context(GFP_ATOMIC, q->node);
1987 
1988 	if (!blkcg_bio_issue_check(q, bio))
1989 		return false;
1990 
1991 	trace_block_bio_queue(q, bio);
1992 	return true;
1993 
1994 end_io:
1995 	bio->bi_error = err;
1996 	bio_endio(bio);
1997 	return false;
1998 }
1999 
2000 /**
2001  * generic_make_request - hand a buffer to its device driver for I/O
2002  * @bio:  The bio describing the location in memory and on the device.
2003  *
2004  * generic_make_request() is used to make I/O requests of block
2005  * devices. It is passed a &struct bio, which describes the I/O that needs
2006  * to be done.
2007  *
2008  * generic_make_request() does not return any status.  The
2009  * success/failure status of the request, along with notification of
2010  * completion, is delivered asynchronously through the bio->bi_end_io
2011  * function described (one day) else where.
2012  *
2013  * The caller of generic_make_request must make sure that bi_io_vec
2014  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2015  * set to describe the device address, and the
2016  * bi_end_io and optionally bi_private are set to describe how
2017  * completion notification should be signaled.
2018  *
2019  * generic_make_request and the drivers it calls may use bi_next if this
2020  * bio happens to be merged with someone else, and may resubmit the bio to
2021  * a lower device by calling into generic_make_request recursively, which
2022  * means the bio should NOT be touched after the call to ->make_request_fn.
2023  */
generic_make_request(struct bio * bio)2024 blk_qc_t generic_make_request(struct bio *bio)
2025 {
2026 	/*
2027 	 * bio_list_on_stack[0] contains bios submitted by the current
2028 	 * make_request_fn.
2029 	 * bio_list_on_stack[1] contains bios that were submitted before
2030 	 * the current make_request_fn, but that haven't been processed
2031 	 * yet.
2032 	 */
2033 	struct bio_list bio_list_on_stack[2];
2034 	blk_qc_t ret = BLK_QC_T_NONE;
2035 
2036 	if (!generic_make_request_checks(bio))
2037 		goto out;
2038 
2039 	/*
2040 	 * We only want one ->make_request_fn to be active at a time, else
2041 	 * stack usage with stacked devices could be a problem.  So use
2042 	 * current->bio_list to keep a list of requests submited by a
2043 	 * make_request_fn function.  current->bio_list is also used as a
2044 	 * flag to say if generic_make_request is currently active in this
2045 	 * task or not.  If it is NULL, then no make_request is active.  If
2046 	 * it is non-NULL, then a make_request is active, and new requests
2047 	 * should be added at the tail
2048 	 */
2049 	if (current->bio_list) {
2050 		bio_list_add(&current->bio_list[0], bio);
2051 		goto out;
2052 	}
2053 
2054 	/* following loop may be a bit non-obvious, and so deserves some
2055 	 * explanation.
2056 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2057 	 * ensure that) so we have a list with a single bio.
2058 	 * We pretend that we have just taken it off a longer list, so
2059 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2060 	 * thus initialising the bio_list of new bios to be
2061 	 * added.  ->make_request() may indeed add some more bios
2062 	 * through a recursive call to generic_make_request.  If it
2063 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2064 	 * from the top.  In this case we really did just take the bio
2065 	 * of the top of the list (no pretending) and so remove it from
2066 	 * bio_list, and call into ->make_request() again.
2067 	 */
2068 	BUG_ON(bio->bi_next);
2069 	bio_list_init(&bio_list_on_stack[0]);
2070 	current->bio_list = bio_list_on_stack;
2071 	do {
2072 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2073 
2074 		if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2075 			struct bio_list lower, same;
2076 
2077 			/* Create a fresh bio_list for all subordinate requests */
2078 			bio_list_on_stack[1] = bio_list_on_stack[0];
2079 			bio_list_init(&bio_list_on_stack[0]);
2080 
2081 			ret = q->make_request_fn(q, bio);
2082 
2083 			blk_queue_exit(q);
2084 			/* sort new bios into those for a lower level
2085 			 * and those for the same level
2086 			 */
2087 			bio_list_init(&lower);
2088 			bio_list_init(&same);
2089 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2090 				if (q == bdev_get_queue(bio->bi_bdev))
2091 					bio_list_add(&same, bio);
2092 				else
2093 					bio_list_add(&lower, bio);
2094 			/* now assemble so we handle the lowest level first */
2095 			bio_list_merge(&bio_list_on_stack[0], &lower);
2096 			bio_list_merge(&bio_list_on_stack[0], &same);
2097 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2098 		} else {
2099 			bio_io_error(bio);
2100 		}
2101 		bio = bio_list_pop(&bio_list_on_stack[0]);
2102 	} while (bio);
2103 	current->bio_list = NULL; /* deactivate */
2104 
2105 out:
2106 	return ret;
2107 }
2108 EXPORT_SYMBOL(generic_make_request);
2109 
2110 /**
2111  * submit_bio - submit a bio to the block device layer for I/O
2112  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2113  * @bio: The &struct bio which describes the I/O
2114  *
2115  * submit_bio() is very similar in purpose to generic_make_request(), and
2116  * uses that function to do most of the work. Both are fairly rough
2117  * interfaces; @bio must be presetup and ready for I/O.
2118  *
2119  */
submit_bio(int rw,struct bio * bio)2120 blk_qc_t submit_bio(int rw, struct bio *bio)
2121 {
2122 	bio->bi_rw |= rw;
2123 
2124 	/*
2125 	 * If it's a regular read/write or a barrier with data attached,
2126 	 * go through the normal accounting stuff before submission.
2127 	 */
2128 	if (bio_has_data(bio)) {
2129 		unsigned int count;
2130 
2131 		if (unlikely(rw & REQ_WRITE_SAME))
2132 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2133 		else
2134 			count = bio_sectors(bio);
2135 
2136 		if (rw & WRITE) {
2137 			count_vm_events(PGPGOUT, count);
2138 		} else {
2139 			task_io_account_read(bio->bi_iter.bi_size);
2140 			count_vm_events(PGPGIN, count);
2141 		}
2142 
2143 		if (unlikely(block_dump)) {
2144 			char b[BDEVNAME_SIZE];
2145 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2146 			current->comm, task_pid_nr(current),
2147 				(rw & WRITE) ? "WRITE" : "READ",
2148 				(unsigned long long)bio->bi_iter.bi_sector,
2149 				bdevname(bio->bi_bdev, b),
2150 				count);
2151 		}
2152 	}
2153 
2154 	return generic_make_request(bio);
2155 }
2156 EXPORT_SYMBOL(submit_bio);
2157 
2158 /**
2159  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2160  *                              for new the queue limits
2161  * @q:  the queue
2162  * @rq: the request being checked
2163  *
2164  * Description:
2165  *    @rq may have been made based on weaker limitations of upper-level queues
2166  *    in request stacking drivers, and it may violate the limitation of @q.
