1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <linux/nospec.h> 30 #include <linux/backing-dev.h> 31 #include <trace/events/ext4.h> 32 33 #ifdef CONFIG_EXT4_DEBUG 34 ushort ext4_mballoc_debug __read_mostly; 35 36 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 37 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 38 #endif 39 40 /* 41 * MUSTDO: 42 * - test ext4_ext_search_left() and ext4_ext_search_right() 43 * - search for metadata in few groups 44 * 45 * TODO v4: 46 * - normalization should take into account whether file is still open 47 * - discard preallocations if no free space left (policy?) 48 * - don't normalize tails 49 * - quota 50 * - reservation for superuser 51 * 52 * TODO v3: 53 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 54 * - track min/max extents in each group for better group selection 55 * - mb_mark_used() may allocate chunk right after splitting buddy 56 * - tree of groups sorted by number of free blocks 57 * - error handling 58 */ 59 60 /* 61 * The allocation request involve request for multiple number of blocks 62 * near to the goal(block) value specified. 63 * 64 * During initialization phase of the allocator we decide to use the 65 * group preallocation or inode preallocation depending on the size of 66 * the file. The size of the file could be the resulting file size we 67 * would have after allocation, or the current file size, which ever 68 * is larger. If the size is less than sbi->s_mb_stream_request we 69 * select to use the group preallocation. The default value of 70 * s_mb_stream_request is 16 blocks. This can also be tuned via 71 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 72 * terms of number of blocks. 73 * 74 * The main motivation for having small file use group preallocation is to 75 * ensure that we have small files closer together on the disk. 76 * 77 * First stage the allocator looks at the inode prealloc list, 78 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 79 * spaces for this particular inode. The inode prealloc space is 80 * represented as: 81 * 82 * pa_lstart -> the logical start block for this prealloc space 83 * pa_pstart -> the physical start block for this prealloc space 84 * pa_len -> length for this prealloc space (in clusters) 85 * pa_free -> free space available in this prealloc space (in clusters) 86 * 87 * The inode preallocation space is used looking at the _logical_ start 88 * block. If only the logical file block falls within the range of prealloc 89 * space we will consume the particular prealloc space. This makes sure that 90 * we have contiguous physical blocks representing the file blocks 91 * 92 * The important thing to be noted in case of inode prealloc space is that 93 * we don't modify the values associated to inode prealloc space except 94 * pa_free. 95 * 96 * If we are not able to find blocks in the inode prealloc space and if we 97 * have the group allocation flag set then we look at the locality group 98 * prealloc space. These are per CPU prealloc list represented as 99 * 100 * ext4_sb_info.s_locality_groups[smp_processor_id()] 101 * 102 * The reason for having a per cpu locality group is to reduce the contention 103 * between CPUs. It is possible to get scheduled at this point. 104 * 105 * The locality group prealloc space is used looking at whether we have 106 * enough free space (pa_free) within the prealloc space. 107 * 108 * If we can't allocate blocks via inode prealloc or/and locality group 109 * prealloc then we look at the buddy cache. The buddy cache is represented 110 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 111 * mapped to the buddy and bitmap information regarding different 112 * groups. The buddy information is attached to buddy cache inode so that 113 * we can access them through the page cache. The information regarding 114 * each group is loaded via ext4_mb_load_buddy. The information involve 115 * block bitmap and buddy information. The information are stored in the 116 * inode as: 117 * 118 * { page } 119 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 120 * 121 * 122 * one block each for bitmap and buddy information. So for each group we 123 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 124 * blocksize) blocks. So it can have information regarding groups_per_page 125 * which is blocks_per_page/2 126 * 127 * The buddy cache inode is not stored on disk. The inode is thrown 128 * away when the filesystem is unmounted. 