• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
kretprobe_table_lock_ptr(unsigned long hash)84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91 
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100 	struct list_head list;
101 	kprobe_opcode_t *insns;		/* Page of instruction slots */
102 	struct kprobe_insn_cache *cache;
103 	int nused;
104 	int ngarbage;
105 	char slot_used[];
106 };
107 
108 #define KPROBE_INSN_PAGE_SIZE(slots)			\
109 	(offsetof(struct kprobe_insn_page, slot_used) +	\
110 	 (sizeof(char) * (slots)))
111 
slots_per_page(struct kprobe_insn_cache * c)112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116 
117 enum kprobe_slot_state {
118 	SLOT_CLEAN = 0,
119 	SLOT_DIRTY = 1,
120 	SLOT_USED = 2,
121 };
122 
alloc_insn_page(void)123 static void *alloc_insn_page(void)
124 {
125 	return module_alloc(PAGE_SIZE);
126 }
127 
free_insn_page(void * page)128 void __weak free_insn_page(void *page)
129 {
130 	module_memfree(page);
131 }
132 
133 struct kprobe_insn_cache kprobe_insn_slots = {
134 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 	.alloc = alloc_insn_page,
136 	.free = free_insn_page,
137 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 	.insn_size = MAX_INSN_SIZE,
139 	.nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142 
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
__get_insn_slot(struct kprobe_insn_cache * c)147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149 	struct kprobe_insn_page *kip;
150 	kprobe_opcode_t *slot = NULL;
151 
152 	mutex_lock(&c->mutex);
153  retry:
154 	list_for_each_entry(kip, &c->pages, list) {
155 		if (kip->nused < slots_per_page(c)) {
156 			int i;
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 		goto retry;
174 
175 	/* All out of space.  Need to allocate a new page. */
176 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 	if (!kip)
178 		goto out;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = c->alloc();
186 	if (!kip->insns) {
187 		kfree(kip);
188 		goto out;
189 	}
190 	INIT_LIST_HEAD(&kip->list);
191 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 	kip->slot_used[0] = SLOT_USED;
193 	kip->nused = 1;
194 	kip->ngarbage = 0;
195 	kip->cache = c;
196 	list_add(&kip->list, &c->pages);
197 	slot = kip->insns;
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			list_del(&kip->list);
217 			kip->cache->free(kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
collect_garbage_slots(struct kprobe_insn_cache * c)225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227 	struct kprobe_insn_page *kip, *next;
228 
229 	/* Ensure no-one is interrupted on the garbages */
230 	synchronize_sched();
231 
232 	list_for_each_entry_safe(kip, next, &c->pages, list) {
233 		int i;
234 		if (kip->ngarbage == 0)
235 			continue;
236 		kip->ngarbage = 0;	/* we will collect all garbages */
237 		for (i = 0; i < slots_per_page(c); i++) {
238 			if (kip->slot_used[i] == SLOT_DIRTY &&
239 			    collect_one_slot(kip, i))
240 				break;
241 		}
242 	}
243 	c->nr_garbage = 0;
244 	return 0;
245 }
246 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)247 void __free_insn_slot(struct kprobe_insn_cache *c,
248 		      kprobe_opcode_t *slot, int dirty)
249 {
250 	struct kprobe_insn_page *kip;
251 
252 	mutex_lock(&c->mutex);
253 	list_for_each_entry(kip, &c->pages, list) {
254 		long idx = ((long)slot - (long)kip->insns) /
255 				(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c)) {
257 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 			if (dirty) {
259 				kip->slot_used[idx] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 				if (++c->nr_garbage > slots_per_page(c))
262 					collect_garbage_slots(c);
263 			} else
264 				collect_one_slot(kip, idx);
265 			goto out;
266 		}
267 	}
268 	/* Could not free this slot. */
269 	WARN_ON(1);
270 out:
271 	mutex_unlock(&c->mutex);
272 }
273 
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 	.alloc = alloc_insn_page,
279 	.free = free_insn_page,
280 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 	/* .insn_size is initialized later */
282 	.nr_garbage = 0,
283 };
284 #endif
285 #endif
286 
287 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 	__this_cpu_write(kprobe_instance, kp);
291 }
292 
reset_kprobe_instance(void)293 static inline void reset_kprobe_instance(void)
294 {
295 	__this_cpu_write(kprobe_instance, NULL);
296 }
297 
298 /*
299  * This routine is called either:
300  * 	- under the kprobe_mutex - during kprobe_[un]register()
301  * 				OR
302  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
get_kprobe(void * addr)304 struct kprobe *get_kprobe(void *addr)
305 {
306 	struct hlist_head *head;
307 	struct kprobe *p;
308 
309 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 	hlist_for_each_entry_rcu(p, head, hlist) {
311 		if (p->addr == addr)
312 			return p;
313 	}
314 
315 	return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318 
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320 
321 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324 	return p->pre_handler == aggr_pre_handler;
325 }
326 
327 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)328 static inline int kprobe_unused(struct kprobe *p)
329 {
330 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 	       list_empty(&p->list);
332 }
333 
334 /*
335  * Keep all fields in the kprobe consistent
336  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342 
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346 
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353 	struct kprobe *kp;
354 
355 	list_for_each_entry_rcu(kp, &p->list, list) {
356 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 			set_kprobe_instance(kp);
358 			kp->pre_handler(kp, regs);
359 		}
360 		reset_kprobe_instance();
361 	}
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364 
365 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368 	struct optimized_kprobe *op;
369 
370 	op = container_of(p, struct optimized_kprobe, kp);
371 	arch_remove_optimized_kprobe(op);
372 	arch_remove_kprobe(p);
373 	kfree(op);
374 }
375 
376 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)377 static inline int kprobe_optready(struct kprobe *p)
378 {
379 	struct optimized_kprobe *op;
380 
381 	if (kprobe_aggrprobe(p)) {
382 		op = container_of(p, struct optimized_kprobe, kp);
383 		return arch_prepared_optinsn(&op->optinsn);
384 	}
385 
386 	return 0;
387 }
388 
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392 	struct optimized_kprobe *op;
393 
394 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 	if (!kprobe_aggrprobe(p))
396 		return kprobe_disabled(p);
397 
398 	op = container_of(p, struct optimized_kprobe, kp);
399 
400 	return kprobe_disabled(p) && list_empty(&op->list);
401 }
402 
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)404 static int kprobe_queued(struct kprobe *p)
405 {
406 	struct optimized_kprobe *op;
407 
408 	if (kprobe_aggrprobe(p)) {
409 		op = container_of(p, struct optimized_kprobe, kp);
410 		if (!list_empty(&op->list))
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
get_optimized_kprobe(unsigned long addr)420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422 	int i;
423 	struct kprobe *p = NULL;
424 	struct optimized_kprobe *op;
425 
426 	/* Don't check i == 0, since that is a breakpoint case. */
427 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 		p = get_kprobe((void *)(addr - i));
429 
430 	if (p && kprobe_optready(p)) {
431 		op = container_of(p, struct optimized_kprobe, kp);
432 		if (arch_within_optimized_kprobe(op, addr))
433 			return p;
434 	}
435 
436 	return NULL;
437 }
438 
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443 
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447 
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
do_optimize_kprobes(void)452 static void do_optimize_kprobes(void)
453 {
454 	/* Optimization never be done when disarmed */
455 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 	    list_empty(&optimizing_list))
457 		return;
458 
459 	/*
460 	 * The optimization/unoptimization refers online_cpus via
461 	 * stop_machine() and cpu-hotplug modifies online_cpus.
462 	 * And same time, text_mutex will be held in cpu-hotplug and here.
463 	 * This combination can cause a deadlock (cpu-hotplug try to lock
464 	 * text_mutex but stop_machine can not be done because online_cpus
465 	 * has been changed)
466 	 * To avoid this deadlock, we need to call get_online_cpus()
467 	 * for preventing cpu-hotplug outside of text_mutex locking.
468 	 */
469 	get_online_cpus();
470 	mutex_lock(&text_mutex);
471 	arch_optimize_kprobes(&optimizing_list);
472 	mutex_unlock(&text_mutex);
473 	put_online_cpus();
474 }
475 
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
do_unoptimize_kprobes(void)480 static void do_unoptimize_kprobes(void)
481 {
482 	struct optimized_kprobe *op, *tmp;
483 
484 	/* Unoptimization must be done anytime */
485 	if (list_empty(&unoptimizing_list))
486 		return;
487 
488 	/* Ditto to do_optimize_kprobes */
489 	get_online_cpus();
490 	mutex_lock(&text_mutex);
491 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 	/* Loop free_list for disarming */
493 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 		/* Disarm probes if marked disabled */
495 		if (kprobe_disabled(&op->kp))
496 			arch_disarm_kprobe(&op->kp);
497 		if (kprobe_unused(&op->kp)) {
498 			/*
499 			 * Remove unused probes from hash list. After waiting
500 			 * for synchronization, these probes are reclaimed.
501 			 * (reclaiming is done by do_free_cleaned_kprobes.)
502 			 */
503 			hlist_del_rcu(&op->kp.hlist);
504 		} else
505 			list_del_init(&op->list);
506 	}
507 	mutex_unlock(&text_mutex);
508 	put_online_cpus();
509 }
510 
511 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)512 static void do_free_cleaned_kprobes(void)
513 {
514 	struct optimized_kprobe *op, *tmp;
515 
516 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 		list_del_init(&op->list);
518 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
519 			/*
520 			 * This must not happen, but if there is a kprobe
521 			 * still in use, keep it on kprobes hash list.
