1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
kretprobe_table_lock_ptr(unsigned long hash)84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
98 */
99 struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
106 };
107
108 #define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
111
slots_per_page(struct kprobe_insn_cache * c)112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116
117 enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
121 };
122
alloc_insn_page(void)123 static void *alloc_insn_page(void)
124 {
125 return module_alloc(PAGE_SIZE);
126 }
127
free_insn_page(void * page)128 void __weak free_insn_page(void *page)
129 {
130 module_memfree(page);
131 }
132
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
146 */
__get_insn_slot(struct kprobe_insn_cache * c)147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
151
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
174
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
179
180 /*
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
184 */
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
189 }
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198 out:
199 mutex_unlock(&c->mutex);
200 return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return 1;
221 }
222 return 0;
223 }
224
collect_garbage_slots(struct kprobe_insn_cache * c)225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 struct kprobe_insn_page *kip, *next;
228
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
231
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
241 }
242 }
243 c->nr_garbage = 0;
244 return 0;
245 }
246
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
249 {
250 struct kprobe_insn_page *kip;
251
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
266 }
267 }
268 /* Could not free this slot. */
269 WARN_ON(1);
270 out:
271 mutex_unlock(&c->mutex);
272 }
273
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
283 };
284 #endif
285 #endif
286
287 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 __this_cpu_write(kprobe_instance, kp);
291 }
292
reset_kprobe_instance(void)293 static inline void reset_kprobe_instance(void)
294 {
295 __this_cpu_write(kprobe_instance, NULL);
296 }
297
298 /*
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
303 */
get_kprobe(void * addr)304 struct kprobe *get_kprobe(void *addr)
305 {
306 struct hlist_head *head;
307 struct kprobe *p;
308
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
313 }
314
315 return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 return p->pre_handler == aggr_pre_handler;
325 }
326
327 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
332 }
333
334 /*
335 * Keep all fields in the kprobe consistent
336 */
copy_kprobe(struct kprobe * ap,struct kprobe * p)337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346
347 /*
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
350 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 struct kprobe *kp;
354
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
359 }
360 reset_kprobe_instance();
361 }
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364
365 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 struct optimized_kprobe *op;
369
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
374 }
375
376 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 struct optimized_kprobe *op;
380
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
384 }
385
386 return 0;
387 }
388
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 struct optimized_kprobe *op;
393
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
397
398 op = container_of(p, struct optimized_kprobe, kp);
399
400 return kprobe_disabled(p) && list_empty(&op->list);
401 }
402
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)404 static int kprobe_queued(struct kprobe *p)
405 {
406 struct optimized_kprobe *op;
407
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
412 }
413 return 0;
414 }
415
416 /*
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
419 */
get_optimized_kprobe(unsigned long addr)420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
425
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
429
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
434 }
435
436 return NULL;
437 }
438
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447
448 /*
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
451 */
do_optimize_kprobes(void)452 static void do_optimize_kprobes(void)
453 {
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
458
459 /*
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
468 */
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
474 }
475
476 /*
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
479 */
do_unoptimize_kprobes(void)480 static void do_unoptimize_kprobes(void)
481 {
482 struct optimized_kprobe *op, *tmp;
483
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
487
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
498 /*
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
502 */
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
506 }
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
509 }
510
511 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)512 static void do_free_cleaned_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 list_del_init(&op->list);
518 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
519 /*
520 * This must not happen, but if there is a kprobe
521 * still in use, keep it on kprobes hash list.
522 */
523 continue;
524 }
525 free_aggr_kprobe(&op->kp);
526 }
527 }
528
529 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)530 static void kick_kprobe_optimizer(void)
531 {
532 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
533 }
534
535 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)536 static void kprobe_optimizer(struct work_struct *work)
537 {
538 mutex_lock(&kprobe_mutex);
539 /* Lock modules while optimizing kprobes */
540 mutex_lock(&module_mutex);
541
542 /*
543 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
544 * kprobes before waiting for quiesence period.
545 */
546 do_unoptimize_kprobes();
547
548 /*
549 * Step 2: Wait for quiesence period to ensure all running interrupts
550 * are done. Because optprobe may modify multiple instructions
551 * there is a chance that Nth instruction is interrupted. In that
552 * case, running interrupt can return to 2nd-Nth byte of jump
553 * instruction. This wait is for avoiding it.
554 */
555 synchronize_sched();
556
557 /* Step 3: Optimize kprobes after quiesence period */
558 do_optimize_kprobes();
559
560 /* Step 4: Free cleaned kprobes after quiesence period */
561 do_free_cleaned_kprobes();
562
563 mutex_unlock(&module_mutex);
564
565 /* Step 5: Kick optimizer again if needed */
566 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
567 kick_kprobe_optimizer();
568
569 mutex_unlock(&kprobe_mutex);
570 }
571
572 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)573 void wait_for_kprobe_optimizer(void)
574 {
575 mutex_lock(&kprobe_mutex);
576
577 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
578 mutex_unlock(&kprobe_mutex);
579
580 /* this will also make optimizing_work execute immmediately */
581 flush_delayed_work(&optimizing_work);
582 /* @optimizing_work might not have been queued yet, relax */
583 cpu_relax();
584
585 mutex_lock(&kprobe_mutex);
586 }
587
588 mutex_unlock(&kprobe_mutex);
589 }
590
591 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)592 static void optimize_kprobe(struct kprobe *p)
593 {
594 struct optimized_kprobe *op;
595
596 /* Check if the kprobe is disabled or not ready for optimization. */
597 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
598 (kprobe_disabled(p) || kprobes_all_disarmed))
599 return;
600
601 /* Both of break_handler and post_handler are not supported. */
602 if (p->break_handler || p->post_handler)
603 return;
604
605 op = container_of(p, struct optimized_kprobe, kp);
606
607 /* Check there is no other kprobes at the optimized instructions */
608 if (arch_check_optimized_kprobe(op) < 0)
609 return;
610
611 /* Check if it is already optimized. */
612 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
613 return;
614 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
615
616 if (!list_empty(&op->list))
617 /* This is under unoptimizing. Just dequeue the probe */
618 list_del_init(&op->list);
619 else {
620 list_add(&op->list, &optimizing_list);
621 kick_kprobe_optimizer();
622 }
623 }
624
625 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)626 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
627 {
628 get_online_cpus();
629 arch_unoptimize_kprobe(op);
630 put_online_cpus();
631 if (kprobe_disabled(&op->kp))
632 arch_disarm_kprobe(&op->kp);
633 }
634
635 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)636 static void unoptimize_kprobe(struct kprobe *p, bool force)
637 {
638 struct optimized_kprobe *op;
639
640 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
641 return; /* This is not an optprobe nor optimized */
642
643 op = container_of(p, struct optimized_kprobe, kp);
644 if (!kprobe_optimized(p)) {
645 /* Unoptimized or unoptimizing case */
646 if (force && !list_empty(&op->list)) {
647 /*
648 * Only if this is unoptimizing kprobe and forced,
649 * forcibly unoptimize it. (No need to unoptimize
650 * unoptimized kprobe again :)
651 */
652 list_del_init(&op->list);
653 force_unoptimize_kprobe(op);
654 }
655 return;
656 }
657
658 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
659 if (!list_empty(&op->list)) {
660 /* Dequeue from the optimization queue */
661 list_del_init(&op->list);
662 return;
663 }
664 /* Optimized kprobe case */
665 if (force)
666 /* Forcibly update the code: this is a special case */
667 force_unoptimize_kprobe(op);
668 else {
669 list_add(&op->list, &unoptimizing_list);
670 kick_kprobe_optimizer();
671 }
672 }
673
674 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)675 static int reuse_unused_kprobe(struct kprobe *ap)
676 {
677 struct optimized_kprobe *op;
678
679 BUG_ON(!kprobe_unused(ap));
680 /*
681 * Unused kprobe MUST be on the way of delayed unoptimizing (means
682 * there is still a relative jump) and disabled.