129 * 130 * We look for count number of blocks in the buddy cache. If we were able 131 * to locate that many free blocks we return with additional information 132 * regarding rest of the contiguous physical block available 133 * 134 * Before allocating blocks via buddy cache we normalize the request 135 * blocks. This ensure we ask for more blocks that we needed. The extra 136 * blocks that we get after allocation is added to the respective prealloc 137 * list. In case of inode preallocation we follow a list of heuristics 138 * based on file size. This can be found in ext4_mb_normalize_request. If 139 * we are doing a group prealloc we try to normalize the request to 140 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 141 * dependent on the cluster size; for non-bigalloc file systems, it is 142 * 512 blocks. This can be tuned via 143 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 144 * terms of number of blocks. If we have mounted the file system with -O 145 * stripe=<value> option the group prealloc request is normalized to the 146 * the smallest multiple of the stripe value (sbi->s_stripe) which is 147 * greater than the default mb_group_prealloc. 148 * 149 * The regular allocator (using the buddy cache) supports a few tunables. 150 * 151 * /sys/fs/ext4/<partition>/mb_min_to_scan 152 * /sys/fs/ext4/<partition>/mb_max_to_scan 153 * /sys/fs/ext4/<partition>/mb_order2_req 154 * 155 * The regular allocator uses buddy scan only if the request len is power of 156 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 157 * value of s_mb_order2_reqs can be tuned via 158 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 159 * stripe size (sbi->s_stripe), we try to search for contiguous block in 160 * stripe size. This should result in better allocation on RAID setups. If 161 * not, we search in the specific group using bitmap for best extents. The 162 * tunable min_to_scan and max_to_scan control the behaviour here. 163 * min_to_scan indicate how long the mballoc __must__ look for a best 164 * extent and max_to_scan indicates how long the mballoc __can__ look for a 165 * best extent in the found extents. Searching for the blocks starts with 166 * the group specified as the goal value in allocation context via 167 * ac_g_ex. Each group is first checked based on the criteria whether it 168 * can be used for allocation. ext4_mb_good_group explains how the groups are 169 * checked. 170 * 171 * Both the prealloc space are getting populated as above. So for the first 172 * request we will hit the buddy cache which will result in this prealloc 173 * space getting filled. The prealloc space is then later used for the 174 * subsequent request. 175 */ 176 177 /* 178 * mballoc operates on the following data: 179 * - on-disk bitmap 180 * - in-core buddy (actually includes buddy and bitmap) 181 * - preallocation descriptors (PAs) 182 * 183 * there are two types of preallocations: 184 * - inode 185 * assiged to specific inode and can be used for this inode only. 186 * it describes part of inode's space preallocated to specific 187 * physical blocks. any block from that preallocated can be used 188 * independent. the descriptor just tracks number of blocks left 189 * unused. so, before taking some block from descriptor, one must 190 * make sure corresponded logical block isn't allocated yet. this 191 * also means that freeing any block within descriptor's range 192 * must discard all preallocated blocks. 193 * - locality group 194 * assigned to specific locality group which does not translate to 195 * permanent set of inodes: inode can join and leave group. space 196 * from this type of preallocation can be used for any inode. thus 197 * it's consumed from the beginning to the end. 198 * 199 * relation between them can be expressed as: 200 * in-core buddy = on-disk bitmap + preallocation descriptors 201 * 202 * this mean blocks mballoc considers used are: 203 * - allocated blocks (persistent) 204 * - preallocated blocks (non-persistent) 205 * 206 * consistency in mballoc world means that at any time a block is either 207 * free or used in ALL structures. notice: "any time" should not be read 208 * literally -- time is discrete and delimited by locks. 