522 			 */
523 			continue;
524 		}
525 		free_aggr_kprobe(&op->kp);
526 	}
527 }
528 
529 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)530 static void kick_kprobe_optimizer(void)
531 {
532 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
533 }
534 
535 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)536 static void kprobe_optimizer(struct work_struct *work)
537 {
538 	mutex_lock(&kprobe_mutex);
539 	/* Lock modules while optimizing kprobes */
540 	mutex_lock(&module_mutex);
541 
542 	/*
543 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
544 	 * kprobes before waiting for quiesence period.
545 	 */
546 	do_unoptimize_kprobes();
547 
548 	/*
549 	 * Step 2: Wait for quiesence period to ensure all running interrupts
550 	 * are done. Because optprobe may modify multiple instructions
551 	 * there is a chance that Nth instruction is interrupted. In that
552 	 * case, running interrupt can return to 2nd-Nth byte of jump
553 	 * instruction. This wait is for avoiding it.
554 	 */
555 	synchronize_sched();
556 
557 	/* Step 3: Optimize kprobes after quiesence period */
558 	do_optimize_kprobes();
559 
560 	/* Step 4: Free cleaned kprobes after quiesence period */
561 	do_free_cleaned_kprobes();
562 
563 	mutex_unlock(&module_mutex);
564 
565 	/* Step 5: Kick optimizer again if needed */
566 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
567 		kick_kprobe_optimizer();
568 
569 	mutex_unlock(&kprobe_mutex);
570 }
571 
572 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)573 void wait_for_kprobe_optimizer(void)
574 {
575 	mutex_lock(&kprobe_mutex);
576 
577 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
578 		mutex_unlock(&kprobe_mutex);
579 
580 		/* this will also make optimizing_work execute immmediately */
581 		flush_delayed_work(&optimizing_work);
582 		/* @optimizing_work might not have been queued yet, relax */
583 		cpu_relax();
584 
585 		mutex_lock(&kprobe_mutex);
586 	}
587 
588 	mutex_unlock(&kprobe_mutex);
589 }
590 
591 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)592 static void optimize_kprobe(struct kprobe *p)
593 {
594 	struct optimized_kprobe *op;
595 
596 	/* Check if the kprobe is disabled or not ready for optimization. */
597 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
598 	    (kprobe_disabled(p) || kprobes_all_disarmed))
599 		return;
600 
601 	/* Both of break_handler and post_handler are not supported. */
602 	if (p->break_handler || p->post_handler)
603 		return;
604 
605 	op = container_of(p, struct optimized_kprobe, kp);
606 
607 	/* Check there is no other kprobes at the optimized instructions */
608 	if (arch_check_optimized_kprobe(op) < 0)
609 		return;
610 
611 	/* Check if it is already optimized. */
612 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
613 		return;
614 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
615 
616 	if (!list_empty(&op->list))
617 		/* This is under unoptimizing. Just dequeue the probe */
618 		list_del_init(&op->list);
619 	else {
620 		list_add(&op->list, &optimizing_list);
621 		kick_kprobe_optimizer();
622 	}
623 }
624 
625 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)626 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
627 {
628 	get_online_cpus();
629 	arch_unoptimize_kprobe(op);
630 	put_online_cpus();
631 	if (kprobe_disabled(&op->kp))
632 		arch_disarm_kprobe(&op->kp);
633 }
634 
635 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)636 static void unoptimize_kprobe(struct kprobe *p, bool force)
637 {
638 	struct optimized_kprobe *op;
639 
640 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
641 		return; /* This is not an optprobe nor optimized */
642 
643 	op = container_of(p, struct optimized_kprobe, kp);
644 	if (!kprobe_optimized(p)) {
645 		/* Unoptimized or unoptimizing case */
646 		if (force && !list_empty(&op->list)) {
647 			/*
648 			 * Only if this is unoptimizing kprobe and forced,
649 			 * forcibly unoptimize it. (No need to unoptimize
650 			 * unoptimized kprobe again :)
651 			 */
652 			list_del_init(&op->list);
653 			force_unoptimize_kprobe(op);
654 		}
655 		return;
656 	}
657 
658 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
659 	if (!list_empty(&op->list)) {
660 		/* Dequeue from the optimization queue */
661 		list_del_init(&op->list);
662 		return;
663 	}
664 	/* Optimized kprobe case */
665 	if (force)
666 		/* Forcibly update the code: this is a special case */
667 		force_unoptimize_kprobe(op);
668 	else {
669 		list_add(&op->list, &unoptimizing_list);
670 		kick_kprobe_optimizer();
671 	}
672 }
673 
674 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)675 static int reuse_unused_kprobe(struct kprobe *ap)
676 {
677 	struct optimized_kprobe *op;
678 
679 	BUG_ON(!kprobe_unused(ap));
680 	/*
681 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
682 	 * there is still a relative jump) and disabled.
683 	 */
684 	op = container_of(ap, struct optimized_kprobe, kp);
685 	if (unlikely(list_empty(&op->list)))
686 		printk(KERN_WARNING "Warning: found a stray unused "
687 			"aggrprobe@%p\n", ap->addr);
688 	/* Enable the probe again */
689 	ap->flags &= ~KPROBE_FLAG_DISABLED;
690 	/* Optimize it again (remove from op->list) */
691 	if (!kprobe_optready(ap))
692 		return -EINVAL;
693 
694 	optimize_kprobe(ap);
695 	return 0;
696 }
697 
698 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)699 static void kill_optimized_kprobe(struct kprobe *p)
700 {
701 	struct optimized_kprobe *op;
702 
703 	op = container_of(p, struct optimized_kprobe, kp);
704 	if (!list_empty(&op->list))
705 		/* Dequeue from the (un)optimization queue */
706 		list_del_init(&op->list);
707 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
708 
709 	if (kprobe_unused(p)) {
710 		/* Enqueue if it is unused */
711 		list_add(&op->list, &freeing_list);
712 		/*
713 		 * Remove unused probes from the hash list. After waiting
714 		 * for synchronization, this probe is reclaimed.
715 		 * (reclaiming is done by do_free_cleaned_kprobes().)
716 		 */
717 		hlist_del_rcu(&op->kp.hlist);
718 	}
719 
720 	/* Don't touch the code, because it is already freed. */
721 	arch_remove_optimized_kprobe(op);
722 }
723 
724 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)725 static void prepare_optimized_kprobe(struct kprobe *p)
726 {
727 	struct optimized_kprobe *op;
728 
729 	op = container_of(p, struct optimized_kprobe, kp);
730 	arch_prepare_optimized_kprobe(op, p);
731 }
732 
733 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)734 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
735 {
736 	struct optimized_kprobe *op;
737 
738 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
739 	if (!op)
740 		return NULL;
741 
742 	INIT_LIST_HEAD(&op->list);
743 	op->kp.addr = p->addr;
744 	arch_prepare_optimized_kprobe(op, p);
745 
746 	return &op->kp;
747 }
748 
749 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
750 
751 /*
752  * Prepare an optimized_kprobe and optimize it
753  * NOTE: p must be a normal registered kprobe
754  */
try_to_optimize_kprobe(struct kprobe * p)755 static void try_to_optimize_kprobe(struct kprobe *p)
756 {
757 	struct kprobe *ap;
758 	struct optimized_kprobe *op;
759 
760 	/* Impossible to optimize ftrace-based kprobe */
761 	if (kprobe_ftrace(p))
762 		return;
763 
764 	/* For preparing optimization, jump_label_text_reserved() is called */
765 	jump_label_lock();
766 	mutex_lock(&text_mutex);
767 
768 	ap = alloc_aggr_kprobe(p);
769 	if (!ap)
770 		goto out;
771 
772 	op = container_of(ap, struct optimized_kprobe, kp);
773 	if (!arch_prepared_optinsn(&op->optinsn)) {
774 		/* If failed to setup optimizing, fallback to kprobe */
775 		arch_remove_optimized_kprobe(op);
776 		kfree(op);
777 		goto out;
778 	}
779 
780 	init_aggr_kprobe(ap, p);
781 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
782 
783 out:
784 	mutex_unlock(&text_mutex);
785 	jump_label_unlock();
786 }
787 
788 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)789 static void optimize_all_kprobes(void)
790 {
791 	struct hlist_head *head;
792 	struct kprobe *p;
793 	unsigned int i;
794 
795 	mutex_lock(&kprobe_mutex);
796 	/* If optimization is already allowed, just return */
797 	if (kprobes_allow_optimization)
798 		goto out;
799 
800 	kprobes_allow_optimization = true;
801 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
802 		head = &kprobe_table[i];
803 		hlist_for_each_entry_rcu(p, head, hlist)
804 			if (!kprobe_disabled(p))
805 				optimize_kprobe(p);
806 	}
807 	printk(KERN_INFO "Kprobes globally optimized\n");
808 out:
809 	mutex_unlock(&kprobe_mutex);
810 }
811 
unoptimize_all_kprobes(void)812 static void unoptimize_all_kprobes(void)
813 {
814 	struct hlist_head *head;
815 	struct kprobe *p;
816 	unsigned int i;
817 
818 	mutex_lock(&kprobe_mutex);
819 	/* If optimization is already prohibited, just return */
820 	if (!kprobes_allow_optimization) {
821 		mutex_unlock(&kprobe_mutex);
822 		return;
823 	}
824 
825 	kprobes_allow_optimization = false;
826 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827 		head = &kprobe_table[i];
828 		hlist_for_each_entry_rcu(p, head, hlist) {
829 			if (!kprobe_disabled(p))
830 				unoptimize_kprobe(p, false);
831 		}
832 	}
833 	mutex_unlock(&kprobe_mutex);
834 
835 	/* Wait for unoptimizing completion */
836 	wait_for_kprobe_optimizer();
837 	printk(KERN_INFO "Kprobes globally unoptimized\n");
838 }
839 
840 static DEFINE_MUTEX(kprobe_sysctl_mutex);
841 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)842 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
843 				      void __user *buffer, size_t *length,
844 				      loff_t *ppos)
845 {
846 	int ret;
847 
848 	mutex_lock(&kprobe_sysctl_mutex);
849 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
850 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
851 
852 	if (sysctl_kprobes_optimization)
853 		optimize_all_kprobes();
854 	else
855 		unoptimize_all_kprobes();
856 	mutex_unlock(&kprobe_sysctl_mutex);
857 
858 	return ret;
859 }
860 #endif /* CONFIG_SYSCTL */
861 
862 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)863 static void __arm_kprobe(struct kprobe *p)