683 */
684 op = container_of(ap, struct optimized_kprobe, kp);
685 if (unlikely(list_empty(&op->list)))
686 printk(KERN_WARNING "Warning: found a stray unused "
687 "aggrprobe@%p\n", ap->addr);
688 /* Enable the probe again */
689 ap->flags &= ~KPROBE_FLAG_DISABLED;
690 /* Optimize it again (remove from op->list) */
691 if (!kprobe_optready(ap))
692 return -EINVAL;
693
694 optimize_kprobe(ap);
695 return 0;
696 }
697
698 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)699 static void kill_optimized_kprobe(struct kprobe *p)
700 {
701 struct optimized_kprobe *op;
702
703 op = container_of(p, struct optimized_kprobe, kp);
704 if (!list_empty(&op->list))
705 /* Dequeue from the (un)optimization queue */
706 list_del_init(&op->list);
707 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
708
709 if (kprobe_unused(p)) {
710 /* Enqueue if it is unused */
711 list_add(&op->list, &freeing_list);
712 /*
713 * Remove unused probes from the hash list. After waiting
714 * for synchronization, this probe is reclaimed.
715 * (reclaiming is done by do_free_cleaned_kprobes().)
716 */
717 hlist_del_rcu(&op->kp.hlist);
718 }
719
720 /* Don't touch the code, because it is already freed. */
721 arch_remove_optimized_kprobe(op);
722 }
723
724 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)725 static void prepare_optimized_kprobe(struct kprobe *p)
726 {
727 struct optimized_kprobe *op;
728
729 op = container_of(p, struct optimized_kprobe, kp);
730 arch_prepare_optimized_kprobe(op, p);
731 }
732
733 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)734 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
735 {
736 struct optimized_kprobe *op;
737
738 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
739 if (!op)
740 return NULL;
741
742 INIT_LIST_HEAD(&op->list);
743 op->kp.addr = p->addr;
744 arch_prepare_optimized_kprobe(op, p);
745
746 return &op->kp;
747 }
748
749 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
750
751 /*
752 * Prepare an optimized_kprobe and optimize it
753 * NOTE: p must be a normal registered kprobe
754 */
try_to_optimize_kprobe(struct kprobe * p)755 static void try_to_optimize_kprobe(struct kprobe *p)
756 {
757 struct kprobe *ap;
758 struct optimized_kprobe *op;
759
760 /* Impossible to optimize ftrace-based kprobe */
761 if (kprobe_ftrace(p))
762 return;
763
764 /* For preparing optimization, jump_label_text_reserved() is called */
765 jump_label_lock();
766 mutex_lock(&text_mutex);
767
768 ap = alloc_aggr_kprobe(p);
769 if (!ap)
770 goto out;
771
772 op = container_of(ap, struct optimized_kprobe, kp);
773 if (!arch_prepared_optinsn(&op->optinsn)) {
774 /* If failed to setup optimizing, fallback to kprobe */
775 arch_remove_optimized_kprobe(op);
776 kfree(op);
777 goto out;
778 }
779
780 init_aggr_kprobe(ap, p);
781 optimize_kprobe(ap); /* This just kicks optimizer thread */
782
783 out:
784 mutex_unlock(&text_mutex);
785 jump_label_unlock();
786 }
787
788 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)789 static void optimize_all_kprobes(void)
790 {
791 struct hlist_head *head;
792 struct kprobe *p;
793 unsigned int i;
794
795 mutex_lock(&kprobe_mutex);
796 /* If optimization is already allowed, just return */
797 if (kprobes_allow_optimization)
798 goto out;
799
800 kprobes_allow_optimization = true;
801 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
802 head = &kprobe_table[i];
803 hlist_for_each_entry_rcu(p, head, hlist)
804 if (!kprobe_disabled(p))
805 optimize_kprobe(p);
806 }
807 printk(KERN_INFO "Kprobes globally optimized\n");
808 out:
809 mutex_unlock(&kprobe_mutex);
810 }
811
unoptimize_all_kprobes(void)812 static void unoptimize_all_kprobes(void)
813 {
814 struct hlist_head *head;
815 struct kprobe *p;
816 unsigned int i;
817
818 mutex_lock(&kprobe_mutex);
819 /* If optimization is already prohibited, just return */
820 if (!kprobes_allow_optimization) {
821 mutex_unlock(&kprobe_mutex);
822 return;
823 }
824
825 kprobes_allow_optimization = false;
826 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827 head = &kprobe_table[i];
828 hlist_for_each_entry_rcu(p, head, hlist) {
829 if (!kprobe_disabled(p))
830 unoptimize_kprobe(p, false);
831 }
832 }
833 mutex_unlock(&kprobe_mutex);
834
835 /* Wait for unoptimizing completion */
836 wait_for_kprobe_optimizer();
837 printk(KERN_INFO "Kprobes globally unoptimized\n");
838 }
839
840 static DEFINE_MUTEX(kprobe_sysctl_mutex);
841 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)842 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
843 void __user *buffer, size_t *length,
844 loff_t *ppos)
845 {
846 int ret;
847
848 mutex_lock(&kprobe_sysctl_mutex);
849 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
850 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
851
852 if (sysctl_kprobes_optimization)
853 optimize_all_kprobes();
854 else
855 unoptimize_all_kprobes();
856 mutex_unlock(&kprobe_sysctl_mutex);
857
858 return ret;
859 }
860 #endif /* CONFIG_SYSCTL */
861
862 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)863 static void __arm_kprobe(struct kprobe *p)
864 {
865 struct kprobe *_p;
866
867 /* Check collision with other optimized kprobes */
868 _p = get_optimized_kprobe((unsigned long)p->addr);
869 if (unlikely(_p))
870 /* Fallback to unoptimized kprobe */
871 unoptimize_kprobe(_p, true);
872
873 arch_arm_kprobe(p);
874 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
875 }
876
877 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)878 static void __disarm_kprobe(struct kprobe *p, bool reopt)
879 {
880 struct kprobe *_p;
881
882 /* Try to unoptimize */
883 unoptimize_kprobe(p, kprobes_all_disarmed);
884
885 if (!kprobe_queued(p)) {
886 arch_disarm_kprobe(p);
887 /* If another kprobe was blocked, optimize it. */
888 _p = get_optimized_kprobe((unsigned long)p->addr);
889 if (unlikely(_p) && reopt)
890 optimize_kprobe(_p);
891 }
892 /* TODO: reoptimize others after unoptimized this probe */
893 }
894
895 #else /* !CONFIG_OPTPROBES */
896
897 #define optimize_kprobe(p) do {} while (0)
898 #define unoptimize_kprobe(p, f) do {} while (0)
899 #define kill_optimized_kprobe(p) do {} while (0)
900 #define prepare_optimized_kprobe(p) do {} while (0)
901 #define try_to_optimize_kprobe(p) do {} while (0)
902 #define __arm_kprobe(p) arch_arm_kprobe(p)
903 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
904 #define kprobe_disarmed(p) kprobe_disabled(p)
905 #define wait_for_kprobe_optimizer() do {} while (0)
906
reuse_unused_kprobe(struct kprobe * ap)907 static int reuse_unused_kprobe(struct kprobe *ap)
908 {
909 /*
910 * If the optimized kprobe is NOT supported, the aggr kprobe is
911 * released at the same time that the last aggregated kprobe is
912 * unregistered.
913 * Thus there should be no chance to reuse unused kprobe.
914 */
915 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
916 return -EINVAL;
917 }
918
free_aggr_kprobe(struct kprobe * p)919 static void free_aggr_kprobe(struct kprobe *p)
920 {
921 arch_remove_kprobe(p);
922 kfree(p);
923 }
924
alloc_aggr_kprobe(struct kprobe * p)925 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
926 {
927 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
928 }
929 #endif /* CONFIG_OPTPROBES */
930
931 #ifdef CONFIG_KPROBES_ON_FTRACE
932 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
933 .func = kprobe_ftrace_handler,
934 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
935 };
936 static int kprobe_ftrace_enabled;
937
938 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)939 static int prepare_kprobe(struct kprobe *p)
940 {
941 if (!kprobe_ftrace(p))
942 return arch_prepare_kprobe(p);
943
944 return arch_prepare_kprobe_ftrace(p);
945 }
946
947 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)948 static void arm_kprobe_ftrace(struct kprobe *p)
949 {
950 int ret;
951
952 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
953 (unsigned long)p->addr, 0, 0);
954 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
955 kprobe_ftrace_enabled++;
956 if (kprobe_ftrace_enabled == 1) {
957 ret = register_ftrace_function(&kprobe_ftrace_ops);
958 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
959 }
960 }
961
962 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)963 static void disarm_kprobe_ftrace(struct kprobe *p)
964 {
965 int ret;
966
967 kprobe_ftrace_enabled--;
968 if (kprobe_ftrace_enabled == 0) {
969 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
970 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
971 }
972 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
973 (unsigned long)p->addr, 1, 0);
974 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
975 }
976 #else /* !CONFIG_KPROBES_ON_FTRACE */
977 #define prepare_kprobe(p) arch_prepare_kprobe(p)
978 #define arm_kprobe_ftrace(p) do {} while (0)
979 #define disarm_kprobe_ftrace(p) do {} while (0)
980 #endif
981
982 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)983 static void arm_kprobe(struct kprobe *kp)
984 {
985 if (unlikely(kprobe_ftrace(kp))) {
986 arm_kprobe_ftrace(kp);
987 return;
988 }
989 /*
990 * Here, since __arm_kprobe() doesn't use stop_machine(),
991 * this doesn't cause deadlock on text_mutex. So, we don't
992 * need get_online_cpus().