2167  *    Since the block layer and the underlying device driver trust @rq
2168  *    after it is inserted to @q, it should be checked against @q before
2169  *    the insertion using this generic function.
2170  *
2171  *    Request stacking drivers like request-based dm may change the queue
2172  *    limits when retrying requests on other queues. Those requests need
2173  *    to be checked against the new queue limits again during dispatch.
2174  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2175 static int blk_cloned_rq_check_limits(struct request_queue *q,
2176 				      struct request *rq)
2177 {
2178 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2179 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2180 		return -EIO;
2181 	}
2182 
2183 	/*
2184 	 * queue's settings related to segment counting like q->bounce_pfn
2185 	 * may differ from that of other stacking queues.
2186 	 * Recalculate it to check the request correctly on this queue's
2187 	 * limitation.
2188 	 */
2189 	blk_recalc_rq_segments(rq);
2190 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2191 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2192 		return -EIO;
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /**
2199  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2200  * @q:  the queue to submit the request
2201  * @rq: the request being queued
2202  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2203 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2204 {
2205 	unsigned long flags;
2206 	int where = ELEVATOR_INSERT_BACK;
2207 
2208 	if (blk_cloned_rq_check_limits(q, rq))
2209 		return -EIO;
2210 
2211 	if (rq->rq_disk &&
2212 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2213 		return -EIO;
2214 
2215 	if (q->mq_ops) {
2216 		if (blk_queue_io_stat(q))
2217 			blk_account_io_start(rq, true);
2218 		blk_mq_insert_request(rq, false, true, false);
2219 		return 0;
2220 	}
2221 
2222 	spin_lock_irqsave(q->queue_lock, flags);
2223 	if (unlikely(blk_queue_dying(q))) {
2224 		spin_unlock_irqrestore(q->queue_lock, flags);
2225 		return -ENODEV;
2226 	}
2227 
2228 	/*
2229 	 * Submitting request must be dequeued before calling this function
2230 	 * because it will be linked to another request_queue
2231 	 */
2232 	BUG_ON(blk_queued_rq(rq));
2233 
2234 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2235 		where = ELEVATOR_INSERT_FLUSH;
2236 
2237 	add_acct_request(q, rq, where);
2238 	if (where == ELEVATOR_INSERT_FLUSH)
2239 		__blk_run_queue(q);
2240 	spin_unlock_irqrestore(q->queue_lock, flags);
2241 
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2245 
2246 /**
2247  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2248  * @rq: request to examine
2249  *
2250  * Description:
2251  *     A request could be merge of IOs which require different failure
2252  *     handling.  This function determines the number of bytes which
2253  *     can be failed from the beginning of the request without
2254  *     crossing into area which need to be retried further.
2255  *
2256  * Return:
2257  *     The number of bytes to fail.
2258  *
2259  * Context:
2260  *     queue_lock must be held.
2261  */
blk_rq_err_bytes(const struct request * rq)2262 unsigned int blk_rq_err_bytes(const struct request *rq)
2263 {
2264 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2265 	unsigned int bytes = 0;
2266 	struct bio *bio;
2267 
2268 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2269 		return blk_rq_bytes(rq);
2270 
2271 	/*
2272 	 * Currently the only 'mixing' which can happen is between
2273 	 * different fastfail types.  We can safely fail portions
2274 	 * which have all the failfast bits that the first one has -
2275 	 * the ones which are at least as eager to fail as the first
2276 	 * one.
2277 	 */
2278 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2279 		if ((bio->bi_rw & ff) != ff)
2280 			break;
2281 		bytes += bio->bi_iter.bi_size;
2282 	}
2283 
2284 	/* this could lead to infinite loop */
2285 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2286 	return bytes;
2287 }
2288 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2289 
blk_account_io_completion(struct request * req,unsigned int bytes)2290 void blk_account_io_completion(struct request *req, unsigned int bytes)
2291 {
2292 	if (blk_do_io_stat(req)) {
2293 		const int rw = rq_data_dir(req);
2294 		struct hd_struct *part;
2295 		int cpu;
2296 
2297 		cpu = part_stat_lock();
2298 		part = req->part;
2299 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2300 		part_stat_unlock();
2301 	}
2302 }
2303 
blk_account_io_done(struct request * req)2304 void blk_account_io_done(struct request *req)
2305 {
2306 	/*
2307 	 * Account IO completion.  flush_rq isn't accounted as a
2308 	 * normal IO on queueing nor completion.  Accounting the
2309 	 * containing request is enough.
2310 	 */
2311 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2312 		unsigned long duration = jiffies - req->start_time;
2313 		const int rw = rq_data_dir(req);
2314 		struct hd_struct *part;
2315 		int cpu;
2316 
2317 		cpu = part_stat_lock();
2318 		part = req->part;
2319 
2320 		part_stat_inc(cpu, part, ios[rw]);
2321 		part_stat_add(cpu, part, ticks[rw], duration);
2322 		part_round_stats(cpu, part);
2323 		part_dec_in_flight(part, rw);
2324 
2325 		hd_struct_put(part);
2326 		part_stat_unlock();
2327 	}
2328 }
2329 
2330 #ifdef CONFIG_PM
2331 /*
2332  * Don't process normal requests when queue is suspended
2333  * or in the process of suspending/resuming
2334  */
blk_pm_peek_request(struct request_queue * q,struct request * rq)2335 static struct request *blk_pm_peek_request(struct request_queue *q,
2336 					   struct request *rq)
2337 {
2338 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2339 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2340 		return NULL;
2341 	else
2342 		return rq;
2343 }
2344 #else
blk_pm_peek_request(struct request_queue * q,struct request * rq)2345 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2346 						  struct request *rq)
2347 {
2348 	return rq;
2349 }
2350 #endif
2351 
blk_account_io_start(struct request * rq,bool new_io)2352 void blk_account_io_start(struct request *rq, bool new_io)
2353 {
2354 	struct hd_struct *part;
2355 	int rw = rq_data_dir(rq);
2356 	int cpu;
2357 
2358 	if (!blk_do_io_stat(rq))
2359 		return;
2360 
2361 	cpu = part_stat_lock();
2362 
2363 	if (!new_io) {
2364 		part = rq->part;
2365 		part_stat_inc(cpu, part, merges[rw]);
2366 	} else {
2367 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2368 		if (!hd_struct_try_get(part)) {
2369 			/*
2370 			 * The partition is already being removed,
2371 			 * the request will be accounted on the disk only
2372 			 *
2373 			 * We take a reference on disk->part0 although that
2374 			 * partition will never be deleted, so we can treat
2375 			 * it as any other partition.