209 * 210 * to keep it simple, we don't use block numbers, instead we count number of 211 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 212 * 213 * all operations can be expressed as: 214 * - init buddy: buddy = on-disk + PAs 215 * - new PA: buddy += N; PA = N 216 * - use inode PA: on-disk += N; PA -= N 217 * - discard inode PA buddy -= on-disk - PA; PA = 0 218 * - use locality group PA on-disk += N; PA -= N 219 * - discard locality group PA buddy -= PA; PA = 0 220 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 221 * is used in real operation because we can't know actual used 222 * bits from PA, only from on-disk bitmap 223 * 224 * if we follow this strict logic, then all operations above should be atomic. 225 * given some of them can block, we'd have to use something like semaphores 226 * killing performance on high-end SMP hardware. let's try to relax it using 227 * the following knowledge: 228 * 1) if buddy is referenced, it's already initialized 229 * 2) while block is used in buddy and the buddy is referenced, 230 * nobody can re-allocate that block 231 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 232 * bit set and PA claims same block, it's OK. IOW, one can set bit in 233 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 234 * block 235 * 236 * so, now we're building a concurrency table: 237 * - init buddy vs. 238 * - new PA 239 * blocks for PA are allocated in the buddy, buddy must be referenced 240 * until PA is linked to allocation group to avoid concurrent buddy init 241 * - use inode PA 242 * we need to make sure that either on-disk bitmap or PA has uptodate data 243 * given (3) we care that PA-=N operation doesn't interfere with init 244 * - discard inode PA 245 * the simplest way would be to have buddy initialized by the discard 246 * - use locality group PA 247 * again PA-=N must be serialized with init 248 * - discard locality group PA 249 * the simplest way would be to have buddy initialized by the discard 250 * - new PA vs. 251 * - use inode PA 252 * i_data_sem serializes them 253 * - discard inode PA 254 * discard process must wait until PA isn't used by another process 255 * - use locality group PA 256 * some mutex should serialize them 257 * - discard locality group PA 258 * discard process must wait until PA isn't used by another process 259 * - use inode PA 260 * - use inode PA 261 * i_data_sem or another mutex should serializes them 262 * - discard inode PA 263 * discard process must wait until PA isn't used by another process 264 * - use locality group PA 265 * nothing wrong here -- they're different PAs covering different blocks 266 * - discard locality group PA 267 * discard process must wait until PA isn't used by another process 268 * 269 * now we're ready to make few consequences: 270 * - PA is referenced and while it is no discard is possible 271 * - PA is referenced until block isn't marked in on-disk bitmap 272 * - PA changes only after on-disk bitmap 273 * - discard must not compete with init. either init is done before 274 * any discard or they're serialized somehow 275 * - buddy init as sum of on-disk bitmap and PAs is done atomically 276 * 277 * a special case when we've used PA to emptiness. no need to modify buddy 278 * in this case, but we should care about concurrent init 279 * 280 */ 281 282 /* 283 * Logic in few words: 284 * 285 * - allocation: 286 * load group 287 * find blocks 288 * mark bits in on-disk bitmap 289 * release group 290 * 291 * - use preallocation: 292 * find proper PA (per-inode or group) 293 * load group 294 * mark bits in on-disk bitmap 295 * release group 296 * release PA 297 * 298 * - free: 299 * load group 300 * mark bits in on-disk bitmap 301 * release group 302 * 303 * - discard preallocations in group: 304 * mark PAs deleted 305 * move them onto local list 306 * load on-disk bitmap 307 * load group 308 * remove PA from object (inode or locality group) 309 * mark free blocks in-core 310 * 311 * - discard inode's preallocations: 312 */ 313 314 /* 315 * Locking rules 316 * 317 * Locks: 318 * - bitlock on a group (group) 319 * - object (inode/locality) (object) 320 * - per-pa lock (pa) 321 * 322 * Paths: 323 * - new pa 324 * object 