864 {
865 	struct kprobe *_p;
866 
867 	/* Check collision with other optimized kprobes */
868 	_p = get_optimized_kprobe((unsigned long)p->addr);
869 	if (unlikely(_p))
870 		/* Fallback to unoptimized kprobe */
871 		unoptimize_kprobe(_p, true);
872 
873 	arch_arm_kprobe(p);
874 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
875 }
876 
877 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)878 static void __disarm_kprobe(struct kprobe *p, bool reopt)
879 {
880 	struct kprobe *_p;
881 
882 	/* Try to unoptimize */
883 	unoptimize_kprobe(p, kprobes_all_disarmed);
884 
885 	if (!kprobe_queued(p)) {
886 		arch_disarm_kprobe(p);
887 		/* If another kprobe was blocked, optimize it. */
888 		_p = get_optimized_kprobe((unsigned long)p->addr);
889 		if (unlikely(_p) && reopt)
890 			optimize_kprobe(_p);
891 	}
892 	/* TODO: reoptimize others after unoptimized this probe */
893 }
894 
895 #else /* !CONFIG_OPTPROBES */
896 
897 #define optimize_kprobe(p)			do {} while (0)
898 #define unoptimize_kprobe(p, f)			do {} while (0)
899 #define kill_optimized_kprobe(p)		do {} while (0)
900 #define prepare_optimized_kprobe(p)		do {} while (0)
901 #define try_to_optimize_kprobe(p)		do {} while (0)
902 #define __arm_kprobe(p)				arch_arm_kprobe(p)
903 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
904 #define kprobe_disarmed(p)			kprobe_disabled(p)
905 #define wait_for_kprobe_optimizer()		do {} while (0)
906 
reuse_unused_kprobe(struct kprobe * ap)907 static int reuse_unused_kprobe(struct kprobe *ap)
908 {
909 	/*
910 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
911 	 * released at the same time that the last aggregated kprobe is
912 	 * unregistered.
913 	 * Thus there should be no chance to reuse unused kprobe.
914 	 */
915 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
916 	return -EINVAL;
917 }
918 
free_aggr_kprobe(struct kprobe * p)919 static void free_aggr_kprobe(struct kprobe *p)
920 {
921 	arch_remove_kprobe(p);
922 	kfree(p);
923 }
924 
alloc_aggr_kprobe(struct kprobe * p)925 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
926 {
927 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
928 }
929 #endif /* CONFIG_OPTPROBES */
930 
931 #ifdef CONFIG_KPROBES_ON_FTRACE
932 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
933 	.func = kprobe_ftrace_handler,
934 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
935 };
936 static int kprobe_ftrace_enabled;
937 
938 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)939 static int prepare_kprobe(struct kprobe *p)
940 {
941 	if (!kprobe_ftrace(p))
942 		return arch_prepare_kprobe(p);
943 
944 	return arch_prepare_kprobe_ftrace(p);
945 }
946 
947 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)948 static void arm_kprobe_ftrace(struct kprobe *p)
949 {
950 	int ret;
951 
952 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
953 				   (unsigned long)p->addr, 0, 0);
954 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
955 	kprobe_ftrace_enabled++;
956 	if (kprobe_ftrace_enabled == 1) {
957 		ret = register_ftrace_function(&kprobe_ftrace_ops);
958 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
959 	}
960 }
961 
962 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)963 static void disarm_kprobe_ftrace(struct kprobe *p)
964 {
965 	int ret;
966 
967 	kprobe_ftrace_enabled--;
968 	if (kprobe_ftrace_enabled == 0) {
969 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
970 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
971 	}
972 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
973 			   (unsigned long)p->addr, 1, 0);
974 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
975 }
976 #else	/* !CONFIG_KPROBES_ON_FTRACE */
977 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
978 #define arm_kprobe_ftrace(p)	do {} while (0)
979 #define disarm_kprobe_ftrace(p)	do {} while (0)
980 #endif
981 
982 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)983 static void arm_kprobe(struct kprobe *kp)
984 {
985 	if (unlikely(kprobe_ftrace(kp))) {
986 		arm_kprobe_ftrace(kp);
987 		return;
988 	}
989 	/*
990 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
991 	 * this doesn't cause deadlock on text_mutex. So, we don't
992 	 * need get_online_cpus().
993 	 */
994 	mutex_lock(&text_mutex);
995 	__arm_kprobe(kp);
996 	mutex_unlock(&text_mutex);
997 }
998 
999 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1000 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1001 {
1002 	if (unlikely(kprobe_ftrace(kp))) {
1003 		disarm_kprobe_ftrace(kp);
1004 		return;
1005 	}
1006 	/* Ditto */
1007 	mutex_lock(&text_mutex);
1008 	__disarm_kprobe(kp, reopt);
1009 	mutex_unlock(&text_mutex);
1010 }
1011 
1012 /*
1013  * Aggregate handlers for multiple kprobes support - these handlers
1014  * take care of invoking the individual kprobe handlers on p->list
1015  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1016 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1017 {
1018 	struct kprobe *kp;
1019 
1020 	list_for_each_entry_rcu(kp, &p->list, list) {
1021 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1022 			set_kprobe_instance(kp);
1023 			if (kp->pre_handler(kp, regs))
1024 				return 1;
1025 		}
1026 		reset_kprobe_instance();
1027 	}
1028 	return 0;
1029 }
1030 NOKPROBE_SYMBOL(aggr_pre_handler);
1031 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1032 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1033 			      unsigned long flags)
1034 {
1035 	struct kprobe *kp;
1036 
1037 	list_for_each_entry_rcu(kp, &p->list, list) {
1038 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1039 			set_kprobe_instance(kp);
1040 			kp->post_handler(kp, regs, flags);
1041 			reset_kprobe_instance();
1042 		}
1043 	}
1044 }
1045 NOKPROBE_SYMBOL(aggr_post_handler);
1046 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1047 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1048 			      int trapnr)
1049 {
1050 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051 
1052 	/*
1053 	 * if we faulted "during" the execution of a user specified
1054 	 * probe handler, invoke just that probe's fault handler
1055 	 */
1056 	if (cur && cur->fault_handler) {
1057 		if (cur->fault_handler(cur, regs, trapnr))
1058 			return 1;
1059 	}
1060 	return 0;
1061 }
1062 NOKPROBE_SYMBOL(aggr_fault_handler);
1063 
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)1064 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1065 {
1066 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1067 	int ret = 0;
1068 
1069 	if (cur && cur->break_handler) {
1070 		if (cur->break_handler(cur, regs))
1071 			ret = 1;
1072 	}
1073 	reset_kprobe_instance();
1074 	return ret;
1075 }
1076 NOKPROBE_SYMBOL(aggr_break_handler);
1077 
1078 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1079 void kprobes_inc_nmissed_count(struct kprobe *p)
1080 {
1081 	struct kprobe *kp;
1082 	if (!kprobe_aggrprobe(p)) {
1083 		p->nmissed++;
1084 	} else {
1085 		list_for_each_entry_rcu(kp, &p->list, list)
1086 			kp->nmissed++;
1087 	}
1088 	return;
1089 }
1090 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1091 
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1092 void recycle_rp_inst(struct kretprobe_instance *ri,
1093 		     struct hlist_head *head)
1094 {
1095 	struct kretprobe *rp = ri->rp;
1096 
1097 	/* remove rp inst off the rprobe_inst_table */
1098 	hlist_del(&ri->hlist);
1099 	INIT_HLIST_NODE(&ri->hlist);
1100 	if (likely(rp)) {
1101 		raw_spin_lock(&rp->lock);
1102 		hlist_add_head(&ri->hlist, &rp->free_instances);
1103 		raw_spin_unlock(&rp->lock);
1104 	} else
1105 		/* Unregistering */
1106 		hlist_add_head(&ri->hlist, head);
1107 }
1108 NOKPROBE_SYMBOL(recycle_rp_inst);
1109 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1110 void kretprobe_hash_lock(struct task_struct *tsk,
1111 			 struct hlist_head **head, unsigned long *flags)
1112 __acquires(hlist_lock)
1113 {
1114 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1115 	raw_spinlock_t *hlist_lock;
1116 
1117 	*head = &kretprobe_inst_table[hash];
1118 	hlist_lock = kretprobe_table_lock_ptr(hash);
1119 	raw_spin_lock_irqsave(hlist_lock, *flags);
1120 }
1121 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1122 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1123 static void kretprobe_table_lock(unsigned long hash,
1124 				 unsigned long *flags)
1125 __acquires(hlist_lock)
1126 {
1127 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1128 	raw_spin_lock_irqsave(hlist_lock, *flags);
1129 }
1130 NOKPROBE_SYMBOL(kretprobe_table_lock);
1131 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1132 void kretprobe_hash_unlock(struct task_struct *tsk,
1133 			   unsigned long *flags)
1134 __releases(hlist_lock)
1135 {
1136 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1137 	raw_spinlock_t *hlist_lock;
1138 
1139 	hlist_lock = kretprobe_table_lock_ptr(hash);
1140 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1141 }
1142 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1143 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1144 static void kretprobe_table_unlock(unsigned long hash,
1145 				   unsigned long *flags)
1146 __releases(hlist_lock)
1147 {
1148 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1149 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1152 
1153 struct kprobe kprobe_busy = {
1154 	.addr = (void *) get_kprobe,
1155 };
1156 
kprobe_busy_begin(void)1157 void kprobe_busy_begin(void)
1158 {
1159 	struct kprobe_ctlblk *kcb;
1160 
1161 	preempt_disable();
1162 	__this_cpu_write(current_kprobe, &kprobe_busy);
1163 	kcb = get_kprobe_ctlblk();
1164 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1165 }
1166 
kprobe_busy_end(void)1167 void kprobe_busy_end(void)
1168 {
1169 	__this_cpu_write(current_kprobe, NULL);
1170 	preempt_enable();
1171 }
1172 
1173 /*
1174  * This function is called from finish_task_switch when task tk becomes dead,
1175  * so that we can recycle any function-return probe instances associated
1176  * with this task. These left over instances represent probed functions
1177  * that have been called but will never return.