993 */
994 mutex_lock(&text_mutex);
995 __arm_kprobe(kp);
996 mutex_unlock(&text_mutex);
997 }
998
999 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1000 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1001 {
1002 if (unlikely(kprobe_ftrace(kp))) {
1003 disarm_kprobe_ftrace(kp);
1004 return;
1005 }
1006 /* Ditto */
1007 mutex_lock(&text_mutex);
1008 __disarm_kprobe(kp, reopt);
1009 mutex_unlock(&text_mutex);
1010 }
1011
1012 /*
1013 * Aggregate handlers for multiple kprobes support - these handlers
1014 * take care of invoking the individual kprobe handlers on p->list
1015 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1016 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1017 {
1018 struct kprobe *kp;
1019
1020 list_for_each_entry_rcu(kp, &p->list, list) {
1021 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1022 set_kprobe_instance(kp);
1023 if (kp->pre_handler(kp, regs))
1024 return 1;
1025 }
1026 reset_kprobe_instance();
1027 }
1028 return 0;
1029 }
1030 NOKPROBE_SYMBOL(aggr_pre_handler);
1031
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1032 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1033 unsigned long flags)
1034 {
1035 struct kprobe *kp;
1036
1037 list_for_each_entry_rcu(kp, &p->list, list) {
1038 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1039 set_kprobe_instance(kp);
1040 kp->post_handler(kp, regs, flags);
1041 reset_kprobe_instance();
1042 }
1043 }
1044 }
1045 NOKPROBE_SYMBOL(aggr_post_handler);
1046
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1047 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1048 int trapnr)
1049 {
1050 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051
1052 /*
1053 * if we faulted "during" the execution of a user specified
1054 * probe handler, invoke just that probe's fault handler
1055 */
1056 if (cur && cur->fault_handler) {
1057 if (cur->fault_handler(cur, regs, trapnr))
1058 return 1;
1059 }
1060 return 0;
1061 }
1062 NOKPROBE_SYMBOL(aggr_fault_handler);
1063
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)1064 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1065 {
1066 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1067 int ret = 0;
1068
1069 if (cur && cur->break_handler) {
1070 if (cur->break_handler(cur, regs))
1071 ret = 1;
1072 }
1073 reset_kprobe_instance();
1074 return ret;
1075 }
1076 NOKPROBE_SYMBOL(aggr_break_handler);
1077
1078 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1079 void kprobes_inc_nmissed_count(struct kprobe *p)
1080 {
1081 struct kprobe *kp;
1082 if (!kprobe_aggrprobe(p)) {
1083 p->nmissed++;
1084 } else {
1085 list_for_each_entry_rcu(kp, &p->list, list)
1086 kp->nmissed++;
1087 }
1088 return;
1089 }
1090 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1091
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1092 void recycle_rp_inst(struct kretprobe_instance *ri,
1093 struct hlist_head *head)
1094 {
1095 struct kretprobe *rp = ri->rp;
1096
1097 /* remove rp inst off the rprobe_inst_table */
1098 hlist_del(&ri->hlist);
1099 INIT_HLIST_NODE(&ri->hlist);
1100 if (likely(rp)) {
1101 raw_spin_lock(&rp->lock);
1102 hlist_add_head(&ri->hlist, &rp->free_instances);
1103 raw_spin_unlock(&rp->lock);
1104 } else
1105 /* Unregistering */
1106 hlist_add_head(&ri->hlist, head);
1107 }
1108 NOKPROBE_SYMBOL(recycle_rp_inst);
1109
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1110 void kretprobe_hash_lock(struct task_struct *tsk,
1111 struct hlist_head **head, unsigned long *flags)
1112 __acquires(hlist_lock)
1113 {
1114 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1115 raw_spinlock_t *hlist_lock;
1116
1117 *head = &kretprobe_inst_table[hash];
1118 hlist_lock = kretprobe_table_lock_ptr(hash);
1119 raw_spin_lock_irqsave(hlist_lock, *flags);
1120 }
1121 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1122
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1123 static void kretprobe_table_lock(unsigned long hash,
1124 unsigned long *flags)
1125 __acquires(hlist_lock)
1126 {
1127 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1128 raw_spin_lock_irqsave(hlist_lock, *flags);
1129 }
1130 NOKPROBE_SYMBOL(kretprobe_table_lock);
1131
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1132 void kretprobe_hash_unlock(struct task_struct *tsk,
1133 unsigned long *flags)
1134 __releases(hlist_lock)
1135 {
1136 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1137 raw_spinlock_t *hlist_lock;
1138
1139 hlist_lock = kretprobe_table_lock_ptr(hash);
1140 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1141 }
1142 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1143
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1144 static void kretprobe_table_unlock(unsigned long hash,
1145 unsigned long *flags)
1146 __releases(hlist_lock)
1147 {
1148 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1149 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1152
1153 struct kprobe kprobe_busy = {
1154 .addr = (void *) get_kprobe,
1155 };
1156
kprobe_busy_begin(void)1157 void kprobe_busy_begin(void)
1158 {
1159 struct kprobe_ctlblk *kcb;
1160
1161 preempt_disable();
1162 __this_cpu_write(current_kprobe, &kprobe_busy);
1163 kcb = get_kprobe_ctlblk();
1164 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1165 }
1166
kprobe_busy_end(void)1167 void kprobe_busy_end(void)
1168 {
1169 __this_cpu_write(current_kprobe, NULL);
1170 preempt_enable();
1171 }
1172
1173 /*
1174 * This function is called from finish_task_switch when task tk becomes dead,
1175 * so that we can recycle any function-return probe instances associated
1176 * with this task. These left over instances represent probed functions
1177 * that have been called but will never return.