2376 			 */
2377 			part = &rq->rq_disk->part0;
2378 			hd_struct_get(part);
2379 		}
2380 		part_round_stats(cpu, part);
2381 		part_inc_in_flight(part, rw);
2382 		rq->part = part;
2383 	}
2384 
2385 	part_stat_unlock();
2386 }
2387 
2388 /**
2389  * blk_peek_request - peek at the top of a request queue
2390  * @q: request queue to peek at
2391  *
2392  * Description:
2393  *     Return the request at the top of @q.  The returned request
2394  *     should be started using blk_start_request() before LLD starts
2395  *     processing it.
2396  *
2397  * Return:
2398  *     Pointer to the request at the top of @q if available.  Null
2399  *     otherwise.
2400  *
2401  * Context:
2402  *     queue_lock must be held.
2403  */
blk_peek_request(struct request_queue * q)2404 struct request *blk_peek_request(struct request_queue *q)
2405 {
2406 	struct request *rq;
2407 	int ret;
2408 
2409 	while ((rq = __elv_next_request(q)) != NULL) {
2410 
2411 		rq = blk_pm_peek_request(q, rq);
2412 		if (!rq)
2413 			break;
2414 
2415 		if (!(rq->cmd_flags & REQ_STARTED)) {
2416 			/*
2417 			 * This is the first time the device driver
2418 			 * sees this request (possibly after
2419 			 * requeueing).  Notify IO scheduler.
2420 			 */
2421 			if (rq->cmd_flags & REQ_SORTED)
2422 				elv_activate_rq(q, rq);
2423 
2424 			/*
2425 			 * just mark as started even if we don't start
2426 			 * it, a request that has been delayed should
2427 			 * not be passed by new incoming requests
2428 			 */
2429 			rq->cmd_flags |= REQ_STARTED;
2430 			trace_block_rq_issue(q, rq);
2431 		}
2432 
2433 		if (!q->boundary_rq || q->boundary_rq == rq) {
2434 			q->end_sector = rq_end_sector(rq);
2435 			q->boundary_rq = NULL;
2436 		}
2437 
2438 		if (rq->cmd_flags & REQ_DONTPREP)
2439 			break;
2440 
2441 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2442 			/*
2443 			 * make sure space for the drain appears we
2444 			 * know we can do this because max_hw_segments
2445 			 * has been adjusted to be one fewer than the
2446 			 * device can handle
2447 			 */
2448 			rq->nr_phys_segments++;
2449 		}
2450 
2451 		if (!q->prep_rq_fn)
2452 			break;
2453 
2454 		ret = q->prep_rq_fn(q, rq);
2455 		if (ret == BLKPREP_OK) {
2456 			break;
2457 		} else if (ret == BLKPREP_DEFER) {
2458 			/*
2459 			 * the request may have been (partially) prepped.
2460 			 * we need to keep this request in the front to
2461 			 * avoid resource deadlock.  REQ_STARTED will
2462 			 * prevent other fs requests from passing this one.
2463 			 */
2464 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2465 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2466 				/*
2467 				 * remove the space for the drain we added
2468 				 * so that we don't add it again
2469 				 */
2470 				--rq->nr_phys_segments;
2471 			}
2472 
2473 			rq = NULL;
2474 			break;
2475 		} else if (ret == BLKPREP_KILL) {
2476 			rq->cmd_flags |= REQ_QUIET;
2477 			/*
2478 			 * Mark this request as started so we don't trigger
2479 			 * any debug logic in the end I/O path.
2480 			 */
2481 			blk_start_request(rq);
2482 			__blk_end_request_all(rq, -EIO);
2483 		} else {
2484 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2485 			break;
2486 		}
2487 	}
2488 
2489 	return rq;
2490 }
2491 EXPORT_SYMBOL(blk_peek_request);
2492 
blk_dequeue_request(struct request * rq)2493 void blk_dequeue_request(struct request *rq)
2494 {
2495 	struct request_queue *q = rq->q;
2496 
2497 	BUG_ON(list_empty(&rq->queuelist));
2498 	BUG_ON(ELV_ON_HASH(rq));
2499 
2500 	list_del_init(&rq->queuelist);
2501 
2502 	/*
2503 	 * the time frame between a request being removed from the lists
2504 	 * and to it is freed is accounted as io that is in progress at
2505 	 * the driver side.
2506 	 */
2507 	if (blk_account_rq(rq)) {
2508 		q->in_flight[rq_is_sync(rq)]++;
2509 		set_io_start_time_ns(rq);
2510 	}
2511 }
2512 
2513 /**
2514  * blk_start_request - start request processing on the driver
2515  * @req: request to dequeue
2516  *
2517  * Description:
2518  *     Dequeue @req and start timeout timer on it.  This hands off the
2519  *     request to the driver.
2520  *
2521  *     Block internal functions which don't want to start timer should
2522  *     call blk_dequeue_request().
2523  *
2524  * Context:
2525  *     queue_lock must be held.
2526  */
blk_start_request(struct request * req)2527 void blk_start_request(struct request *req)
2528 {
2529 	blk_dequeue_request(req);
2530 
2531 	/*
2532 	 * We are now handing the request to the hardware, initialize
2533 	 * resid_len to full count and add the timeout handler.
2534 	 */
2535 	req->resid_len = blk_rq_bytes(req);
2536 	if (unlikely(blk_bidi_rq(req)))
2537 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2538 
2539 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2540 	blk_add_timer(req);
2541 }
2542 EXPORT_SYMBOL(blk_start_request);
2543 
2544 /**
2545  * blk_fetch_request - fetch a request from a request queue
2546  * @q: request queue to fetch a request from
2547  *
2548  * Description:
2549  *     Return the request at the top of @q.  The request is started on
2550  *     return and LLD can start processing it immediately.
2551  *
2552  * Return:
2553  *     Pointer to the request at the top of @q if available.  Null
2554  *     otherwise.
2555  *
2556  * Context:
2557  *     queue_lock must be held.
2558  */
blk_fetch_request(struct request_queue * q)2559 struct request *blk_fetch_request(struct request_queue *q)
2560 {
2561 	struct request *rq;
2562 
2563 	rq = blk_peek_request(q);
2564 	if (rq)
2565 		blk_start_request(rq);
2566 	return rq;
2567 }
2568 EXPORT_SYMBOL(blk_fetch_request);
2569 
2570 /**
2571  * blk_update_request - Special helper function for request stacking drivers
2572  * @req:      the request being processed
2573  * @error:    %0 for success, < %0 for error
2574  * @nr_bytes: number of bytes to complete @req
2575  *
2576  * Description:
2577  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2578  *     the request structure even if @req doesn't have leftover.
2579  *     If @req has leftover, sets it up for the next range of segments.
2580  *
2581  *     This special helper function is only for request stacking drivers
2582  *     (e.g. request-based dm) so that they can handle partial completion.
2583  *     Actual device drivers should use blk_end_request instead.
2584  *
2585  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2586  *     %false return from this function.