325 * group 326 * 327 * - find and use pa: 328 * pa 329 * 330 * - release consumed pa: 331 * pa 332 * group 333 * object 334 * 335 * - generate in-core bitmap: 336 * group 337 * pa 338 * 339 * - discard all for given object (inode, locality group): 340 * object 341 * pa 342 * group 343 * 344 * - discard all for given group: 345 * group 346 * pa 347 * group 348 * object 349 * 350 */ 351 static struct kmem_cache *ext4_pspace_cachep; 352 static struct kmem_cache *ext4_ac_cachep; 353 static struct kmem_cache *ext4_free_data_cachep; 354 355 /* We create slab caches for groupinfo data structures based on the 356 * superblock block size. There will be one per mounted filesystem for 357 * each unique s_blocksize_bits */ 358 #define NR_GRPINFO_CACHES 8 359 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 360 361 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 362 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 363 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 364 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 365 }; 366 367 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 370 ext4_group_t group); 371 static void ext4_free_data_callback(struct super_block *sb, 372 struct ext4_journal_cb_entry *jce, int rc); 373 mb_correct_addr_and_bit(int * bit,void * addr)374 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 375 { 376 #if BITS_PER_LONG == 64 377 *bit += ((unsigned long) addr & 7UL) << 3; 378 addr = (void *) ((unsigned long) addr & ~7UL); 379 #elif BITS_PER_LONG == 32 380 *bit += ((unsigned long) addr & 3UL) << 3; 381 addr = (void *) ((unsigned long) addr & ~3UL); 382 #else 383 #error "how many bits you are?!" 384 #endif 385 return addr; 386 } 387 mb_test_bit(int bit,void * addr)388 static inline int mb_test_bit(int bit, void *addr) 389 { 390 /* 391 * ext4_test_bit on architecture like powerpc 392 * needs unsigned long aligned address 393 */ 394 addr = mb_correct_addr_and_bit(&bit, addr); 395 return ext4_test_bit(bit, addr); 396 } 397 mb_set_bit(int bit,void * addr)398 static inline void mb_set_bit(int bit, void *addr) 399 { 400 addr = mb_correct_addr_and_bit(&bit, addr); 401 ext4_set_bit(bit, addr); 402 } 403 mb_clear_bit(int bit,void * addr)404 static inline void mb_clear_bit(int bit, void *addr) 405 { 406 addr = mb_correct_addr_and_bit(&bit, addr); 407 ext4_clear_bit(bit, addr); 408 } 409 mb_test_and_clear_bit(int bit,void * addr)410 static inline int mb_test_and_clear_bit(int bit, void *addr) 411 { 412 addr = mb_correct_addr_and_bit(&bit, addr); 413 return ext4_test_and_clear_bit(bit, addr); 414 } 415 mb_find_next_zero_bit(void * addr,int max,int start)416 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 417 { 418 int fix = 0, ret, tmpmax; 419 addr = mb_correct_addr_and_bit(&fix, addr); 420 tmpmax = max + fix; 421 start += fix; 422 423 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 424 if (ret > max) 425 return max; 426 return ret; 427 } 428 mb_find_next_bit(void * addr,int max,int start)429 static inline int mb_find_next_bit(void *addr, int max, int start) 430 { 431 int fix = 0, ret, tmpmax; 432 addr = mb_correct_addr_and_bit(&fix, addr); 433 tmpmax = max + fix; 434 start += fix; 435 436 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 437 if (ret > max) 438 return max; 439 return ret; 440 } 441 mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)442 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 443 { 444 char *bb; 445 446 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 447 BUG_ON(max == NULL); 448 449 if (order > e4b->bd_blkbits + 1) { 450 *max = 0; 451 return NULL; 452 } 453 454 /* at order 0 we see each particular block */ 455 if (order == 0) { 456 *max = 1 << (e4b->bd_blkbits + 3); 457 return e4b->bd_bitmap; 458 } 459 460 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 461 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 462 463 return bb; 464 } 465 466 #ifdef DOUBLE_CHECK mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)467 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 468 int first, int count) 469 { 470 int i; 471 struct super_block *sb = e4b->bd_sb; 472 473 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 474 return; 475 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 476 for (i = 0; i < count; i++) { 