1178  */
kprobe_flush_task(struct task_struct * tk)1179 void kprobe_flush_task(struct task_struct *tk)
1180 {
1181 	struct kretprobe_instance *ri;
1182 	struct hlist_head *head, empty_rp;
1183 	struct hlist_node *tmp;
1184 	unsigned long hash, flags = 0;
1185 
1186 	if (unlikely(!kprobes_initialized))
1187 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1188 		return;
1189 
1190 	kprobe_busy_begin();
1191 
1192 	INIT_HLIST_HEAD(&empty_rp);
1193 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1194 	head = &kretprobe_inst_table[hash];
1195 	kretprobe_table_lock(hash, &flags);
1196 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1197 		if (ri->task == tk)
1198 			recycle_rp_inst(ri, &empty_rp);
1199 	}
1200 	kretprobe_table_unlock(hash, &flags);
1201 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1202 		hlist_del(&ri->hlist);
1203 		kfree(ri);
1204 	}
1205 
1206 	kprobe_busy_end();
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209 
free_rp_inst(struct kretprobe * rp)1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212 	struct kretprobe_instance *ri;
1213 	struct hlist_node *next;
1214 
1215 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216 		hlist_del(&ri->hlist);
1217 		kfree(ri);
1218 	}
1219 }
1220 
cleanup_rp_inst(struct kretprobe * rp)1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223 	unsigned long flags, hash;
1224 	struct kretprobe_instance *ri;
1225 	struct hlist_node *next;
1226 	struct hlist_head *head;
1227 
1228 	/* No race here */
1229 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230 		kretprobe_table_lock(hash, &flags);
1231 		head = &kretprobe_inst_table[hash];
1232 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1233 			if (ri->rp == rp)
1234 				ri->rp = NULL;
1235 		}
1236 		kretprobe_table_unlock(hash, &flags);
1237 	}
1238 	free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241 
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249 
1250 	if (p->break_handler || p->post_handler)
1251 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1252 
1253 	if (p->break_handler) {
1254 		if (ap->break_handler)
1255 			return -EEXIST;
1256 		list_add_tail_rcu(&p->list, &ap->list);
1257 		ap->break_handler = aggr_break_handler;
1258 	} else
1259 		list_add_rcu(&p->list, &ap->list);
1260 	if (p->post_handler && !ap->post_handler)
1261 		ap->post_handler = aggr_post_handler;
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Fill in the required fields of the "manager kprobe". Replace the
1268  * earlier kprobe in the hlist with the manager kprobe
1269  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272 	/* Copy p's insn slot to ap */
1273 	copy_kprobe(p, ap);
1274 	flush_insn_slot(ap);
1275 	ap->addr = p->addr;
1276 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277 	ap->pre_handler = aggr_pre_handler;
1278 	ap->fault_handler = aggr_fault_handler;
1279 	/* We don't care the kprobe which has gone. */
1280 	if (p->post_handler && !kprobe_gone(p))
1281 		ap->post_handler = aggr_post_handler;
1282 	if (p->break_handler && !kprobe_gone(p))
1283 		ap->break_handler = aggr_break_handler;
1284 
1285 	INIT_LIST_HEAD(&ap->list);
1286 	INIT_HLIST_NODE(&ap->hlist);
1287 
1288 	list_add_rcu(&p->list, &ap->list);
1289 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291 
1292 /*
1293  * This is the second or subsequent kprobe at the address - handle
1294  * the intricacies
1295  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298 	int ret = 0;
1299 	struct kprobe *ap = orig_p;
1300 
1301 	/* For preparing optimization, jump_label_text_reserved() is called */
1302 	jump_label_lock();
1303 	/*
1304 	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305 	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306 	 */
1307 	get_online_cpus();
1308 	mutex_lock(&text_mutex);
1309 
1310 	if (!kprobe_aggrprobe(orig_p)) {
1311 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312 		ap = alloc_aggr_kprobe(orig_p);
1313 		if (!ap) {
1314 			ret = -ENOMEM;
1315 			goto out;
1316 		}
1317 		init_aggr_kprobe(ap, orig_p);
1318 	} else if (kprobe_unused(ap)) {
1319 		/* This probe is going to die. Rescue it */
1320 		ret = reuse_unused_kprobe(ap);
1321 		if (ret)
1322 			goto out;
1323 	}
1324 
1325 	if (kprobe_gone(ap)) {
1326 		/*
1327 		 * Attempting to insert new probe at the same location that
1328 		 * had a probe in the module vaddr area which already
1329 		 * freed. So, the instruction slot has already been
1330 		 * released. We need a new slot for the new probe.
1331 		 */
1332 		ret = arch_prepare_kprobe(ap);
1333 		if (ret)
1334 			/*
1335 			 * Even if fail to allocate new slot, don't need to
1336 			 * free aggr_probe. It will be used next time, or
1337 			 * freed by unregister_kprobe.
1338 			 */
1339 			goto out;
1340 
1341 		/* Prepare optimized instructions if possible. */
1342 		prepare_optimized_kprobe(ap);
1343 
1344 		/*
1345 		 * Clear gone flag to prevent allocating new slot again, and
1346 		 * set disabled flag because it is not armed yet.
1347 		 */
1348 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 			    | KPROBE_FLAG_DISABLED;
1350 	}
1351 
1352 	/* Copy ap's insn slot to p */
1353 	copy_kprobe(ap, p);
1354 	ret = add_new_kprobe(ap, p);
1355 
1356 out:
1357 	mutex_unlock(&text_mutex);
1358 	put_online_cpus();
1359 	jump_label_unlock();
1360 
1361 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 		if (!kprobes_all_disarmed)
1364 			/* Arm the breakpoint again. */
1365 			arm_kprobe(ap);
1366 	}
1367 	return ret;
1368 }
1369 
arch_within_kprobe_blacklist(unsigned long addr)1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372 	/* The __kprobes marked functions and entry code must not be probed */
1373 	return addr >= (unsigned long)__kprobes_text_start &&
1374 	       addr < (unsigned long)__kprobes_text_end;
1375 }
1376 
within_kprobe_blacklist(unsigned long addr)1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379 	struct kprobe_blacklist_entry *ent;
1380 
1381 	if (arch_within_kprobe_blacklist(addr))
1382 		return true;
1383 	/*
1384 	 * If there exists a kprobe_blacklist, verify and
1385 	 * fail any probe registration in the prohibited area
1386 	 */
1387 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1388 		if (addr >= ent->start_addr && addr < ent->end_addr)
1389 			return true;
1390 	}
1391 
1392 	return false;
1393 }
1394 
1395 /*
1396  * If we have a symbol_name argument, look it up and add the offset field
1397  * to it. This way, we can specify a relative address to a symbol.
1398  * This returns encoded errors if it fails to look up symbol or invalid
1399  * combination of parameters.
