1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/nospec.h>
30 #include <linux/backing-dev.h>
31 #include <trace/events/ext4.h>
32
33 #ifdef CONFIG_EXT4_DEBUG
34 ushort ext4_mballoc_debug __read_mostly;
35
36 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
37 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
38 #endif
39
40 /*
41 * MUSTDO:
42 * - test ext4_ext_search_left() and ext4_ext_search_right()
43 * - search for metadata in few groups
44 *
45 * TODO v4:
46 * - normalization should take into account whether file is still open
47 * - discard preallocations if no free space left (policy?)
48 * - don't normalize tails
49 * - quota
50 * - reservation for superuser
51 *
52 * TODO v3:
53 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
54 * - track min/max extents in each group for better group selection
55 * - mb_mark_used() may allocate chunk right after splitting buddy
56 * - tree of groups sorted by number of free blocks
57 * - error handling
58 */
59
60 /*
61 * The allocation request involve request for multiple number of blocks
62 * near to the goal(block) value specified.
63 *
64 * During initialization phase of the allocator we decide to use the
65 * group preallocation or inode preallocation depending on the size of
66 * the file. The size of the file could be the resulting file size we
67 * would have after allocation, or the current file size, which ever
68 * is larger. If the size is less than sbi->s_mb_stream_request we
69 * select to use the group preallocation. The default value of
70 * s_mb_stream_request is 16 blocks. This can also be tuned via
71 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
72 * terms of number of blocks.
73 *
74 * The main motivation for having small file use group preallocation is to
75 * ensure that we have small files closer together on the disk.
76 *
77 * First stage the allocator looks at the inode prealloc list,
78 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
79 * spaces for this particular inode. The inode prealloc space is
80 * represented as:
81 *
82 * pa_lstart -> the logical start block for this prealloc space
83 * pa_pstart -> the physical start block for this prealloc space
84 * pa_len -> length for this prealloc space (in clusters)
85 * pa_free -> free space available in this prealloc space (in clusters)
86 *
87 * The inode preallocation space is used looking at the _logical_ start
88 * block. If only the logical file block falls within the range of prealloc
89 * space we will consume the particular prealloc space. This makes sure that
90 * we have contiguous physical blocks representing the file blocks
91 *
92 * The important thing to be noted in case of inode prealloc space is that
93 * we don't modify the values associated to inode prealloc space except
94 * pa_free.
95 *
96 * If we are not able to find blocks in the inode prealloc space and if we
97 * have the group allocation flag set then we look at the locality group
98 * prealloc space. These are per CPU prealloc list represented as
99 *
100 * ext4_sb_info.s_locality_groups[smp_processor_id()]
101 *
102 * The reason for having a per cpu locality group is to reduce the contention
103 * between CPUs. It is possible to get scheduled at this point.
104 *
105 * The locality group prealloc space is used looking at whether we have
106 * enough free space (pa_free) within the prealloc space.
107 *
108 * If we can't allocate blocks via inode prealloc or/and locality group
109 * prealloc then we look at the buddy cache. The buddy cache is represented
110 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
111 * mapped to the buddy and bitmap information regarding different
112 * groups. The buddy information is attached to buddy cache inode so that
113 * we can access them through the page cache. The information regarding
114 * each group is loaded via ext4_mb_load_buddy. The information involve
115 * block bitmap and buddy information. The information are stored in the
116 * inode as:
117 *
118 * { page }
119 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 *
121 *
122 * one block each for bitmap and buddy information. So for each group we
123 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
124 * blocksize) blocks. So it can have information regarding groups_per_page
125 * which is blocks_per_page/2
126 *
127 * The buddy cache inode is not stored on disk. The inode is thrown
128 * away when the filesystem is unmounted.
129 *
130 * We look for count number of blocks in the buddy cache. If we were able
131 * to locate that many free blocks we return with additional information
132 * regarding rest of the contiguous physical block available
133 *
134 * Before allocating blocks via buddy cache we normalize the request
135 * blocks. This ensure we ask for more blocks that we needed. The extra
136 * blocks that we get after allocation is added to the respective prealloc
137 * list. In case of inode preallocation we follow a list of heuristics
138 * based on file size. This can be found in ext4_mb_normalize_request. If
139 * we are doing a group prealloc we try to normalize the request to
140 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
141 * dependent on the cluster size; for non-bigalloc file systems, it is
142 * 512 blocks. This can be tuned via
143 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
144 * terms of number of blocks. If we have mounted the file system with -O
145 * stripe=<value> option the group prealloc request is normalized to the
146 * the smallest multiple of the stripe value (sbi->s_stripe) which is
147 * greater than the default mb_group_prealloc.
148 *
149 * The regular allocator (using the buddy cache) supports a few tunables.
150 *
151 * /sys/fs/ext4/<partition>/mb_min_to_scan
152 * /sys/fs/ext4/<partition>/mb_max_to_scan
153 * /sys/fs/ext4/<partition>/mb_order2_req
154 *
155 * The regular allocator uses buddy scan only if the request len is power of
156 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
157 * value of s_mb_order2_reqs can be tuned via
158 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
159 * stripe size (sbi->s_stripe), we try to search for contiguous block in
160 * stripe size. This should result in better allocation on RAID setups. If
161 * not, we search in the specific group using bitmap for best extents. The
162 * tunable min_to_scan and max_to_scan control the behaviour here.
163 * min_to_scan indicate how long the mballoc __must__ look for a best
164 * extent and max_to_scan indicates how long the mballoc __can__ look for a
165 * best extent in the found extents. Searching for the blocks starts with
166 * the group specified as the goal value in allocation context via
167 * ac_g_ex. Each group is first checked based on the criteria whether it
168 * can be used for allocation. ext4_mb_good_group explains how the groups are
169 * checked.
170 *
171 * Both the prealloc space are getting populated as above. So for the first
172 * request we will hit the buddy cache which will result in this prealloc
173 * space getting filled. The prealloc space is then later used for the
174 * subsequent request.
175 */
176
177 /*
178 * mballoc operates on the following data:
179 * - on-disk bitmap
180 * - in-core buddy (actually includes buddy and bitmap)
181 * - preallocation descriptors (PAs)
182 *
183 * there are two types of preallocations:
184 * - inode
185 * assiged to specific inode and can be used for this inode only.
186 * it describes part of inode's space preallocated to specific
187 * physical blocks. any block from that preallocated can be used
188 * independent. the descriptor just tracks number of blocks left
189 * unused. so, before taking some block from descriptor, one must
190 * make sure corresponded logical block isn't allocated yet. this
191 * also means that freeing any block within descriptor's range
192 * must discard all preallocated blocks.
193 * - locality group
194 * assigned to specific locality group which does not translate to
195 * permanent set of inodes: inode can join and leave group. space
196 * from this type of preallocation can be used for any inode. thus
197 * it's consumed from the beginning to the end.
198 *
199 * relation between them can be expressed as:
200 * in-core buddy = on-disk bitmap + preallocation descriptors
201 *
202 * this mean blocks mballoc considers used are:
203 * - allocated blocks (persistent)
204 * - preallocated blocks (non-persistent)
205 *
206 * consistency in mballoc world means that at any time a block is either
207 * free or used in ALL structures. notice: "any time" should not be read
208 * literally -- time is discrete and delimited by locks.
209 *
210 * to keep it simple, we don't use block numbers, instead we count number of
211 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
212 *
213 * all operations can be expressed as:
214 * - init buddy: buddy = on-disk + PAs
215 * - new PA: buddy += N; PA = N
216 * - use inode PA: on-disk += N; PA -= N
217 * - discard inode PA buddy -= on-disk - PA; PA = 0
218 * - use locality group PA on-disk += N; PA -= N
219 * - discard locality group PA buddy -= PA; PA = 0
220 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
221 * is used in real operation because we can't know actual used
222 * bits from PA, only from on-disk bitmap
223 *
224 * if we follow this strict logic, then all operations above should be atomic.
225 * given some of them can block, we'd have to use something like semaphores
226 * killing performance on high-end SMP hardware. let's try to relax it using
227 * the following knowledge:
228 * 1) if buddy is referenced, it's already initialized
229 * 2) while block is used in buddy and the buddy is referenced,
230 * nobody can re-allocate that block
231 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
232 * bit set and PA claims same block, it's OK. IOW, one can set bit in
233 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
234 * block
235 *
236 * so, now we're building a concurrency table:
237 * - init buddy vs.
238 * - new PA
239 * blocks for PA are allocated in the buddy, buddy must be referenced
240 * until PA is linked to allocation group to avoid concurrent buddy init
241 * - use inode PA
242 * we need to make sure that either on-disk bitmap or PA has uptodate data
243 * given (3) we care that PA-=N operation doesn't interfere with init
244 * - discard inode PA
245 * the simplest way would be to have buddy initialized by the discard
246 * - use locality group PA
247 * again PA-=N must be serialized with init
248 * - discard locality group PA
249 * the simplest way would be to have buddy initialized by the discard
250 * - new PA vs.
251 * - use inode PA
252 * i_data_sem serializes them
253 * - discard inode PA
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * some mutex should serialize them
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
259 * - use inode PA
260 * - use inode PA
261 * i_data_sem or another mutex should serializes them
262 * - discard inode PA
263 * discard process must wait until PA isn't used by another process
264 * - use locality group PA
265 * nothing wrong here -- they're different PAs covering different blocks
266 * - discard locality group PA
267 * discard process must wait until PA isn't used by another process
268 *
269 * now we're ready to make few consequences:
270 * - PA is referenced and while it is no discard is possible
271 * - PA is referenced until block isn't marked in on-disk bitmap
272 * - PA changes only after on-disk bitmap
273 * - discard must not compete with init. either init is done before
274 * any discard or they're serialized somehow
275 * - buddy init as sum of on-disk bitmap and PAs is done atomically
276 *
277 * a special case when we've used PA to emptiness. no need to modify buddy
278 * in this case, but we should care about concurrent init
279 *
280 */
281
282 /*
283 * Logic in few words:
284 *
285 * - allocation:
286 * load group
287 * find blocks
288 * mark bits in on-disk bitmap
289 * release group
290 *
291 * - use preallocation:
292 * find proper PA (per-inode or group)
293 * load group
294 * mark bits in on-disk bitmap
295 * release group
296 * release PA
297 *
298 * - free:
299 * load group
300 * mark bits in on-disk bitmap
301 * release group
302 *
303 * - discard preallocations in group:
304 * mark PAs deleted
305 * move them onto local list
306 * load on-disk bitmap
307 * load group
308 * remove PA from object (inode or locality group)
309 * mark free blocks in-core
310 *
311 * - discard inode's preallocations:
312 */
313
314 /*
315 * Locking rules
316 *
317 * Locks:
318 * - bitlock on a group (group)
319 * - object (inode/locality) (object)
320 * - per-pa lock (pa)
321 *
322 * Paths:
323 * - new pa
324 * object
325 * group
326 *
327 * - find and use pa:
328 * pa
329 *
330 * - release consumed pa:
331 * pa
332 * group
333 * object
334 *
335 * - generate in-core bitmap:
336 * group
337 * pa
338 *
339 * - discard all for given object (inode, locality group):
340 * object
341 * pa
342 * group
343 *
344 * - discard all for given group:
345 * group
346 * pa
347 * group
348 * object
349 *
350 */
351 static struct kmem_cache *ext4_pspace_cachep;
352 static struct kmem_cache *ext4_ac_cachep;
353 static struct kmem_cache *ext4_free_data_cachep;
354
355 /* We create slab caches for groupinfo data structures based on the
356 * superblock block size. There will be one per mounted filesystem for
357 * each unique s_blocksize_bits */
358 #define NR_GRPINFO_CACHES 8
359 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
360
361 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
362 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
363 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
364 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 };
366
367 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
370 ext4_group_t group);
371 static void ext4_free_data_callback(struct super_block *sb,
372 struct ext4_journal_cb_entry *jce, int rc);
373
mb_correct_addr_and_bit(int * bit,void * addr)374 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
375 {
376 #if BITS_PER_LONG == 64
377 *bit += ((unsigned long) addr & 7UL) << 3;
378 addr = (void *) ((unsigned long) addr & ~7UL);
379 #elif BITS_PER_LONG == 32
380 *bit += ((unsigned long) addr & 3UL) << 3;
381 addr = (void *) ((unsigned long) addr & ~3UL);
382 #else
383 #error "how many bits you are?!"
384 #endif
385 return addr;
386 }
387
mb_test_bit(int bit,void * addr)388 static inline int mb_test_bit(int bit, void *addr)
389 {
390 /*
391 * ext4_test_bit on architecture like powerpc
392 * needs unsigned long aligned address
393 */
394 addr = mb_correct_addr_and_bit(&bit, addr);
395 return ext4_test_bit(bit, addr);
396 }
397
mb_set_bit(int bit,void * addr)398 static inline void mb_set_bit(int bit, void *addr)
399 {
400 addr = mb_correct_addr_and_bit(&bit, addr);
401 ext4_set_bit(bit, addr);
402 }
403
mb_clear_bit(int bit,void * addr)404 static inline void mb_clear_bit(int bit, void *addr)
405 {
406 addr = mb_correct_addr_and_bit(&bit, addr);
407 ext4_clear_bit(bit, addr);
408 }
409
mb_test_and_clear_bit(int bit,void * addr)410 static inline int mb_test_and_clear_bit(int bit, void *addr)
411 {
412 addr = mb_correct_addr_and_bit(&bit, addr);
413 return ext4_test_and_clear_bit(bit, addr);
414 }
415
mb_find_next_zero_bit(void * addr,int max,int start)416 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
417 {
418 int fix = 0, ret, tmpmax;
419 addr = mb_correct_addr_and_bit(&fix, addr);
420 tmpmax = max + fix;
421 start += fix;
422
423 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
424 if (ret > max)
425 return max;
426 return ret;
427 }
428
mb_find_next_bit(void * addr,int max,int start)429 static inline int mb_find_next_bit(void *addr, int max, int start)
430 {
431 int fix = 0, ret, tmpmax;
432 addr = mb_correct_addr_and_bit(&fix, addr);
433 tmpmax = max + fix;
434 start += fix;
435
436 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
437 if (ret > max)
438 return max;
439 return ret;
440 }
441
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)442 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
443 {
444 char *bb;
445
446 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
447 BUG_ON(max == NULL);
448
449 if (order > e4b->bd_blkbits + 1) {
450 *max = 0;
451 return NULL;
452 }
453
454 /* at order 0 we see each particular block */
455 if (order == 0) {
456 *max = 1 << (e4b->bd_blkbits + 3);
457 return e4b->bd_bitmap;
458 }
459
460 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
461 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
462
463 return bb;
464 }
465
466 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)467 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
468 int first, int count)
469 {
470 int i;
471 struct super_block *sb = e4b->bd_sb;
472
473 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
474 return;
475 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
476 for (i = 0; i < count; i++) {
477 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
478 ext4_fsblk_t blocknr;
479
480 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
481 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
482 ext4_grp_locked_error(sb, e4b->bd_group,
483 inode ? inode->i_ino : 0,
484 blocknr,
485 "freeing block already freed "
486 "(bit %u)",
487 first + i);
488 }
489 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
490 }
491 }
492
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)493 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
494 {
495 int i;
496
497 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
498 return;
499 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
500 for (i = 0; i < count; i++) {
501 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
502 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
503 }
504 }
505
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)506 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
507 {
508 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
509 unsigned char *b1, *b2;
510 int i;
511 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
512 b2 = (unsigned char *) bitmap;
513 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
514 if (b1[i] != b2[i]) {
515 ext4_msg(e4b->bd_sb, KERN_ERR,
516 "corruption in group %u "
517 "at byte %u(%u): %x in copy != %x "
518 "on disk/prealloc",
519 e4b->bd_group, i, i * 8, b1[i], b2[i]);
520 BUG();
521 }
522 }
523 }
524 }
525
526 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)527 static inline void mb_free_blocks_double(struct inode *inode,
528 struct ext4_buddy *e4b, int first, int count)
529 {
530 return;
531 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)532 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
533 int first, int count)
534 {
535 return;
536 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)537 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
538 {
539 return;
540 }
541 #endif
542
543 #ifdef AGGRESSIVE_CHECK
544
545 #define MB_CHECK_ASSERT(assert) \
546 do { \
547 if (!(assert)) { \
548 printk(KERN_EMERG \
549 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
550 function, file, line, # assert); \
551 BUG(); \
552 } \
553 } while (0)
554
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)555 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
556 const char *function, int line)
557 {
558 struct super_block *sb = e4b->bd_sb;
559 int order = e4b->bd_blkbits + 1;
560 int max;
561 int max2;
562 int i;
563 int j;
564 int k;
565 int count;
566 struct ext4_group_info *grp;
567 int fragments = 0;
568 int fstart;
569 struct list_head *cur;
570 void *buddy;
571 void *buddy2;
572
573 {
574 static int mb_check_counter;
575 if (mb_check_counter++ % 100 != 0)
576 return 0;
577 }
578
579 while (order > 1) {
580 buddy = mb_find_buddy(e4b, order, &max);
581 MB_CHECK_ASSERT(buddy);
582 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
583 MB_CHECK_ASSERT(buddy2);
584 MB_CHECK_ASSERT(buddy != buddy2);
585 MB_CHECK_ASSERT(max * 2 == max2);
586
587 count = 0;
588 for (i = 0; i < max; i++) {
589
590 if (mb_test_bit(i, buddy)) {
591 /* only single bit in buddy2 may be 1 */
592 if (!mb_test_bit(i << 1, buddy2)) {
593 MB_CHECK_ASSERT(
594 mb_test_bit((i<<1)+1, buddy2));
595 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
596 MB_CHECK_ASSERT(
597 mb_test_bit(i << 1, buddy2));
598 }
599 continue;
600 }
601
602 /* both bits in buddy2 must be 1 */
603 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
604 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
605
606 for (j = 0; j < (1 << order); j++) {
607 k = (i * (1 << order)) + j;
608 MB_CHECK_ASSERT(
609 !mb_test_bit(k, e4b->bd_bitmap));
610 }
611 count++;
612 }
613 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
614 order--;
615 }
616
617 fstart = -1;
618 buddy = mb_find_buddy(e4b, 0, &max);
619 for (i = 0; i < max; i++) {
620 if (!mb_test_bit(i, buddy)) {
621 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
622 if (fstart == -1) {
623 fragments++;
624 fstart = i;
625 }
626 continue;
627 }
628 fstart = -1;
629 /* check used bits only */
630 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
631 buddy2 = mb_find_buddy(e4b, j, &max2);
632 k = i >> j;
633 MB_CHECK_ASSERT(k < max2);
634 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
635 }
636 }
637 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
638 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
639
640 grp = ext4_get_group_info(sb, e4b->bd_group);
641 list_for_each(cur, &grp->bb_prealloc_list) {
642 ext4_group_t groupnr;
643 struct ext4_prealloc_space *pa;
644 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
645 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
646 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
647 for (i = 0; i < pa->pa_len; i++)
648 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
649 }
650 return 0;
651 }
652 #undef MB_CHECK_ASSERT
653 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
654 __FILE__, __func__, __LINE__)
655 #else
656 #define mb_check_buddy(e4b)
657 #endif
658
659 /*
660 * Divide blocks started from @first with length @len into
661 * smaller chunks with power of 2 blocks.
662 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
663 * then increase bb_counters[] for corresponded chunk size.