2587  *
2588  * Return:
2589  *     %false - this request doesn't have any more data
2590  *     %true  - this request has more data
2591  **/
blk_update_request(struct request * req,int error,unsigned int nr_bytes)2592 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2593 {
2594 	int total_bytes;
2595 
2596 	trace_block_rq_complete(req->q, req, nr_bytes);
2597 
2598 	if (!req->bio)
2599 		return false;
2600 
2601 	/*
2602 	 * For fs requests, rq is just carrier of independent bio's
2603 	 * and each partial completion should be handled separately.
2604 	 * Reset per-request error on each partial completion.
2605 	 *
2606 	 * TODO: tj: This is too subtle.  It would be better to let
2607 	 * low level drivers do what they see fit.
2608 	 */
2609 	if (req->cmd_type == REQ_TYPE_FS)
2610 		req->errors = 0;
2611 
2612 	if (error && req->cmd_type == REQ_TYPE_FS &&
2613 	    !(req->cmd_flags & REQ_QUIET)) {
2614 		char *error_type;
2615 
2616 		switch (error) {
2617 		case -ENOLINK:
2618 			error_type = "recoverable transport";
2619 			break;
2620 		case -EREMOTEIO:
2621 			error_type = "critical target";
2622 			break;
2623 		case -EBADE:
2624 			error_type = "critical nexus";
2625 			break;
2626 		case -ETIMEDOUT:
2627 			error_type = "timeout";
2628 			break;
2629 		case -ENOSPC:
2630 			error_type = "critical space allocation";
2631 			break;
2632 		case -ENODATA:
2633 			error_type = "critical medium";
2634 			break;
2635 		case -EIO:
2636 		default:
2637 			error_type = "I/O";
2638 			break;
2639 		}
2640 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2641 				   __func__, error_type, req->rq_disk ?
2642 				   req->rq_disk->disk_name : "?",
2643 				   (unsigned long long)blk_rq_pos(req));
2644 
2645 	}
2646 
2647 	blk_account_io_completion(req, nr_bytes);
2648 
2649 	total_bytes = 0;
2650 	while (req->bio) {
2651 		struct bio *bio = req->bio;
2652 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2653 
2654 		if (bio_bytes == bio->bi_iter.bi_size)
2655 			req->bio = bio->bi_next;
2656 
2657 		req_bio_endio(req, bio, bio_bytes, error);
2658 
2659 		total_bytes += bio_bytes;
2660 		nr_bytes -= bio_bytes;
2661 
2662 		if (!nr_bytes)
2663 			break;
2664 	}
2665 
2666 	/*
2667 	 * completely done
2668 	 */
2669 	if (!req->bio) {
2670 		/*
2671 		 * Reset counters so that the request stacking driver
2672 		 * can find how many bytes remain in the request
2673 		 * later.
2674 		 */
2675 		req->__data_len = 0;
2676 		return false;
2677 	}
2678 
2679 	req->__data_len -= total_bytes;
2680 
2681 	/* update sector only for requests with clear definition of sector */
2682 	if (req->cmd_type == REQ_TYPE_FS)
2683 		req->__sector += total_bytes >> 9;
2684 
2685 	/* mixed attributes always follow the first bio */
2686 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2687 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2688 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2689 	}
2690 
2691 	/*
2692 	 * If total number of sectors is less than the first segment
2693 	 * size, something has gone terribly wrong.
2694 	 */
2695 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2696 		blk_dump_rq_flags(req, "request botched");
2697 		req->__data_len = blk_rq_cur_bytes(req);
2698 	}
2699 
2700 	/* recalculate the number of segments */
2701 	blk_recalc_rq_segments(req);
2702 
2703 	return true;
2704 }
2705 EXPORT_SYMBOL_GPL(blk_update_request);
2706 
blk_update_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2707 static bool blk_update_bidi_request(struct request *rq, int error,
2708 				    unsigned int nr_bytes,
2709 				    unsigned int bidi_bytes)
2710 {
2711 	if (blk_update_request(rq, error, nr_bytes))
2712 		return true;
2713 
2714 	/* Bidi request must be completed as a whole */
2715 	if (unlikely(blk_bidi_rq(rq)) &&
2716 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2717 		return true;
2718 
2719 	if (blk_queue_add_random(rq->q))
2720 		add_disk_randomness(rq->rq_disk);
2721 
2722 	return false;
2723 }
2724 
2725 /**
2726  * blk_unprep_request - unprepare a request
2727  * @req:	the request
2728  *
2729  * This function makes a request ready for complete resubmission (or
2730  * completion).  It happens only after all error handling is complete,
2731  * so represents the appropriate moment to deallocate any resources
2732  * that were allocated to the request in the prep_rq_fn.  The queue
2733  * lock is held when calling this.
2734  */
blk_unprep_request(struct request * req)2735 void blk_unprep_request(struct request *req)
2736 {
2737 	struct request_queue *q = req->q;
2738 
2739 	req->cmd_flags &= ~REQ_DONTPREP;
2740 	if (q->unprep_rq_fn)
2741 		q->unprep_rq_fn(q, req);
2742 }
2743 EXPORT_SYMBOL_GPL(blk_unprep_request);
2744 
2745 /*
2746  * queue lock must be held
2747  */
blk_finish_request(struct request * req,int error)2748 void blk_finish_request(struct request *req, int error)
2749 {
2750 	if (req->cmd_flags & REQ_QUEUED)
2751 		blk_queue_end_tag(req->q, req);
2752 
2753 	BUG_ON(blk_queued_rq(req));
2754 
2755 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2756 		laptop_io_completion(&req->q->backing_dev_info);
2757 
2758 	blk_delete_timer(req);
2759 
2760 	if (req->cmd_flags & REQ_DONTPREP)
2761 		blk_unprep_request(req);
2762 
2763 	blk_account_io_done(req);
2764 
2765 	if (req->end_io)
2766 		req->end_io(req, error);
2767 	else {
2768 		if (blk_bidi_rq(req))
2769 			__blk_put_request(req->next_rq->q, req->next_rq);
2770 
2771 		__blk_put_request(req->q, req);
2772 	}
2773 }
2774 EXPORT_SYMBOL(blk_finish_request);
2775 
2776 /**
2777  * blk_end_bidi_request - Complete a bidi request
2778  * @rq:         the request to complete
2779  * @error:      %0 for success, < %0 for error
2780  * @nr_bytes:   number of bytes to complete @rq
2781  * @bidi_bytes: number of bytes to complete @rq->next_rq
2782  *
2783  * Description:
2784  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2785  *     Drivers that supports bidi can safely call this member for any
2786  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2787  *     just ignored.