1400  */
kprobe_addr(struct kprobe * p)1401 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1402 {
1403 	kprobe_opcode_t *addr = p->addr;
1404 
1405 	if ((p->symbol_name && p->addr) ||
1406 	    (!p->symbol_name && !p->addr))
1407 		goto invalid;
1408 
1409 	if (p->symbol_name) {
1410 		kprobe_lookup_name(p->symbol_name, addr);
1411 		if (!addr)
1412 			return ERR_PTR(-ENOENT);
1413 	}
1414 
1415 	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1416 	if (addr)
1417 		return addr;
1418 
1419 invalid:
1420 	return ERR_PTR(-EINVAL);
1421 }
1422 
1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425 {
1426 	struct kprobe *ap, *list_p;
1427 
1428 	ap = get_kprobe(p->addr);
1429 	if (unlikely(!ap))
1430 		return NULL;
1431 
1432 	if (p != ap) {
1433 		list_for_each_entry_rcu(list_p, &ap->list, list)
1434 			if (list_p == p)
1435 			/* kprobe p is a valid probe */
1436 				goto valid;
1437 		return NULL;
1438 	}
1439 valid:
1440 	return ap;
1441 }
1442 
1443 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1444 static inline int check_kprobe_rereg(struct kprobe *p)
1445 {
1446 	int ret = 0;
1447 
1448 	mutex_lock(&kprobe_mutex);
1449 	if (__get_valid_kprobe(p))
1450 		ret = -EINVAL;
1451 	mutex_unlock(&kprobe_mutex);
1452 
1453 	return ret;
1454 }
1455 
arch_check_ftrace_location(struct kprobe * p)1456 int __weak arch_check_ftrace_location(struct kprobe *p)
1457 {
1458 	unsigned long ftrace_addr;
1459 
1460 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1461 	if (ftrace_addr) {
1462 #ifdef CONFIG_KPROBES_ON_FTRACE
1463 		/* Given address is not on the instruction boundary */
1464 		if ((unsigned long)p->addr != ftrace_addr)
1465 			return -EILSEQ;
1466 		p->flags |= KPROBE_FLAG_FTRACE;
1467 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1468 		return -EINVAL;
1469 #endif
1470 	}
1471 	return 0;
1472 }
1473 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1474 static int check_kprobe_address_safe(struct kprobe *p,
1475 				     struct module **probed_mod)
1476 {
1477 	int ret;
1478 
1479 	ret = arch_check_ftrace_location(p);
1480 	if (ret)
1481 		return ret;
1482 	jump_label_lock();
1483 	preempt_disable();
1484 
1485 	/* Ensure it is not in reserved area nor out of text */
1486 	if (!kernel_text_address((unsigned long) p->addr) ||
1487 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1488 	    jump_label_text_reserved(p->addr, p->addr) ||
1489 	    find_bug((unsigned long)p->addr)) {
1490 		ret = -EINVAL;
1491 		goto out;
1492 	}
1493 
1494 	/* Check if are we probing a module */
1495 	*probed_mod = __module_text_address((unsigned long) p->addr);
1496 	if (*probed_mod) {
1497 		/*
1498 		 * We must hold a refcount of the probed module while updating
1499 		 * its code to prohibit unexpected unloading.
1500 		 */
1501 		if (unlikely(!try_module_get(*probed_mod))) {
1502 			ret = -ENOENT;
1503 			goto out;
1504 		}
1505 
1506 		/*
1507 		 * If the module freed .init.text, we couldn't insert
1508 		 * kprobes in there.
1509 		 */
1510 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1511 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1512 			module_put(*probed_mod);
1513 			*probed_mod = NULL;
1514 			ret = -ENOENT;
1515 		}
1516 	}
1517 out:
1518 	preempt_enable();
1519 	jump_label_unlock();
1520 
1521 	return ret;
1522 }
1523 
register_kprobe(struct kprobe * p)1524 int register_kprobe(struct kprobe *p)
1525 {
1526 	int ret;
1527 	struct kprobe *old_p;
1528 	struct module *probed_mod;
1529 	kprobe_opcode_t *addr;
1530 
1531 	/* Adjust probe address from symbol */
1532 	addr = kprobe_addr(p);
1533 	if (IS_ERR(addr))
1534 		return PTR_ERR(addr);
1535 	p->addr = addr;
1536 
1537 	ret = check_kprobe_rereg(p);
1538 	if (ret)
1539 		return ret;
1540 
1541 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1542 	p->flags &= KPROBE_FLAG_DISABLED;
1543 	p->nmissed = 0;
1544 	INIT_LIST_HEAD(&p->list);
1545 
1546 	ret = check_kprobe_address_safe(p, &probed_mod);
1547 	if (ret)
1548 		return ret;
1549 
1550 	mutex_lock(&kprobe_mutex);
1551 
1552 	old_p = get_kprobe(p->addr);
1553 	if (old_p) {
1554 		/* Since this may unoptimize old_p, locking text_mutex. */
1555 		ret = register_aggr_kprobe(old_p, p);
1556 		goto out;
1557 	}
1558 
1559 	mutex_lock(&text_mutex);	/* Avoiding text modification */
1560 	ret = prepare_kprobe(p);
1561 	mutex_unlock(&text_mutex);
1562 	if (ret)
1563 		goto out;
1564 
1565 	INIT_HLIST_NODE(&p->hlist);
1566 	hlist_add_head_rcu(&p->hlist,
1567 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1568 
1569 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1570 		arm_kprobe(p);
1571 
1572 	/* Try to optimize kprobe */
1573 	try_to_optimize_kprobe(p);
1574 
1575 out:
1576 	mutex_unlock(&kprobe_mutex);
1577 
1578 	if (probed_mod)
1579 		module_put(probed_mod);
1580 
1581 	return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(register_kprobe);
1584 
1585 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1586 static int aggr_kprobe_disabled(struct kprobe *ap)
1587 {
1588 	struct kprobe *kp;
1589 
1590 	list_for_each_entry_rcu(kp, &ap->list, list)
1591 		if (!kprobe_disabled(kp))
1592 			/*
1593 			 * There is an active probe on the list.
1594 			 * We can't disable this ap.
1595 			 */
1596 			return 0;
1597 
1598 	return 1;
1599 }
1600 
1601 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1602 static struct kprobe *__disable_kprobe(struct kprobe *p)
1603 {
1604 	struct kprobe *orig_p;
1605 
1606 	/* Get an original kprobe for return */
1607 	orig_p = __get_valid_kprobe(p);
1608 	if (unlikely(orig_p == NULL))
1609 		return NULL;
1610 
1611 	if (!kprobe_disabled(p)) {
1612 		/* Disable probe if it is a child probe */
1613 		if (p != orig_p)
1614 			p->flags |= KPROBE_FLAG_DISABLED;
1615 
1616 		/* Try to disarm and disable this/parent probe */
1617 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1618 			/*
1619 			 * If kprobes_all_disarmed is set, orig_p
1620 			 * should have already been disarmed, so
1621 			 * skip unneed disarming process.
1622 			 */
1623 			if (!kprobes_all_disarmed)
1624 				disarm_kprobe(orig_p, true);
1625 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1626 		}
1627 	}
1628 
1629 	return orig_p;
1630 }
1631 
1632 /*
1633  * Unregister a kprobe without a scheduler synchronization.
1634  */
__unregister_kprobe_top(struct kprobe * p)1635 static int __unregister_kprobe_top(struct kprobe *p)
1636 {
1637 	struct kprobe *ap, *list_p;
1638 
1639 	/* Disable kprobe. This will disarm it if needed. */
1640 	ap = __disable_kprobe(p);
1641 	if (ap == NULL)
1642 		return -EINVAL;
1643 
1644 	if (ap == p)
1645 		/*
1646 		 * This probe is an independent(and non-optimized) kprobe
1647 		 * (not an aggrprobe). Remove from the hash list.
1648 		 */
1649 		goto disarmed;
1650 
1651 	/* Following process expects this probe is an aggrprobe */
1652 	WARN_ON(!kprobe_aggrprobe(ap));
1653 
1654 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1655 		/*
1656 		 * !disarmed could be happen if the probe is under delayed
1657 		 * unoptimizing.
1658 		 */
1659 		goto disarmed;
1660 	else {
1661 		/* If disabling probe has special handlers, update aggrprobe */
1662 		if (p->break_handler && !kprobe_gone(p))
1663 			ap->break_handler = NULL;
1664 		if (p->post_handler && !kprobe_gone(p)) {
1665 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1666 				if ((list_p != p) && (list_p->post_handler))
1667 					goto noclean;
1668 			}
1669 			ap->post_handler = NULL;
1670 		}
1671 noclean:
1672 		/*
1673 		 * Remove from the aggrprobe: this path will do nothing in
1674 		 * __unregister_kprobe_bottom().
1675 		 */
1676 		list_del_rcu(&p->list);
1677 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1678 			/*
1679 			 * Try to optimize this probe again, because post
1680 			 * handler may have been changed.