664 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)665 static void ext4_mb_mark_free_simple(struct super_block *sb,
666 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
667 struct ext4_group_info *grp)
668 {
669 struct ext4_sb_info *sbi = EXT4_SB(sb);
670 ext4_grpblk_t min;
671 ext4_grpblk_t max;
672 ext4_grpblk_t chunk;
673 unsigned int border;
674
675 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
676
677 border = 2 << sb->s_blocksize_bits;
678
679 while (len > 0) {
680 /* find how many blocks can be covered since this position */
681 max = ffs(first | border) - 1;
682
683 /* find how many blocks of power 2 we need to mark */
684 min = fls(len) - 1;
685
686 if (max < min)
687 min = max;
688 chunk = 1 << min;
689
690 /* mark multiblock chunks only */
691 grp->bb_counters[min]++;
692 if (min > 0)
693 mb_clear_bit(first >> min,
694 buddy + sbi->s_mb_offsets[min]);
695
696 len -= chunk;
697 first += chunk;
698 }
699 }
700
701 /*
702 * Cache the order of the largest free extent we have available in this block
703 * group.
704 */
705 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)706 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
707 {
708 int i;
709 int bits;
710
711 grp->bb_largest_free_order = -1; /* uninit */
712
713 bits = sb->s_blocksize_bits + 1;
714 for (i = bits; i >= 0; i--) {
715 if (grp->bb_counters[i] > 0) {
716 grp->bb_largest_free_order = i;
717 break;
718 }
719 }
720 }
721
722 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)723 void ext4_mb_generate_buddy(struct super_block *sb,
724 void *buddy, void *bitmap, ext4_group_t group)
725 {
726 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
727 struct ext4_sb_info *sbi = EXT4_SB(sb);
728 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
729 ext4_grpblk_t i = 0;
730 ext4_grpblk_t first;
731 ext4_grpblk_t len;
732 unsigned free = 0;
733 unsigned fragments = 0;
734 unsigned long long period = get_cycles();
735
736 /* initialize buddy from bitmap which is aggregation
737 * of on-disk bitmap and preallocations */
738 i = mb_find_next_zero_bit(bitmap, max, 0);
739 grp->bb_first_free = i;
740 while (i < max) {
741 fragments++;
742 first = i;
743 i = mb_find_next_bit(bitmap, max, i);
744 len = i - first;
745 free += len;
746 if (len > 1)
747 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
748 else
749 grp->bb_counters[0]++;
750 if (i < max)
751 i = mb_find_next_zero_bit(bitmap, max, i);
752 }
753 grp->bb_fragments = fragments;
754
755 if (free != grp->bb_free) {
756 ext4_grp_locked_error(sb, group, 0, 0,
757 "block bitmap and bg descriptor "
758 "inconsistent: %u vs %u free clusters",
759 free, grp->bb_free);
760 /*
761 * If we intend to continue, we consider group descriptor
762 * corrupt and update bb_free using bitmap value
763 */
764 grp->bb_free = free;
765 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
766 percpu_counter_sub(&sbi->s_freeclusters_counter,
767 grp->bb_free);
768 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
769 }
770 mb_set_largest_free_order(sb, grp);
771
772 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
773
774 period = get_cycles() - period;
775 spin_lock(&EXT4_SB(sb)->s_bal_lock);
776 EXT4_SB(sb)->s_mb_buddies_generated++;
777 EXT4_SB(sb)->s_mb_generation_time += period;
778 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
779 }
780
mb_regenerate_buddy(struct ext4_buddy * e4b)781 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
782 {
783 int count;
784 int order = 1;
785 void *buddy;
786
787 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
788 ext4_set_bits(buddy, 0, count);
789 }
790 e4b->bd_info->bb_fragments = 0;
791 memset(e4b->bd_info->bb_counters, 0,
792 sizeof(*e4b->bd_info->bb_counters) *
793 (e4b->bd_sb->s_blocksize_bits + 2));
794
795 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
796 e4b->bd_bitmap, e4b->bd_group);
797 }
798
799 /* The buddy information is attached the buddy cache inode
800 * for convenience. The information regarding each group
801 * is loaded via ext4_mb_load_buddy. The information involve
802 * block bitmap and buddy information. The information are
803 * stored in the inode as
804 *
805 * { page }
806 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
807 *
808 *
809 * one block each for bitmap and buddy information.
810 * So for each group we take up 2 blocks. A page can
811 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
812 * So it can have information regarding groups_per_page which
813 * is blocks_per_page/2
814 *
815 * Locking note: This routine takes the block group lock of all groups
816 * for this page; do not hold this lock when calling this routine!
817 */
818
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)819 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
820 {
821 ext4_group_t ngroups;
822 int blocksize;
823 int blocks_per_page;
824 int groups_per_page;
825 int err = 0;
826 int i;
827 ext4_group_t first_group, group;
828 int first_block;
829 struct super_block *sb;
830 struct buffer_head *bhs;
831 struct buffer_head **bh = NULL;
832 struct inode *inode;
833 char *data;
834 char *bitmap;
835 struct ext4_group_info *grinfo;
836
837 mb_debug(1, "init page %lu\n", page->index);
838
839 inode = page->mapping->host;
840 sb = inode->i_sb;
841 ngroups = ext4_get_groups_count(sb);
842 blocksize = 1 << inode->i_blkbits;
843 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
844
845 groups_per_page = blocks_per_page >> 1;
846 if (groups_per_page == 0)
847 groups_per_page = 1;
848
849 /* allocate buffer_heads to read bitmaps */
850 if (groups_per_page > 1) {
851 i = sizeof(struct buffer_head *) * groups_per_page;
852 bh = kzalloc(i, gfp);
853 if (bh == NULL) {
854 err = -ENOMEM;
855 goto out;
856 }
857 } else
858 bh = &bhs;
859
860 first_group = page->index * blocks_per_page / 2;
861
862 /* read all groups the page covers into the cache */
863 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
864 if (group >= ngroups)
865 break;
866
867 grinfo = ext4_get_group_info(sb, group);
868 /*
869 * If page is uptodate then we came here after online resize
870 * which added some new uninitialized group info structs, so
871 * we must skip all initialized uptodate buddies on the page,
872 * which may be currently in use by an allocating task.
873 */
874 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
875 bh[i] = NULL;
876 continue;
877 }
878 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
879 if (IS_ERR(bh[i])) {
880 err = PTR_ERR(bh[i]);
881 bh[i] = NULL;
882 goto out;
883 }
884 mb_debug(1, "read bitmap for group %u\n", group);
885 }
886
887 /* wait for I/O completion */
888 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
889 int err2;
890
891 if (!bh[i])
892 continue;
893 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
894 if (!err)
895 err = err2;
896 }
897
898 first_block = page->index * blocks_per_page;
899 for (i = 0; i < blocks_per_page; i++) {
900 group = (first_block + i) >> 1;
901 if (group >= ngroups)
902 break;
903
904 if (!bh[group - first_group])
905 /* skip initialized uptodate buddy */
906 continue;
907
908 if (!buffer_verified(bh[group - first_group]))
909 /* Skip faulty bitmaps */
910 continue;
911 err = 0;
912
913 /*
914 * data carry information regarding this
915 * particular group in the format specified
916 * above
917 *
918 */
919 data = page_address(page) + (i * blocksize);
920 bitmap = bh[group - first_group]->b_data;
921
922 /*
923 * We place the buddy block and bitmap block
924 * close together
925 */
926 if ((first_block + i) & 1) {
927 /* this is block of buddy */
928 BUG_ON(incore == NULL);
929 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
930 group, page->index, i * blocksize);
931 trace_ext4_mb_buddy_bitmap_load(sb, group);
932 grinfo = ext4_get_group_info(sb, group);
933 grinfo->bb_fragments = 0;
934 memset(grinfo->bb_counters, 0,
935 sizeof(*grinfo->bb_counters) *
936 (sb->s_blocksize_bits+2));
937 /*
938 * incore got set to the group block bitmap below
939 */
940 ext4_lock_group(sb, group);
941 /* init the buddy */
942 memset(data, 0xff, blocksize);
943 ext4_mb_generate_buddy(sb, data, incore, group);
944 ext4_unlock_group(sb, group);
945 incore = NULL;
946 } else {
947 /* this is block of bitmap */
948 BUG_ON(incore != NULL);
949 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
950 group, page->index, i * blocksize);
951 trace_ext4_mb_bitmap_load(sb, group);
952
953 /* see comments in ext4_mb_put_pa() */
954 ext4_lock_group(sb, group);
955 memcpy(data, bitmap, blocksize);
956
957 /* mark all preallocated blks used in in-core bitmap */
958 ext4_mb_generate_from_pa(sb, data, group);
959 ext4_mb_generate_from_freelist(sb, data, group);
960 ext4_unlock_group(sb, group);
961
962 /* set incore so that the buddy information can be
963 * generated using this
964 */
965 incore = data;
966 }
967 }
968 SetPageUptodate(page);
969
970 out:
971 if (bh) {
972 for (i = 0; i < groups_per_page; i++)
973 brelse(bh[i]);
974 if (bh != &bhs)
975 kfree(bh);
976 }
977 return err;
978 }
979
980 /*
981 * Lock the buddy and bitmap pages. This make sure other parallel init_group
982 * on the same buddy page doesn't happen whild holding the buddy page lock.
983 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
984 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
985 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)986 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
987 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
988 {
989 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
990 int block, pnum, poff;
991 int blocks_per_page;
992 struct page *page;
993
994 e4b->bd_buddy_page = NULL;
995 e4b->bd_bitmap_page = NULL;
996
997 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
998 /*
999 * the buddy cache inode stores the block bitmap
1000 * and buddy information in consecutive blocks.
1001 * So for each group we need two blocks.
1002 */
1003 block = group * 2;
1004 pnum = block / blocks_per_page;
1005 poff = block % blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 if (!page)
1008 return -ENOMEM;
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_bitmap_page = page;
1011 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1012
1013 if (blocks_per_page >= 2) {
1014 /* buddy and bitmap are on the same page */
1015 return 0;
1016 }
1017
1018 block++;
1019 pnum = block / blocks_per_page;
1020 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1021 if (!page)
1022 return -ENOMEM;
1023 BUG_ON(page->mapping != inode->i_mapping);
1024 e4b->bd_buddy_page = page;
1025 return 0;
1026 }
1027
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1028 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1029 {
1030 if (e4b->bd_bitmap_page) {
1031 unlock_page(e4b->bd_bitmap_page);
1032 page_cache_release(e4b->bd_bitmap_page);
1033 }
1034 if (e4b->bd_buddy_page) {
1035 unlock_page(e4b->bd_buddy_page);
1036 page_cache_release(e4b->bd_buddy_page);
1037 }
1038 }
1039
1040 /*
1041 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1042 * block group lock of all groups for this page; do not hold the BG lock when
1043 * calling this routine!
1044 */
1045 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1046 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1047 {
1048
1049 struct ext4_group_info *this_grp;
1050 struct ext4_buddy e4b;
1051 struct page *page;
1052 int ret = 0;
1053
1054 might_sleep();
1055 mb_debug(1, "init group %u\n", group);
1056 this_grp = ext4_get_group_info(sb, group);
1057 /*
1058 * This ensures that we don't reinit the buddy cache
1059 * page which map to the group from which we are already
1060 * allocating. If we are looking at the buddy cache we would
1061 * have taken a reference using ext4_mb_load_buddy and that
1062 * would have pinned buddy page to page cache.
1063 * The call to ext4_mb_get_buddy_page_lock will mark the
1064 * page accessed.
1065 */
1066 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1067 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1068 /*
1069 * somebody initialized the group
1070 * return without doing anything
1071 */
1072 goto err;
1073 }
1074
1075 page = e4b.bd_bitmap_page;
1076 ret = ext4_mb_init_cache(page, NULL, gfp);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083
1084 if (e4b.bd_buddy_page == NULL) {
1085 /*
1086 * If both the bitmap and buddy are in
1087 * the same page we don't need to force
1088 * init the buddy
1089 */
1090 ret = 0;
1091 goto err;
1092 }
1093 /* init buddy cache */
1094 page = e4b.bd_buddy_page;
1095 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1096 if (ret)
1097 goto err;
1098 if (!PageUptodate(page)) {
1099 ret = -EIO;
1100 goto err;
1101 }
1102 err:
1103 ext4_mb_put_buddy_page_lock(&e4b);
1104 return ret;
1105 }
1106
1107 /*
1108 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1109 * block group lock of all groups for this page; do not hold the BG lock when
1110 * calling this routine!
1111 */
1112 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1113 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1114 struct ext4_buddy *e4b, gfp_t gfp)
1115 {
1116 int blocks_per_page;
1117 int block;
1118 int pnum;
1119 int poff;
1120 struct page *page;
1121 int ret;
1122 struct ext4_group_info *grp;
1123 struct ext4_sb_info *sbi = EXT4_SB(sb);
1124 struct inode *inode = sbi->s_buddy_cache;
1125
1126 might_sleep();
1127 mb_debug(1, "load group %u\n", group);
1128
1129 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1130 grp = ext4_get_group_info(sb, group);
1131
1132 e4b->bd_blkbits = sb->s_blocksize_bits;
1133 e4b->bd_info = grp;
1134 e4b->bd_sb = sb;
1135 e4b->bd_group = group;
1136 e4b->bd_buddy_page = NULL;
1137 e4b->bd_bitmap_page = NULL;
1138
1139 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1140 /*
1141 * we need full data about the group
1142 * to make a good selection
1143 */
1144 ret = ext4_mb_init_group(sb, group, gfp);
1145 if (ret)
1146 return ret;
1147 }
1148
1149 /*
1150 * the buddy cache inode stores the block bitmap
1151 * and buddy information in consecutive blocks.
1152 * So for each group we need two blocks.
1153 */
1154 block = group * 2;
1155 pnum = block / blocks_per_page;
1156 poff = block % blocks_per_page;
1157
1158 /* we could use find_or_create_page(), but it locks page
1159 * what we'd like to avoid in fast path ... */
1160 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1161 if (page == NULL || !PageUptodate(page)) {
1162 if (page)
1163 /*
1164 * drop the page reference and try
1165 * to get the page with lock. If we
1166 * are not uptodate that implies
1167 * somebody just created the page but
1168 * is yet to initialize the same. So
1169 * wait for it to initialize.
1170 */
1171 page_cache_release(page);
1172 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1173 if (page) {
1174 BUG_ON(page->mapping != inode->i_mapping);
1175 if (!PageUptodate(page)) {
1176 ret = ext4_mb_init_cache(page, NULL, gfp);
1177 if (ret) {
1178 unlock_page(page);
1179 goto err;
1180 }
1181 mb_cmp_bitmaps(e4b, page_address(page) +
1182 (poff * sb->s_blocksize));
1183 }
1184 unlock_page(page);
1185 }
1186 }
1187 if (page == NULL) {
1188 ret = -ENOMEM;
1189 goto err;
1190 }
1191 if (!PageUptodate(page)) {
1192 ret = -EIO;
1193 goto err;
1194 }
1195
1196 /* Pages marked accessed already */
1197 e4b->bd_bitmap_page = page;
1198 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1199
1200 block++;
1201 pnum = block / blocks_per_page;
1202 poff = block % blocks_per_page;
1203
1204 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1205 if (page == NULL || !PageUptodate(page)) {
1206 if (page)
1207 page_cache_release(page);
1208 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1209 if (page) {
1210 BUG_ON(page->mapping != inode->i_mapping);
1211 if (!PageUptodate(page)) {
1212 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1213 gfp);
1214 if (ret) {
1215 unlock_page(page);
1216 goto err;
1217 }
1218 }
1219 unlock_page(page);
1220 }
1221 }
1222 if (page == NULL) {
1223 ret = -ENOMEM;
1224 goto err;
1225 }
1226 if (!PageUptodate(page)) {
1227 ret = -EIO;
1228 goto err;
1229 }
1230
1231 /* Pages marked accessed already */
1232 e4b->bd_buddy_page = page;
1233 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1234
1235 BUG_ON(e4b->bd_bitmap_page == NULL);
1236 BUG_ON(e4b->bd_buddy_page == NULL);
1237
1238 return 0;
1239
1240 err:
1241 if (page)
1242 page_cache_release(page);
1243 if (e4b->bd_bitmap_page)
1244 page_cache_release(e4b->bd_bitmap_page);
1245 if (e4b->bd_buddy_page)
1246 page_cache_release(e4b->bd_buddy_page);
1247 e4b->bd_buddy = NULL;
1248 e4b->bd_bitmap = NULL;
1249 return ret;
1250 }
1251
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1252 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1253 struct ext4_buddy *e4b)
1254 {
1255 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1256 }
1257
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1258 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1259 {
1260 if (e4b->bd_bitmap_page)
1261 page_cache_release(e4b->bd_bitmap_page);
1262 if (e4b->bd_buddy_page)
1263 page_cache_release(e4b->bd_buddy_page);
1264 }
1265
1266
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1267 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1268 {
1269 int order = 1;
1270 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1271 void *bb;
1272
1273 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1274 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1275
1276 bb = e4b->bd_buddy;
1277 while (order <= e4b->bd_blkbits + 1) {
1278 block = block >> 1;
1279 if (!mb_test_bit(block, bb)) {
1280 /* this block is part of buddy of order 'order' */
1281 return order;
1282 }
1283 bb += bb_incr;
1284 bb_incr >>= 1;
1285 order++;
1286 }
1287 return 0;
1288 }
1289
mb_clear_bits(void * bm,int cur,int len)1290 static void mb_clear_bits(void *bm, int cur, int len)
1291 {
1292 __u32 *addr;
1293
1294 len = cur + len;
1295 while (cur < len) {
1296 if ((cur & 31) == 0 && (len - cur) >= 32) {
1297 /* fast path: clear whole word at once */
1298 addr = bm + (cur >> 3);
1299 *addr = 0;
1300 cur += 32;
1301 continue;
1302 }
1303 mb_clear_bit(cur, bm);
1304 cur++;
1305 }
1306 }
1307
1308 /* clear bits in given range
1309 * will return first found zero bit if any, -1 otherwise
1310 */
mb_test_and_clear_bits(void * bm,int cur,int len)1311 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1312 {
1313 __u32 *addr;
1314 int zero_bit = -1;
1315
1316 len = cur + len;
1317 while (cur < len) {
1318 if ((cur & 31) == 0 && (len - cur) >= 32) {
1319 /* fast path: clear whole word at once */
1320 addr = bm + (cur >> 3);
1321 if (*addr != (__u32)(-1) && zero_bit == -1)
1322 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1323 *addr = 0;
1324 cur += 32;
1325 continue;
1326 }
1327 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1328 zero_bit = cur;
1329 cur++;
1330 }
1331
1332 return zero_bit;
1333 }
1334
ext4_set_bits(void * bm,int cur,int len)1335 void ext4_set_bits(void *bm, int cur, int len)
1336 {
1337 __u32 *addr;
1338
1339 len = cur + len;
1340 while (cur < len) {
1341 if ((cur & 31) == 0 && (len - cur) >= 32) {
1342 /* fast path: set whole word at once */
1343 addr = bm + (cur >> 3);
1344 *addr = 0xffffffff;
1345 cur += 32;
1346 continue;
1347 }
1348 mb_set_bit(cur, bm);
1349 cur++;
1350 }
1351 }
1352
1353 /*
1354 * _________________________________________________________________ */
1355
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1356 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1357 {
1358 if (mb_test_bit(*bit + side, bitmap)) {
1359 mb_clear_bit(*bit, bitmap);
1360 (*bit) -= side;
1361 return 1;
1362 }
1363 else {
1364 (*bit) += side;
1365 mb_set_bit(*bit, bitmap);
1366 return -1;
1367 }
1368 }
1369
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1370 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1371 {
1372 int max;
1373 int order = 1;
1374 void *buddy = mb_find_buddy(e4b, order, &max);
1375
1376 while (buddy) {
1377 void *buddy2;
1378
1379 /* Bits in range [first; last] are known to be set since
1380 * corresponding blocks were allocated. Bits in range
1381 * (first; last) will stay set because they form buddies on
1382 * upper layer. We just deal with borders if they don't
1383 * align with upper layer and then go up.
1384 * Releasing entire group is all about clearing
1385 * single bit of highest order buddy.