1178 */
kprobe_flush_task(struct task_struct * tk)1179 void kprobe_flush_task(struct task_struct *tk)
1180 {
1181 struct kretprobe_instance *ri;
1182 struct hlist_head *head, empty_rp;
1183 struct hlist_node *tmp;
1184 unsigned long hash, flags = 0;
1185
1186 if (unlikely(!kprobes_initialized))
1187 /* Early boot. kretprobe_table_locks not yet initialized. */
1188 return;
1189
1190 kprobe_busy_begin();
1191
1192 INIT_HLIST_HEAD(&empty_rp);
1193 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1194 head = &kretprobe_inst_table[hash];
1195 kretprobe_table_lock(hash, &flags);
1196 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1197 if (ri->task == tk)
1198 recycle_rp_inst(ri, &empty_rp);
1199 }
1200 kretprobe_table_unlock(hash, &flags);
1201 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1202 hlist_del(&ri->hlist);
1203 kfree(ri);
1204 }
1205
1206 kprobe_busy_end();
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209
free_rp_inst(struct kretprobe * rp)1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212 struct kretprobe_instance *ri;
1213 struct hlist_node *next;
1214
1215 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216 hlist_del(&ri->hlist);
1217 kfree(ri);
1218 }
1219 }
1220
cleanup_rp_inst(struct kretprobe * rp)1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223 unsigned long flags, hash;
1224 struct kretprobe_instance *ri;
1225 struct hlist_node *next;
1226 struct hlist_head *head;
1227
1228 /* No race here */
1229 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230 kretprobe_table_lock(hash, &flags);
1231 head = &kretprobe_inst_table[hash];
1232 hlist_for_each_entry_safe(ri, next, head, hlist) {
1233 if (ri->rp == rp)
1234 ri->rp = NULL;
1235 }
1236 kretprobe_table_unlock(hash, &flags);
1237 }
1238 free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249
1250 if (p->break_handler || p->post_handler)
1251 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1252
1253 if (p->break_handler) {
1254 if (ap->break_handler)
1255 return -EEXIST;
1256 list_add_tail_rcu(&p->list, &ap->list);
1257 ap->break_handler = aggr_break_handler;
1258 } else
1259 list_add_rcu(&p->list, &ap->list);
1260 if (p->post_handler && !ap->post_handler)
1261 ap->post_handler = aggr_post_handler;
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * Fill in the required fields of the "manager kprobe". Replace the
1268 * earlier kprobe in the hlist with the manager kprobe
1269 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272 /* Copy p's insn slot to ap */
1273 copy_kprobe(p, ap);
1274 flush_insn_slot(ap);
1275 ap->addr = p->addr;
1276 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277 ap->pre_handler = aggr_pre_handler;
1278 ap->fault_handler = aggr_fault_handler;
1279 /* We don't care the kprobe which has gone. */
1280 if (p->post_handler && !kprobe_gone(p))
1281 ap->post_handler = aggr_post_handler;
1282 if (p->break_handler && !kprobe_gone(p))
1283 ap->break_handler = aggr_break_handler;
1284
1285 INIT_LIST_HEAD(&ap->list);
1286 INIT_HLIST_NODE(&ap->hlist);
1287
1288 list_add_rcu(&p->list, &ap->list);
1289 hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291
1292 /*
1293 * This is the second or subsequent kprobe at the address - handle
1294 * the intricacies
1295 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298 int ret = 0;
1299 struct kprobe *ap = orig_p;
1300
1301 /* For preparing optimization, jump_label_text_reserved() is called */
1302 jump_label_lock();
1303 /*
1304 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306 */
1307 get_online_cpus();
1308 mutex_lock(&text_mutex);
1309
1310 if (!kprobe_aggrprobe(orig_p)) {
1311 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312 ap = alloc_aggr_kprobe(orig_p);
1313 if (!ap) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317 init_aggr_kprobe(ap, orig_p);
1318 } else if (kprobe_unused(ap)) {
1319 /* This probe is going to die. Rescue it */
1320 ret = reuse_unused_kprobe(ap);
1321 if (ret)
1322 goto out;
1323 }
1324
1325 if (kprobe_gone(ap)) {
1326 /*
1327 * Attempting to insert new probe at the same location that
1328 * had a probe in the module vaddr area which already
1329 * freed. So, the instruction slot has already been
1330 * released. We need a new slot for the new probe.
1331 */
1332 ret = arch_prepare_kprobe(ap);
1333 if (ret)
1334 /*
1335 * Even if fail to allocate new slot, don't need to
1336 * free aggr_probe. It will be used next time, or
1337 * freed by unregister_kprobe.
1338 */
1339 goto out;
1340
1341 /* Prepare optimized instructions if possible. */
1342 prepare_optimized_kprobe(ap);
1343
1344 /*
1345 * Clear gone flag to prevent allocating new slot again, and
1346 * set disabled flag because it is not armed yet.
1347 */
1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 | KPROBE_FLAG_DISABLED;
1350 }
1351
1352 /* Copy ap's insn slot to p */
1353 copy_kprobe(ap, p);
1354 ret = add_new_kprobe(ap, p);
1355
1356 out:
1357 mutex_unlock(&text_mutex);
1358 put_online_cpus();
1359 jump_label_unlock();
1360
1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 if (!kprobes_all_disarmed)
1364 /* Arm the breakpoint again. */
1365 arm_kprobe(ap);
1366 }
1367 return ret;
1368 }
1369
arch_within_kprobe_blacklist(unsigned long addr)1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372 /* The __kprobes marked functions and entry code must not be probed */
1373 return addr >= (unsigned long)__kprobes_text_start &&
1374 addr < (unsigned long)__kprobes_text_end;
1375 }
1376
within_kprobe_blacklist(unsigned long addr)1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379 struct kprobe_blacklist_entry *ent;
1380
1381 if (arch_within_kprobe_blacklist(addr))
1382 return true;
1383 /*
1384 * If there exists a kprobe_blacklist, verify and
1385 * fail any probe registration in the prohibited area
1386 */
1387 list_for_each_entry(ent, &kprobe_blacklist, list) {
1388 if (addr >= ent->start_addr && addr < ent->end_addr)
1389 return true;
1390 }
1391
1392 return false;
1393 }
1394
1395 /*
1396 * If we have a symbol_name argument, look it up and add the offset field
1397 * to it. This way, we can specify a relative address to a symbol.
1398 * This returns encoded errors if it fails to look up symbol or invalid
1399 * combination of parameters.
1400 */
kprobe_addr(struct kprobe * p)1401 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1402 {
1403 kprobe_opcode_t *addr = p->addr;
1404
1405 if ((p->symbol_name && p->addr) ||
1406 (!p->symbol_name && !p->addr))
1407 goto invalid;
1408
1409 if (p->symbol_name) {
1410 kprobe_lookup_name(p->symbol_name, addr);
1411 if (!addr)
1412 return ERR_PTR(-ENOENT);
1413 }
1414
1415 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1416 if (addr)
1417 return addr;
1418
1419 invalid:
1420 return ERR_PTR(-EINVAL);
1421 }
1422
1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425 {
1426 struct kprobe *ap, *list_p;
1427
1428 ap = get_kprobe(p->addr);
1429 if (unlikely(!ap))
1430 return NULL;
1431
1432 if (p != ap) {
1433 list_for_each_entry_rcu(list_p, &ap->list, list)
1434 if (list_p == p)
1435 /* kprobe p is a valid probe */
1436 goto valid;
1437 return NULL;
1438 }
1439 valid:
1440 return ap;
1441 }
1442
1443 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1444 static inline int check_kprobe_rereg(struct kprobe *p)
1445 {
1446 int ret = 0;
1447
1448 mutex_lock(&kprobe_mutex);
1449 if (__get_valid_kprobe(p))
1450 ret = -EINVAL;
1451 mutex_unlock(&kprobe_mutex);
1452
1453 return ret;
1454 }
1455
arch_check_ftrace_location(struct kprobe * p)1456 int __weak arch_check_ftrace_location(struct kprobe *p)
1457 {
1458 unsigned long ftrace_addr;
1459
1460 ftrace_addr = ftrace_location((unsigned long)p->addr);
1461 if (ftrace_addr) {
1462 #ifdef CONFIG_KPROBES_ON_FTRACE
1463 /* Given address is not on the instruction boundary */
1464 if ((unsigned long)p->addr != ftrace_addr)
1465 return -EILSEQ;
1466 p->flags |= KPROBE_FLAG_FTRACE;
1467 #else /* !CONFIG_KPROBES_ON_FTRACE */
1468 return -EINVAL;
1469 #endif
1470 }
1471 return 0;
1472 }
1473
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1474 static int check_kprobe_address_safe(struct kprobe *p,
1475 struct module **probed_mod)
1476 {
1477 int ret;
1478
1479 ret = arch_check_ftrace_location(p);
1480 if (ret)
1481 return ret;
1482 jump_label_lock();
1483 preempt_disable();
1484
1485 /* Ensure it is not in reserved area nor out of text */
1486 if (!kernel_text_address((unsigned long) p->addr) ||
1487 within_kprobe_blacklist((unsigned long) p->addr) ||
1488 jump_label_text_reserved(p->addr, p->addr) ||
1489 find_bug((unsigned long)p->addr)) {
1490 ret = -EINVAL;
1491 goto out;
1492 }
1493
1494 /* Check if are we probing a module */
1495 *probed_mod = __module_text_address((unsigned long) p->addr);
1496 if (*probed_mod) {
1497 /*
1498 * We must hold a refcount of the probed module while updating
1499 * its code to prohibit unexpected unloading.
1500 */
1501 if (unlikely(!try_module_get(*probed_mod))) {
1502 ret = -ENOENT;
1503 goto out;
1504 }
1505
1506 /*
1507 * If the module freed .init.text, we couldn't insert
1508 * kprobes in there.