1681 			 */
1682 			optimize_kprobe(ap);
1683 	}
1684 	return 0;
1685 
1686 disarmed:
1687 	BUG_ON(!kprobe_disarmed(ap));
1688 	hlist_del_rcu(&ap->hlist);
1689 	return 0;
1690 }
1691 
__unregister_kprobe_bottom(struct kprobe * p)1692 static void __unregister_kprobe_bottom(struct kprobe *p)
1693 {
1694 	struct kprobe *ap;
1695 
1696 	if (list_empty(&p->list))
1697 		/* This is an independent kprobe */
1698 		arch_remove_kprobe(p);
1699 	else if (list_is_singular(&p->list)) {
1700 		/* This is the last child of an aggrprobe */
1701 		ap = list_entry(p->list.next, struct kprobe, list);
1702 		list_del(&p->list);
1703 		free_aggr_kprobe(ap);
1704 	}
1705 	/* Otherwise, do nothing. */
1706 }
1707 
register_kprobes(struct kprobe ** kps,int num)1708 int register_kprobes(struct kprobe **kps, int num)
1709 {
1710 	int i, ret = 0;
1711 
1712 	if (num <= 0)
1713 		return -EINVAL;
1714 	for (i = 0; i < num; i++) {
1715 		ret = register_kprobe(kps[i]);
1716 		if (ret < 0) {
1717 			if (i > 0)
1718 				unregister_kprobes(kps, i);
1719 			break;
1720 		}
1721 	}
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(register_kprobes);
1725 
unregister_kprobe(struct kprobe * p)1726 void unregister_kprobe(struct kprobe *p)
1727 {
1728 	unregister_kprobes(&p, 1);
1729 }
1730 EXPORT_SYMBOL_GPL(unregister_kprobe);
1731 
unregister_kprobes(struct kprobe ** kps,int num)1732 void unregister_kprobes(struct kprobe **kps, int num)
1733 {
1734 	int i;
1735 
1736 	if (num <= 0)
1737 		return;
1738 	mutex_lock(&kprobe_mutex);
1739 	for (i = 0; i < num; i++)
1740 		if (__unregister_kprobe_top(kps[i]) < 0)
1741 			kps[i]->addr = NULL;
1742 	mutex_unlock(&kprobe_mutex);
1743 
1744 	synchronize_sched();
1745 	for (i = 0; i < num; i++)
1746 		if (kps[i]->addr)
1747 			__unregister_kprobe_bottom(kps[i]);
1748 }
1749 EXPORT_SYMBOL_GPL(unregister_kprobes);
1750 
1751 static struct notifier_block kprobe_exceptions_nb = {
1752 	.notifier_call = kprobe_exceptions_notify,
1753 	.priority = 0x7fffffff /* we need to be notified first */
1754 };
1755 
arch_deref_entry_point(void * entry)1756 unsigned long __weak arch_deref_entry_point(void *entry)
1757 {
1758 	return (unsigned long)entry;
1759 }
1760 
register_jprobes(struct jprobe ** jps,int num)1761 int register_jprobes(struct jprobe **jps, int num)
1762 {
1763 	struct jprobe *jp;
1764 	int ret = 0, i;
1765 
1766 	if (num <= 0)
1767 		return -EINVAL;
1768 	for (i = 0; i < num; i++) {
1769 		unsigned long addr, offset;
1770 		jp = jps[i];
1771 		addr = arch_deref_entry_point(jp->entry);
1772 
1773 		/* Verify probepoint is a function entry point */
1774 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1775 		    offset == 0) {
1776 			jp->kp.pre_handler = setjmp_pre_handler;
1777 			jp->kp.break_handler = longjmp_break_handler;
1778 			ret = register_kprobe(&jp->kp);
1779 		} else
1780 			ret = -EINVAL;
1781 
1782 		if (ret < 0) {
1783 			if (i > 0)
1784 				unregister_jprobes(jps, i);
1785 			break;
1786 		}
1787 	}
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(register_jprobes);
1791 
register_jprobe(struct jprobe * jp)1792 int register_jprobe(struct jprobe *jp)
1793 {
1794 	return register_jprobes(&jp, 1);
1795 }
1796 EXPORT_SYMBOL_GPL(register_jprobe);
1797 
unregister_jprobe(struct jprobe * jp)1798 void unregister_jprobe(struct jprobe *jp)
1799 {
1800 	unregister_jprobes(&jp, 1);
1801 }
1802 EXPORT_SYMBOL_GPL(unregister_jprobe);
1803 
unregister_jprobes(struct jprobe ** jps,int num)1804 void unregister_jprobes(struct jprobe **jps, int num)
1805 {
1806 	int i;
1807 
1808 	if (num <= 0)
1809 		return;
1810 	mutex_lock(&kprobe_mutex);
1811 	for (i = 0; i < num; i++)
1812 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1813 			jps[i]->kp.addr = NULL;
1814 	mutex_unlock(&kprobe_mutex);
1815 
1816 	synchronize_sched();
1817 	for (i = 0; i < num; i++) {
1818 		if (jps[i]->kp.addr)
1819 			__unregister_kprobe_bottom(&jps[i]->kp);
1820 	}
1821 }
1822 EXPORT_SYMBOL_GPL(unregister_jprobes);
1823 
1824 #ifdef CONFIG_KRETPROBES
1825 /*
1826  * This kprobe pre_handler is registered with every kretprobe. When probe
1827  * hits it will set up the return probe.
1828  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1829 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1830 {
1831 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1832 	unsigned long hash, flags = 0;
1833 	struct kretprobe_instance *ri;
1834 
1835 	/*
1836 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1837 	 * just skip the probe and increase the (inexact) 'nmissed'
1838 	 * statistical counter, so that the user is informed that
1839 	 * something happened:
1840 	 */
1841 	if (unlikely(in_nmi())) {
1842 		rp->nmissed++;
1843 		return 0;
1844 	}
1845 
1846 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1847 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1848 	raw_spin_lock_irqsave(&rp->lock, flags);
1849 	if (!hlist_empty(&rp->free_instances)) {
1850 		ri = hlist_entry(rp->free_instances.first,
1851 				struct kretprobe_instance, hlist);
1852 		hlist_del(&ri->hlist);
1853 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1854 
1855 		ri->rp = rp;
1856 		ri->task = current;
1857 
1858 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1859 			raw_spin_lock_irqsave(&rp->lock, flags);
1860 			hlist_add_head(&ri->hlist, &rp->free_instances);
1861 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1862 			return 0;
1863 		}
1864 
1865 		arch_prepare_kretprobe(ri, regs);
1866 
1867 		/* XXX(hch): why is there no hlist_move_head? */
1868 		INIT_HLIST_NODE(&ri->hlist);
1869 		kretprobe_table_lock(hash, &flags);
1870 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1871 		kretprobe_table_unlock(hash, &flags);
1872 	} else {
1873 		rp->nmissed++;
1874 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1875 	}
1876 	return 0;
1877 }
1878 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1879 
register_kretprobe(struct kretprobe * rp)1880 int register_kretprobe(struct kretprobe *rp)
1881 {
1882 	int ret = 0;
1883 	struct kretprobe_instance *inst;
1884 	int i;
1885 	void *addr;
1886 
1887 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1888 	if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1889 		return -EINVAL;
1890 
1891 	if (kretprobe_blacklist_size) {
1892 		addr = kprobe_addr(&rp->kp);
1893 		if (IS_ERR(addr))
1894 			return PTR_ERR(addr);
1895 
1896 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1897 			if (kretprobe_blacklist[i].addr == addr)
1898 				return -EINVAL;
1899 		}
1900 	}
1901 
1902 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
1903 		return -E2BIG;
1904 
1905 	rp->kp.pre_handler = pre_handler_kretprobe;
1906 	rp->kp.post_handler = NULL;
1907 	rp->kp.fault_handler = NULL;
1908 	rp->kp.break_handler = NULL;
1909 
1910 	/* Pre-allocate memory for max kretprobe instances */
1911 	if (rp->maxactive <= 0) {
1912 #ifdef CONFIG_PREEMPT
1913 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1914 #else
1915 		rp->maxactive = num_possible_cpus();
1916 #endif
1917 	}
1918 	raw_spin_lock_init(&rp->lock);
1919 	INIT_HLIST_HEAD(&rp->free_instances);
1920 	for (i = 0; i < rp->maxactive; i++) {
1921 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1922 			       rp->data_size, GFP_KERNEL);
1923 		if (inst == NULL) {
1924 			free_rp_inst(rp);
1925 			return -ENOMEM;
1926 		}
1927 		INIT_HLIST_NODE(&inst->hlist);
1928 		hlist_add_head(&inst->hlist, &rp->free_instances);
1929 	}
1930 
1931 	rp->nmissed = 0;
1932 	/* Establish function entry probe point */
1933 	ret = register_kprobe(&rp->kp);
1934 	if (ret != 0)
1935 		free_rp_inst(rp);
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(register_kretprobe);
1939 
register_kretprobes(struct kretprobe ** rps,int num)1940 int register_kretprobes(struct kretprobe **rps, int num)
1941 {
1942 	int ret = 0, i;
1943 
1944 	if (num <= 0)
1945 		return -EINVAL;
1946 	for (i = 0; i < num; i++) {
1947 		ret = register_kretprobe(rps[i]);
1948 		if (ret < 0) {
1949 			if (i > 0)
1950 				unregister_kretprobes(rps, i);
1951 			break;
1952 		}
1953 	}
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(register_kretprobes);
1957 
unregister_kretprobe(struct kretprobe * rp)1958 void unregister_kretprobe(struct kretprobe *rp)
1959 {
1960 	unregister_kretprobes(&rp, 1);
1961 }
1962 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1963 
unregister_kretprobes(struct kretprobe ** rps,int num)1964 void unregister_kretprobes(struct kretprobe **rps, int num)
1965 {
1966 	int i;
1967 
1968 	if (num <= 0)
1969 		return;
1970 	mutex_lock(&kprobe_mutex);
1971 	for (i = 0; i < num; i++)
1972 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1973 			rps[i]->kp.addr = NULL;
1974 	mutex_unlock(&kprobe_mutex);
1975 
1976 	synchronize_sched();
1977 	for (i = 0; i < num; i++) {
1978 		if (rps[i]->kp.addr) {
1979 			__unregister_kprobe_bottom(&rps[i]->kp);
1980 			cleanup_rp_inst(rps[i]);
1981 		}
1982 	}
1983 }
1984 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1985 
1986 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)1987 int register_kretprobe(struct kretprobe *rp)
1988 {
1989 	return -ENOSYS;
1990 }
1991 EXPORT_SYMBOL_GPL(register_kretprobe);
1992 
register_kretprobes(struct kretprobe ** rps,int num)1993 int register_kretprobes(struct kretprobe **rps, int num)
1994 {
1995 	return -ENOSYS;
1996 }
1997 EXPORT_SYMBOL_GPL(register_kretprobes);
1998 
unregister_kretprobe(struct kretprobe * rp)1999 void unregister_kretprobe(struct kretprobe *rp)
2000 {
2001 }
2002 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2003 
unregister_kretprobes(struct kretprobe ** rps,int num)2004 void unregister_kretprobes(struct kretprobe **rps, int num)
2005 {
2006 }
2007 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2008 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2009 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2010 {
2011 	return 0;
2012 }
2013 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2014 
2015 #endif /* CONFIG_KRETPROBES */
2016 
2017 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2018 static void kill_kprobe(struct kprobe *p)
2019 {
2020 	struct kprobe *kp;
2021 
2022 	if (WARN_ON_ONCE(kprobe_gone(p)))
2023 		return;
2024 
2025 	p->flags |= KPROBE_FLAG_GONE;
2026 	if (kprobe_aggrprobe(p)) {
2027 		/*
2028 		 * If this is an aggr_kprobe, we have to list all the
2029 		 * chained probes and mark them GONE.