1386 */
1387
1388 /* Example:
1389 * ---------------------------------
1390 * | 1 | 1 | 1 | 1 |
1391 * ---------------------------------
1392 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1393 * ---------------------------------
1394 * 0 1 2 3 4 5 6 7
1395 * \_____________________/
1396 *
1397 * Neither [1] nor [6] is aligned to above layer.
1398 * Left neighbour [0] is free, so mark it busy,
1399 * decrease bb_counters and extend range to
1400 * [0; 6]
1401 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1402 * mark [6] free, increase bb_counters and shrink range to
1403 * [0; 5].
1404 * Then shift range to [0; 2], go up and do the same.
1405 */
1406
1407
1408 if (first & 1)
1409 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1410 if (!(last & 1))
1411 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1412 if (first > last)
1413 break;
1414 order++;
1415
1416 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1417 mb_clear_bits(buddy, first, last - first + 1);
1418 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1419 break;
1420 }
1421 first >>= 1;
1422 last >>= 1;
1423 buddy = buddy2;
1424 }
1425 }
1426
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1427 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1428 int first, int count)
1429 {
1430 int left_is_free = 0;
1431 int right_is_free = 0;
1432 int block;
1433 int last = first + count - 1;
1434 struct super_block *sb = e4b->bd_sb;
1435
1436 if (WARN_ON(count == 0))
1437 return;
1438 BUG_ON(last >= (sb->s_blocksize << 3));
1439 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1440 /* Don't bother if the block group is corrupt. */
1441 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1442 return;
1443
1444 mb_check_buddy(e4b);
1445 mb_free_blocks_double(inode, e4b, first, count);
1446
1447 e4b->bd_info->bb_free += count;
1448 if (first < e4b->bd_info->bb_first_free)
1449 e4b->bd_info->bb_first_free = first;
1450
1451 /* access memory sequentially: check left neighbour,
1452 * clear range and then check right neighbour
1453 */
1454 if (first != 0)
1455 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1456 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1457 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1458 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1459
1460 if (unlikely(block != -1)) {
1461 struct ext4_sb_info *sbi = EXT4_SB(sb);
1462 ext4_fsblk_t blocknr;
1463
1464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1465 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1466 ext4_grp_locked_error(sb, e4b->bd_group,
1467 inode ? inode->i_ino : 0,
1468 blocknr,
1469 "freeing already freed block "
1470 "(bit %u); block bitmap corrupt.",
1471 block);
1472 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1473 percpu_counter_sub(&sbi->s_freeclusters_counter,
1474 e4b->bd_info->bb_free);
1475 /* Mark the block group as corrupt. */
1476 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1477 &e4b->bd_info->bb_state);
1478 mb_regenerate_buddy(e4b);
1479 goto done;
1480 }
1481
1482 /* let's maintain fragments counter */
1483 if (left_is_free && right_is_free)
1484 e4b->bd_info->bb_fragments--;
1485 else if (!left_is_free && !right_is_free)
1486 e4b->bd_info->bb_fragments++;
1487
1488 /* buddy[0] == bd_bitmap is a special case, so handle
1489 * it right away and let mb_buddy_mark_free stay free of
1490 * zero order checks.
1491 * Check if neighbours are to be coaleasced,
1492 * adjust bitmap bb_counters and borders appropriately.
1493 */
1494 if (first & 1) {
1495 first += !left_is_free;
1496 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1497 }
1498 if (!(last & 1)) {
1499 last -= !right_is_free;
1500 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1501 }
1502
1503 if (first <= last)
1504 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1505
1506 done:
1507 mb_set_largest_free_order(sb, e4b->bd_info);
1508 mb_check_buddy(e4b);
1509 }
1510
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1511 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1512 int needed, struct ext4_free_extent *ex)
1513 {
1514 int next = block;
1515 int max, order;
1516 void *buddy;
1517
1518 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1519 BUG_ON(ex == NULL);
1520
1521 buddy = mb_find_buddy(e4b, 0, &max);
1522 BUG_ON(buddy == NULL);
1523 BUG_ON(block >= max);
1524 if (mb_test_bit(block, buddy)) {
1525 ex->fe_len = 0;
1526 ex->fe_start = 0;
1527 ex->fe_group = 0;
1528 return 0;
1529 }
1530
1531 /* find actual order */
1532 order = mb_find_order_for_block(e4b, block);
1533 block = block >> order;
1534
1535 ex->fe_len = 1 << order;
1536 ex->fe_start = block << order;
1537 ex->fe_group = e4b->bd_group;
1538
1539 /* calc difference from given start */
1540 next = next - ex->fe_start;
1541 ex->fe_len -= next;
1542 ex->fe_start += next;
1543
1544 while (needed > ex->fe_len &&
1545 mb_find_buddy(e4b, order, &max)) {
1546
1547 if (block + 1 >= max)
1548 break;
1549
1550 next = (block + 1) * (1 << order);
1551 if (mb_test_bit(next, e4b->bd_bitmap))
1552 break;
1553
1554 order = mb_find_order_for_block(e4b, next);
1555
1556 block = next >> order;
1557 ex->fe_len += 1 << order;
1558 }
1559
1560 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1561 return ex->fe_len;
1562 }
1563
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1564 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1565 {
1566 int ord;
1567 int mlen = 0;
1568 int max = 0;
1569 int cur;
1570 int start = ex->fe_start;
1571 int len = ex->fe_len;
1572 unsigned ret = 0;
1573 int len0 = len;
1574 void *buddy;
1575
1576 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1577 BUG_ON(e4b->bd_group != ex->fe_group);
1578 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1579 mb_check_buddy(e4b);
1580 mb_mark_used_double(e4b, start, len);
1581
1582 e4b->bd_info->bb_free -= len;
1583 if (e4b->bd_info->bb_first_free == start)
1584 e4b->bd_info->bb_first_free += len;
1585
1586 /* let's maintain fragments counter */
1587 if (start != 0)
1588 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1589 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1590 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1591 if (mlen && max)
1592 e4b->bd_info->bb_fragments++;
1593 else if (!mlen && !max)
1594 e4b->bd_info->bb_fragments--;
1595
1596 /* let's maintain buddy itself */
1597 while (len) {
1598 ord = mb_find_order_for_block(e4b, start);
1599
1600 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1601 /* the whole chunk may be allocated at once! */
1602 mlen = 1 << ord;
1603 buddy = mb_find_buddy(e4b, ord, &max);
1604 BUG_ON((start >> ord) >= max);
1605 mb_set_bit(start >> ord, buddy);
1606 e4b->bd_info->bb_counters[ord]--;
1607 start += mlen;
1608 len -= mlen;
1609 BUG_ON(len < 0);
1610 continue;
1611 }
1612
1613 /* store for history */
1614 if (ret == 0)
1615 ret = len | (ord << 16);
1616
1617 /* we have to split large buddy */
1618 BUG_ON(ord <= 0);
1619 buddy = mb_find_buddy(e4b, ord, &max);
1620 mb_set_bit(start >> ord, buddy);
1621 e4b->bd_info->bb_counters[ord]--;
1622
1623 ord--;
1624 cur = (start >> ord) & ~1U;
1625 buddy = mb_find_buddy(e4b, ord, &max);
1626 mb_clear_bit(cur, buddy);
1627 mb_clear_bit(cur + 1, buddy);
1628 e4b->bd_info->bb_counters[ord]++;
1629 e4b->bd_info->bb_counters[ord]++;
1630 }
1631 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1632
1633 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1634 mb_check_buddy(e4b);
1635
1636 return ret;
1637 }
1638
1639 /*
1640 * Must be called under group lock!
1641 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1642 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1643 struct ext4_buddy *e4b)
1644 {
1645 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1646 int ret;
1647
1648 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1649 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1650
1651 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1652 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1653 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1654
1655 /* preallocation can change ac_b_ex, thus we store actually
1656 * allocated blocks for history */
1657 ac->ac_f_ex = ac->ac_b_ex;
1658
1659 ac->ac_status = AC_STATUS_FOUND;
1660 ac->ac_tail = ret & 0xffff;
1661 ac->ac_buddy = ret >> 16;
1662
1663 /*
1664 * take the page reference. We want the page to be pinned
1665 * so that we don't get a ext4_mb_init_cache_call for this
1666 * group until we update the bitmap. That would mean we
1667 * double allocate blocks. The reference is dropped
1668 * in ext4_mb_release_context
1669 */
1670 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1671 get_page(ac->ac_bitmap_page);
1672 ac->ac_buddy_page = e4b->bd_buddy_page;
1673 get_page(ac->ac_buddy_page);
1674 /* store last allocated for subsequent stream allocation */
1675 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1676 spin_lock(&sbi->s_md_lock);
1677 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1678 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1679 spin_unlock(&sbi->s_md_lock);
1680 }
1681 }
1682
1683 /*
1684 * regular allocator, for general purposes allocation
1685 */
1686
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1687 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1688 struct ext4_buddy *e4b,
1689 int finish_group)
1690 {
1691 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1692 struct ext4_free_extent *bex = &ac->ac_b_ex;
1693 struct ext4_free_extent *gex = &ac->ac_g_ex;
1694 struct ext4_free_extent ex;
1695 int max;
1696
1697 if (ac->ac_status == AC_STATUS_FOUND)
1698 return;
1699 /*
1700 * We don't want to scan for a whole year
1701 */
1702 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1703 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1704 ac->ac_status = AC_STATUS_BREAK;
1705 return;
1706 }
1707
1708 /*
1709 * Haven't found good chunk so far, let's continue
1710 */
1711 if (bex->fe_len < gex->fe_len)
1712 return;
1713
1714 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1715 && bex->fe_group == e4b->bd_group) {
1716 /* recheck chunk's availability - we don't know
1717 * when it was found (within this lock-unlock
1718 * period or not) */
1719 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1720 if (max >= gex->fe_len) {
1721 ext4_mb_use_best_found(ac, e4b);
1722 return;
1723 }
1724 }
1725 }
1726
1727 /*
1728 * The routine checks whether found extent is good enough. If it is,
1729 * then the extent gets marked used and flag is set to the context
1730 * to stop scanning. Otherwise, the extent is compared with the
1731 * previous found extent and if new one is better, then it's stored
1732 * in the context. Later, the best found extent will be used, if
1733 * mballoc can't find good enough extent.
1734 *
1735 * FIXME: real allocation policy is to be designed yet!
1736 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1737 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1738 struct ext4_free_extent *ex,
1739 struct ext4_buddy *e4b)
1740 {
1741 struct ext4_free_extent *bex = &ac->ac_b_ex;
1742 struct ext4_free_extent *gex = &ac->ac_g_ex;
1743
1744 BUG_ON(ex->fe_len <= 0);
1745 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1747 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1748
1749 ac->ac_found++;
1750
1751 /*
1752 * The special case - take what you catch first
1753 */
1754 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1755 *bex = *ex;
1756 ext4_mb_use_best_found(ac, e4b);
1757 return;
1758 }
1759
1760 /*
1761 * Let's check whether the chuck is good enough
1762 */
1763 if (ex->fe_len == gex->fe_len) {
1764 *bex = *ex;
1765 ext4_mb_use_best_found(ac, e4b);
1766 return;
1767 }
1768
1769 /*
1770 * If this is first found extent, just store it in the context
1771 */
1772 if (bex->fe_len == 0) {
1773 *bex = *ex;
1774 return;
1775 }
1776
1777 /*
1778 * If new found extent is better, store it in the context
1779 */
1780 if (bex->fe_len < gex->fe_len) {
1781 /* if the request isn't satisfied, any found extent
1782 * larger than previous best one is better */
1783 if (ex->fe_len > bex->fe_len)
1784 *bex = *ex;
1785 } else if (ex->fe_len > gex->fe_len) {
1786 /* if the request is satisfied, then we try to find
1787 * an extent that still satisfy the request, but is
1788 * smaller than previous one */
1789 if (ex->fe_len < bex->fe_len)
1790 *bex = *ex;
1791 }
1792
1793 ext4_mb_check_limits(ac, e4b, 0);
1794 }
1795
1796 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1797 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1798 struct ext4_buddy *e4b)
1799 {
1800 struct ext4_free_extent ex = ac->ac_b_ex;
1801 ext4_group_t group = ex.fe_group;
1802 int max;
1803 int err;
1804
1805 BUG_ON(ex.fe_len <= 0);
1806 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1807 if (err)
1808 return err;
1809
1810 ext4_lock_group(ac->ac_sb, group);
1811 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1812
1813 if (max > 0) {
1814 ac->ac_b_ex = ex;
1815 ext4_mb_use_best_found(ac, e4b);
1816 }
1817
1818 ext4_unlock_group(ac->ac_sb, group);
1819 ext4_mb_unload_buddy(e4b);
1820
1821 return 0;
1822 }
1823
1824 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1825 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1826 struct ext4_buddy *e4b)
1827 {
1828 ext4_group_t group = ac->ac_g_ex.fe_group;
1829 int max;
1830 int err;
1831 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1832 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1833 struct ext4_free_extent ex;
1834
1835 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1836 return 0;
1837 if (grp->bb_free == 0)
1838 return 0;
1839
1840 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1841 if (err)
1842 return err;
1843
1844 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1845 ext4_mb_unload_buddy(e4b);
1846 return 0;
1847 }
1848
1849 ext4_lock_group(ac->ac_sb, group);
1850 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1851 ac->ac_g_ex.fe_len, &ex);
1852 ex.fe_logical = 0xDEADFA11; /* debug value */
1853
1854 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1855 ext4_fsblk_t start;
1856
1857 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1858 ex.fe_start;
1859 /* use do_div to get remainder (would be 64-bit modulo) */
1860 if (do_div(start, sbi->s_stripe) == 0) {
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1864 }
1865 } else if (max >= ac->ac_g_ex.fe_len) {
1866 BUG_ON(ex.fe_len <= 0);
1867 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1868 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1869 ac->ac_found++;
1870 ac->ac_b_ex = ex;
1871 ext4_mb_use_best_found(ac, e4b);
1872 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1873 /* Sometimes, caller may want to merge even small
1874 * number of blocks to an existing extent */
1875 BUG_ON(ex.fe_len <= 0);
1876 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1877 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1878 ac->ac_found++;
1879 ac->ac_b_ex = ex;
1880 ext4_mb_use_best_found(ac, e4b);
1881 }
1882 ext4_unlock_group(ac->ac_sb, group);
1883 ext4_mb_unload_buddy(e4b);
1884
1885 return 0;
1886 }
1887
1888 /*
1889 * The routine scans buddy structures (not bitmap!) from given order
1890 * to max order and tries to find big enough chunk to satisfy the req
1891 */
1892 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1893 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1894 struct ext4_buddy *e4b)
1895 {
1896 struct super_block *sb = ac->ac_sb;
1897 struct ext4_group_info *grp = e4b->bd_info;
1898 void *buddy;
1899 int i;
1900 int k;
1901 int max;
1902
1903 BUG_ON(ac->ac_2order <= 0);
1904 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1905 if (grp->bb_counters[i] == 0)
1906 continue;
1907
1908 buddy = mb_find_buddy(e4b, i, &max);
1909 BUG_ON(buddy == NULL);
1910
1911 k = mb_find_next_zero_bit(buddy, max, 0);
1912 BUG_ON(k >= max);
1913
1914 ac->ac_found++;
1915
1916 ac->ac_b_ex.fe_len = 1 << i;
1917 ac->ac_b_ex.fe_start = k << i;
1918 ac->ac_b_ex.fe_group = e4b->bd_group;
1919
1920 ext4_mb_use_best_found(ac, e4b);
1921
1922 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1923
1924 if (EXT4_SB(sb)->s_mb_stats)
1925 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1926
1927 break;
1928 }
1929 }
1930
1931 /*
1932 * The routine scans the group and measures all found extents.
1933 * In order to optimize scanning, caller must pass number of
1934 * free blocks in the group, so the routine can know upper limit.
1935 */
1936 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1937 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1938 struct ext4_buddy *e4b)
1939 {
1940 struct super_block *sb = ac->ac_sb;
1941 void *bitmap = e4b->bd_bitmap;
1942 struct ext4_free_extent ex;
1943 int i;
1944 int free;
1945
1946 free = e4b->bd_info->bb_free;
1947 if (WARN_ON(free <= 0))
1948 return;
1949
1950 i = e4b->bd_info->bb_first_free;
1951
1952 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1953 i = mb_find_next_zero_bit(bitmap,
1954 EXT4_CLUSTERS_PER_GROUP(sb), i);
1955 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1956 /*
1957 * IF we have corrupt bitmap, we won't find any
1958 * free blocks even though group info says we
1959 * we have free blocks
1960 */
1961 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1962 "%d free clusters as per "
1963 "group info. But bitmap says 0",
1964 free);
1965 break;
1966 }
1967
1968 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1969 if (WARN_ON(ex.fe_len <= 0))
1970 break;
1971 if (free < ex.fe_len) {
1972 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1973 "%d free clusters as per "
1974 "group info. But got %d blocks",
1975 free, ex.fe_len);
1976 /*
1977 * The number of free blocks differs. This mostly
1978 * indicate that the bitmap is corrupt. So exit
1979 * without claiming the space.
1980 */
1981 break;
1982 }
1983 ex.fe_logical = 0xDEADC0DE; /* debug value */
1984 ext4_mb_measure_extent(ac, &ex, e4b);
1985
1986 i += ex.fe_len;
1987 free -= ex.fe_len;
1988 }
1989
1990 ext4_mb_check_limits(ac, e4b, 1);
1991 }
1992
1993 /*
1994 * This is a special case for storages like raid5
1995 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1996 */
1997 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1998 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1999 struct ext4_buddy *e4b)
2000 {
2001 struct super_block *sb = ac->ac_sb;
2002 struct ext4_sb_info *sbi = EXT4_SB(sb);
2003 void *bitmap = e4b->bd_bitmap;
2004 struct ext4_free_extent ex;
2005 ext4_fsblk_t first_group_block;
2006 ext4_fsblk_t a;
2007 ext4_grpblk_t i;
2008 int max;
2009
2010 BUG_ON(sbi->s_stripe == 0);
2011
2012 /* find first stripe-aligned block in group */
2013 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2014
2015 a = first_group_block + sbi->s_stripe - 1;
2016 do_div(a, sbi->s_stripe);
2017 i = (a * sbi->s_stripe) - first_group_block;
2018
2019 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2020 if (!mb_test_bit(i, bitmap)) {
2021 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2022 if (max >= sbi->s_stripe) {
2023 ac->ac_found++;
2024 ex.fe_logical = 0xDEADF00D; /* debug value */
2025 ac->ac_b_ex = ex;
2026 ext4_mb_use_best_found(ac, e4b);
2027 break;
2028 }
2029 }
2030 i += sbi->s_stripe;
2031 }
2032 }
2033
2034 /*
2035 * This is now called BEFORE we load the buddy bitmap.
2036 * Returns either 1 or 0 indicating that the group is either suitable
2037 * for the allocation or not. In addition it can also return negative
2038 * error code when something goes wrong.