2788  *
2789  * Return:
2790  *     %false - we are done with this request
2791  *     %true  - still buffers pending for this request
2792  **/
blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2793 static bool blk_end_bidi_request(struct request *rq, int error,
2794 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2795 {
2796 	struct request_queue *q = rq->q;
2797 	unsigned long flags;
2798 
2799 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2800 		return true;
2801 
2802 	spin_lock_irqsave(q->queue_lock, flags);
2803 	blk_finish_request(rq, error);
2804 	spin_unlock_irqrestore(q->queue_lock, flags);
2805 
2806 	return false;
2807 }
2808 
2809 /**
2810  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2811  * @rq:         the request to complete
2812  * @error:      %0 for success, < %0 for error
2813  * @nr_bytes:   number of bytes to complete @rq
2814  * @bidi_bytes: number of bytes to complete @rq->next_rq
2815  *
2816  * Description:
2817  *     Identical to blk_end_bidi_request() except that queue lock is
2818  *     assumed to be locked on entry and remains so on return.
2819  *
2820  * Return:
2821  *     %false - we are done with this request
2822  *     %true  - still buffers pending for this request
2823  **/
__blk_end_bidi_request(struct request * rq,int error,unsigned int nr_bytes,unsigned int bidi_bytes)2824 bool __blk_end_bidi_request(struct request *rq, int error,
2825 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2826 {
2827 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2828 		return true;
2829 
2830 	blk_finish_request(rq, error);
2831 
2832 	return false;
2833 }
2834 
2835 /**
2836  * blk_end_request - Helper function for drivers to complete the request.
2837  * @rq:       the request being processed
2838  * @error:    %0 for success, < %0 for error
2839  * @nr_bytes: number of bytes to complete
2840  *
2841  * Description:
2842  *     Ends I/O on a number of bytes attached to @rq.
2843  *     If @rq has leftover, sets it up for the next range of segments.
2844  *
2845  * Return:
2846  *     %false - we are done with this request
2847  *     %true  - still buffers pending for this request
2848  **/
blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2849 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2850 {
2851 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2852 }
2853 EXPORT_SYMBOL(blk_end_request);
2854 
2855 /**
2856  * blk_end_request_all - Helper function for drives to finish the request.
2857  * @rq: the request to finish
2858  * @error: %0 for success, < %0 for error
2859  *
2860  * Description:
2861  *     Completely finish @rq.
2862  */
blk_end_request_all(struct request * rq,int error)2863 void blk_end_request_all(struct request *rq, int error)
2864 {
2865 	bool pending;
2866 	unsigned int bidi_bytes = 0;
2867 
2868 	if (unlikely(blk_bidi_rq(rq)))
2869 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2870 
2871 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2872 	BUG_ON(pending);
2873 }
2874 EXPORT_SYMBOL(blk_end_request_all);
2875 
2876 /**
2877  * blk_end_request_cur - Helper function to finish the current request chunk.
2878  * @rq: the request to finish the current chunk for
2879  * @error: %0 for success, < %0 for error
2880  *
2881  * Description:
2882  *     Complete the current consecutively mapped chunk from @rq.
2883  *
2884  * Return:
2885  *     %false - we are done with this request
2886  *     %true  - still buffers pending for this request
2887  */
blk_end_request_cur(struct request * rq,int error)2888 bool blk_end_request_cur(struct request *rq, int error)
2889 {
2890 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2891 }
2892 EXPORT_SYMBOL(blk_end_request_cur);
2893 
2894 /**
2895  * blk_end_request_err - Finish a request till the next failure boundary.
2896  * @rq: the request to finish till the next failure boundary for
2897  * @error: must be negative errno
2898  *
2899  * Description:
2900  *     Complete @rq till the next failure boundary.
2901  *
2902  * Return:
2903  *     %false - we are done with this request
2904  *     %true  - still buffers pending for this request
2905  */
blk_end_request_err(struct request * rq,int error)2906 bool blk_end_request_err(struct request *rq, int error)
2907 {
2908 	WARN_ON(error >= 0);
2909 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2910 }
2911 EXPORT_SYMBOL_GPL(blk_end_request_err);
2912 
2913 /**
2914  * __blk_end_request - Helper function for drivers to complete the request.
2915  * @rq:       the request being processed
2916  * @error:    %0 for success, < %0 for error
2917  * @nr_bytes: number of bytes to complete
2918  *
2919  * Description:
2920  *     Must be called with queue lock held unlike blk_end_request().
2921  *
2922  * Return:
2923  *     %false - we are done with this request
2924  *     %true  - still buffers pending for this request
2925  **/
__blk_end_request(struct request * rq,int error,unsigned int nr_bytes)2926 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2927 {
2928 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2929 }
2930 EXPORT_SYMBOL(__blk_end_request);
2931 
2932 /**
2933  * __blk_end_request_all - Helper function for drives to finish the request.
2934  * @rq: the request to finish
2935  * @error: %0 for success, < %0 for error
2936  *
2937  * Description:
2938  *     Completely finish @rq.  Must be called with queue lock held.
2939  */
__blk_end_request_all(struct request * rq,int error)2940 void __blk_end_request_all(struct request *rq, int error)
2941 {
2942 	bool pending;
2943 	unsigned int bidi_bytes = 0;
2944 
2945 	if (unlikely(blk_bidi_rq(rq)))
2946 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2947 
2948 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2949 	BUG_ON(pending);
2950 }
2951 EXPORT_SYMBOL(__blk_end_request_all);
2952 
2953 /**
2954  * __blk_end_request_cur - Helper function to finish the current request chunk.
2955  * @rq: the request to finish the current chunk for
2956  * @error: %0 for success, < %0 for error
2957  *
2958  * Description:
2959  *     Complete the current consecutively mapped chunk from @rq.  Must
2960  *     be called with queue lock held.
2961  *
2962  * Return:
2963  *     %false - we are done with this request
2964  *     %true  - still buffers pending for this request
2965  */
__blk_end_request_cur(struct request * rq,int error)2966 bool __blk_end_request_cur(struct request *rq, int error)
2967 {
2968 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2969 }
2970 EXPORT_SYMBOL(__blk_end_request_cur);
2971 
2972 /**
2973  * __blk_end_request_err - Finish a request till the next failure boundary.
2974  * @rq: the request to finish till the next failure boundary for
2975  * @error: must be negative errno
2976  *
2977  * Description:
2978  *     Complete @rq till the next failure boundary.  Must be called
2979  *     with queue lock held.
2980  *
2981  * Return:
2982  *     %false - we are done with this request
2983  *     %true  - still buffers pending for this request
2984  */
__blk_end_request_err(struct request * rq,int error)2985 bool __blk_end_request_err(struct request *rq, int error)
2986 {
2987 	WARN_ON(error >= 0);
2988 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2989 }
2990 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2991 
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)2992 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2993 		     struct bio *bio)
2994 {
2995 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2996 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2997 
2998 	if (bio_has_data(bio))
2999 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3000 
3001 	rq->__data_len = bio->bi_iter.bi_size;
3002 	rq->bio = rq->biotail = bio;
3003 
3004 	if (bio->bi_bdev)
3005 		rq->rq_disk = bio->bi_bdev->bd_disk;
3006 }
3007 
3008 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3009 /**
3010  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3011  * @rq: the request to be flushed
3012  *
3013  * Description:
3014  *     Flush all pages in @rq.