1509 */
1510 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1511 (*probed_mod)->state != MODULE_STATE_COMING) {
1512 module_put(*probed_mod);
1513 *probed_mod = NULL;
1514 ret = -ENOENT;
1515 }
1516 }
1517 out:
1518 preempt_enable();
1519 jump_label_unlock();
1520
1521 return ret;
1522 }
1523
register_kprobe(struct kprobe * p)1524 int register_kprobe(struct kprobe *p)
1525 {
1526 int ret;
1527 struct kprobe *old_p;
1528 struct module *probed_mod;
1529 kprobe_opcode_t *addr;
1530
1531 /* Adjust probe address from symbol */
1532 addr = kprobe_addr(p);
1533 if (IS_ERR(addr))
1534 return PTR_ERR(addr);
1535 p->addr = addr;
1536
1537 ret = check_kprobe_rereg(p);
1538 if (ret)
1539 return ret;
1540
1541 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1542 p->flags &= KPROBE_FLAG_DISABLED;
1543 p->nmissed = 0;
1544 INIT_LIST_HEAD(&p->list);
1545
1546 ret = check_kprobe_address_safe(p, &probed_mod);
1547 if (ret)
1548 return ret;
1549
1550 mutex_lock(&kprobe_mutex);
1551
1552 old_p = get_kprobe(p->addr);
1553 if (old_p) {
1554 /* Since this may unoptimize old_p, locking text_mutex. */
1555 ret = register_aggr_kprobe(old_p, p);
1556 goto out;
1557 }
1558
1559 mutex_lock(&text_mutex); /* Avoiding text modification */
1560 ret = prepare_kprobe(p);
1561 mutex_unlock(&text_mutex);
1562 if (ret)
1563 goto out;
1564
1565 INIT_HLIST_NODE(&p->hlist);
1566 hlist_add_head_rcu(&p->hlist,
1567 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1568
1569 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1570 arm_kprobe(p);
1571
1572 /* Try to optimize kprobe */
1573 try_to_optimize_kprobe(p);
1574
1575 out:
1576 mutex_unlock(&kprobe_mutex);
1577
1578 if (probed_mod)
1579 module_put(probed_mod);
1580
1581 return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(register_kprobe);
1584
1585 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1586 static int aggr_kprobe_disabled(struct kprobe *ap)
1587 {
1588 struct kprobe *kp;
1589
1590 list_for_each_entry_rcu(kp, &ap->list, list)
1591 if (!kprobe_disabled(kp))
1592 /*
1593 * There is an active probe on the list.
1594 * We can't disable this ap.
1595 */
1596 return 0;
1597
1598 return 1;
1599 }
1600
1601 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1602 static struct kprobe *__disable_kprobe(struct kprobe *p)
1603 {
1604 struct kprobe *orig_p;
1605
1606 /* Get an original kprobe for return */
1607 orig_p = __get_valid_kprobe(p);
1608 if (unlikely(orig_p == NULL))
1609 return NULL;
1610
1611 if (!kprobe_disabled(p)) {
1612 /* Disable probe if it is a child probe */
1613 if (p != orig_p)
1614 p->flags |= KPROBE_FLAG_DISABLED;
1615
1616 /* Try to disarm and disable this/parent probe */
1617 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1618 /*
1619 * If kprobes_all_disarmed is set, orig_p
1620 * should have already been disarmed, so
1621 * skip unneed disarming process.
1622 */
1623 if (!kprobes_all_disarmed)
1624 disarm_kprobe(orig_p, true);
1625 orig_p->flags |= KPROBE_FLAG_DISABLED;
1626 }
1627 }
1628
1629 return orig_p;
1630 }
1631
1632 /*
1633 * Unregister a kprobe without a scheduler synchronization.
1634 */
__unregister_kprobe_top(struct kprobe * p)1635 static int __unregister_kprobe_top(struct kprobe *p)
1636 {
1637 struct kprobe *ap, *list_p;
1638
1639 /* Disable kprobe. This will disarm it if needed. */
1640 ap = __disable_kprobe(p);
1641 if (ap == NULL)
1642 return -EINVAL;
1643
1644 if (ap == p)
1645 /*
1646 * This probe is an independent(and non-optimized) kprobe
1647 * (not an aggrprobe). Remove from the hash list.
1648 */
1649 goto disarmed;
1650
1651 /* Following process expects this probe is an aggrprobe */
1652 WARN_ON(!kprobe_aggrprobe(ap));
1653
1654 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1655 /*
1656 * !disarmed could be happen if the probe is under delayed
1657 * unoptimizing.
1658 */
1659 goto disarmed;
1660 else {
1661 /* If disabling probe has special handlers, update aggrprobe */
1662 if (p->break_handler && !kprobe_gone(p))
1663 ap->break_handler = NULL;
1664 if (p->post_handler && !kprobe_gone(p)) {
1665 list_for_each_entry_rcu(list_p, &ap->list, list) {
1666 if ((list_p != p) && (list_p->post_handler))
1667 goto noclean;
1668 }
1669 ap->post_handler = NULL;
1670 }
1671 noclean:
1672 /*
1673 * Remove from the aggrprobe: this path will do nothing in
1674 * __unregister_kprobe_bottom().
1675 */
1676 list_del_rcu(&p->list);
1677 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1678 /*
1679 * Try to optimize this probe again, because post
1680 * handler may have been changed.
1681 */
1682 optimize_kprobe(ap);
1683 }
1684 return 0;
1685
1686 disarmed:
1687 BUG_ON(!kprobe_disarmed(ap));
1688 hlist_del_rcu(&ap->hlist);
1689 return 0;
1690 }
1691
__unregister_kprobe_bottom(struct kprobe * p)1692 static void __unregister_kprobe_bottom(struct kprobe *p)
1693 {
1694 struct kprobe *ap;
1695
1696 if (list_empty(&p->list))
1697 /* This is an independent kprobe */
1698 arch_remove_kprobe(p);
1699 else if (list_is_singular(&p->list)) {
1700 /* This is the last child of an aggrprobe */
1701 ap = list_entry(p->list.next, struct kprobe, list);
1702 list_del(&p->list);
1703 free_aggr_kprobe(ap);
1704 }
1705 /* Otherwise, do nothing. */
1706 }
1707
register_kprobes(struct kprobe ** kps,int num)1708 int register_kprobes(struct kprobe **kps, int num)
1709 {
1710 int i, ret = 0;
1711
1712 if (num <= 0)
1713 return -EINVAL;
1714 for (i = 0; i < num; i++) {
1715 ret = register_kprobe(kps[i]);
1716 if (ret < 0) {
1717 if (i > 0)
1718 unregister_kprobes(kps, i);
1719 break;
1720 }
1721 }
1722 return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(register_kprobes);
1725
unregister_kprobe(struct kprobe * p)1726 void unregister_kprobe(struct kprobe *p)
1727 {
1728 unregister_kprobes(&p, 1);
1729 }
1730 EXPORT_SYMBOL_GPL(unregister_kprobe);
1731
unregister_kprobes(struct kprobe ** kps,int num)1732 void unregister_kprobes(struct kprobe **kps, int num)
1733 {
1734 int i;
1735
1736 if (num <= 0)
1737 return;
1738 mutex_lock(&kprobe_mutex);
1739 for (i = 0; i < num; i++)
1740 if (__unregister_kprobe_top(kps[i]) < 0)
1741 kps[i]->addr = NULL;
1742 mutex_unlock(&kprobe_mutex);
1743
1744 synchronize_sched();
1745 for (i = 0; i < num; i++)
1746 if (kps[i]->addr)
1747 __unregister_kprobe_bottom(kps[i]);
1748 }
1749 EXPORT_SYMBOL_GPL(unregister_kprobes);
1750
1751 static struct notifier_block kprobe_exceptions_nb = {
1752 .notifier_call = kprobe_exceptions_notify,
1753 .priority = 0x7fffffff /* we need to be notified first */
1754 };
1755
arch_deref_entry_point(void * entry)1756 unsigned long __weak arch_deref_entry_point(void *entry)
1757 {
1758 return (unsigned long)entry;
1759 }
1760
register_jprobes(struct jprobe ** jps,int num)1761 int register_jprobes(struct jprobe **jps, int num)
1762 {
1763 struct jprobe *jp;
1764 int ret = 0, i;
1765
1766 if (num <= 0)
1767 return -EINVAL;
1768 for (i = 0; i < num; i++) {
1769 unsigned long addr, offset;
1770 jp = jps[i];
1771 addr = arch_deref_entry_point(jp->entry);
1772
1773 /* Verify probepoint is a function entry point */
1774 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1775 offset == 0) {
1776 jp->kp.pre_handler = setjmp_pre_handler;
1777 jp->kp.break_handler = longjmp_break_handler;
1778 ret = register_kprobe(&jp->kp);
1779 } else
1780 ret = -EINVAL;
1781
1782 if (ret < 0) {
1783 if (i > 0)
1784 unregister_jprobes(jps, i);
1785 break;
1786 }
1787 }
1788 return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(register_jprobes);
1791
register_jprobe(struct jprobe * jp)1792 int register_jprobe(struct jprobe *jp)
1793 {
1794 return register_jprobes(&jp, 1);
1795 }
1796 EXPORT_SYMBOL_GPL(register_jprobe);
1797
unregister_jprobe(struct jprobe * jp)1798 void unregister_jprobe(struct jprobe *jp)
1799 {
1800 unregister_jprobes(&jp, 1);
1801 }
1802 EXPORT_SYMBOL_GPL(unregister_jprobe);
1803
unregister_jprobes(struct jprobe ** jps,int num)1804 void unregister_jprobes(struct jprobe **jps, int num)
1805 {
1806 int i;
1807
1808 if (num <= 0)
1809 return;
1810 mutex_lock(&kprobe_mutex);
1811 for (i = 0; i < num; i++)
1812 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1813 jps[i]->kp.addr = NULL;
1814 mutex_unlock(&kprobe_mutex);
1815
1816 synchronize_sched();
1817 for (i = 0; i < num; i++) {
1818 if (jps[i]->kp.addr)
1819 __unregister_kprobe_bottom(&jps[i]->kp);
1820 }
1821 }
1822 EXPORT_SYMBOL_GPL(unregister_jprobes);
1823
1824 #ifdef CONFIG_KRETPROBES
1825 /*
1826 * This kprobe pre_handler is registered with every kretprobe. When probe
1827 * hits it will set up the return probe.