2039 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2040 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2041 ext4_group_t group, int cr)
2042 {
2043 unsigned free, fragments;
2044 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2045 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2046
2047 BUG_ON(cr < 0 || cr >= 4);
2048
2049 free = grp->bb_free;
2050 if (free == 0)
2051 return 0;
2052 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2053 return 0;
2054
2055 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2056 return 0;
2057
2058 /* We only do this if the grp has never been initialized */
2059 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2060 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2061 if (ret)
2062 return ret;
2063 }
2064
2065 fragments = grp->bb_fragments;
2066 if (fragments == 0)
2067 return 0;
2068
2069 switch (cr) {
2070 case 0:
2071 BUG_ON(ac->ac_2order == 0);
2072
2073 /* Avoid using the first bg of a flexgroup for data files */
2074 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2075 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2076 ((group % flex_size) == 0))
2077 return 0;
2078
2079 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2080 (free / fragments) >= ac->ac_g_ex.fe_len)
2081 return 1;
2082
2083 if (grp->bb_largest_free_order < ac->ac_2order)
2084 return 0;
2085
2086 return 1;
2087 case 1:
2088 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2089 return 1;
2090 break;
2091 case 2:
2092 if (free >= ac->ac_g_ex.fe_len)
2093 return 1;
2094 break;
2095 case 3:
2096 return 1;
2097 default:
2098 BUG();
2099 }
2100
2101 return 0;
2102 }
2103
2104 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2105 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2106 {
2107 ext4_group_t ngroups, group, i;
2108 int cr;
2109 int err = 0, first_err = 0;
2110 struct ext4_sb_info *sbi;
2111 struct super_block *sb;
2112 struct ext4_buddy e4b;
2113
2114 sb = ac->ac_sb;
2115 sbi = EXT4_SB(sb);
2116 ngroups = ext4_get_groups_count(sb);
2117 /* non-extent files are limited to low blocks/groups */
2118 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2119 ngroups = sbi->s_blockfile_groups;
2120
2121 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2122
2123 /* first, try the goal */
2124 err = ext4_mb_find_by_goal(ac, &e4b);
2125 if (err || ac->ac_status == AC_STATUS_FOUND)
2126 goto out;
2127
2128 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2129 goto out;
2130
2131 /*
2132 * ac->ac2_order is set only if the fe_len is a power of 2
2133 * if ac2_order is set we also set criteria to 0 so that we
2134 * try exact allocation using buddy.
2135 */
2136 i = fls(ac->ac_g_ex.fe_len);
2137 ac->ac_2order = 0;
2138 /*
2139 * We search using buddy data only if the order of the request
2140 * is greater than equal to the sbi_s_mb_order2_reqs
2141 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2142 * We also support searching for power-of-two requests only for
2143 * requests upto maximum buddy size we have constructed.
2144 */
2145 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2146 /*
2147 * This should tell if fe_len is exactly power of 2
2148 */
2149 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2150 ac->ac_2order = array_index_nospec(i - 1,
2151 sb->s_blocksize_bits + 2);
2152 }
2153
2154 /* if stream allocation is enabled, use global goal */
2155 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2156 /* TBD: may be hot point */
2157 spin_lock(&sbi->s_md_lock);
2158 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2159 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2160 spin_unlock(&sbi->s_md_lock);
2161 }
2162
2163 /* Let's just scan groups to find more-less suitable blocks */
2164 cr = ac->ac_2order ? 0 : 1;
2165 /*
2166 * cr == 0 try to get exact allocation,
2167 * cr == 3 try to get anything
2168 */
2169 repeat:
2170 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2171 ac->ac_criteria = cr;
2172 /*
2173 * searching for the right group start
2174 * from the goal value specified
2175 */
2176 group = ac->ac_g_ex.fe_group;
2177
2178 for (i = 0; i < ngroups; group++, i++) {
2179 int ret = 0;
2180 cond_resched();
2181 /*
2182 * Artificially restricted ngroups for non-extent
2183 * files makes group > ngroups possible on first loop.
2184 */
2185 if (group >= ngroups)
2186 group = 0;
2187
2188 /* This now checks without needing the buddy page */
2189 ret = ext4_mb_good_group(ac, group, cr);
2190 if (ret <= 0) {
2191 if (!first_err)
2192 first_err = ret;
2193 continue;
2194 }
2195
2196 err = ext4_mb_load_buddy(sb, group, &e4b);
2197 if (err)
2198 goto out;
2199
2200 ext4_lock_group(sb, group);
2201
2202 /*
2203 * We need to check again after locking the
2204 * block group
2205 */
2206 ret = ext4_mb_good_group(ac, group, cr);
2207 if (ret <= 0) {
2208 ext4_unlock_group(sb, group);
2209 ext4_mb_unload_buddy(&e4b);
2210 if (!first_err)
2211 first_err = ret;
2212 continue;
2213 }
2214
2215 ac->ac_groups_scanned++;
2216 if (cr == 0)
2217 ext4_mb_simple_scan_group(ac, &e4b);
2218 else if (cr == 1 && sbi->s_stripe &&
2219 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2220 ext4_mb_scan_aligned(ac, &e4b);
2221 else
2222 ext4_mb_complex_scan_group(ac, &e4b);
2223
2224 ext4_unlock_group(sb, group);
2225 ext4_mb_unload_buddy(&e4b);
2226
2227 if (ac->ac_status != AC_STATUS_CONTINUE)
2228 break;
2229 }
2230 }
2231
2232 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2233 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2234 /*
2235 * We've been searching too long. Let's try to allocate
2236 * the best chunk we've found so far
2237 */
2238
2239 ext4_mb_try_best_found(ac, &e4b);
2240 if (ac->ac_status != AC_STATUS_FOUND) {
2241 /*
2242 * Someone more lucky has already allocated it.
2243 * The only thing we can do is just take first
2244 * found block(s)
2245 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2246 */
2247 ac->ac_b_ex.fe_group = 0;
2248 ac->ac_b_ex.fe_start = 0;
2249 ac->ac_b_ex.fe_len = 0;
2250 ac->ac_status = AC_STATUS_CONTINUE;
2251 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2252 cr = 3;
2253 atomic_inc(&sbi->s_mb_lost_chunks);
2254 goto repeat;
2255 }
2256 }
2257 out:
2258 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2259 err = first_err;
2260 return err;
2261 }
2262
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2263 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2264 {
2265 struct super_block *sb = seq->private;
2266 ext4_group_t group;
2267
2268 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2269 return NULL;
2270 group = *pos + 1;
2271 return (void *) ((unsigned long) group);
2272 }
2273
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2274 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2275 {
2276 struct super_block *sb = seq->private;
2277 ext4_group_t group;
2278
2279 ++*pos;
2280 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2281 return NULL;
2282 group = *pos + 1;
2283 return (void *) ((unsigned long) group);
2284 }
2285
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2286 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2287 {
2288 struct super_block *sb = seq->private;
2289 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2290 int i;
2291 int err, buddy_loaded = 0;
2292 struct ext4_buddy e4b;
2293 struct ext4_group_info *grinfo;
2294 struct sg {
2295 struct ext4_group_info info;
2296 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2297 } sg;
2298
2299 group--;
2300 if (group == 0)
2301 seq_puts(seq, "#group: free frags first ["
2302 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2303 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]");
2304
2305 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2306 sizeof(struct ext4_group_info);
2307 grinfo = ext4_get_group_info(sb, group);
2308 /* Load the group info in memory only if not already loaded. */
2309 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2310 err = ext4_mb_load_buddy(sb, group, &e4b);
2311 if (err) {
2312 seq_printf(seq, "#%-5u: I/O error\n", group);
2313 return 0;
2314 }
2315 buddy_loaded = 1;
2316 }
2317
2318 memcpy(&sg, ext4_get_group_info(sb, group), i);
2319
2320 if (buddy_loaded)
2321 ext4_mb_unload_buddy(&e4b);
2322
2323 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2324 sg.info.bb_fragments, sg.info.bb_first_free);
2325 for (i = 0; i <= 13; i++)
2326 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2327 sg.info.bb_counters[i] : 0);
2328 seq_printf(seq, " ]\n");
2329
2330 return 0;
2331 }
2332
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2333 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2334 {
2335 }
2336
2337 static const struct seq_operations ext4_mb_seq_groups_ops = {
2338 .start = ext4_mb_seq_groups_start,
2339 .next = ext4_mb_seq_groups_next,
2340 .stop = ext4_mb_seq_groups_stop,
2341 .show = ext4_mb_seq_groups_show,
2342 };
2343
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2344 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2345 {
2346 struct super_block *sb = PDE_DATA(inode);
2347 int rc;
2348
2349 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2350 if (rc == 0) {
2351 struct seq_file *m = file->private_data;
2352 m->private = sb;
2353 }
2354 return rc;
2355
2356 }
2357
2358 const struct file_operations ext4_seq_mb_groups_fops = {
2359 .owner = THIS_MODULE,
2360 .open = ext4_mb_seq_groups_open,
2361 .read = seq_read,
2362 .llseek = seq_lseek,
2363 .release = seq_release,
2364 };
2365
get_groupinfo_cache(int blocksize_bits)2366 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2367 {
2368 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2369 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2370
2371 BUG_ON(!cachep);
2372 return cachep;
2373 }
2374
2375 /*
2376 * Allocate the top-level s_group_info array for the specified number
2377 * of groups
2378 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2379 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2380 {
2381 struct ext4_sb_info *sbi = EXT4_SB(sb);
2382 unsigned size;
2383 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2384
2385 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2386 EXT4_DESC_PER_BLOCK_BITS(sb);
2387 if (size <= sbi->s_group_info_size)
2388 return 0;
2389
2390 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2391 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2392 if (!new_groupinfo) {
2393 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2394 return -ENOMEM;
2395 }
2396 rcu_read_lock();
2397 old_groupinfo = rcu_dereference(sbi->s_group_info);
2398 if (old_groupinfo)
2399 memcpy(new_groupinfo, old_groupinfo,
2400 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2401 rcu_read_unlock();
2402 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2403 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2404 if (old_groupinfo)
2405 ext4_kvfree_array_rcu(old_groupinfo);
2406 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2407 sbi->s_group_info_size);
2408 return 0;
2409 }
2410
2411 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2412 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2413 struct ext4_group_desc *desc)
2414 {
2415 int i;
2416 int metalen = 0;
2417 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2418 struct ext4_sb_info *sbi = EXT4_SB(sb);
2419 struct ext4_group_info **meta_group_info;
2420 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2421
2422 /*
2423 * First check if this group is the first of a reserved block.
2424 * If it's true, we have to allocate a new table of pointers
2425 * to ext4_group_info structures
2426 */
2427 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2428 metalen = sizeof(*meta_group_info) <<
2429 EXT4_DESC_PER_BLOCK_BITS(sb);
2430 meta_group_info = kmalloc(metalen, GFP_NOFS);
2431 if (meta_group_info == NULL) {
2432 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2433 "for a buddy group");
2434 goto exit_meta_group_info;
2435 }
2436 rcu_read_lock();
2437 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2438 rcu_read_unlock();
2439 }
2440
2441 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2442 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2443
2444 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2445 if (meta_group_info[i] == NULL) {
2446 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2447 goto exit_group_info;
2448 }
2449 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2450 &(meta_group_info[i]->bb_state));
2451
2452 /*
2453 * initialize bb_free to be able to skip
2454 * empty groups without initialization
2455 */
2456 if (ext4_has_group_desc_csum(sb) &&
2457 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2458 meta_group_info[i]->bb_free =
2459 ext4_free_clusters_after_init(sb, group, desc);
2460 } else {
2461 meta_group_info[i]->bb_free =
2462 ext4_free_group_clusters(sb, desc);
2463 }
2464
2465 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2466 init_rwsem(&meta_group_info[i]->alloc_sem);
2467 meta_group_info[i]->bb_free_root = RB_ROOT;
2468 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2469
2470 #ifdef DOUBLE_CHECK
2471 {
2472 struct buffer_head *bh;
2473 meta_group_info[i]->bb_bitmap =
2474 kmalloc(sb->s_blocksize, GFP_NOFS);
2475 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2476 bh = ext4_read_block_bitmap(sb, group);
2477 BUG_ON(IS_ERR_OR_NULL(bh));
2478 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2479 sb->s_blocksize);
2480 put_bh(bh);
2481 }
2482 #endif
2483
2484 return 0;
2485
2486 exit_group_info:
2487 /* If a meta_group_info table has been allocated, release it now */
2488 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2489 struct ext4_group_info ***group_info;
2490
2491 rcu_read_lock();
2492 group_info = rcu_dereference(sbi->s_group_info);
2493 kfree(group_info[idx]);
2494 group_info[idx] = NULL;
2495 rcu_read_unlock();
2496 }
2497 exit_meta_group_info:
2498 return -ENOMEM;
2499 } /* ext4_mb_add_groupinfo */
2500
ext4_mb_init_backend(struct super_block * sb)2501 static int ext4_mb_init_backend(struct super_block *sb)
2502 {
2503 ext4_group_t ngroups = ext4_get_groups_count(sb);
2504 ext4_group_t i;
2505 struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 int err;
2507 struct ext4_group_desc *desc;
2508 struct ext4_group_info ***group_info;
2509 struct kmem_cache *cachep;
2510
2511 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2512 if (err)
2513 return err;
2514
2515 sbi->s_buddy_cache = new_inode(sb);
2516 if (sbi->s_buddy_cache == NULL) {
2517 ext4_msg(sb, KERN_ERR, "can't get new inode");
2518 goto err_freesgi;
2519 }
2520 /* To avoid potentially colliding with an valid on-disk inode number,
2521 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2522 * not in the inode hash, so it should never be found by iget(), but
2523 * this will avoid confusion if it ever shows up during debugging. */
2524 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2525 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2526 for (i = 0; i < ngroups; i++) {
2527 desc = ext4_get_group_desc(sb, i, NULL);
2528 if (desc == NULL) {
2529 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2530 goto err_freebuddy;
2531 }
2532 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2533 goto err_freebuddy;
2534 }
2535
2536 return 0;
2537
2538 err_freebuddy:
2539 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2540 while (i-- > 0)
2541 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2542 i = sbi->s_group_info_size;
2543 rcu_read_lock();
2544 group_info = rcu_dereference(sbi->s_group_info);
2545 while (i-- > 0)
2546 kfree(group_info[i]);
2547 rcu_read_unlock();
2548 iput(sbi->s_buddy_cache);
2549 err_freesgi:
2550 rcu_read_lock();
2551 kvfree(rcu_dereference(sbi->s_group_info));
2552 rcu_read_unlock();
2553 return -ENOMEM;
2554 }
2555
ext4_groupinfo_destroy_slabs(void)2556 static void ext4_groupinfo_destroy_slabs(void)
2557 {
2558 int i;
2559
2560 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2561 if (ext4_groupinfo_caches[i])
2562 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2563 ext4_groupinfo_caches[i] = NULL;
2564 }
2565 }
2566
ext4_groupinfo_create_slab(size_t size)2567 static int ext4_groupinfo_create_slab(size_t size)
2568 {
2569 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2570 int slab_size;
2571 int blocksize_bits = order_base_2(size);
2572 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2573 struct kmem_cache *cachep;
2574
2575 if (cache_index >= NR_GRPINFO_CACHES)
2576 return -EINVAL;
2577
2578 if (unlikely(cache_index < 0))
2579 cache_index = 0;
2580
2581 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2582 if (ext4_groupinfo_caches[cache_index]) {
2583 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2584 return 0; /* Already created */
2585 }
2586
2587 slab_size = offsetof(struct ext4_group_info,
2588 bb_counters[blocksize_bits + 2]);
2589
2590 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2591 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2592 NULL);
2593
2594 ext4_groupinfo_caches[cache_index] = cachep;
2595
2596 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2597 if (!cachep) {
2598 printk(KERN_EMERG
2599 "EXT4-fs: no memory for groupinfo slab cache\n");
2600 return -ENOMEM;
2601 }
2602
2603 return 0;
2604 }
2605
ext4_mb_init(struct super_block * sb)2606 int ext4_mb_init(struct super_block *sb)
2607 {
2608 struct ext4_sb_info *sbi = EXT4_SB(sb);
2609 unsigned i, j;
2610 unsigned offset, offset_incr;
2611 unsigned max;
2612 int ret;
2613
2614 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2615
2616 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2617 if (sbi->s_mb_offsets == NULL) {
2618 ret = -ENOMEM;
2619 goto out;
2620 }
2621
2622 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2623 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2624 if (sbi->s_mb_maxs == NULL) {
2625 ret = -ENOMEM;
2626 goto out;
2627 }
2628
2629 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2630 if (ret < 0)
2631 goto out;
2632
2633 /* order 0 is regular bitmap */
2634 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2635 sbi->s_mb_offsets[0] = 0;
2636
2637 i = 1;
2638 offset = 0;
2639 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2640 max = sb->s_blocksize << 2;
2641 do {
2642 sbi->s_mb_offsets[i] = offset;
2643 sbi->s_mb_maxs[i] = max;
2644 offset += offset_incr;
2645 offset_incr = offset_incr >> 1;
2646 max = max >> 1;
2647 i++;
2648 } while (i <= sb->s_blocksize_bits + 1);
2649
2650 spin_lock_init(&sbi->s_md_lock);
2651 spin_lock_init(&sbi->s_bal_lock);
2652
2653 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2654 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2655 sbi->s_mb_stats = MB_DEFAULT_STATS;
2656 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2657 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2658 /*
2659 * The default group preallocation is 512, which for 4k block
2660 * sizes translates to 2 megabytes. However for bigalloc file
2661 * systems, this is probably too big (i.e, if the cluster size
2662 * is 1 megabyte, then group preallocation size becomes half a
2663 * gigabyte!). As a default, we will keep a two megabyte
2664 * group pralloc size for cluster sizes up to 64k, and after
2665 * that, we will force a minimum group preallocation size of
2666 * 32 clusters. This translates to 8 megs when the cluster
2667 * size is 256k, and 32 megs when the cluster size is 1 meg,
2668 * which seems reasonable as a default.
2669 */
2670 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2671 sbi->s_cluster_bits, 32);
2672 /*
2673 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2674 * to the lowest multiple of s_stripe which is bigger than
2675 * the s_mb_group_prealloc as determined above. We want
2676 * the preallocation size to be an exact multiple of the
2677 * RAID stripe size so that preallocations don't fragment
2678 * the stripes.