3015  */
rq_flush_dcache_pages(struct request * rq)3016 void rq_flush_dcache_pages(struct request *rq)
3017 {
3018 	struct req_iterator iter;
3019 	struct bio_vec bvec;
3020 
3021 	rq_for_each_segment(bvec, rq, iter)
3022 		flush_dcache_page(bvec.bv_page);
3023 }
3024 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3025 #endif
3026 
3027 /**
3028  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3029  * @q : the queue of the device being checked
3030  *
3031  * Description:
3032  *    Check if underlying low-level drivers of a device are busy.
3033  *    If the drivers want to export their busy state, they must set own
3034  *    exporting function using blk_queue_lld_busy() first.
3035  *
3036  *    Basically, this function is used only by request stacking drivers
3037  *    to stop dispatching requests to underlying devices when underlying
3038  *    devices are busy.  This behavior helps more I/O merging on the queue
3039  *    of the request stacking driver and prevents I/O throughput regression
3040  *    on burst I/O load.
3041  *
3042  * Return:
3043  *    0 - Not busy (The request stacking driver should dispatch request)
3044  *    1 - Busy (The request stacking driver should stop dispatching request)
3045  */
blk_lld_busy(struct request_queue * q)3046 int blk_lld_busy(struct request_queue *q)
3047 {
3048 	if (q->lld_busy_fn)
3049 		return q->lld_busy_fn(q);
3050 
3051 	return 0;
3052 }
3053 EXPORT_SYMBOL_GPL(blk_lld_busy);
3054 
3055 /**
3056  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3057  * @rq: the clone request to be cleaned up
3058  *
3059  * Description:
3060  *     Free all bios in @rq for a cloned request.
3061  */
blk_rq_unprep_clone(struct request * rq)3062 void blk_rq_unprep_clone(struct request *rq)
3063 {
3064 	struct bio *bio;
3065 
3066 	while ((bio = rq->bio) != NULL) {
3067 		rq->bio = bio->bi_next;
3068 
3069 		bio_put(bio);
3070 	}
3071 }
3072 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3073 
3074 /*
3075  * Copy attributes of the original request to the clone request.
3076  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3077  */
__blk_rq_prep_clone(struct request * dst,struct request * src)3078 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3079 {
3080 	dst->cpu = src->cpu;
3081 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3082 	dst->cmd_type = src->cmd_type;
3083 	dst->__sector = blk_rq_pos(src);
3084 	dst->__data_len = blk_rq_bytes(src);
3085 	dst->nr_phys_segments = src->nr_phys_segments;
3086 	dst->ioprio = src->ioprio;
3087 	dst->extra_len = src->extra_len;
3088 }
3089 
3090 /**
3091  * blk_rq_prep_clone - Helper function to setup clone request
3092  * @rq: the request to be setup
3093  * @rq_src: original request to be cloned
3094  * @bs: bio_set that bios for clone are allocated from
3095  * @gfp_mask: memory allocation mask for bio
3096  * @bio_ctr: setup function to be called for each clone bio.
3097  *           Returns %0 for success, non %0 for failure.
3098  * @data: private data to be passed to @bio_ctr
3099  *
3100  * Description:
3101  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3102  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3103  *     are not copied, and copying such parts is the caller's responsibility.
3104  *     Also, pages which the original bios are pointing to are not copied
3105  *     and the cloned bios just point same pages.
3106  *     So cloned bios must be completed before original bios, which means
3107  *     the caller must complete @rq before @rq_src.
3108  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3109 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3110 		      struct bio_set *bs, gfp_t gfp_mask,
3111 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3112 		      void *data)
3113 {
3114 	struct bio *bio, *bio_src;
3115 
3116 	if (!bs)
3117 		bs = fs_bio_set;
3118 
3119 	__rq_for_each_bio(bio_src, rq_src) {
3120 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3121 		if (!bio)
3122 			goto free_and_out;
3123 
3124 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3125 			goto free_and_out;
3126 
3127 		if (rq->bio) {
3128 			rq->biotail->bi_next = bio;
3129 			rq->biotail = bio;
3130 		} else
3131 			rq->bio = rq->biotail = bio;
3132 	}
3133 
3134 	__blk_rq_prep_clone(rq, rq_src);
3135 
3136 	return 0;
3137 
3138 free_and_out:
3139 	if (bio)
3140 		bio_put(bio);
3141 	blk_rq_unprep_clone(rq);
3142 
3143 	return -ENOMEM;
3144 }
3145 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3146 
kblockd_schedule_work(struct work_struct * work)3147 int kblockd_schedule_work(struct work_struct *work)
3148 {
3149 	return queue_work(kblockd_workqueue, work);
3150 }
3151 EXPORT_SYMBOL(kblockd_schedule_work);
3152 
kblockd_schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)3153 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3154 				  unsigned long delay)
3155 {
3156 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3157 }
3158 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3159 
kblockd_schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3160 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3161 				     unsigned long delay)
3162 {
3163 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3164 }
3165 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3166 
3167 /**
3168  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3169  * @plug:	The &struct blk_plug that needs to be initialized
3170  *
3171  * Description:
3172  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3173  *   pending I/O should the task end up blocking between blk_start_plug() and
3174  *   blk_finish_plug(). This is important from a performance perspective, but
3175  *   also ensures that we don't deadlock. For instance, if the task is blocking
3176  *   for a memory allocation, memory reclaim could end up wanting to free a
3177  *   page belonging to that request that is currently residing in our private
3178  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3179  *   this kind of deadlock.
3180  */
blk_start_plug(struct blk_plug * plug)3181 void blk_start_plug(struct blk_plug *plug)
3182 {
3183 	struct task_struct *tsk = current;
3184 
3185 	/*
3186 	 * If this is a nested plug, don't actually assign it.
3187 	 */
3188 	if (tsk->plug)
3189 		return;
3190 
3191 	INIT_LIST_HEAD(&plug->list);
3192 	INIT_LIST_HEAD(&plug->mq_list);
3193 	INIT_LIST_HEAD(&plug->cb_list);
3194 	/*
3195 	 * Store ordering should not be needed here, since a potential
3196 	 * preempt will imply a full memory barrier
3197 	 */
3198 	tsk->plug = plug;
3199 }
3200 EXPORT_SYMBOL(blk_start_plug);
3201 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3202 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3203 {
3204 	struct request *rqa = container_of(a, struct request, queuelist);
3205 	struct request *rqb = container_of(b, struct request, queuelist);
3206 
3207 	return !(rqa->q < rqb->q ||
3208 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3209 }
3210 
3211 /*
3212  * If 'from_schedule' is true, then postpone the dispatch of requests
3213  * until a safe kblockd context. We due this to avoid accidental big
3214  * additional stack usage in driver dispatch, in places where the originally
3215  * plugger did not intend it.