2030 		 */
2031 		list_for_each_entry_rcu(kp, &p->list, list)
2032 			kp->flags |= KPROBE_FLAG_GONE;
2033 		p->post_handler = NULL;
2034 		p->break_handler = NULL;
2035 		kill_optimized_kprobe(p);
2036 	}
2037 	/*
2038 	 * Here, we can remove insn_slot safely, because no thread calls
2039 	 * the original probed function (which will be freed soon) any more.
2040 	 */
2041 	arch_remove_kprobe(p);
2042 
2043 	/*
2044 	 * The module is going away. We should disarm the kprobe which
2045 	 * is using ftrace, because ftrace framework is still available at
2046 	 * MODULE_STATE_GOING notification.
2047 	 */
2048 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2049 		disarm_kprobe_ftrace(p);
2050 }
2051 
2052 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2053 int disable_kprobe(struct kprobe *kp)
2054 {
2055 	int ret = 0;
2056 
2057 	mutex_lock(&kprobe_mutex);
2058 
2059 	/* Disable this kprobe */
2060 	if (__disable_kprobe(kp) == NULL)
2061 		ret = -EINVAL;
2062 
2063 	mutex_unlock(&kprobe_mutex);
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(disable_kprobe);
2067 
2068 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2069 int enable_kprobe(struct kprobe *kp)
2070 {
2071 	int ret = 0;
2072 	struct kprobe *p;
2073 
2074 	mutex_lock(&kprobe_mutex);
2075 
2076 	/* Check whether specified probe is valid. */
2077 	p = __get_valid_kprobe(kp);
2078 	if (unlikely(p == NULL)) {
2079 		ret = -EINVAL;
2080 		goto out;
2081 	}
2082 
2083 	if (kprobe_gone(kp)) {
2084 		/* This kprobe has gone, we couldn't enable it. */
2085 		ret = -EINVAL;
2086 		goto out;
2087 	}
2088 
2089 	if (p != kp)
2090 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2091 
2092 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2093 		p->flags &= ~KPROBE_FLAG_DISABLED;
2094 		arm_kprobe(p);
2095 	}
2096 out:
2097 	mutex_unlock(&kprobe_mutex);
2098 	return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(enable_kprobe);
2101 
dump_kprobe(struct kprobe * kp)2102 void dump_kprobe(struct kprobe *kp)
2103 {
2104 	printk(KERN_WARNING "Dumping kprobe:\n");
2105 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2106 	       kp->symbol_name, kp->addr, kp->offset);
2107 }
2108 NOKPROBE_SYMBOL(dump_kprobe);
2109 
2110 /*
2111  * Lookup and populate the kprobe_blacklist.
2112  *
2113  * Unlike the kretprobe blacklist, we'll need to determine
2114  * the range of addresses that belong to the said functions,
2115  * since a kprobe need not necessarily be at the beginning
2116  * of a function.
2117  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2118 static int __init populate_kprobe_blacklist(unsigned long *start,
2119 					     unsigned long *end)
2120 {
2121 	unsigned long *iter;
2122 	struct kprobe_blacklist_entry *ent;
2123 	unsigned long entry, offset = 0, size = 0;
2124 
2125 	for (iter = start; iter < end; iter++) {
2126 		entry = arch_deref_entry_point((void *)*iter);
2127 
2128 		if (!kernel_text_address(entry) ||
2129 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2130 			pr_err("Failed to find blacklist at %p\n",
2131 				(void *)entry);
2132 			continue;
2133 		}
2134 
2135 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2136 		if (!ent)
2137 			return -ENOMEM;
2138 		ent->start_addr = entry;
2139 		ent->end_addr = entry + size;
2140 		INIT_LIST_HEAD(&ent->list);
2141 		list_add_tail(&ent->list, &kprobe_blacklist);
2142 	}
2143 	return 0;
2144 }
2145 
2146 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2147 static int kprobes_module_callback(struct notifier_block *nb,
2148 				   unsigned long val, void *data)
2149 {
2150 	struct module *mod = data;
2151 	struct hlist_head *head;
2152 	struct kprobe *p;
2153 	unsigned int i;
2154 	int checkcore = (val == MODULE_STATE_GOING);
2155 
2156 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2157 		return NOTIFY_DONE;
2158 
2159 	/*
2160 	 * When MODULE_STATE_GOING was notified, both of module .text and
2161 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2162 	 * notified, only .init.text section would be freed. We need to
2163 	 * disable kprobes which have been inserted in the sections.
2164 	 */
2165 	mutex_lock(&kprobe_mutex);
2166 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2167 		head = &kprobe_table[i];
2168 		hlist_for_each_entry_rcu(p, head, hlist) {
2169 			if (kprobe_gone(p))
2170 				continue;
2171 
2172 			if (within_module_init((unsigned long)p->addr, mod) ||
2173 			    (checkcore &&
2174 			     within_module_core((unsigned long)p->addr, mod))) {
2175 				/*
2176 				 * The vaddr this probe is installed will soon
2177 				 * be vfreed buy not synced to disk. Hence,
2178 				 * disarming the breakpoint isn't needed.