2679 */
2680 if (sbi->s_stripe > 1) {
2681 sbi->s_mb_group_prealloc = roundup(
2682 sbi->s_mb_group_prealloc, sbi->s_stripe);
2683 }
2684
2685 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2686 if (sbi->s_locality_groups == NULL) {
2687 ret = -ENOMEM;
2688 goto out;
2689 }
2690 for_each_possible_cpu(i) {
2691 struct ext4_locality_group *lg;
2692 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2693 mutex_init(&lg->lg_mutex);
2694 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2695 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2696 spin_lock_init(&lg->lg_prealloc_lock);
2697 }
2698
2699 /* init file for buddy data */
2700 ret = ext4_mb_init_backend(sb);
2701 if (ret != 0)
2702 goto out_free_locality_groups;
2703
2704 return 0;
2705
2706 out_free_locality_groups:
2707 free_percpu(sbi->s_locality_groups);
2708 sbi->s_locality_groups = NULL;
2709 out:
2710 kfree(sbi->s_mb_offsets);
2711 sbi->s_mb_offsets = NULL;
2712 kfree(sbi->s_mb_maxs);
2713 sbi->s_mb_maxs = NULL;
2714 return ret;
2715 }
2716
2717 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2718 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2719 {
2720 struct ext4_prealloc_space *pa;
2721 struct list_head *cur, *tmp;
2722 int count = 0;
2723
2724 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2725 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2726 list_del(&pa->pa_group_list);
2727 count++;
2728 kmem_cache_free(ext4_pspace_cachep, pa);
2729 }
2730 if (count)
2731 mb_debug(1, "mballoc: %u PAs left\n", count);
2732
2733 }
2734
ext4_mb_release(struct super_block * sb)2735 int ext4_mb_release(struct super_block *sb)
2736 {
2737 ext4_group_t ngroups = ext4_get_groups_count(sb);
2738 ext4_group_t i;
2739 int num_meta_group_infos;
2740 struct ext4_group_info *grinfo, ***group_info;
2741 struct ext4_sb_info *sbi = EXT4_SB(sb);
2742 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2743
2744 if (sbi->s_group_info) {
2745 for (i = 0; i < ngroups; i++) {
2746 grinfo = ext4_get_group_info(sb, i);
2747 #ifdef DOUBLE_CHECK
2748 kfree(grinfo->bb_bitmap);
2749 #endif
2750 ext4_lock_group(sb, i);
2751 ext4_mb_cleanup_pa(grinfo);
2752 ext4_unlock_group(sb, i);
2753 kmem_cache_free(cachep, grinfo);
2754 }
2755 num_meta_group_infos = (ngroups +
2756 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2757 EXT4_DESC_PER_BLOCK_BITS(sb);
2758 rcu_read_lock();
2759 group_info = rcu_dereference(sbi->s_group_info);
2760 for (i = 0; i < num_meta_group_infos; i++)
2761 kfree(group_info[i]);
2762 kvfree(group_info);
2763 rcu_read_unlock();
2764 }
2765 kfree(sbi->s_mb_offsets);
2766 kfree(sbi->s_mb_maxs);
2767 iput(sbi->s_buddy_cache);
2768 if (sbi->s_mb_stats) {
2769 ext4_msg(sb, KERN_INFO,
2770 "mballoc: %u blocks %u reqs (%u success)",
2771 atomic_read(&sbi->s_bal_allocated),
2772 atomic_read(&sbi->s_bal_reqs),
2773 atomic_read(&sbi->s_bal_success));
2774 ext4_msg(sb, KERN_INFO,
2775 "mballoc: %u extents scanned, %u goal hits, "
2776 "%u 2^N hits, %u breaks, %u lost",
2777 atomic_read(&sbi->s_bal_ex_scanned),
2778 atomic_read(&sbi->s_bal_goals),
2779 atomic_read(&sbi->s_bal_2orders),
2780 atomic_read(&sbi->s_bal_breaks),
2781 atomic_read(&sbi->s_mb_lost_chunks));
2782 ext4_msg(sb, KERN_INFO,
2783 "mballoc: %lu generated and it took %Lu",
2784 sbi->s_mb_buddies_generated,
2785 sbi->s_mb_generation_time);
2786 ext4_msg(sb, KERN_INFO,
2787 "mballoc: %u preallocated, %u discarded",
2788 atomic_read(&sbi->s_mb_preallocated),
2789 atomic_read(&sbi->s_mb_discarded));
2790 }
2791
2792 free_percpu(sbi->s_locality_groups);
2793
2794 return 0;
2795 }
2796
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,unsigned long flags)2797 static inline int ext4_issue_discard(struct super_block *sb,
2798 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2799 unsigned long flags)
2800 {
2801 ext4_fsblk_t discard_block;
2802
2803 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2804 ext4_group_first_block_no(sb, block_group));
2805 count = EXT4_C2B(EXT4_SB(sb), count);
2806 trace_ext4_discard_blocks(sb,
2807 (unsigned long long) discard_block, count);
2808 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, flags);
2809 }
2810
2811 /*
2812 * This function is called by the jbd2 layer once the commit has finished,
2813 * so we know we can free the blocks that were released with that commit.
2814 */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2815 static void ext4_free_data_callback(struct super_block *sb,
2816 struct ext4_journal_cb_entry *jce,
2817 int rc)
2818 {
2819 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2820 struct ext4_buddy e4b;
2821 struct ext4_group_info *db;
2822 int err, count = 0, count2 = 0;
2823
2824 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2825 entry->efd_count, entry->efd_group, entry);
2826
2827 if (test_opt(sb, DISCARD)) {
2828 err = ext4_issue_discard(sb, entry->efd_group,
2829 entry->efd_start_cluster,
2830 entry->efd_count, 0);
2831 if (err && err != -EOPNOTSUPP)
2832 ext4_msg(sb, KERN_WARNING, "discard request in"
2833 " group:%d block:%d count:%d failed"
2834 " with %d", entry->efd_group,
2835 entry->efd_start_cluster,
2836 entry->efd_count, err);
2837 }
2838
2839 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2840 /* we expect to find existing buddy because it's pinned */
2841 BUG_ON(err != 0);
2842
2843
2844 db = e4b.bd_info;
2845 /* there are blocks to put in buddy to make them really free */
2846 count += entry->efd_count;
2847 count2++;
2848 ext4_lock_group(sb, entry->efd_group);
2849 /* Take it out of per group rb tree */
2850 rb_erase(&entry->efd_node, &(db->bb_free_root));
2851 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2852
2853 /*
2854 * Clear the trimmed flag for the group so that the next
2855 * ext4_trim_fs can trim it.
2856 * If the volume is mounted with -o discard, online discard
2857 * is supported and the free blocks will be trimmed online.
2858 */
2859 if (!test_opt(sb, DISCARD))
2860 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2861
2862 if (!db->bb_free_root.rb_node) {
2863 /* No more items in the per group rb tree
2864 * balance refcounts from ext4_mb_free_metadata()
2865 */
2866 page_cache_release(e4b.bd_buddy_page);
2867 page_cache_release(e4b.bd_bitmap_page);
2868 }
2869 ext4_unlock_group(sb, entry->efd_group);
2870 kmem_cache_free(ext4_free_data_cachep, entry);
2871 ext4_mb_unload_buddy(&e4b);
2872
2873 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2874 }
2875
ext4_init_mballoc(void)2876 int __init ext4_init_mballoc(void)
2877 {
2878 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2879 SLAB_RECLAIM_ACCOUNT);
2880 if (ext4_pspace_cachep == NULL)
2881 return -ENOMEM;
2882
2883 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2884 SLAB_RECLAIM_ACCOUNT);
2885 if (ext4_ac_cachep == NULL) {
2886 kmem_cache_destroy(ext4_pspace_cachep);
2887 return -ENOMEM;
2888 }
2889
2890 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2891 SLAB_RECLAIM_ACCOUNT);
2892 if (ext4_free_data_cachep == NULL) {
2893 kmem_cache_destroy(ext4_pspace_cachep);
2894 kmem_cache_destroy(ext4_ac_cachep);
2895 return -ENOMEM;
2896 }
2897 return 0;
2898 }
2899
ext4_exit_mballoc(void)2900 void ext4_exit_mballoc(void)
2901 {
2902 /*
2903 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2904 * before destroying the slab cache.
2905 */
2906 rcu_barrier();
2907 kmem_cache_destroy(ext4_pspace_cachep);
2908 kmem_cache_destroy(ext4_ac_cachep);
2909 kmem_cache_destroy(ext4_free_data_cachep);
2910 ext4_groupinfo_destroy_slabs();
2911 }
2912
2913
2914 /*
2915 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2916 * Returns 0 if success or error code
2917 */
2918 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2919 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2920 handle_t *handle, unsigned int reserv_clstrs)
2921 {
2922 struct buffer_head *bitmap_bh = NULL;
2923 struct ext4_group_desc *gdp;
2924 struct buffer_head *gdp_bh;
2925 struct ext4_sb_info *sbi;
2926 struct super_block *sb;
2927 ext4_fsblk_t block;
2928 int err, len;
2929
2930 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2931 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2932
2933 sb = ac->ac_sb;
2934 sbi = EXT4_SB(sb);
2935
2936 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2937 if (IS_ERR(bitmap_bh)) {
2938 err = PTR_ERR(bitmap_bh);
2939 bitmap_bh = NULL;
2940 goto out_err;
2941 }
2942
2943 BUFFER_TRACE(bitmap_bh, "getting write access");
2944 err = ext4_journal_get_write_access(handle, bitmap_bh);
2945 if (err)
2946 goto out_err;
2947
2948 err = -EIO;
2949 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2950 if (!gdp)
2951 goto out_err;
2952
2953 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2954 ext4_free_group_clusters(sb, gdp));
2955
2956 BUFFER_TRACE(gdp_bh, "get_write_access");
2957 err = ext4_journal_get_write_access(handle, gdp_bh);
2958 if (err)
2959 goto out_err;
2960
2961 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2962
2963 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2964 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
2965 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2966 "fs metadata", block, block+len);
2967 /* File system mounted not to panic on error
2968 * Fix the bitmap and return EFSCORRUPTED
2969 * We leak some of the blocks here.
2970 */
2971 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2972 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2973 ac->ac_b_ex.fe_len);
2974 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2975 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2976 if (!err)
2977 err = -EFSCORRUPTED;
2978 goto out_err;
2979 }
2980
2981 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2982 #ifdef AGGRESSIVE_CHECK
2983 {
2984 int i;
2985 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2986 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2987 bitmap_bh->b_data));
2988 }
2989 }
2990 #endif
2991 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2992 ac->ac_b_ex.fe_len);
2993 if (ext4_has_group_desc_csum(sb) &&
2994 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2995 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2996 ext4_free_group_clusters_set(sb, gdp,
2997 ext4_free_clusters_after_init(sb,
2998 ac->ac_b_ex.fe_group, gdp));
2999 }
3000 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3001 ext4_free_group_clusters_set(sb, gdp, len);
3002 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3003 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3004
3005 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3006 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3007 /*
3008 * Now reduce the dirty block count also. Should not go negative
3009 */
3010 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3011 /* release all the reserved blocks if non delalloc */
3012 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3013 reserv_clstrs);
3014
3015 if (sbi->s_log_groups_per_flex) {
3016 ext4_group_t flex_group = ext4_flex_group(sbi,
3017 ac->ac_b_ex.fe_group);
3018 atomic64_sub(ac->ac_b_ex.fe_len,
3019 &sbi_array_rcu_deref(sbi, s_flex_groups,
3020 flex_group)->free_clusters);
3021 }
3022
3023 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3024 if (err)
3025 goto out_err;
3026 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3027
3028 out_err:
3029 brelse(bitmap_bh);
3030 return err;
3031 }
3032
3033 /*
3034 * here we normalize request for locality group
3035 * Group request are normalized to s_mb_group_prealloc, which goes to
3036 * s_strip if we set the same via mount option.
3037 * s_mb_group_prealloc can be configured via
3038 * /sys/fs/ext4/<partition>/mb_group_prealloc
3039 *
3040 * XXX: should we try to preallocate more than the group has now?
3041 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3042 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3043 {
3044 struct super_block *sb = ac->ac_sb;
3045 struct ext4_locality_group *lg = ac->ac_lg;
3046
3047 BUG_ON(lg == NULL);
3048 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3049 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3050 current->pid, ac->ac_g_ex.fe_len);
3051 }
3052
3053 /*
3054 * Normalization means making request better in terms of
3055 * size and alignment
3056 */
3057 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3058 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3059 struct ext4_allocation_request *ar)
3060 {
3061 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3062 int bsbits, max;
3063 ext4_lblk_t end;
3064 loff_t size, start_off;
3065 loff_t orig_size __maybe_unused;
3066 ext4_lblk_t start;
3067 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3068 struct ext4_prealloc_space *pa;
3069
3070 /* do normalize only data requests, metadata requests
3071 do not need preallocation */
3072 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3073 return;
3074
3075 /* sometime caller may want exact blocks */
3076 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3077 return;
3078
3079 /* caller may indicate that preallocation isn't
3080 * required (it's a tail, for example) */
3081 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3082 return;
3083
3084 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3085 ext4_mb_normalize_group_request(ac);
3086 return ;
3087 }
3088
3089 bsbits = ac->ac_sb->s_blocksize_bits;
3090
3091 /* first, let's learn actual file size
3092 * given current request is allocated */
3093 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3094 size = size << bsbits;
3095 if (size < i_size_read(ac->ac_inode))
3096 size = i_size_read(ac->ac_inode);
3097 orig_size = size;
3098
3099 /* max size of free chunks */
3100 max = 2 << bsbits;
3101
3102 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3103 (req <= (size) || max <= (chunk_size))
3104
3105 /* first, try to predict filesize */
3106 /* XXX: should this table be tunable? */
3107 start_off = 0;
3108 if (size <= 16 * 1024) {
3109 size = 16 * 1024;
3110 } else if (size <= 32 * 1024) {
3111 size = 32 * 1024;
3112 } else if (size <= 64 * 1024) {
3113 size = 64 * 1024;
3114 } else if (size <= 128 * 1024) {
3115 size = 128 * 1024;
3116 } else if (size <= 256 * 1024) {
3117 size = 256 * 1024;
3118 } else if (size <= 512 * 1024) {
3119 size = 512 * 1024;
3120 } else if (size <= 1024 * 1024) {
3121 size = 1024 * 1024;
3122 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3123 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3124 (21 - bsbits)) << 21;
3125 size = 2 * 1024 * 1024;
3126 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3127 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3128 (22 - bsbits)) << 22;
3129 size = 4 * 1024 * 1024;
3130 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3131 (8<<20)>>bsbits, max, 8 * 1024)) {
3132 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3133 (23 - bsbits)) << 23;
3134 size = 8 * 1024 * 1024;
3135 } else {
3136 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3137 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3138 ac->ac_o_ex.fe_len) << bsbits;
3139 }
3140 size = size >> bsbits;
3141 start = start_off >> bsbits;
3142
3143 /* don't cover already allocated blocks in selected range */
3144 if (ar->pleft && start <= ar->lleft) {
3145 size -= ar->lleft + 1 - start;
3146 start = ar->lleft + 1;
3147 }
3148 if (ar->pright && start + size - 1 >= ar->lright)
3149 size -= start + size - ar->lright;
3150
3151 /*
3152 * Trim allocation request for filesystems with artificially small
3153 * groups.
3154 */
3155 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3156 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3157
3158 end = start + size;
3159
3160 /* check we don't cross already preallocated blocks */
3161 rcu_read_lock();
3162 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3163 ext4_lblk_t pa_end;
3164
3165 if (pa->pa_deleted)
3166 continue;
3167 spin_lock(&pa->pa_lock);
3168 if (pa->pa_deleted) {
3169 spin_unlock(&pa->pa_lock);
3170 continue;
3171 }
3172
3173 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3174 pa->pa_len);
3175
3176 /* PA must not overlap original request */
3177 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3178 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3179
3180 /* skip PAs this normalized request doesn't overlap with */
3181 if (pa->pa_lstart >= end || pa_end <= start) {
3182 spin_unlock(&pa->pa_lock);
3183 continue;
3184 }
3185 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3186
3187 /* adjust start or end to be adjacent to this pa */
3188 if (pa_end <= ac->ac_o_ex.fe_logical) {
3189 BUG_ON(pa_end < start);
3190 start = pa_end;
3191 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3192 BUG_ON(pa->pa_lstart > end);
3193 end = pa->pa_lstart;
3194 }
3195 spin_unlock(&pa->pa_lock);
3196 }
3197 rcu_read_unlock();
3198 size = end - start;
3199
3200 /* XXX: extra loop to check we really don't overlap preallocations */
3201 rcu_read_lock();
3202 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3203 ext4_lblk_t pa_end;
3204
3205 spin_lock(&pa->pa_lock);
3206 if (pa->pa_deleted == 0) {
3207 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3208 pa->pa_len);
3209 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3210 }
3211 spin_unlock(&pa->pa_lock);
3212 }
3213 rcu_read_unlock();
3214
3215 if (start + size <= ac->ac_o_ex.fe_logical &&
3216 start > ac->ac_o_ex.fe_logical) {
3217 ext4_msg(ac->ac_sb, KERN_ERR,
3218 "start %lu, size %lu, fe_logical %lu",
3219 (unsigned long) start, (unsigned long) size,
3220 (unsigned long) ac->ac_o_ex.fe_logical);
3221 BUG();
3222 }
3223 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3224
3225 /* now prepare goal request */
3226
3227 /* XXX: is it better to align blocks WRT to logical
3228 * placement or satisfy big request as is */
3229 ac->ac_g_ex.fe_logical = start;
3230 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3231
3232 /* define goal start in order to merge */
3233 if (ar->pright && (ar->lright == (start + size))) {
3234 /* merge to the right */
3235 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3236 &ac->ac_f_ex.fe_group,
3237 &ac->ac_f_ex.fe_start);
3238 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3239 }
3240 if (ar->pleft && (ar->lleft + 1 == start)) {
3241 /* merge to the left */
3242 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3243 &ac->ac_f_ex.fe_group,
3244 &ac->ac_f_ex.fe_start);
3245 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3246 }
3247
3248 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3249 (unsigned) orig_size, (unsigned) start);
3250 }
3251
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3252 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3253 {
3254 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3255
3256 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3257 atomic_inc(&sbi->s_bal_reqs);
3258 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3259 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3260 atomic_inc(&sbi->s_bal_success);
3261 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3262 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3263 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3264 atomic_inc(&sbi->s_bal_goals);
3265 if (ac->ac_found > sbi->s_mb_max_to_scan)
3266 atomic_inc(&sbi->s_bal_breaks);
3267 }
3268
3269 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3270 trace_ext4_mballoc_alloc(ac);
3271 else
3272 trace_ext4_mballoc_prealloc(ac);
3273 }
3274
3275 /*
3276 * Called on failure; free up any blocks from the inode PA for this
3277 * context. We don't need this for MB_GROUP_PA because we only change
3278 * pa_free in ext4_mb_release_context(), but on failure, we've already
3279 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3280 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3281 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3282 {
3283 struct ext4_prealloc_space *pa = ac->ac_pa;
3284 struct ext4_buddy e4b;
3285 int err;
3286
3287 if (pa == NULL) {
3288 if (ac->ac_f_ex.fe_len == 0)
3289 return;
3290 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3291 if (err) {
3292 /*
3293 * This should never happen since we pin the
3294 * pages in the ext4_allocation_context so
3295 * ext4_mb_load_buddy() should never fail.
3296 */
3297 WARN(1, "mb_load_buddy failed (%d)", err);
3298 return;
3299 }
3300 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3301 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3302 ac->ac_f_ex.fe_len);
3303 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3304 ext4_mb_unload_buddy(&e4b);
3305 return;
3306 }
3307 if (pa->pa_type == MB_INODE_PA)
3308 pa->pa_free += ac->ac_b_ex.fe_len;
3309 }
3310
3311 /*
3312 * use blocks preallocated to inode
3313 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3314 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3315 struct ext4_prealloc_space *pa)
3316 {
3317 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3318 ext4_fsblk_t start;
3319 ext4_fsblk_t end;
3320 int len;
3321
3322 /* found preallocated blocks, use them */
3323 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3324 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3325 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3326 len = EXT4_NUM_B2C(sbi, end - start);
3327 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3328 &ac->ac_b_ex.fe_start);
3329 ac->ac_b_ex.fe_len = len;
3330 ac->ac_status = AC_STATUS_FOUND;
3331 ac->ac_pa = pa;
3332
3333 BUG_ON(start < pa->pa_pstart);
3334 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3335 BUG_ON(pa->pa_free < len);
3336 pa->pa_free -= len;
3337
3338 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3339 }
3340
3341 /*
3342 * use blocks preallocated to locality group
3343 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3344 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3345 struct ext4_prealloc_space *pa)
3346 {
3347 unsigned int len = ac->ac_o_ex.fe_len;
3348
3349 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3350 &ac->ac_b_ex.fe_group,
3351 &ac->ac_b_ex.fe_start);
3352 ac->ac_b_ex.fe_len = len;
3353 ac->ac_status = AC_STATUS_FOUND;
3354 ac->ac_pa = pa;
3355
3356 /* we don't correct pa_pstart or pa_plen here to avoid
3357 * possible race when the group is being loaded concurrently
3358 * instead we correct pa later, after blocks are marked
3359 * in on-disk bitmap -- see ext4_mb_release_context()
3360 * Other CPUs are prevented from allocating from this pa by lg_mutex
3361 */
3362 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3363 }
3364
3365 /*
3366 * Return the prealloc space that have minimal distance
3367 * from the goal block. @cpa is the prealloc
3368 * space that is having currently known minimal distance
3369 * from the goal block.