1828 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1829 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1830 {
1831 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1832 unsigned long hash, flags = 0;
1833 struct kretprobe_instance *ri;
1834
1835 /*
1836 * To avoid deadlocks, prohibit return probing in NMI contexts,
1837 * just skip the probe and increase the (inexact) 'nmissed'
1838 * statistical counter, so that the user is informed that
1839 * something happened:
1840 */
1841 if (unlikely(in_nmi())) {
1842 rp->nmissed++;
1843 return 0;
1844 }
1845
1846 /* TODO: consider to only swap the RA after the last pre_handler fired */
1847 hash = hash_ptr(current, KPROBE_HASH_BITS);
1848 raw_spin_lock_irqsave(&rp->lock, flags);
1849 if (!hlist_empty(&rp->free_instances)) {
1850 ri = hlist_entry(rp->free_instances.first,
1851 struct kretprobe_instance, hlist);
1852 hlist_del(&ri->hlist);
1853 raw_spin_unlock_irqrestore(&rp->lock, flags);
1854
1855 ri->rp = rp;
1856 ri->task = current;
1857
1858 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1859 raw_spin_lock_irqsave(&rp->lock, flags);
1860 hlist_add_head(&ri->hlist, &rp->free_instances);
1861 raw_spin_unlock_irqrestore(&rp->lock, flags);
1862 return 0;
1863 }
1864
1865 arch_prepare_kretprobe(ri, regs);
1866
1867 /* XXX(hch): why is there no hlist_move_head? */
1868 INIT_HLIST_NODE(&ri->hlist);
1869 kretprobe_table_lock(hash, &flags);
1870 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1871 kretprobe_table_unlock(hash, &flags);
1872 } else {
1873 rp->nmissed++;
1874 raw_spin_unlock_irqrestore(&rp->lock, flags);
1875 }
1876 return 0;
1877 }
1878 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1879
register_kretprobe(struct kretprobe * rp)1880 int register_kretprobe(struct kretprobe *rp)
1881 {
1882 int ret = 0;
1883 struct kretprobe_instance *inst;
1884 int i;
1885 void *addr;
1886
1887 /* If only rp->kp.addr is specified, check reregistering kprobes */
1888 if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1889 return -EINVAL;
1890
1891 if (kretprobe_blacklist_size) {
1892 addr = kprobe_addr(&rp->kp);
1893 if (IS_ERR(addr))
1894 return PTR_ERR(addr);
1895
1896 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1897 if (kretprobe_blacklist[i].addr == addr)
1898 return -EINVAL;
1899 }
1900 }
1901
1902 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
1903 return -E2BIG;
1904
1905 rp->kp.pre_handler = pre_handler_kretprobe;
1906 rp->kp.post_handler = NULL;
1907 rp->kp.fault_handler = NULL;
1908 rp->kp.break_handler = NULL;
1909
1910 /* Pre-allocate memory for max kretprobe instances */
1911 if (rp->maxactive <= 0) {
1912 #ifdef CONFIG_PREEMPT
1913 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1914 #else
1915 rp->maxactive = num_possible_cpus();
1916 #endif
1917 }
1918 raw_spin_lock_init(&rp->lock);
1919 INIT_HLIST_HEAD(&rp->free_instances);
1920 for (i = 0; i < rp->maxactive; i++) {
1921 inst = kmalloc(sizeof(struct kretprobe_instance) +
1922 rp->data_size, GFP_KERNEL);
1923 if (inst == NULL) {
1924 free_rp_inst(rp);
1925 return -ENOMEM;
1926 }
1927 INIT_HLIST_NODE(&inst->hlist);
1928 hlist_add_head(&inst->hlist, &rp->free_instances);
1929 }
1930
1931 rp->nmissed = 0;
1932 /* Establish function entry probe point */
1933 ret = register_kprobe(&rp->kp);
1934 if (ret != 0)
1935 free_rp_inst(rp);
1936 return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(register_kretprobe);
1939
register_kretprobes(struct kretprobe ** rps,int num)1940 int register_kretprobes(struct kretprobe **rps, int num)
1941 {
1942 int ret = 0, i;
1943
1944 if (num <= 0)
1945 return -EINVAL;
1946 for (i = 0; i < num; i++) {
1947 ret = register_kretprobe(rps[i]);
1948 if (ret < 0) {
1949 if (i > 0)
1950 unregister_kretprobes(rps, i);
1951 break;
1952 }
1953 }
1954 return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(register_kretprobes);
1957
unregister_kretprobe(struct kretprobe * rp)1958 void unregister_kretprobe(struct kretprobe *rp)
1959 {
1960 unregister_kretprobes(&rp, 1);
1961 }
1962 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1963
unregister_kretprobes(struct kretprobe ** rps,int num)1964 void unregister_kretprobes(struct kretprobe **rps, int num)
1965 {
1966 int i;
1967
1968 if (num <= 0)
1969 return;
1970 mutex_lock(&kprobe_mutex);
1971 for (i = 0; i < num; i++)
1972 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1973 rps[i]->kp.addr = NULL;
1974 mutex_unlock(&kprobe_mutex);
1975
1976 synchronize_sched();
1977 for (i = 0; i < num; i++) {
1978 if (rps[i]->kp.addr) {
1979 __unregister_kprobe_bottom(&rps[i]->kp);
1980 cleanup_rp_inst(rps[i]);
1981 }
1982 }
1983 }
1984 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1985
1986 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)1987 int register_kretprobe(struct kretprobe *rp)
1988 {
1989 return -ENOSYS;
1990 }
1991 EXPORT_SYMBOL_GPL(register_kretprobe);
1992
register_kretprobes(struct kretprobe ** rps,int num)1993 int register_kretprobes(struct kretprobe **rps, int num)
1994 {
1995 return -ENOSYS;
1996 }
1997 EXPORT_SYMBOL_GPL(register_kretprobes);
1998
unregister_kretprobe(struct kretprobe * rp)1999 void unregister_kretprobe(struct kretprobe *rp)
2000 {
2001 }
2002 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2003
unregister_kretprobes(struct kretprobe ** rps,int num)2004 void unregister_kretprobes(struct kretprobe **rps, int num)
2005 {
2006 }
2007 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2008
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2009 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2010 {
2011 return 0;
2012 }
2013 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2014
2015 #endif /* CONFIG_KRETPROBES */
2016
2017 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2018 static void kill_kprobe(struct kprobe *p)
2019 {
2020 struct kprobe *kp;
2021
2022 if (WARN_ON_ONCE(kprobe_gone(p)))
2023 return;
2024
2025 p->flags |= KPROBE_FLAG_GONE;
2026 if (kprobe_aggrprobe(p)) {
2027 /*
2028 * If this is an aggr_kprobe, we have to list all the
2029 * chained probes and mark them GONE.