3216  */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3217 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3218 			    bool from_schedule)
3219 	__releases(q->queue_lock)
3220 {
3221 	trace_block_unplug(q, depth, !from_schedule);
3222 
3223 	if (from_schedule)
3224 		blk_run_queue_async(q);
3225 	else
3226 		__blk_run_queue(q);
3227 	spin_unlock(q->queue_lock);
3228 }
3229 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3230 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3231 {
3232 	LIST_HEAD(callbacks);
3233 
3234 	while (!list_empty(&plug->cb_list)) {
3235 		list_splice_init(&plug->cb_list, &callbacks);
3236 
3237 		while (!list_empty(&callbacks)) {
3238 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3239 							  struct blk_plug_cb,
3240 							  list);
3241 			list_del(&cb->list);
3242 			cb->callback(cb, from_schedule);
3243 		}
3244 	}
3245 }
3246 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3247 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3248 				      int size)
3249 {
3250 	struct blk_plug *plug = current->plug;
3251 	struct blk_plug_cb *cb;
3252 
3253 	if (!plug)
3254 		return NULL;
3255 
3256 	list_for_each_entry(cb, &plug->cb_list, list)
3257 		if (cb->callback == unplug && cb->data == data)
3258 			return cb;
3259 
3260 	/* Not currently on the callback list */
3261 	BUG_ON(size < sizeof(*cb));
3262 	cb = kzalloc(size, GFP_ATOMIC);
3263 	if (cb) {
3264 		cb->data = data;
3265 		cb->callback = unplug;
3266 		list_add(&cb->list, &plug->cb_list);
3267 	}
3268 	return cb;
3269 }
3270 EXPORT_SYMBOL(blk_check_plugged);
3271 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3272 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3273 {
3274 	struct request_queue *q;
3275 	unsigned long flags;
3276 	struct request *rq;
3277 	LIST_HEAD(list);
3278 	unsigned int depth;
3279 
3280 	flush_plug_callbacks(plug, from_schedule);
3281 
3282 	if (!list_empty(&plug->mq_list))
3283 		blk_mq_flush_plug_list(plug, from_schedule);
3284 
3285 	if (list_empty(&plug->list))
3286 		return;
3287 
3288 	list_splice_init(&plug->list, &list);
3289 
3290 	list_sort(NULL, &list, plug_rq_cmp);
3291 
3292 	q = NULL;
3293 	depth = 0;
3294 
3295 	/*
3296 	 * Save and disable interrupts here, to avoid doing it for every
3297 	 * queue lock we have to take.
3298 	 */
3299 	local_irq_save(flags);
3300 	while (!list_empty(&list)) {
3301 		rq = list_entry_rq(list.next);
3302 		list_del_init(&rq->queuelist);
3303 		BUG_ON(!rq->q);
3304 		if (rq->q != q) {
3305 			/*
3306 			 * This drops the queue lock
3307 			 */
3308 			if (q)
3309 				queue_unplugged(q, depth, from_schedule);
3310 			q = rq->q;
3311 			depth = 0;
3312 			spin_lock(q->queue_lock);
3313 		}
3314 
3315 		/*
3316 		 * Short-circuit if @q is dead
3317 		 */
3318 		if (unlikely(blk_queue_dying(q))) {
3319 			__blk_end_request_all(rq, -ENODEV);
3320 			continue;
3321 		}
3322 
3323 		/*
3324 		 * rq is already accounted, so use raw insert
3325 		 */
3326 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3327 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3328 		else
3329 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3330 
3331 		depth++;
3332 	}
3333 
3334 	/*
3335 	 * This drops the queue lock
3336 	 */
3337 	if (q)
3338 		queue_unplugged(q, depth, from_schedule);
3339 
3340 	local_irq_restore(flags);
3341 }
3342 
blk_finish_plug(struct blk_plug * plug)3343 void blk_finish_plug(struct blk_plug *plug)
3344 {
3345 	if (plug != current->plug)
3346 		return;
3347 	blk_flush_plug_list(plug, false);
3348 
3349 	current->plug = NULL;
3350 }
3351 EXPORT_SYMBOL(blk_finish_plug);
3352 
blk_poll(struct request_queue * q,blk_qc_t cookie)3353 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3354 {
3355 	struct blk_plug *plug;
3356 	long state;
3357 
3358 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3359 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3360 		return false;
3361 
3362 	plug = current->plug;
3363 	if (plug)
3364 		blk_flush_plug_list(plug, false);
3365 
3366 	state = current->state;
3367 	while (!need_resched()) {
3368 		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3369 		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3370 		int ret;
3371 
3372 		hctx->poll_invoked++;
3373 
3374 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3375 		if (ret > 0) {
3376 			hctx->poll_success++;
3377 			set_current_state(TASK_RUNNING);
3378 			return true;
3379 		}
3380 
3381 		if (signal_pending_state(state, current))
3382 			set_current_state(TASK_RUNNING);
3383 
3384 		if (current->state == TASK_RUNNING)
3385 			return true;
3386 		if (ret < 0)
3387 			break;
3388 		cpu_relax();
3389 	}
3390 
3391 	return false;
3392 }
3393 
3394 #ifdef CONFIG_PM
3395 /**
3396  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3397  * @q: the queue of the device
3398  * @dev: the device the queue belongs to
3399  *
3400  * Description:
3401  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3402  *    @dev. Drivers that want to take advantage of request-based runtime PM
3403  *    should call this function after @dev has been initialized, and its
3404  *    request queue @q has been allocated, and runtime PM for it can not happen
3405  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3406  *    cases, driver should call this function before any I/O has taken place.
3407  *
3408  *    This function takes care of setting up using auto suspend for the device,
3409  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3410  *    until an updated value is either set by user or by driver. Drivers do
3411  *    not need to touch other autosuspend settings.
3412  *
3413  *    The block layer runtime PM is request based, so only works for drivers
3414  *    that use request as their IO unit instead of those directly use bio's.
3415  */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3416 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3417 {
3418 	q->dev = dev;
3419 	q->rpm_status = RPM_ACTIVE;
3420 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3421 	pm_runtime_use_autosuspend(q->dev);
3422 }
3423 EXPORT_SYMBOL(blk_pm_runtime_init);
3424 
3425 /**
3426  * blk_pre_runtime_suspend - Pre runtime suspend check
3427  * @q: the queue of the device
3428  *
3429  * Description:
3430  *    This function will check if runtime suspend is allowed for the device
3431  *    by examining if there are any requests pending in the queue. If there
3432  *    are requests pending, the device can not be runtime suspended; otherwise,
3433  *    the queue's status will be updated to SUSPENDING and the driver can
3434  *    proceed to suspend the device.
3435  *
3436  *    For the not allowed case, we mark last busy for the device so that
3437  *    runtime PM core will try to autosuspend it some time later.
3438  *
3439  *    This function should be called near the start of the device's
3440  *    runtime_suspend callback.