3370 */
3371 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3372 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3373 struct ext4_prealloc_space *pa,
3374 struct ext4_prealloc_space *cpa)
3375 {
3376 ext4_fsblk_t cur_distance, new_distance;
3377
3378 if (cpa == NULL) {
3379 atomic_inc(&pa->pa_count);
3380 return pa;
3381 }
3382 cur_distance = abs(goal_block - cpa->pa_pstart);
3383 new_distance = abs(goal_block - pa->pa_pstart);
3384
3385 if (cur_distance <= new_distance)
3386 return cpa;
3387
3388 /* drop the previous reference */
3389 atomic_dec(&cpa->pa_count);
3390 atomic_inc(&pa->pa_count);
3391 return pa;
3392 }
3393
3394 /*
3395 * search goal blocks in preallocated space
3396 */
3397 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3398 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3399 {
3400 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3401 int order, i;
3402 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3403 struct ext4_locality_group *lg;
3404 struct ext4_prealloc_space *pa, *cpa = NULL;
3405 ext4_fsblk_t goal_block;
3406
3407 /* only data can be preallocated */
3408 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3409 return 0;
3410
3411 /* first, try per-file preallocation */
3412 rcu_read_lock();
3413 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3414
3415 /* all fields in this condition don't change,
3416 * so we can skip locking for them */
3417 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3418 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3419 EXT4_C2B(sbi, pa->pa_len)))
3420 continue;
3421
3422 /* non-extent files can't have physical blocks past 2^32 */
3423 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3424 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3425 EXT4_MAX_BLOCK_FILE_PHYS))
3426 continue;
3427
3428 /* found preallocated blocks, use them */
3429 spin_lock(&pa->pa_lock);
3430 if (pa->pa_deleted == 0 && pa->pa_free) {
3431 atomic_inc(&pa->pa_count);
3432 ext4_mb_use_inode_pa(ac, pa);
3433 spin_unlock(&pa->pa_lock);
3434 ac->ac_criteria = 10;
3435 rcu_read_unlock();
3436 return 1;
3437 }
3438 spin_unlock(&pa->pa_lock);
3439 }
3440 rcu_read_unlock();
3441
3442 /* can we use group allocation? */
3443 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3444 return 0;
3445
3446 /* inode may have no locality group for some reason */
3447 lg = ac->ac_lg;
3448 if (lg == NULL)
3449 return 0;
3450 order = fls(ac->ac_o_ex.fe_len) - 1;
3451 if (order > PREALLOC_TB_SIZE - 1)
3452 /* The max size of hash table is PREALLOC_TB_SIZE */
3453 order = PREALLOC_TB_SIZE - 1;
3454
3455 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3456 /*
3457 * search for the prealloc space that is having
3458 * minimal distance from the goal block.
3459 */
3460 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3461 rcu_read_lock();
3462 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3463 pa_inode_list) {
3464 spin_lock(&pa->pa_lock);
3465 if (pa->pa_deleted == 0 &&
3466 pa->pa_free >= ac->ac_o_ex.fe_len) {
3467
3468 cpa = ext4_mb_check_group_pa(goal_block,
3469 pa, cpa);
3470 }
3471 spin_unlock(&pa->pa_lock);
3472 }
3473 rcu_read_unlock();
3474 }
3475 if (cpa) {
3476 ext4_mb_use_group_pa(ac, cpa);
3477 ac->ac_criteria = 20;
3478 return 1;
3479 }
3480 return 0;
3481 }
3482
3483 /*
3484 * the function goes through all block freed in the group
3485 * but not yet committed and marks them used in in-core bitmap.
3486 * buddy must be generated from this bitmap
3487 * Need to be called with the ext4 group lock held
3488 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3489 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3490 ext4_group_t group)
3491 {
3492 struct rb_node *n;
3493 struct ext4_group_info *grp;
3494 struct ext4_free_data *entry;
3495
3496 grp = ext4_get_group_info(sb, group);
3497 n = rb_first(&(grp->bb_free_root));
3498
3499 while (n) {
3500 entry = rb_entry(n, struct ext4_free_data, efd_node);
3501 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3502 n = rb_next(n);
3503 }
3504 return;
3505 }
3506
3507 /*
3508 * the function goes through all preallocation in this group and marks them
3509 * used in in-core bitmap. buddy must be generated from this bitmap
3510 * Need to be called with ext4 group lock held
3511 */
3512 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3513 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3514 ext4_group_t group)
3515 {
3516 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3517 struct ext4_prealloc_space *pa;
3518 struct list_head *cur;
3519 ext4_group_t groupnr;
3520 ext4_grpblk_t start;
3521 int preallocated = 0;
3522 int len;
3523
3524 /* all form of preallocation discards first load group,
3525 * so the only competing code is preallocation use.
3526 * we don't need any locking here
3527 * notice we do NOT ignore preallocations with pa_deleted
3528 * otherwise we could leave used blocks available for
3529 * allocation in buddy when concurrent ext4_mb_put_pa()
3530 * is dropping preallocation
3531 */
3532 list_for_each(cur, &grp->bb_prealloc_list) {
3533 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3534 spin_lock(&pa->pa_lock);
3535 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3536 &groupnr, &start);
3537 len = pa->pa_len;
3538 spin_unlock(&pa->pa_lock);
3539 if (unlikely(len == 0))
3540 continue;
3541 BUG_ON(groupnr != group);
3542 ext4_set_bits(bitmap, start, len);
3543 preallocated += len;
3544 }
3545 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3546 }
3547
ext4_mb_pa_callback(struct rcu_head * head)3548 static void ext4_mb_pa_callback(struct rcu_head *head)
3549 {
3550 struct ext4_prealloc_space *pa;
3551 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3552
3553 BUG_ON(atomic_read(&pa->pa_count));
3554 BUG_ON(pa->pa_deleted == 0);
3555 kmem_cache_free(ext4_pspace_cachep, pa);
3556 }
3557
3558 /*
3559 * drops a reference to preallocated space descriptor
3560 * if this was the last reference and the space is consumed
3561 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3562 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3563 struct super_block *sb, struct ext4_prealloc_space *pa)
3564 {
3565 ext4_group_t grp;
3566 ext4_fsblk_t grp_blk;
3567
3568 /* in this short window concurrent discard can set pa_deleted */
3569 spin_lock(&pa->pa_lock);
3570 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3571 spin_unlock(&pa->pa_lock);
3572 return;
3573 }
3574
3575 if (pa->pa_deleted == 1) {
3576 spin_unlock(&pa->pa_lock);
3577 return;
3578 }
3579
3580 pa->pa_deleted = 1;
3581 spin_unlock(&pa->pa_lock);
3582
3583 grp_blk = pa->pa_pstart;
3584 /*
3585 * If doing group-based preallocation, pa_pstart may be in the
3586 * next group when pa is used up
3587 */
3588 if (pa->pa_type == MB_GROUP_PA)
3589 grp_blk--;
3590
3591 grp = ext4_get_group_number(sb, grp_blk);
3592
3593 /*
3594 * possible race:
3595 *
3596 * P1 (buddy init) P2 (regular allocation)
3597 * find block B in PA
3598 * copy on-disk bitmap to buddy
3599 * mark B in on-disk bitmap
3600 * drop PA from group
3601 * mark all PAs in buddy
3602 *
3603 * thus, P1 initializes buddy with B available. to prevent this
3604 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3605 * against that pair
3606 */
3607 ext4_lock_group(sb, grp);
3608 list_del(&pa->pa_group_list);
3609 ext4_unlock_group(sb, grp);
3610
3611 spin_lock(pa->pa_obj_lock);
3612 list_del_rcu(&pa->pa_inode_list);
3613 spin_unlock(pa->pa_obj_lock);
3614
3615 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3616 }
3617
3618 /*
3619 * creates new preallocated space for given inode
3620 */
3621 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3622 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3623 {
3624 struct super_block *sb = ac->ac_sb;
3625 struct ext4_sb_info *sbi = EXT4_SB(sb);
3626 struct ext4_prealloc_space *pa;
3627 struct ext4_group_info *grp;
3628 struct ext4_inode_info *ei;
3629
3630 /* preallocate only when found space is larger then requested */
3631 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3632 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3633 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3634
3635 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3636 if (pa == NULL)
3637 return -ENOMEM;
3638
3639 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3640 int winl;
3641 int wins;
3642 int win;
3643 int offs;
3644
3645 /* we can't allocate as much as normalizer wants.
3646 * so, found space must get proper lstart
3647 * to cover original request */
3648 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3649 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3650
3651 /* we're limited by original request in that
3652 * logical block must be covered any way
3653 * winl is window we can move our chunk within */
3654 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3655
3656 /* also, we should cover whole original request */
3657 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3658
3659 /* the smallest one defines real window */
3660 win = min(winl, wins);
3661
3662 offs = ac->ac_o_ex.fe_logical %
3663 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3664 if (offs && offs < win)
3665 win = offs;
3666
3667 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3668 EXT4_NUM_B2C(sbi, win);
3669 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3670 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3671 }
3672
3673 /* preallocation can change ac_b_ex, thus we store actually
3674 * allocated blocks for history */
3675 ac->ac_f_ex = ac->ac_b_ex;
3676
3677 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3678 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3679 pa->pa_len = ac->ac_b_ex.fe_len;
3680 pa->pa_free = pa->pa_len;
3681 atomic_set(&pa->pa_count, 1);
3682 spin_lock_init(&pa->pa_lock);
3683 INIT_LIST_HEAD(&pa->pa_inode_list);
3684 INIT_LIST_HEAD(&pa->pa_group_list);
3685 pa->pa_deleted = 0;
3686 pa->pa_type = MB_INODE_PA;
3687
3688 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3689 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3690 trace_ext4_mb_new_inode_pa(ac, pa);
3691
3692 ext4_mb_use_inode_pa(ac, pa);
3693 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3694
3695 ei = EXT4_I(ac->ac_inode);
3696 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3697
3698 pa->pa_obj_lock = &ei->i_prealloc_lock;
3699 pa->pa_inode = ac->ac_inode;
3700
3701 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3702 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3703 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3704
3705 spin_lock(pa->pa_obj_lock);
3706 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3707 spin_unlock(pa->pa_obj_lock);
3708
3709 return 0;
3710 }
3711
3712 /*
3713 * creates new preallocated space for locality group inodes belongs to
3714 */
3715 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3716 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3717 {
3718 struct super_block *sb = ac->ac_sb;
3719 struct ext4_locality_group *lg;
3720 struct ext4_prealloc_space *pa;
3721 struct ext4_group_info *grp;
3722
3723 /* preallocate only when found space is larger then requested */
3724 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3725 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3726 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3727
3728 BUG_ON(ext4_pspace_cachep == NULL);
3729 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3730 if (pa == NULL)
3731 return -ENOMEM;
3732
3733 /* preallocation can change ac_b_ex, thus we store actually
3734 * allocated blocks for history */
3735 ac->ac_f_ex = ac->ac_b_ex;
3736
3737 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3738 pa->pa_lstart = pa->pa_pstart;
3739 pa->pa_len = ac->ac_b_ex.fe_len;
3740 pa->pa_free = pa->pa_len;
3741 atomic_set(&pa->pa_count, 1);
3742 spin_lock_init(&pa->pa_lock);
3743 INIT_LIST_HEAD(&pa->pa_inode_list);
3744 INIT_LIST_HEAD(&pa->pa_group_list);
3745 pa->pa_deleted = 0;
3746 pa->pa_type = MB_GROUP_PA;
3747
3748 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3749 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3750 trace_ext4_mb_new_group_pa(ac, pa);
3751
3752 ext4_mb_use_group_pa(ac, pa);
3753 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3754
3755 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3756 lg = ac->ac_lg;
3757 BUG_ON(lg == NULL);
3758
3759 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3760 pa->pa_inode = NULL;
3761
3762 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3763 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3764 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3765
3766 /*
3767 * We will later add the new pa to the right bucket
3768 * after updating the pa_free in ext4_mb_release_context
3769 */
3770 return 0;
3771 }
3772
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3773 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3774 {
3775 int err;
3776
3777 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3778 err = ext4_mb_new_group_pa(ac);
3779 else
3780 err = ext4_mb_new_inode_pa(ac);
3781 return err;
3782 }
3783
3784 /*
3785 * finds all unused blocks in on-disk bitmap, frees them in
3786 * in-core bitmap and buddy.
3787 * @pa must be unlinked from inode and group lists, so that
3788 * nobody else can find/use it.
3789 * the caller MUST hold group/inode locks.
3790 * TODO: optimize the case when there are no in-core structures yet
3791 */
3792 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3793 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3794 struct ext4_prealloc_space *pa)
3795 {
3796 struct super_block *sb = e4b->bd_sb;
3797 struct ext4_sb_info *sbi = EXT4_SB(sb);
3798 unsigned int end;
3799 unsigned int next;
3800 ext4_group_t group;
3801 ext4_grpblk_t bit;
3802 unsigned long long grp_blk_start;
3803 int err = 0;
3804 int free = 0;
3805
3806 BUG_ON(pa->pa_deleted == 0);
3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3808 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3810 end = bit + pa->pa_len;
3811
3812 while (bit < end) {
3813 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3814 if (bit >= end)
3815 break;
3816 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3817 mb_debug(1, " free preallocated %u/%u in group %u\n",
3818 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3819 (unsigned) next - bit, (unsigned) group);
3820 free += next - bit;
3821
3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3823 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3824 EXT4_C2B(sbi, bit)),
3825 next - bit);
3826 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3827 bit = next + 1;
3828 }
3829 if (free != pa->pa_free) {
3830 ext4_msg(e4b->bd_sb, KERN_CRIT,
3831 "pa %p: logic %lu, phys. %lu, len %lu",
3832 pa, (unsigned long) pa->pa_lstart,
3833 (unsigned long) pa->pa_pstart,
3834 (unsigned long) pa->pa_len);
3835 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3836 free, pa->pa_free);
3837 /*
3838 * pa is already deleted so we use the value obtained
3839 * from the bitmap and continue.
3840 */
3841 }
3842 atomic_add(free, &sbi->s_mb_discarded);
3843
3844 return err;
3845 }
3846
3847 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3849 struct ext4_prealloc_space *pa)
3850 {
3851 struct super_block *sb = e4b->bd_sb;
3852 ext4_group_t group;
3853 ext4_grpblk_t bit;
3854
3855 trace_ext4_mb_release_group_pa(sb, pa);
3856 BUG_ON(pa->pa_deleted == 0);
3857 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3858 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3859 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3860 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3861 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3862
3863 return 0;
3864 }
3865
3866 /*
3867 * releases all preallocations in given group
3868 *
3869 * first, we need to decide discard policy:
3870 * - when do we discard
3871 * 1) ENOSPC
3872 * - how many do we discard
3873 * 1) how many requested
3874 */
3875 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3876 ext4_mb_discard_group_preallocations(struct super_block *sb,
3877 ext4_group_t group, int needed)
3878 {
3879 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3880 struct buffer_head *bitmap_bh = NULL;
3881 struct ext4_prealloc_space *pa, *tmp;
3882 struct list_head list;
3883 struct ext4_buddy e4b;
3884 int err;
3885 int busy = 0;
3886 int free = 0;
3887
3888 mb_debug(1, "discard preallocation for group %u\n", group);
3889
3890 if (list_empty(&grp->bb_prealloc_list))
3891 return 0;
3892
3893 bitmap_bh = ext4_read_block_bitmap(sb, group);
3894 if (IS_ERR(bitmap_bh)) {
3895 err = PTR_ERR(bitmap_bh);
3896 ext4_error(sb, "Error %d reading block bitmap for %u",
3897 err, group);
3898 return 0;
3899 }
3900
3901 err = ext4_mb_load_buddy(sb, group, &e4b);
3902 if (err) {
3903 ext4_warning(sb, "Error %d loading buddy information for %u",
3904 err, group);
3905 put_bh(bitmap_bh);
3906 return 0;
3907 }
3908
3909 if (needed == 0)
3910 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3911
3912 INIT_LIST_HEAD(&list);
3913 repeat:
3914 ext4_lock_group(sb, group);
3915 list_for_each_entry_safe(pa, tmp,
3916 &grp->bb_prealloc_list, pa_group_list) {
3917 spin_lock(&pa->pa_lock);
3918 if (atomic_read(&pa->pa_count)) {
3919 spin_unlock(&pa->pa_lock);
3920 busy = 1;
3921 continue;
3922 }
3923 if (pa->pa_deleted) {
3924 spin_unlock(&pa->pa_lock);
3925 continue;
3926 }
3927
3928 /* seems this one can be freed ... */
3929 pa->pa_deleted = 1;
3930
3931 /* we can trust pa_free ... */
3932 free += pa->pa_free;
3933
3934 spin_unlock(&pa->pa_lock);
3935
3936 list_del(&pa->pa_group_list);
3937 list_add(&pa->u.pa_tmp_list, &list);
3938 }
3939
3940 /* if we still need more blocks and some PAs were used, try again */
3941 if (free < needed && busy) {
3942 busy = 0;
3943 ext4_unlock_group(sb, group);
3944 cond_resched();
3945 goto repeat;
3946 }
3947
3948 /* found anything to free? */
3949 if (list_empty(&list)) {
3950 BUG_ON(free != 0);
3951 goto out;
3952 }
3953
3954 /* now free all selected PAs */
3955 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3956
3957 /* remove from object (inode or locality group) */
3958 spin_lock(pa->pa_obj_lock);
3959 list_del_rcu(&pa->pa_inode_list);
3960 spin_unlock(pa->pa_obj_lock);
3961
3962 if (pa->pa_type == MB_GROUP_PA)
3963 ext4_mb_release_group_pa(&e4b, pa);
3964 else
3965 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3966
3967 list_del(&pa->u.pa_tmp_list);
3968 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3969 }
3970
3971 out:
3972 ext4_unlock_group(sb, group);
3973 ext4_mb_unload_buddy(&e4b);
3974 put_bh(bitmap_bh);
3975 return free;
3976 }
3977
3978 /*
3979 * releases all non-used preallocated blocks for given inode
3980 *
3981 * It's important to discard preallocations under i_data_sem
3982 * We don't want another block to be served from the prealloc
3983 * space when we are discarding the inode prealloc space.