2030 */
2031 list_for_each_entry_rcu(kp, &p->list, list)
2032 kp->flags |= KPROBE_FLAG_GONE;
2033 p->post_handler = NULL;
2034 p->break_handler = NULL;
2035 kill_optimized_kprobe(p);
2036 }
2037 /*
2038 * Here, we can remove insn_slot safely, because no thread calls
2039 * the original probed function (which will be freed soon) any more.
2040 */
2041 arch_remove_kprobe(p);
2042
2043 /*
2044 * The module is going away. We should disarm the kprobe which
2045 * is using ftrace, because ftrace framework is still available at
2046 * MODULE_STATE_GOING notification.
2047 */
2048 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2049 disarm_kprobe_ftrace(p);
2050 }
2051
2052 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2053 int disable_kprobe(struct kprobe *kp)
2054 {
2055 int ret = 0;
2056
2057 mutex_lock(&kprobe_mutex);
2058
2059 /* Disable this kprobe */
2060 if (__disable_kprobe(kp) == NULL)
2061 ret = -EINVAL;
2062
2063 mutex_unlock(&kprobe_mutex);
2064 return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(disable_kprobe);
2067
2068 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2069 int enable_kprobe(struct kprobe *kp)
2070 {
2071 int ret = 0;
2072 struct kprobe *p;
2073
2074 mutex_lock(&kprobe_mutex);
2075
2076 /* Check whether specified probe is valid. */
2077 p = __get_valid_kprobe(kp);
2078 if (unlikely(p == NULL)) {
2079 ret = -EINVAL;
2080 goto out;
2081 }
2082
2083 if (kprobe_gone(kp)) {
2084 /* This kprobe has gone, we couldn't enable it. */
2085 ret = -EINVAL;
2086 goto out;
2087 }
2088
2089 if (p != kp)
2090 kp->flags &= ~KPROBE_FLAG_DISABLED;
2091
2092 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2093 p->flags &= ~KPROBE_FLAG_DISABLED;
2094 arm_kprobe(p);
2095 }
2096 out:
2097 mutex_unlock(&kprobe_mutex);
2098 return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(enable_kprobe);
2101
dump_kprobe(struct kprobe * kp)2102 void dump_kprobe(struct kprobe *kp)
2103 {
2104 printk(KERN_WARNING "Dumping kprobe:\n");
2105 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2106 kp->symbol_name, kp->addr, kp->offset);
2107 }
2108 NOKPROBE_SYMBOL(dump_kprobe);
2109
2110 /*
2111 * Lookup and populate the kprobe_blacklist.
2112 *
2113 * Unlike the kretprobe blacklist, we'll need to determine
2114 * the range of addresses that belong to the said functions,
2115 * since a kprobe need not necessarily be at the beginning
2116 * of a function.
2117 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2118 static int __init populate_kprobe_blacklist(unsigned long *start,
2119 unsigned long *end)
2120 {
2121 unsigned long *iter;
2122 struct kprobe_blacklist_entry *ent;
2123 unsigned long entry, offset = 0, size = 0;
2124
2125 for (iter = start; iter < end; iter++) {
2126 entry = arch_deref_entry_point((void *)*iter);
2127
2128 if (!kernel_text_address(entry) ||
2129 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2130 pr_err("Failed to find blacklist at %p\n",
2131 (void *)entry);
2132 continue;
2133 }
2134
2135 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2136 if (!ent)
2137 return -ENOMEM;
2138 ent->start_addr = entry;
2139 ent->end_addr = entry + size;
2140 INIT_LIST_HEAD(&ent->list);
2141 list_add_tail(&ent->list, &kprobe_blacklist);
2142 }
2143 return 0;
2144 }
2145
2146 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2147 static int kprobes_module_callback(struct notifier_block *nb,
2148 unsigned long val, void *data)
2149 {
2150 struct module *mod = data;
2151 struct hlist_head *head;
2152 struct kprobe *p;
2153 unsigned int i;
2154 int checkcore = (val == MODULE_STATE_GOING);
2155
2156 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2157 return NOTIFY_DONE;
2158
2159 /*
2160 * When MODULE_STATE_GOING was notified, both of module .text and
2161 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2162 * notified, only .init.text section would be freed. We need to
2163 * disable kprobes which have been inserted in the sections.
2164 */
2165 mutex_lock(&kprobe_mutex);
2166 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2167 head = &kprobe_table[i];
2168 hlist_for_each_entry_rcu(p, head, hlist) {
2169 if (kprobe_gone(p))
2170 continue;
2171
2172 if (within_module_init((unsigned long)p->addr, mod) ||
2173 (checkcore &&
2174 within_module_core((unsigned long)p->addr, mod))) {
2175 /*
2176 * The vaddr this probe is installed will soon
2177 * be vfreed buy not synced to disk. Hence,
2178 * disarming the breakpoint isn't needed.
2179 */
2180 kill_kprobe(p);
2181 }
2182 }
2183 }
2184 mutex_unlock(&kprobe_mutex);
2185 return NOTIFY_DONE;
2186 }
2187
2188 static struct notifier_block kprobe_module_nb = {
2189 .notifier_call = kprobes_module_callback,
2190 .priority = 0
2191 };
2192
2193 /* Markers of _kprobe_blacklist section */
2194 extern unsigned long __start_kprobe_blacklist[];
2195 extern unsigned long __stop_kprobe_blacklist[];
2196
init_kprobes(void)2197 static int __init init_kprobes(void)
2198 {
2199 int i, err = 0;
2200
2201 /* FIXME allocate the probe table, currently defined statically */
2202 /* initialize all list heads */
2203 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2204 INIT_HLIST_HEAD(&kprobe_table[i]);
2205 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2206 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2207 }
2208
2209 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2210 __stop_kprobe_blacklist);
2211 if (err) {
2212 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2213 pr_err("Please take care of using kprobes.\n");
2214 }
2215
2216 if (kretprobe_blacklist_size) {
2217 /* lookup the function address from its name */
2218 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2219 kprobe_lookup_name(kretprobe_blacklist[i].name,
2220 kretprobe_blacklist[i].addr);
2221 if (!kretprobe_blacklist[i].addr)
2222 printk("kretprobe: lookup failed: %s\n",
2223 kretprobe_blacklist[i].name);
2224 }
2225 }
2226
2227 #if defined(CONFIG_OPTPROBES)
2228 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2229 /* Init kprobe_optinsn_slots */
2230 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2231 #endif
2232 /* By default, kprobes can be optimized */
2233 kprobes_allow_optimization = true;
2234 #endif
2235
2236 /* By default, kprobes are armed */
2237 kprobes_all_disarmed = false;
2238
2239 err = arch_init_kprobes();
2240 if (!err)
2241 err = register_die_notifier(&kprobe_exceptions_nb);
2242 if (!err)
2243 err = register_module_notifier(&kprobe_module_nb);
2244
2245 kprobes_initialized = (err == 0);
2246
2247 if (!err)
2248 init_test_probes();
2249 return err;
2250 }
2251
2252 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2253 static void report_probe(struct seq_file *pi, struct kprobe *p,
2254 const char *sym, int offset, char *modname, struct kprobe *pp)
2255 {
2256 char *kprobe_type;
2257
2258 if (p->pre_handler == pre_handler_kretprobe)
2259 kprobe_type = "r";
2260 else if (p->pre_handler == setjmp_pre_handler)
2261 kprobe_type = "j";
2262 else
2263 kprobe_type = "k";
2264
2265 if (sym)
2266 seq_printf(pi, "%p %s %s+0x%x %s ",
2267 p->addr, kprobe_type, sym, offset,
2268 (modname ? modname : " "));
2269 else
2270 seq_printf(pi, "%p %s %p ",
2271 p->addr, kprobe_type, p->addr);
2272
2273 if (!pp)
2274 pp = p;
2275 seq_printf(pi, "%s%s%s%s\n",
2276 (kprobe_gone(p) ? "[GONE]" : ""),