3441  *
3442  * Return:
3443  *    0		- OK to runtime suspend the device
3444  *    -EBUSY	- Device should not be runtime suspended
3445  */
blk_pre_runtime_suspend(struct request_queue * q)3446 int blk_pre_runtime_suspend(struct request_queue *q)
3447 {
3448 	int ret = 0;
3449 
3450 	if (!q->dev)
3451 		return ret;
3452 
3453 	spin_lock_irq(q->queue_lock);
3454 	if (q->nr_pending) {
3455 		ret = -EBUSY;
3456 		pm_runtime_mark_last_busy(q->dev);
3457 	} else {
3458 		q->rpm_status = RPM_SUSPENDING;
3459 	}
3460 	spin_unlock_irq(q->queue_lock);
3461 	return ret;
3462 }
3463 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3464 
3465 /**
3466  * blk_post_runtime_suspend - Post runtime suspend processing
3467  * @q: the queue of the device
3468  * @err: return value of the device's runtime_suspend function
3469  *
3470  * Description:
3471  *    Update the queue's runtime status according to the return value of the
3472  *    device's runtime suspend function and mark last busy for the device so
3473  *    that PM core will try to auto suspend the device at a later time.
3474  *
3475  *    This function should be called near the end of the device's
3476  *    runtime_suspend callback.
3477  */
blk_post_runtime_suspend(struct request_queue * q,int err)3478 void blk_post_runtime_suspend(struct request_queue *q, int err)
3479 {
3480 	if (!q->dev)
3481 		return;
3482 
3483 	spin_lock_irq(q->queue_lock);
3484 	if (!err) {
3485 		q->rpm_status = RPM_SUSPENDED;
3486 	} else {
3487 		q->rpm_status = RPM_ACTIVE;
3488 		pm_runtime_mark_last_busy(q->dev);
3489 	}
3490 	spin_unlock_irq(q->queue_lock);
3491 }
3492 EXPORT_SYMBOL(blk_post_runtime_suspend);
3493 
3494 /**
3495  * blk_pre_runtime_resume - Pre runtime resume processing
3496  * @q: the queue of the device
3497  *
3498  * Description:
3499  *    Update the queue's runtime status to RESUMING in preparation for the
3500  *    runtime resume of the device.
3501  *
3502  *    This function should be called near the start of the device's
3503  *    runtime_resume callback.
3504  */
blk_pre_runtime_resume(struct request_queue * q)3505 void blk_pre_runtime_resume(struct request_queue *q)
3506 {
3507 	if (!q->dev)
3508 		return;
3509 
3510 	spin_lock_irq(q->queue_lock);
3511 	q->rpm_status = RPM_RESUMING;
3512 	spin_unlock_irq(q->queue_lock);
3513 }
3514 EXPORT_SYMBOL(blk_pre_runtime_resume);
3515 
3516 /**
3517  * blk_post_runtime_resume - Post runtime resume processing
3518  * @q: the queue of the device
3519  * @err: return value of the device's runtime_resume function
3520  *
3521  * Description:
3522  *    Update the queue's runtime status according to the return value of the
3523  *    device's runtime_resume function. If it is successfully resumed, process
3524  *    the requests that are queued into the device's queue when it is resuming
3525  *    and then mark last busy and initiate autosuspend for it.
3526  *
3527  *    This function should be called near the end of the device's
3528  *    runtime_resume callback.
3529  */
blk_post_runtime_resume(struct request_queue * q,int err)3530 void blk_post_runtime_resume(struct request_queue *q, int err)
3531 {
3532 	if (!q->dev)
3533 		return;
3534 
3535 	spin_lock_irq(q->queue_lock);
3536 	if (!err) {
3537 		q->rpm_status = RPM_ACTIVE;
3538 		__blk_run_queue(q);
3539 		pm_runtime_mark_last_busy(q->dev);
3540 		pm_request_autosuspend(q->dev);
3541 	} else {
3542 		q->rpm_status = RPM_SUSPENDED;
3543 	}
3544 	spin_unlock_irq(q->queue_lock);
3545 }
3546 EXPORT_SYMBOL(blk_post_runtime_resume);
3547 #endif
3548 
blk_dev_init(void)3549 int __init blk_dev_init(void)
3550 {
3551 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3552 			FIELD_SIZEOF(struct request, cmd_flags));
3553 
3554 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3555 	kblockd_workqueue = alloc_workqueue("kblockd",
3556 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3557 	if (!kblockd_workqueue)
3558 		panic("Failed to create kblockd\n");
3559 
3560 	request_cachep = kmem_cache_create("blkdev_requests",
3561 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3562 
3563 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3564 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3565 
3566 	return 0;
3567 }
3568 
3569 /*
3570  * Blk IO latency support. We want this to be as cheap as possible, so doing
3571  * this lockless (and avoiding atomics), a few off by a few errors in this
3572  * code is not harmful, and we don't want to do anything that is
3573  * perf-impactful.
3574  * TODO : If necessary, we can make the histograms per-cpu and aggregate
3575  * them when printing them out.
3576  */
3577 ssize_t
blk_latency_hist_show(char * name,struct io_latency_state * s,char * buf,int buf_size)3578 blk_latency_hist_show(char* name, struct io_latency_state *s, char *buf,
3579 		int buf_size)
3580 {
3581 	int i;
3582 	int bytes_written = 0;
3583 	u_int64_t num_elem, elem;
3584 	int pct;
3585 	u_int64_t average;
3586 
3587        num_elem = s->latency_elems;
3588        if (num_elem > 0) {
3589 	       average = div64_u64(s->latency_sum, s->latency_elems);
3590 	       bytes_written += scnprintf(buf + bytes_written,
3591 			       buf_size - bytes_written,
3592 			       "IO svc_time %s Latency Histogram (n = %llu,"
3593 			       " average = %llu):\n", name, num_elem, average);
3594 	       for (i = 0;
3595 		    i < ARRAY_SIZE(latency_x_axis_us);
3596 		    i++) {
3597 		       elem = s->latency_y_axis[i];
3598 		       pct = div64_u64(elem * 100, num_elem);
3599 		       bytes_written += scnprintf(buf + bytes_written,
3600 				       PAGE_SIZE - bytes_written,
3601 				       "\t< %6lluus%15llu%15d%%\n",
3602 				       latency_x_axis_us[i],
3603 				       elem, pct);
3604 	       }
3605 	       /* Last element in y-axis table is overflow */
3606 	       elem = s->latency_y_axis[i];
3607 	       pct = div64_u64(elem * 100, num_elem);
3608 	       bytes_written += scnprintf(buf + bytes_written,
3609 			       PAGE_SIZE - bytes_written,
3610 			       "\t>=%6lluus%15llu%15d%%\n",
3611 			       latency_x_axis_us[i - 1], elem, pct);
3612 	}
3613 
3614 	return bytes_written;
3615 }
3616 EXPORT_SYMBOL(blk_latency_hist_show);
3617