3984 *
3985 * FIXME!! Make sure it is valid at all the call sites
3986 */
ext4_discard_preallocations(struct inode * inode)3987 void ext4_discard_preallocations(struct inode *inode)
3988 {
3989 struct ext4_inode_info *ei = EXT4_I(inode);
3990 struct super_block *sb = inode->i_sb;
3991 struct buffer_head *bitmap_bh = NULL;
3992 struct ext4_prealloc_space *pa, *tmp;
3993 ext4_group_t group = 0;
3994 struct list_head list;
3995 struct ext4_buddy e4b;
3996 int err;
3997
3998 if (!S_ISREG(inode->i_mode)) {
3999 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4000 return;
4001 }
4002
4003 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4004 trace_ext4_discard_preallocations(inode);
4005
4006 INIT_LIST_HEAD(&list);
4007
4008 repeat:
4009 /* first, collect all pa's in the inode */
4010 spin_lock(&ei->i_prealloc_lock);
4011 while (!list_empty(&ei->i_prealloc_list)) {
4012 pa = list_entry(ei->i_prealloc_list.next,
4013 struct ext4_prealloc_space, pa_inode_list);
4014 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4015 spin_lock(&pa->pa_lock);
4016 if (atomic_read(&pa->pa_count)) {
4017 /* this shouldn't happen often - nobody should
4018 * use preallocation while we're discarding it */
4019 spin_unlock(&pa->pa_lock);
4020 spin_unlock(&ei->i_prealloc_lock);
4021 ext4_msg(sb, KERN_ERR,
4022 "uh-oh! used pa while discarding");
4023 WARN_ON(1);
4024 schedule_timeout_uninterruptible(HZ);
4025 goto repeat;
4026
4027 }
4028 if (pa->pa_deleted == 0) {
4029 pa->pa_deleted = 1;
4030 spin_unlock(&pa->pa_lock);
4031 list_del_rcu(&pa->pa_inode_list);
4032 list_add(&pa->u.pa_tmp_list, &list);
4033 continue;
4034 }
4035
4036 /* someone is deleting pa right now */
4037 spin_unlock(&pa->pa_lock);
4038 spin_unlock(&ei->i_prealloc_lock);
4039
4040 /* we have to wait here because pa_deleted
4041 * doesn't mean pa is already unlinked from
4042 * the list. as we might be called from
4043 * ->clear_inode() the inode will get freed
4044 * and concurrent thread which is unlinking
4045 * pa from inode's list may access already
4046 * freed memory, bad-bad-bad */
4047
4048 /* XXX: if this happens too often, we can
4049 * add a flag to force wait only in case
4050 * of ->clear_inode(), but not in case of
4051 * regular truncate */
4052 schedule_timeout_uninterruptible(HZ);
4053 goto repeat;
4054 }
4055 spin_unlock(&ei->i_prealloc_lock);
4056
4057 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4058 BUG_ON(pa->pa_type != MB_INODE_PA);
4059 group = ext4_get_group_number(sb, pa->pa_pstart);
4060
4061 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4062 GFP_NOFS|__GFP_NOFAIL);
4063 if (err) {
4064 ext4_error(sb, "Error %d loading buddy information for %u",
4065 err, group);
4066 continue;
4067 }
4068
4069 bitmap_bh = ext4_read_block_bitmap(sb, group);
4070 if (IS_ERR(bitmap_bh)) {
4071 err = PTR_ERR(bitmap_bh);
4072 ext4_error(sb, "Error %d reading block bitmap for %u",
4073 err, group);
4074 ext4_mb_unload_buddy(&e4b);
4075 continue;
4076 }
4077
4078 ext4_lock_group(sb, group);
4079 list_del(&pa->pa_group_list);
4080 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4081 ext4_unlock_group(sb, group);
4082
4083 ext4_mb_unload_buddy(&e4b);
4084 put_bh(bitmap_bh);
4085
4086 list_del(&pa->u.pa_tmp_list);
4087 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4088 }
4089 }
4090
4091 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4093 {
4094 struct super_block *sb = ac->ac_sb;
4095 ext4_group_t ngroups, i;
4096
4097 if (!ext4_mballoc_debug ||
4098 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4099 return;
4100
4101 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4102 " Allocation context details:");
4103 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4104 ac->ac_status, ac->ac_flags);
4105 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4106 "goal %lu/%lu/%lu@%lu, "
4107 "best %lu/%lu/%lu@%lu cr %d",
4108 (unsigned long)ac->ac_o_ex.fe_group,
4109 (unsigned long)ac->ac_o_ex.fe_start,
4110 (unsigned long)ac->ac_o_ex.fe_len,
4111 (unsigned long)ac->ac_o_ex.fe_logical,
4112 (unsigned long)ac->ac_g_ex.fe_group,
4113 (unsigned long)ac->ac_g_ex.fe_start,
4114 (unsigned long)ac->ac_g_ex.fe_len,
4115 (unsigned long)ac->ac_g_ex.fe_logical,
4116 (unsigned long)ac->ac_b_ex.fe_group,
4117 (unsigned long)ac->ac_b_ex.fe_start,
4118 (unsigned long)ac->ac_b_ex.fe_len,
4119 (unsigned long)ac->ac_b_ex.fe_logical,
4120 (int)ac->ac_criteria);
4121 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4122 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4123 ngroups = ext4_get_groups_count(sb);
4124 for (i = 0; i < ngroups; i++) {
4125 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4126 struct ext4_prealloc_space *pa;
4127 ext4_grpblk_t start;
4128 struct list_head *cur;
4129 ext4_lock_group(sb, i);
4130 list_for_each(cur, &grp->bb_prealloc_list) {
4131 pa = list_entry(cur, struct ext4_prealloc_space,
4132 pa_group_list);
4133 spin_lock(&pa->pa_lock);
4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4135 NULL, &start);
4136 spin_unlock(&pa->pa_lock);
4137 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4138 start, pa->pa_len);
4139 }
4140 ext4_unlock_group(sb, i);
4141
4142 if (grp->bb_free == 0)
4143 continue;
4144 printk(KERN_ERR "%u: %d/%d \n",
4145 i, grp->bb_free, grp->bb_fragments);
4146 }
4147 printk(KERN_ERR "\n");
4148 }
4149 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4151 {
4152 return;
4153 }
4154 #endif
4155
4156 /*
4157 * We use locality group preallocation for small size file. The size of the
4158 * file is determined by the current size or the resulting size after
4159 * allocation which ever is larger
4160 *
4161 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4162 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4164 {
4165 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4166 int bsbits = ac->ac_sb->s_blocksize_bits;
4167 loff_t size, isize;
4168
4169 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4170 return;
4171
4172 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4173 return;
4174
4175 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4176 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4177 >> bsbits;
4178
4179 if ((size == isize) &&
4180 !ext4_fs_is_busy(sbi) &&
4181 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4182 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4183 return;
4184 }
4185
4186 if (sbi->s_mb_group_prealloc <= 0) {
4187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4188 return;
4189 }
4190
4191 /* don't use group allocation for large files */
4192 size = max(size, isize);
4193 if (size > sbi->s_mb_stream_request) {
4194 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4195 return;
4196 }
4197
4198 BUG_ON(ac->ac_lg != NULL);
4199 /*
4200 * locality group prealloc space are per cpu. The reason for having
4201 * per cpu locality group is to reduce the contention between block
4202 * request from multiple CPUs.
4203 */
4204 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4205
4206 /* we're going to use group allocation */
4207 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4208
4209 /* serialize all allocations in the group */
4210 mutex_lock(&ac->ac_lg->lg_mutex);
4211 }
4212
4213 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4215 struct ext4_allocation_request *ar)
4216 {
4217 struct super_block *sb = ar->inode->i_sb;
4218 struct ext4_sb_info *sbi = EXT4_SB(sb);
4219 struct ext4_super_block *es = sbi->s_es;
4220 ext4_group_t group;
4221 unsigned int len;
4222 ext4_fsblk_t goal;
4223 ext4_grpblk_t block;
4224
4225 /* we can't allocate > group size */
4226 len = ar->len;
4227
4228 /* just a dirty hack to filter too big requests */
4229 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4230 len = EXT4_CLUSTERS_PER_GROUP(sb);
4231
4232 /* start searching from the goal */
4233 goal = ar->goal;
4234 if (goal < le32_to_cpu(es->s_first_data_block) ||
4235 goal >= ext4_blocks_count(es))
4236 goal = le32_to_cpu(es->s_first_data_block);
4237 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4238
4239 /* set up allocation goals */
4240 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4241 ac->ac_status = AC_STATUS_CONTINUE;
4242 ac->ac_sb = sb;
4243 ac->ac_inode = ar->inode;
4244 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4245 ac->ac_o_ex.fe_group = group;
4246 ac->ac_o_ex.fe_start = block;
4247 ac->ac_o_ex.fe_len = len;
4248 ac->ac_g_ex = ac->ac_o_ex;
4249 ac->ac_flags = ar->flags;
4250
4251 /* we have to define context: we'll we work with a file or
4252 * locality group. this is a policy, actually */
4253 ext4_mb_group_or_file(ac);
4254
4255 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4256 "left: %u/%u, right %u/%u to %swritable\n",
4257 (unsigned) ar->len, (unsigned) ar->logical,
4258 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4259 (unsigned) ar->lleft, (unsigned) ar->pleft,
4260 (unsigned) ar->lright, (unsigned) ar->pright,
4261 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4262 return 0;
4263
4264 }
4265
4266 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4267 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4268 struct ext4_locality_group *lg,
4269 int order, int total_entries)
4270 {
4271 ext4_group_t group = 0;
4272 struct ext4_buddy e4b;
4273 struct list_head discard_list;
4274 struct ext4_prealloc_space *pa, *tmp;
4275
4276 mb_debug(1, "discard locality group preallocation\n");
4277
4278 INIT_LIST_HEAD(&discard_list);
4279
4280 spin_lock(&lg->lg_prealloc_lock);
4281 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4282 pa_inode_list) {
4283 spin_lock(&pa->pa_lock);
4284 if (atomic_read(&pa->pa_count)) {
4285 /*
4286 * This is the pa that we just used
4287 * for block allocation. So don't
4288 * free that
4289 */
4290 spin_unlock(&pa->pa_lock);
4291 continue;
4292 }
4293 if (pa->pa_deleted) {
4294 spin_unlock(&pa->pa_lock);
4295 continue;
4296 }
4297 /* only lg prealloc space */
4298 BUG_ON(pa->pa_type != MB_GROUP_PA);
4299
4300 /* seems this one can be freed ... */
4301 pa->pa_deleted = 1;
4302 spin_unlock(&pa->pa_lock);
4303
4304 list_del_rcu(&pa->pa_inode_list);
4305 list_add(&pa->u.pa_tmp_list, &discard_list);
4306
4307 total_entries--;
4308 if (total_entries <= 5) {
4309 /*
4310 * we want to keep only 5 entries
4311 * allowing it to grow to 8. This
4312 * mak sure we don't call discard
4313 * soon for this list.
4314 */
4315 break;
4316 }
4317 }
4318 spin_unlock(&lg->lg_prealloc_lock);
4319
4320 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4321 int err;
4322
4323 group = ext4_get_group_number(sb, pa->pa_pstart);
4324 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4325 GFP_NOFS|__GFP_NOFAIL);
4326 if (err) {
4327 ext4_error(sb, "Error %d loading buddy information for %u",
4328 err, group);
4329 continue;
4330 }
4331 ext4_lock_group(sb, group);
4332 list_del(&pa->pa_group_list);
4333 ext4_mb_release_group_pa(&e4b, pa);
4334 ext4_unlock_group(sb, group);
4335
4336 ext4_mb_unload_buddy(&e4b);
4337 list_del(&pa->u.pa_tmp_list);
4338 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4339 }
4340 }
4341
4342 /*
4343 * We have incremented pa_count. So it cannot be freed at this
4344 * point. Also we hold lg_mutex. So no parallel allocation is
4345 * possible from this lg. That means pa_free cannot be updated.
4346 *
4347 * A parallel ext4_mb_discard_group_preallocations is possible.
4348 * which can cause the lg_prealloc_list to be updated.
4349 */
4350
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4352 {
4353 int order, added = 0, lg_prealloc_count = 1;
4354 struct super_block *sb = ac->ac_sb;
4355 struct ext4_locality_group *lg = ac->ac_lg;
4356 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4357
4358 order = fls(pa->pa_free) - 1;
4359 if (order > PREALLOC_TB_SIZE - 1)
4360 /* The max size of hash table is PREALLOC_TB_SIZE */
4361 order = PREALLOC_TB_SIZE - 1;
4362 /* Add the prealloc space to lg */
4363 spin_lock(&lg->lg_prealloc_lock);
4364 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4365 pa_inode_list) {
4366 spin_lock(&tmp_pa->pa_lock);
4367 if (tmp_pa->pa_deleted) {
4368 spin_unlock(&tmp_pa->pa_lock);
4369 continue;
4370 }
4371 if (!added && pa->pa_free < tmp_pa->pa_free) {
4372 /* Add to the tail of the previous entry */
4373 list_add_tail_rcu(&pa->pa_inode_list,
4374 &tmp_pa->pa_inode_list);
4375 added = 1;
4376 /*
4377 * we want to count the total
4378 * number of entries in the list
4379 */
4380 }
4381 spin_unlock(&tmp_pa->pa_lock);
4382 lg_prealloc_count++;
4383 }
4384 if (!added)
4385 list_add_tail_rcu(&pa->pa_inode_list,
4386 &lg->lg_prealloc_list[order]);
4387 spin_unlock(&lg->lg_prealloc_lock);
4388
4389 /* Now trim the list to be not more than 8 elements */
4390 if (lg_prealloc_count > 8) {
4391 ext4_mb_discard_lg_preallocations(sb, lg,
4392 order, lg_prealloc_count);
4393 return;
4394 }
4395 return ;
4396 }
4397
4398 /*
4399 * release all resource we used in allocation
4400 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4402 {
4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4404 struct ext4_prealloc_space *pa = ac->ac_pa;
4405 if (pa) {
4406 if (pa->pa_type == MB_GROUP_PA) {
4407 /* see comment in ext4_mb_use_group_pa() */
4408 spin_lock(&pa->pa_lock);
4409 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4410 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4411 pa->pa_free -= ac->ac_b_ex.fe_len;
4412 pa->pa_len -= ac->ac_b_ex.fe_len;
4413 spin_unlock(&pa->pa_lock);
4414 }
4415 }
4416 if (pa) {
4417 /*
4418 * We want to add the pa to the right bucket.
4419 * Remove it from the list and while adding
4420 * make sure the list to which we are adding
4421 * doesn't grow big.
4422 */
4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424 spin_lock(pa->pa_obj_lock);
4425 list_del_rcu(&pa->pa_inode_list);
4426 spin_unlock(pa->pa_obj_lock);
4427 ext4_mb_add_n_trim(ac);
4428 }
4429 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4430 }
4431 if (ac->ac_bitmap_page)
4432 page_cache_release(ac->ac_bitmap_page);
4433 if (ac->ac_buddy_page)
4434 page_cache_release(ac->ac_buddy_page);
4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436 mutex_unlock(&ac->ac_lg->lg_mutex);
4437 ext4_mb_collect_stats(ac);
4438 return 0;
4439 }
4440
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4442 {
4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4444 int ret;
4445 int freed = 0;
4446
4447 trace_ext4_mb_discard_preallocations(sb, needed);
4448 for (i = 0; i < ngroups && needed > 0; i++) {
4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4450 freed += ret;
4451 needed -= ret;
4452 }
4453
4454 return freed;
4455 }
4456
4457 /*
4458 * Main entry point into mballoc to allocate blocks
4459 * it tries to use preallocation first, then falls back
4460 * to usual allocation
4461 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463 struct ext4_allocation_request *ar, int *errp)
4464 {
4465 int freed;
4466 struct ext4_allocation_context *ac = NULL;
4467 struct ext4_sb_info *sbi;
4468 struct super_block *sb;
4469 ext4_fsblk_t block = 0;
4470 unsigned int inquota = 0;
4471 unsigned int reserv_clstrs = 0;
4472
4473 might_sleep();
4474 sb = ar->inode->i_sb;
4475 sbi = EXT4_SB(sb);
4476
4477 trace_ext4_request_blocks(ar);
4478
4479 /* Allow to use superuser reservation for quota file */
4480 if (IS_NOQUOTA(ar->inode))
4481 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4482
4483 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4484 /* Without delayed allocation we need to verify
4485 * there is enough free blocks to do block allocation
4486 * and verify allocation doesn't exceed the quota limits.
4487 */
4488 while (ar->len &&
4489 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4490
4491 /* let others to free the space */
4492 cond_resched();
4493 ar->len = ar->len >> 1;
4494 }
4495 if (!ar->len) {
4496 *errp = -ENOSPC;
4497 return 0;
4498 }
4499 reserv_clstrs = ar->len;
4500 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4501 dquot_alloc_block_nofail(ar->inode,
4502 EXT4_C2B(sbi, ar->len));
4503 } else {
4504 while (ar->len &&
4505 dquot_alloc_block(ar->inode,
4506 EXT4_C2B(sbi, ar->len))) {
4507
4508 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4509 ar->len--;
4510 }
4511 }
4512 inquota = ar->len;
4513 if (ar->len == 0) {
4514 *errp = -EDQUOT;
4515 goto out;
4516 }
4517 }
4518
4519 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4520 if (!ac) {
4521 ar->len = 0;
4522 *errp = -ENOMEM;
4523 goto out;
4524 }
4525
4526 *errp = ext4_mb_initialize_context(ac, ar);
4527 if (*errp) {
4528 ar->len = 0;
4529 goto out;
4530 }
4531
4532 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4533 if (!ext4_mb_use_preallocated(ac)) {
4534 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4535 ext4_mb_normalize_request(ac, ar);
4536 repeat:
4537 /* allocate space in core */
4538 *errp = ext4_mb_regular_allocator(ac);
4539 if (*errp)
4540 goto discard_and_exit;
4541
4542 /* as we've just preallocated more space than
4543 * user requested originally, we store allocated
4544 * space in a special descriptor */
4545 if (ac->ac_status == AC_STATUS_FOUND &&
4546 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4547 *errp = ext4_mb_new_preallocation(ac);
4548 if (*errp) {
4549 discard_and_exit:
4550 ext4_discard_allocated_blocks(ac);
4551 goto errout;
4552 }
4553 }
4554 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4555 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4556 if (*errp) {
4557 ext4_discard_allocated_blocks(ac);
4558 goto errout;
4559 } else {
4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 ar->len = ac->ac_b_ex.fe_len;
4562 }
4563 } else {
4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4565 if (freed)
4566 goto repeat;
4567 *errp = -ENOSPC;
4568 }
4569
4570 errout:
4571 if (*errp) {
4572 ac->ac_b_ex.fe_len = 0;
4573 ar->len = 0;
4574 ext4_mb_show_ac(ac);
4575 }
4576 ext4_mb_release_context(ac);
4577 out:
4578 if (ac)
4579 kmem_cache_free(ext4_ac_cachep, ac);
4580 if (inquota && ar->len < inquota)
4581 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4582 if (!ar->len) {
4583 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4584 /* release all the reserved blocks if non delalloc */
4585 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4586 reserv_clstrs);
4587 }
4588
4589 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4590
4591 return block;
4592 }
4593
4594 /*
4595 * We can merge two free data extents only if the physical blocks
4596 * are contiguous, AND the extents were freed by the same transaction,
4597 * AND the blocks are associated with the same group.