2277 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2278 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2279 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2280 }
2281
kprobe_seq_start(struct seq_file * f,loff_t * pos)2282 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2283 {
2284 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2285 }
2286
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2287 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2288 {
2289 (*pos)++;
2290 if (*pos >= KPROBE_TABLE_SIZE)
2291 return NULL;
2292 return pos;
2293 }
2294
kprobe_seq_stop(struct seq_file * f,void * v)2295 static void kprobe_seq_stop(struct seq_file *f, void *v)
2296 {
2297 /* Nothing to do */
2298 }
2299
show_kprobe_addr(struct seq_file * pi,void * v)2300 static int show_kprobe_addr(struct seq_file *pi, void *v)
2301 {
2302 struct hlist_head *head;
2303 struct kprobe *p, *kp;
2304 const char *sym = NULL;
2305 unsigned int i = *(loff_t *) v;
2306 unsigned long offset = 0;
2307 char *modname, namebuf[KSYM_NAME_LEN];
2308
2309 head = &kprobe_table[i];
2310 preempt_disable();
2311 hlist_for_each_entry_rcu(p, head, hlist) {
2312 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2313 &offset, &modname, namebuf);
2314 if (kprobe_aggrprobe(p)) {
2315 list_for_each_entry_rcu(kp, &p->list, list)
2316 report_probe(pi, kp, sym, offset, modname, p);
2317 } else
2318 report_probe(pi, p, sym, offset, modname, NULL);
2319 }
2320 preempt_enable();
2321 return 0;
2322 }
2323
2324 static const struct seq_operations kprobes_seq_ops = {
2325 .start = kprobe_seq_start,
2326 .next = kprobe_seq_next,
2327 .stop = kprobe_seq_stop,
2328 .show = show_kprobe_addr
2329 };
2330
kprobes_open(struct inode * inode,struct file * filp)2331 static int kprobes_open(struct inode *inode, struct file *filp)
2332 {
2333 return seq_open(filp, &kprobes_seq_ops);
2334 }
2335
2336 static const struct file_operations debugfs_kprobes_operations = {
2337 .open = kprobes_open,
2338 .read = seq_read,
2339 .llseek = seq_lseek,
2340 .release = seq_release,
2341 };
2342
2343 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2344 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2345 {
2346 return seq_list_start(&kprobe_blacklist, *pos);
2347 }
2348
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2349 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2350 {
2351 return seq_list_next(v, &kprobe_blacklist, pos);
2352 }
2353
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2354 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2355 {
2356 struct kprobe_blacklist_entry *ent =
2357 list_entry(v, struct kprobe_blacklist_entry, list);
2358
2359 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2360 (void *)ent->end_addr, (void *)ent->start_addr);
2361 return 0;
2362 }
2363
2364 static const struct seq_operations kprobe_blacklist_seq_ops = {
2365 .start = kprobe_blacklist_seq_start,
2366 .next = kprobe_blacklist_seq_next,
2367 .stop = kprobe_seq_stop, /* Reuse void function */
2368 .show = kprobe_blacklist_seq_show,
2369 };
2370
kprobe_blacklist_open(struct inode * inode,struct file * filp)2371 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2372 {
2373 return seq_open(filp, &kprobe_blacklist_seq_ops);
2374 }
2375
2376 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2377 .open = kprobe_blacklist_open,
2378 .read = seq_read,
2379 .llseek = seq_lseek,
2380 .release = seq_release,
2381 };
2382
arm_all_kprobes(void)2383 static void arm_all_kprobes(void)
2384 {
2385 struct hlist_head *head;
2386 struct kprobe *p;
2387 unsigned int i;
2388
2389 mutex_lock(&kprobe_mutex);
2390
2391 /* If kprobes are armed, just return */
2392 if (!kprobes_all_disarmed)
2393 goto already_enabled;
2394
2395 /*
2396 * optimize_kprobe() called by arm_kprobe() checks
2397 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2398 * arm_kprobe.
2399 */
2400 kprobes_all_disarmed = false;
2401 /* Arming kprobes doesn't optimize kprobe itself */
2402 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2403 head = &kprobe_table[i];
2404 hlist_for_each_entry_rcu(p, head, hlist)
2405 if (!kprobe_disabled(p))
2406 arm_kprobe(p);
2407 }
2408
2409 printk(KERN_INFO "Kprobes globally enabled\n");
2410
2411 already_enabled:
2412 mutex_unlock(&kprobe_mutex);
2413 return;
2414 }
2415
disarm_all_kprobes(void)2416 static void disarm_all_kprobes(void)
2417 {
2418 struct hlist_head *head;
2419 struct kprobe *p;
2420 unsigned int i;
2421
2422 mutex_lock(&kprobe_mutex);
2423
2424 /* If kprobes are already disarmed, just return */
2425 if (kprobes_all_disarmed) {
2426 mutex_unlock(&kprobe_mutex);
2427 return;
2428 }
2429
2430 kprobes_all_disarmed = true;
2431 printk(KERN_INFO "Kprobes globally disabled\n");
2432
2433 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2434 head = &kprobe_table[i];
2435 hlist_for_each_entry_rcu(p, head, hlist) {
2436 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2437 disarm_kprobe(p, false);
2438 }
2439 }
2440 mutex_unlock(&kprobe_mutex);
2441
2442 /* Wait for disarming all kprobes by optimizer */
2443 wait_for_kprobe_optimizer();
2444 }
2445
2446 /*
2447 * XXX: The debugfs bool file interface doesn't allow for callbacks
2448 * when the bool state is switched. We can reuse that facility when
2449 * available
2450 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2451 static ssize_t read_enabled_file_bool(struct file *file,
2452 char __user *user_buf, size_t count, loff_t *ppos)
2453 {
2454 char buf[3];
2455
2456 if (!kprobes_all_disarmed)
2457 buf[0] = '1';
2458 else
2459 buf[0] = '0';
2460 buf[1] = '\n';
2461 buf[2] = 0x00;
2462 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2463 }
2464
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2465 static ssize_t write_enabled_file_bool(struct file *file,
2466 const char __user *user_buf, size_t count, loff_t *ppos)
2467 {
2468 char buf[32];
2469 size_t buf_size;
2470
2471 buf_size = min(count, (sizeof(buf)-1));
2472 if (copy_from_user(buf, user_buf, buf_size))
2473 return -EFAULT;
2474
2475 buf[buf_size] = '\0';
2476 switch (buf[0]) {
2477 case 'y':
2478 case 'Y':
2479 case '1':
2480 arm_all_kprobes();
2481 break;
2482 case 'n':
2483 case 'N':
2484 case '0':
2485 disarm_all_kprobes();
2486 break;
2487 default:
2488 return -EINVAL;
2489 }
2490
2491 return count;
2492 }
2493
2494 static const struct file_operations fops_kp = {
2495 .read = read_enabled_file_bool,
2496 .write = write_enabled_file_bool,
2497 .llseek = default_llseek,
2498 };
2499
debugfs_kprobe_init(void)2500 static int __init debugfs_kprobe_init(void)
2501 {
2502 struct dentry *dir, *file;
2503 unsigned int value = 1;
2504
2505 dir = debugfs_create_dir("kprobes", NULL);
2506 if (!dir)
2507 return -ENOMEM;
2508
2509 file = debugfs_create_file("list", 0400, dir, NULL,
2510 &debugfs_kprobes_operations);
2511 if (!file)
2512 goto error;
2513
2514 file = debugfs_create_file("enabled", 0600, dir,
2515 &value, &fops_kp);
2516 if (!file)
2517 goto error;
2518
2519 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2520 &debugfs_kprobe_blacklist_ops);
2521 if (!file)
2522 goto error;
2523
2524 return 0;
2525
2526 error:
2527 debugfs_remove(dir);
2528 return -ENOMEM;
2529 }
2530
2531 late_initcall(debugfs_kprobe_init);
2532 #endif /* CONFIG_DEBUG_FS */
2533
2534 module_init(init_kprobes);
2535
2536 /* defined in arch/.../kernel/kprobes.c */
2537 EXPORT_SYMBOL_GPL(jprobe_return);
2538