2179 				 */
2180 				kill_kprobe(p);
2181 			}
2182 		}
2183 	}
2184 	mutex_unlock(&kprobe_mutex);
2185 	return NOTIFY_DONE;
2186 }
2187 
2188 static struct notifier_block kprobe_module_nb = {
2189 	.notifier_call = kprobes_module_callback,
2190 	.priority = 0
2191 };
2192 
2193 /* Markers of _kprobe_blacklist section */
2194 extern unsigned long __start_kprobe_blacklist[];
2195 extern unsigned long __stop_kprobe_blacklist[];
2196 
init_kprobes(void)2197 static int __init init_kprobes(void)
2198 {
2199 	int i, err = 0;
2200 
2201 	/* FIXME allocate the probe table, currently defined statically */
2202 	/* initialize all list heads */
2203 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2204 		INIT_HLIST_HEAD(&kprobe_table[i]);
2205 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2206 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2207 	}
2208 
2209 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2210 					__stop_kprobe_blacklist);
2211 	if (err) {
2212 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2213 		pr_err("Please take care of using kprobes.\n");
2214 	}
2215 
2216 	if (kretprobe_blacklist_size) {
2217 		/* lookup the function address from its name */
2218 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2219 			kprobe_lookup_name(kretprobe_blacklist[i].name,
2220 					   kretprobe_blacklist[i].addr);
2221 			if (!kretprobe_blacklist[i].addr)
2222 				printk("kretprobe: lookup failed: %s\n",
2223 				       kretprobe_blacklist[i].name);
2224 		}
2225 	}
2226 
2227 #if defined(CONFIG_OPTPROBES)
2228 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2229 	/* Init kprobe_optinsn_slots */
2230 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2231 #endif
2232 	/* By default, kprobes can be optimized */
2233 	kprobes_allow_optimization = true;
2234 #endif
2235 
2236 	/* By default, kprobes are armed */
2237 	kprobes_all_disarmed = false;
2238 
2239 	err = arch_init_kprobes();
2240 	if (!err)
2241 		err = register_die_notifier(&kprobe_exceptions_nb);
2242 	if (!err)
2243 		err = register_module_notifier(&kprobe_module_nb);
2244 
2245 	kprobes_initialized = (err == 0);
2246 
2247 	if (!err)
2248 		init_test_probes();
2249 	return err;
2250 }
2251 
2252 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2253 static void report_probe(struct seq_file *pi, struct kprobe *p,
2254 		const char *sym, int offset, char *modname, struct kprobe *pp)
2255 {
2256 	char *kprobe_type;
2257 
2258 	if (p->pre_handler == pre_handler_kretprobe)
2259 		kprobe_type = "r";
2260 	else if (p->pre_handler == setjmp_pre_handler)
2261 		kprobe_type = "j";
2262 	else
2263 		kprobe_type = "k";
2264 
2265 	if (sym)
2266 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2267 			p->addr, kprobe_type, sym, offset,
2268 			(modname ? modname : " "));
2269 	else
2270 		seq_printf(pi, "%p  %s  %p ",
2271 			p->addr, kprobe_type, p->addr);
2272 
2273 	if (!pp)
2274 		pp = p;
2275 	seq_printf(pi, "%s%s%s%s\n",
2276 		(kprobe_gone(p) ? "[GONE]" : ""),
2277 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2278 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2279 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2280 }
2281 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2282 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2283 {
2284 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2285 }
2286 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2287 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2288 {
2289 	(*pos)++;
2290 	if (*pos >= KPROBE_TABLE_SIZE)
2291 		return NULL;
2292 	return pos;
2293 }
2294 
kprobe_seq_stop(struct seq_file * f,void * v)2295 static void kprobe_seq_stop(struct seq_file *f, void *v)
2296 {
2297 	/* Nothing to do */
2298 }
2299 
show_kprobe_addr(struct seq_file * pi,void * v)2300 static int show_kprobe_addr(struct seq_file *pi, void *v)
2301 {
2302 	struct hlist_head *head;
2303 	struct kprobe *p, *kp;
2304 	const char *sym = NULL;
2305 	unsigned int i = *(loff_t *) v;
2306 	unsigned long offset = 0;
2307 	char *modname, namebuf[KSYM_NAME_LEN];
2308 
2309 	head = &kprobe_table[i];
2310 	preempt_disable();
2311 	hlist_for_each_entry_rcu(p, head, hlist) {
2312 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2313 					&offset, &modname, namebuf);
2314 		if (kprobe_aggrprobe(p)) {
2315 			list_for_each_entry_rcu(kp, &p->list, list)
2316 				report_probe(pi, kp, sym, offset, modname, p);
2317 		} else
2318 			report_probe(pi, p, sym, offset, modname, NULL);
2319 	}
2320 	preempt_enable();
2321 	return 0;
2322 }
2323 
2324 static const struct seq_operations kprobes_seq_ops = {
2325 	.start = kprobe_seq_start,
2326 	.next  = kprobe_seq_next,
2327 	.stop  = kprobe_seq_stop,
2328 	.show  = show_kprobe_addr
2329 };
2330 
kprobes_open(struct inode * inode,struct file * filp)2331 static int kprobes_open(struct inode *inode, struct file *filp)
2332 {
2333 	return seq_open(filp, &kprobes_seq_ops);
2334 }
2335 
2336 static const struct file_operations debugfs_kprobes_operations = {
2337 	.open           = kprobes_open,
2338 	.read           = seq_read,
2339 	.llseek         = seq_lseek,
2340 	.release        = seq_release,
2341 };
2342 
2343 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2344 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2345 {
2346 	return seq_list_start(&kprobe_blacklist, *pos);
2347 }
2348 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2349 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2350 {
2351 	return seq_list_next(v, &kprobe_blacklist, pos);
2352 }
2353 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2354 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2355 {
2356 	struct kprobe_blacklist_entry *ent =
2357 		list_entry(v, struct kprobe_blacklist_entry, list);
2358 
2359 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2360 		   (void *)ent->end_addr, (void *)ent->start_addr);
2361 	return 0;
2362 }
2363 
2364 static const struct seq_operations kprobe_blacklist_seq_ops = {
2365 	.start = kprobe_blacklist_seq_start,
2366 	.next  = kprobe_blacklist_seq_next,
2367 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2368 	.show  = kprobe_blacklist_seq_show,
2369 };
2370 
kprobe_blacklist_open(struct inode * inode,struct file * filp)2371 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2372 {
2373 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2374 }
2375 
2376 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2377 	.open           = kprobe_blacklist_open,
2378 	.read           = seq_read,
2379 	.llseek         = seq_lseek,
2380 	.release        = seq_release,
2381 };
2382 
arm_all_kprobes(void)2383 static void arm_all_kprobes(void)
2384 {
2385 	struct hlist_head *head;
2386 	struct kprobe *p;
2387 	unsigned int i;
2388 
2389 	mutex_lock(&kprobe_mutex);
2390 
2391 	/* If kprobes are armed, just return */
2392 	if (!kprobes_all_disarmed)
2393 		goto already_enabled;
2394 
2395 	/*
2396 	 * optimize_kprobe() called by arm_kprobe() checks
2397 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2398 	 * arm_kprobe.
2399 	 */
2400 	kprobes_all_disarmed = false;
2401 	/* Arming kprobes doesn't optimize kprobe itself */
2402 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2403 		head = &kprobe_table[i];
2404 		hlist_for_each_entry_rcu(p, head, hlist)
2405 			if (!kprobe_disabled(p))
2406 				arm_kprobe(p);
2407 	}
2408 
2409 	printk(KERN_INFO "Kprobes globally enabled\n");
2410 
2411 already_enabled:
2412 	mutex_unlock(&kprobe_mutex);
2413 	return;
2414 }
2415 
disarm_all_kprobes(void)2416 static void disarm_all_kprobes(void)
2417 {
2418 	struct hlist_head *head;
2419 	struct kprobe *p;
2420 	unsigned int i;
2421 
2422 	mutex_lock(&kprobe_mutex);
2423 
2424 	/* If kprobes are already disarmed, just return */
2425 	if (kprobes_all_disarmed) {
2426 		mutex_unlock(&kprobe_mutex);
2427 		return;
2428 	}
2429 
2430 	kprobes_all_disarmed = true;
2431 	printk(KERN_INFO "Kprobes globally disabled\n");
2432 
2433 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2434 		head = &kprobe_table[i];
2435 		hlist_for_each_entry_rcu(p, head, hlist) {
2436 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2437 				disarm_kprobe(p, false);
2438 		}
2439 	}
2440 	mutex_unlock(&kprobe_mutex);
2441 
2442 	/* Wait for disarming all kprobes by optimizer */
2443 	wait_for_kprobe_optimizer();
2444 }
2445 
2446 /*
2447  * XXX: The debugfs bool file interface doesn't allow for callbacks
2448  * when the bool state is switched. We can reuse that facility when
2449  * available
2450  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2451 static ssize_t read_enabled_file_bool(struct file *file,
2452 	       char __user *user_buf, size_t count, loff_t *ppos)
2453 {
2454 	char buf[3];
2455 
2456 	if (!kprobes_all_disarmed)
2457 		buf[0] = '1';
2458 	else
2459 		buf[0] = '0';
2460 	buf[1] = '\n';
2461 	buf[2] = 0x00;
2462 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2463 }
2464 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2465 static ssize_t write_enabled_file_bool(struct file *file,
2466 	       const char __user *user_buf, size_t count, loff_t *ppos)
2467 {
2468 	char buf[32];
2469 	size_t buf_size;
2470 
2471 	buf_size = min(count, (sizeof(buf)-1));
2472 	if (copy_from_user(buf, user_buf, buf_size))
2473 		return -EFAULT;
2474 
2475 	buf[buf_size] = '\0';
2476 	switch (buf[0]) {
2477 	case 'y':
2478 	case 'Y':
2479 	case '1':
2480 		arm_all_kprobes();
2481 		break;
2482 	case 'n':
2483 	case 'N':
2484 	case '0':
2485 		disarm_all_kprobes();
2486 		break;
2487 	default:
2488 		return -EINVAL;
2489 	}
2490 
2491 	return count;
2492 }
2493 
2494 static const struct file_operations fops_kp = {
2495 	.read =         read_enabled_file_bool,
2496 	.write =        write_enabled_file_bool,
2497 	.llseek =	default_llseek,
2498 };
2499 
debugfs_kprobe_init(void)2500 static int __init debugfs_kprobe_init(void)
2501 {
2502 	struct dentry *dir, *file;
2503 	unsigned int value = 1;
2504 
2505 	dir = debugfs_create_dir("kprobes", NULL);
2506 	if (!dir)
2507 		return -ENOMEM;
2508 
2509 	file = debugfs_create_file("list", 0400, dir, NULL,
2510 				&debugfs_kprobes_operations);
2511 	if (!file)
2512 		goto error;
2513 
2514 	file = debugfs_create_file("enabled", 0600, dir,
2515 					&value, &fops_kp);
2516 	if (!file)
2517 		goto error;
2518 
2519 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2520 				&debugfs_kprobe_blacklist_ops);
2521 	if (!file)
2522 		goto error;
2523 
2524 	return 0;
2525 
2526 error:
2527 	debugfs_remove(dir);
2528 	return -ENOMEM;
2529 }
2530 
2531 late_initcall(debugfs_kprobe_init);
2532 #endif /* CONFIG_DEBUG_FS */
2533 
2534 module_init(init_kprobes);
2535 
2536 /* defined in arch/.../kernel/kprobes.c */
2537 EXPORT_SYMBOL_GPL(jprobe_return);
2538