4598 */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4599 static int can_merge(struct ext4_free_data *entry1,
4600 struct ext4_free_data *entry2)
4601 {
4602 if ((entry1->efd_tid == entry2->efd_tid) &&
4603 (entry1->efd_group == entry2->efd_group) &&
4604 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4605 return 1;
4606 return 0;
4607 }
4608
4609 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4610 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4611 struct ext4_free_data *new_entry)
4612 {
4613 ext4_group_t group = e4b->bd_group;
4614 ext4_grpblk_t cluster;
4615 struct ext4_free_data *entry;
4616 struct ext4_group_info *db = e4b->bd_info;
4617 struct super_block *sb = e4b->bd_sb;
4618 struct ext4_sb_info *sbi = EXT4_SB(sb);
4619 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4620 struct rb_node *parent = NULL, *new_node;
4621
4622 BUG_ON(!ext4_handle_valid(handle));
4623 BUG_ON(e4b->bd_bitmap_page == NULL);
4624 BUG_ON(e4b->bd_buddy_page == NULL);
4625
4626 new_node = &new_entry->efd_node;
4627 cluster = new_entry->efd_start_cluster;
4628
4629 if (!*n) {
4630 /* first free block exent. We need to
4631 protect buddy cache from being freed,
4632 * otherwise we'll refresh it from
4633 * on-disk bitmap and lose not-yet-available
4634 * blocks */
4635 page_cache_get(e4b->bd_buddy_page);
4636 page_cache_get(e4b->bd_bitmap_page);
4637 }
4638 while (*n) {
4639 parent = *n;
4640 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4641 if (cluster < entry->efd_start_cluster)
4642 n = &(*n)->rb_left;
4643 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4644 n = &(*n)->rb_right;
4645 else {
4646 ext4_grp_locked_error(sb, group, 0,
4647 ext4_group_first_block_no(sb, group) +
4648 EXT4_C2B(sbi, cluster),
4649 "Block already on to-be-freed list");
4650 kmem_cache_free(ext4_free_data_cachep, new_entry);
4651 return 0;
4652 }
4653 }
4654
4655 rb_link_node(new_node, parent, n);
4656 rb_insert_color(new_node, &db->bb_free_root);
4657
4658 /* Now try to see the extent can be merged to left and right */
4659 node = rb_prev(new_node);
4660 if (node) {
4661 entry = rb_entry(node, struct ext4_free_data, efd_node);
4662 if (can_merge(entry, new_entry) &&
4663 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4664 new_entry->efd_start_cluster = entry->efd_start_cluster;
4665 new_entry->efd_count += entry->efd_count;
4666 rb_erase(node, &(db->bb_free_root));
4667 kmem_cache_free(ext4_free_data_cachep, entry);
4668 }
4669 }
4670
4671 node = rb_next(new_node);
4672 if (node) {
4673 entry = rb_entry(node, struct ext4_free_data, efd_node);
4674 if (can_merge(new_entry, entry) &&
4675 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4676 new_entry->efd_count += entry->efd_count;
4677 rb_erase(node, &(db->bb_free_root));
4678 kmem_cache_free(ext4_free_data_cachep, entry);
4679 }
4680 }
4681 /* Add the extent to transaction's private list */
4682 ext4_journal_callback_add(handle, ext4_free_data_callback,
4683 &new_entry->efd_jce);
4684 return 0;
4685 }
4686
4687 /**
4688 * ext4_free_blocks() -- Free given blocks and update quota
4689 * @handle: handle for this transaction
4690 * @inode: inode
4691 * @block: start physical block to free
4692 * @count: number of blocks to count
4693 * @flags: flags used by ext4_free_blocks
4694 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4695 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4696 struct buffer_head *bh, ext4_fsblk_t block,
4697 unsigned long count, int flags)
4698 {
4699 struct buffer_head *bitmap_bh = NULL;
4700 struct super_block *sb = inode->i_sb;
4701 struct ext4_group_desc *gdp;
4702 unsigned int overflow;
4703 ext4_grpblk_t bit;
4704 struct buffer_head *gd_bh;
4705 ext4_group_t block_group;
4706 struct ext4_sb_info *sbi;
4707 struct ext4_buddy e4b;
4708 unsigned int count_clusters;
4709 int err = 0;
4710 int ret;
4711
4712 might_sleep();
4713 if (bh) {
4714 if (block)
4715 BUG_ON(block != bh->b_blocknr);
4716 else
4717 block = bh->b_blocknr;
4718 }
4719
4720 sbi = EXT4_SB(sb);
4721 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4722 !ext4_inode_block_valid(inode, block, count)) {
4723 ext4_error(sb, "Freeing blocks not in datazone - "
4724 "block = %llu, count = %lu", block, count);
4725 goto error_return;
4726 }
4727
4728 ext4_debug("freeing block %llu\n", block);
4729 trace_ext4_free_blocks(inode, block, count, flags);
4730
4731 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4732 BUG_ON(count > 1);
4733
4734 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4735 inode, bh, block);
4736 }
4737
4738 /*
4739 * We need to make sure we don't reuse the freed block until
4740 * after the transaction is committed, which we can do by
4741 * treating the block as metadata, below. We make an
4742 * exception if the inode is to be written in writeback mode
4743 * since writeback mode has weak data consistency guarantees.
4744 */
4745 if (!ext4_should_writeback_data(inode))
4746 flags |= EXT4_FREE_BLOCKS_METADATA;
4747
4748 /*
4749 * If the extent to be freed does not begin on a cluster
4750 * boundary, we need to deal with partial clusters at the
4751 * beginning and end of the extent. Normally we will free
4752 * blocks at the beginning or the end unless we are explicitly
4753 * requested to avoid doing so.
4754 */
4755 overflow = EXT4_PBLK_COFF(sbi, block);
4756 if (overflow) {
4757 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4758 overflow = sbi->s_cluster_ratio - overflow;
4759 block += overflow;
4760 if (count > overflow)
4761 count -= overflow;
4762 else
4763 return;
4764 } else {
4765 block -= overflow;
4766 count += overflow;
4767 }
4768 }
4769 overflow = EXT4_LBLK_COFF(sbi, count);
4770 if (overflow) {
4771 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4772 if (count > overflow)
4773 count -= overflow;
4774 else
4775 return;
4776 } else
4777 count += sbi->s_cluster_ratio - overflow;
4778 }
4779
4780 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4781 int i;
4782
4783 for (i = 0; i < count; i++) {
4784 cond_resched();
4785 bh = sb_find_get_block(inode->i_sb, block + i);
4786 if (!bh)
4787 continue;
4788 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4789 inode, bh, block + i);
4790 }
4791 }
4792
4793 do_more:
4794 overflow = 0;
4795 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4796
4797 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4798 ext4_get_group_info(sb, block_group))))
4799 return;
4800
4801 /*
4802 * Check to see if we are freeing blocks across a group
4803 * boundary.
4804 */
4805 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4806 overflow = EXT4_C2B(sbi, bit) + count -
4807 EXT4_BLOCKS_PER_GROUP(sb);
4808 count -= overflow;
4809 }
4810 count_clusters = EXT4_NUM_B2C(sbi, count);
4811 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4812 if (IS_ERR(bitmap_bh)) {
4813 err = PTR_ERR(bitmap_bh);
4814 bitmap_bh = NULL;
4815 goto error_return;
4816 }
4817 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4818 if (!gdp) {
4819 err = -EIO;
4820 goto error_return;
4821 }
4822
4823 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4824 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4825 in_range(block, ext4_inode_table(sb, gdp),
4826 EXT4_SB(sb)->s_itb_per_group) ||
4827 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4828 EXT4_SB(sb)->s_itb_per_group)) {
4829
4830 ext4_error(sb, "Freeing blocks in system zone - "
4831 "Block = %llu, count = %lu", block, count);
4832 /* err = 0. ext4_std_error should be a no op */
4833 goto error_return;
4834 }
4835
4836 BUFFER_TRACE(bitmap_bh, "getting write access");
4837 err = ext4_journal_get_write_access(handle, bitmap_bh);
4838 if (err)
4839 goto error_return;
4840
4841 /*
4842 * We are about to modify some metadata. Call the journal APIs
4843 * to unshare ->b_data if a currently-committing transaction is
4844 * using it
4845 */
4846 BUFFER_TRACE(gd_bh, "get_write_access");
4847 err = ext4_journal_get_write_access(handle, gd_bh);
4848 if (err)
4849 goto error_return;
4850 #ifdef AGGRESSIVE_CHECK
4851 {
4852 int i;
4853 for (i = 0; i < count_clusters; i++)
4854 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4855 }
4856 #endif
4857 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4858
4859 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4860 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4861 GFP_NOFS|__GFP_NOFAIL);
4862 if (err)
4863 goto error_return;
4864
4865 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4866 struct ext4_free_data *new_entry;
4867 /*
4868 * blocks being freed are metadata. these blocks shouldn't
4869 * be used until this transaction is committed
4870 *
4871 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4872 * to fail.
4873 */
4874 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4875 GFP_NOFS|__GFP_NOFAIL);
4876 new_entry->efd_start_cluster = bit;
4877 new_entry->efd_group = block_group;
4878 new_entry->efd_count = count_clusters;
4879 new_entry->efd_tid = handle->h_transaction->t_tid;
4880
4881 ext4_lock_group(sb, block_group);
4882 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4883 ext4_mb_free_metadata(handle, &e4b, new_entry);
4884 } else {
4885 /* need to update group_info->bb_free and bitmap
4886 * with group lock held. generate_buddy look at
4887 * them with group lock_held
4888 */
4889 if (test_opt(sb, DISCARD)) {
4890 err = ext4_issue_discard(sb, block_group, bit, count,
4891 0);
4892 if (err && err != -EOPNOTSUPP)
4893 ext4_msg(sb, KERN_WARNING, "discard request in"
4894 " group:%d block:%d count:%lu failed"
4895 " with %d", block_group, bit, count,
4896 err);
4897 } else
4898 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4899
4900 ext4_lock_group(sb, block_group);
4901 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4902 mb_free_blocks(inode, &e4b, bit, count_clusters);
4903 }
4904
4905 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4906 ext4_free_group_clusters_set(sb, gdp, ret);
4907 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4908 ext4_group_desc_csum_set(sb, block_group, gdp);
4909 ext4_unlock_group(sb, block_group);
4910
4911 if (sbi->s_log_groups_per_flex) {
4912 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4913 atomic64_add(count_clusters,
4914 &sbi_array_rcu_deref(sbi, s_flex_groups,
4915 flex_group)->free_clusters);
4916 }
4917
4918 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4919 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4920 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4921
4922 ext4_mb_unload_buddy(&e4b);
4923
4924 /* We dirtied the bitmap block */
4925 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4926 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4927
4928 /* And the group descriptor block */
4929 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4930 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4931 if (!err)
4932 err = ret;
4933
4934 if (overflow && !err) {
4935 block += count;
4936 count = overflow;
4937 put_bh(bitmap_bh);
4938 goto do_more;
4939 }
4940 error_return:
4941 brelse(bitmap_bh);
4942 ext4_std_error(sb, err);
4943 return;
4944 }
4945
4946 /**
4947 * ext4_group_add_blocks() -- Add given blocks to an existing group
4948 * @handle: handle to this transaction
4949 * @sb: super block
4950 * @block: start physical block to add to the block group
4951 * @count: number of blocks to free
4952 *
4953 * This marks the blocks as free in the bitmap and buddy.
4954 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4955 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4956 ext4_fsblk_t block, unsigned long count)
4957 {
4958 struct buffer_head *bitmap_bh = NULL;
4959 struct buffer_head *gd_bh;
4960 ext4_group_t block_group;
4961 ext4_grpblk_t bit;
4962 unsigned int i;
4963 struct ext4_group_desc *desc;
4964 struct ext4_sb_info *sbi = EXT4_SB(sb);
4965 struct ext4_buddy e4b;
4966 int err = 0, ret, blk_free_count;
4967 ext4_grpblk_t blocks_freed;
4968
4969 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4970
4971 if (count == 0)
4972 return 0;
4973
4974 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4975 /*
4976 * Check to see if we are freeing blocks across a group
4977 * boundary.
4978 */
4979 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4980 ext4_warning(sb, "too much blocks added to group %u\n",
4981 block_group);
4982 err = -EINVAL;
4983 goto error_return;
4984 }
4985
4986 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4987 if (IS_ERR(bitmap_bh)) {
4988 err = PTR_ERR(bitmap_bh);
4989 bitmap_bh = NULL;
4990 goto error_return;
4991 }
4992
4993 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4994 if (!desc) {
4995 err = -EIO;
4996 goto error_return;
4997 }
4998
4999 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5000 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5001 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5002 in_range(block + count - 1, ext4_inode_table(sb, desc),
5003 sbi->s_itb_per_group)) {
5004 ext4_error(sb, "Adding blocks in system zones - "
5005 "Block = %llu, count = %lu",
5006 block, count);
5007 err = -EINVAL;
5008 goto error_return;
5009 }
5010
5011 BUFFER_TRACE(bitmap_bh, "getting write access");
5012 err = ext4_journal_get_write_access(handle, bitmap_bh);
5013 if (err)
5014 goto error_return;
5015
5016 /*
5017 * We are about to modify some metadata. Call the journal APIs
5018 * to unshare ->b_data if a currently-committing transaction is
5019 * using it
5020 */
5021 BUFFER_TRACE(gd_bh, "get_write_access");
5022 err = ext4_journal_get_write_access(handle, gd_bh);
5023 if (err)
5024 goto error_return;
5025
5026 for (i = 0, blocks_freed = 0; i < count; i++) {
5027 BUFFER_TRACE(bitmap_bh, "clear bit");
5028 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5029 ext4_error(sb, "bit already cleared for block %llu",
5030 (ext4_fsblk_t)(block + i));
5031 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5032 } else {
5033 blocks_freed++;
5034 }
5035 }
5036
5037 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5038 if (err)
5039 goto error_return;
5040
5041 /*
5042 * need to update group_info->bb_free and bitmap
5043 * with group lock held. generate_buddy look at
5044 * them with group lock_held
5045 */
5046 ext4_lock_group(sb, block_group);
5047 mb_clear_bits(bitmap_bh->b_data, bit, count);
5048 mb_free_blocks(NULL, &e4b, bit, count);
5049 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5050 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5051 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5052 ext4_group_desc_csum_set(sb, block_group, desc);
5053 ext4_unlock_group(sb, block_group);
5054 percpu_counter_add(&sbi->s_freeclusters_counter,
5055 EXT4_NUM_B2C(sbi, blocks_freed));
5056
5057 if (sbi->s_log_groups_per_flex) {
5058 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5059 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5060 &sbi_array_rcu_deref(sbi, s_flex_groups,
5061 flex_group)->free_clusters);
5062 }
5063
5064 ext4_mb_unload_buddy(&e4b);
5065
5066 /* We dirtied the bitmap block */
5067 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5068 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5069
5070 /* And the group descriptor block */
5071 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5072 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5073 if (!err)
5074 err = ret;
5075
5076 error_return:
5077 brelse(bitmap_bh);
5078 ext4_std_error(sb, err);
5079 return err;
5080 }
5081
5082 /**
5083 * ext4_trim_extent -- function to TRIM one single free extent in the group
5084 * @sb: super block for the file system
5085 * @start: starting block of the free extent in the alloc. group
5086 * @count: number of blocks to TRIM
5087 * @group: alloc. group we are working with
5088 * @e4b: ext4 buddy for the group
5089 * @blkdev_flags: flags for the block device
5090 *
5091 * Trim "count" blocks starting at "start" in the "group". To assure that no
5092 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5093 * be called with under the group lock.
5094 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b,unsigned long blkdev_flags)5095 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5096 ext4_group_t group, struct ext4_buddy *e4b,
5097 unsigned long blkdev_flags)
5098 __releases(bitlock)
5099 __acquires(bitlock)
5100 {
5101 struct ext4_free_extent ex;
5102 int ret = 0;
5103
5104 trace_ext4_trim_extent(sb, group, start, count);
5105
5106 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5107
5108 ex.fe_start = start;
5109 ex.fe_group = group;
5110 ex.fe_len = count;
5111
5112 /*
5113 * Mark blocks used, so no one can reuse them while
5114 * being trimmed.
5115 */
5116 mb_mark_used(e4b, &ex);
5117 ext4_unlock_group(sb, group);
5118 ret = ext4_issue_discard(sb, group, start, count, blkdev_flags);
5119 ext4_lock_group(sb, group);
5120 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5121 return ret;
5122 }
5123
5124 /**
5125 * ext4_trim_all_free -- function to trim all free space in alloc. group
5126 * @sb: super block for file system
5127 * @group: group to be trimmed
5128 * @start: first group block to examine
5129 * @max: last group block to examine
5130 * @minblocks: minimum extent block count
5131 * @blkdev_flags: flags for the block device
5132 *
5133 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5134 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5135 * the extent.
5136 *
5137 *
5138 * ext4_trim_all_free walks through group's block bitmap searching for free
5139 * extents. When the free extent is found, mark it as used in group buddy
5140 * bitmap. Then issue a TRIM command on this extent and free the extent in
5141 * the group buddy bitmap. This is done until whole group is scanned.
5142 */
5143 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks,unsigned long blkdev_flags)5144 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5145 ext4_grpblk_t start, ext4_grpblk_t max,
5146 ext4_grpblk_t minblocks, unsigned long blkdev_flags)
5147 {
5148 void *bitmap;
5149 ext4_grpblk_t next, count = 0, free_count = 0;
5150 struct ext4_buddy e4b;
5151 int ret = 0;
5152
5153 trace_ext4_trim_all_free(sb, group, start, max);
5154
5155 ret = ext4_mb_load_buddy(sb, group, &e4b);
5156 if (ret) {
5157 ext4_warning(sb, "Error %d loading buddy information for %u",
5158 ret, group);
5159 return ret;
5160 }
5161 bitmap = e4b.bd_bitmap;
5162
5163 ext4_lock_group(sb, group);
5164 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5165 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5166 goto out;
5167
5168 start = (e4b.bd_info->bb_first_free > start) ?
5169 e4b.bd_info->bb_first_free : start;
5170
5171 while (start <= max) {
5172 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5173 if (start > max)
5174 break;
5175 next = mb_find_next_bit(bitmap, max + 1, start);
5176
5177 if ((next - start) >= minblocks) {
5178 ret = ext4_trim_extent(sb, start,
5179 next - start, group, &e4b,
5180 blkdev_flags);
5181 if (ret && ret != -EOPNOTSUPP)
5182 break;
5183 ret = 0;
5184 count += next - start;
5185 }
5186 free_count += next - start;
5187 start = next + 1;
5188
5189 if (fatal_signal_pending(current)) {
5190 count = -ERESTARTSYS;
5191 break;
5192 }
5193
5194 if (need_resched()) {
5195 ext4_unlock_group(sb, group);
5196 cond_resched();
5197 ext4_lock_group(sb, group);
5198 }
5199
5200 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5201 break;
5202 }
5203
5204 if (!ret) {
5205 ret = count;
5206 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5207 }
5208 out:
5209 ext4_unlock_group(sb, group);
5210 ext4_mb_unload_buddy(&e4b);
5211
5212 ext4_debug("trimmed %d blocks in the group %d\n",
5213 count, group);
5214
5215 return ret;
5216 }
5217
5218 /**
5219 * ext4_trim_fs() -- trim ioctl handle function
5220 * @sb: superblock for filesystem
5221 * @range: fstrim_range structure
5222 * @blkdev_flags: flags for the block device
5223 *
5224 * start: First Byte to trim
5225 * len: number of Bytes to trim from start
5226 * minlen: minimum extent length in Bytes
5227 * ext4_trim_fs goes through all allocation groups containing Bytes from
5228 * start to start+len. For each such a group ext4_trim_all_free function
5229 * is invoked to trim all free space.
5230 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range,unsigned long blkdev_flags)5231 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range,
5232 unsigned long blkdev_flags)
5233 {
5234 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5235 struct ext4_group_info *grp;
5236 ext4_group_t group, first_group, last_group;
5237 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5238 uint64_t start, end, minlen, trimmed = 0;
5239 ext4_fsblk_t first_data_blk =
5240 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5241 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5242 int ret = 0;
5243
5244 start = range->start >> sb->s_blocksize_bits;
5245 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5246 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5247 range->minlen >> sb->s_blocksize_bits);
5248
5249 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5250 start >= max_blks ||
5251 range->len < sb->s_blocksize)
5252 return -EINVAL;
5253 /* No point to try to trim less than discard granularity */
5254 if (range->minlen < q->limits.discard_granularity) {
5255 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5256 q->limits.discard_granularity >> sb->s_blocksize_bits);
5257 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
5258 goto out;
5259 }
5260 if (end >= max_blks)
5261 end = max_blks - 1;
5262 if (end <= first_data_blk)
5263 goto out;
5264 if (start < first_data_blk)
5265 start = first_data_blk;
5266
5267 /* Determine first and last group to examine based on start and end */
5268 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5269 &first_group, &first_cluster);
5270 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5271 &last_group, &last_cluster);
5272
5273 /* end now represents the last cluster to discard in this group */
5274 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5275
5276 for (group = first_group; group <= last_group; group++) {
5277 grp = ext4_get_group_info(sb, group);
5278 /* We only do this if the grp has never been initialized */
5279 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5280 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5281 if (ret)
5282 break;
5283 }
5284
5285 /*
5286 * For all the groups except the last one, last cluster will
5287 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5288 * change it for the last group, note that last_cluster is
5289 * already computed earlier by ext4_get_group_no_and_offset()
5290 */
5291 if (group == last_group)
5292 end = last_cluster;
5293
5294 if (grp->bb_free >= minlen) {
5295 cnt = ext4_trim_all_free(sb, group, first_cluster,
5296 end, minlen, blkdev_flags);
5297 if (cnt < 0) {
5298 ret = cnt;
5299 break;
5300 }
5301 trimmed += cnt;
5302 }
5303
5304 /*
5305 * For every group except the first one, we are sure
5306 * that the first cluster to discard will be cluster #0.
5307 */
5308 first_cluster = 0;
5309 }
5310
5311 if (!ret)
5312 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5313
5314 out:
5315 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5316 return ret;
5317 }
5318