477 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 478 ext4_fsblk_t blocknr; 479 480 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 481 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 482 ext4_grp_locked_error(sb, e4b->bd_group, 483 inode ? inode->i_ino : 0, 484 blocknr, 485 "freeing block already freed " 486 "(bit %u)", 487 first + i); 488 } 489 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 490 } 491 } 492 mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)493 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 494 { 495 int i; 496 497 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 498 return; 499 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 500 for (i = 0; i < count; i++) { 501 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 502 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 503 } 504 } 505 mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)506 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 507 { 508 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 509 unsigned char *b1, *b2; 510 int i; 511 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 512 b2 = (unsigned char *) bitmap; 513 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 514 if (b1[i] != b2[i]) { 515 ext4_msg(e4b->bd_sb, KERN_ERR, 516 "corruption in group %u " 517 "at byte %u(%u): %x in copy != %x " 518 "on disk/prealloc", 519 e4b->bd_group, i, i * 8, b1[i], b2[i]); 520 BUG(); 521 } 522 } 523 } 524 } 525 526 #else mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)527 static inline void mb_free_blocks_double(struct inode *inode, 528 struct ext4_buddy *e4b, int first, int count) 529 { 530 return; 531 } mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)532 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 533 int first, int count) 534 { 535 return; 536 } mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)537 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 538 { 539 return; 540 } 541 #endif 542 543 #ifdef AGGRESSIVE_CHECK 544 545 #define MB_CHECK_ASSERT(assert) \ 546 do { \ 547 if (!(assert)) { \ 548 printk(KERN_EMERG \ 549 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 550 function, file, line, # assert); \ 551 BUG(); \ 552 } \ 553 } while (0) 554 __mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)555 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 556 const char *function, int line) 557 { 558 struct super_block *sb = e4b->bd_sb; 559 int order = e4b->bd_blkbits + 1; 560 int max; 561 int max2; 562 int i; 563 int j; 564 int k; 565 int count; 566 struct ext4_group_info *grp; 567 int fragments = 0; 568 int fstart; 569 struct list_head *cur; 570 void *buddy; 571 void *buddy2; 572 573 { 574 static int mb_check_counter; 575 if (mb_check_counter++ % 100 != 0) 576 return 0; 577 } 578 579 while (order > 1) { 580 buddy = mb_find_buddy(e4b, order, &max); 581 MB_CHECK_ASSERT(buddy); 582 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 583 MB_CHECK_ASSERT(buddy2); 584 MB_CHECK_ASSERT(buddy != buddy2); 585 MB_CHECK_ASSERT(max * 2 == max2); 586 587 count = 0; 588 for (i = 0; i < max; i++) { 589 590 if (mb_test_bit(i, buddy)) { 591 /* only single bit in buddy2 may be 1 */ 592 if (!mb_test_bit(i << 1, buddy2)) { 593 MB_CHECK_ASSERT( 594 mb_test_bit((i<<1)+1, buddy2)); 595 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 596 MB_CHECK_ASSERT( 597 mb_test_bit(i << 1, buddy2)); 598 } 599 continue; 600 } 601 602 /* both bits in buddy2 must be 1 */ 603 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 604 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 605 606 for (j = 0; j < (1 << order); j++) { 607 k = (i * (1 << order)) + j; 608 MB_CHECK_ASSERT( 609 !mb_test_bit(k, e4b->bd_bitmap)); 610 } 611 count++; 612 } 613 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 614 order--; 615 } 616 617 fstart = -1; 618 buddy = mb_find_buddy(e4b, 0, &max); 619 for (i = 0; i < max; i++) { 620 if (!mb_test_bit(i, buddy)) { 621 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 622 if (fstart == -1) { 623 fragments++; 624 fstart = i; 625 } 626 continue; 627 } 628 fstart = -1; 629 /* check used bits only */ 630 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 631 buddy2 = mb_find_buddy(e4b, j, &max2); 632 k = i >> j; 633 MB_CHECK_ASSERT(k < max2); 634 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 635 } 636 } 637 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 638 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 639 640 grp = ext4_get_group_info(sb, e4b->bd_group); 641 list_for_each(cur, &grp->bb_prealloc_list) { 642 ext4_group_t groupnr; 643 struct ext4_prealloc_space *pa; 644 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 645 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 646 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 647 for (i = 0; i < pa->pa_len; i++) 648 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 649 } 650 return 0; 651 } 652 #undef MB_CHECK_ASSERT 653 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 654 __FILE__, __func__, __LINE__) 655 #else 656 #define mb_check_buddy(e4b) 657 #endif 658 659 /* 660 * Divide blocks started from @first with length @len into 661 * smaller chunks with power of 2 blocks. 662 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 663 * then increase bb_counters[] for corresponded chunk size. 664 */ ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)665 static void ext4_mb_mark_free_simple(struct super_block *sb, 666 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 667 struct ext4_group_info *grp) 668 { 669 struct ext4_sb_info *sbi = EXT4_SB(sb); 670 ext4_grpblk_t min; 671 ext4_grpblk_t max; 672 ext4_grpblk_t chunk; 673 unsigned int border; 674 675 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 676 677 border = 2 << sb->s_blocksize_bits; 678 679 while (len > 0) { 680 /* find how many blocks can be covered since this position */ 681 max = ffs(first | border) - 1; 682 683 /* find how many blocks of power 2 we need to mark */ 684 min = fls(len) - 1; 685 686 if (max < min) 687 min = max; 688 chunk = 1 << min; 689 690 /* mark multiblock chunks only */ 691 grp->bb_counters[min]++; 692 if (min > 0) 693 mb_clear_bit(first >> min, 694 buddy + sbi->s_mb_offsets[min]); 695 696 len -= chunk; 697 first += chunk; 698 } 699 } 700 701 /* 702 * Cache the order of the largest free extent we have available in this block 703 * group. 704 */ 705 static void mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)706 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 707 { 708 int i; 709 int bits; 710 711 grp->bb_largest_free_order = -1; /* uninit */ 712 713 bits = sb->s_blocksize_bits + 1; 714 for (i = bits; i >= 0; i--) { 715 if (grp->bb_counters[i] > 0) { 716 grp->bb_largest_free_order = i; 717 break; 718 } 719 } 720 } 721 722 static noinline_for_stack ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)723 void ext4_mb_generate_buddy(struct super_block *sb, 724 void *buddy, void *bitmap, ext4_group_t group) 725 { 726 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 727 struct ext4_sb_info *sbi = EXT4_SB(sb); 728 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 729 ext4_grpblk_t i = 0; 730 ext4_grpblk_t first; 731 ext4_grpblk_t len; 732 unsigned free = 0; 733 unsigned fragments = 0; 734 unsigned long long period = get_cycles(); 735 736 /* initialize buddy from bitmap which is aggregation 737 * of on-disk bitmap and preallocations */ 738 i = mb_find_next_zero_bit(bitmap, max, 0); 739 grp->bb_first_free = i; 740 while (i < max) { 741 fragments++; 742 first = i; 743 i = mb_find_next_bit(bitmap, max, i); 744 len = i - first; 745 free += len; 746 if (len > 1) 747 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 748 else 749 grp->bb_counters[0]++; 750 if (i < max) 751 i = mb_find_next_zero_bit(bitmap, max, i); 752 } 753 grp->bb_fragments = fragments; 754 755 if (free != grp->bb_free) { 756 ext4_grp_locked_error(sb, group, 0, 0, 757 "block bitmap and bg descriptor " 758 "inconsistent: %u vs %u free clusters", 759 free, grp->bb_free); 760 /* 761 * If we intend to continue, we consider group descriptor 762 * corrupt and update bb_free using bitmap value 763 */ 764 grp->bb_free = free; 765 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 766 percpu_counter_sub(&sbi->s_freeclusters_counter, 767 grp->bb_free); 768 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 769 } 770 mb_set_largest_free_order(sb, grp); 771 772 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 773 774 period = get_cycles() - period; 775 spin_lock(&EXT4_SB(sb)->s_bal_lock); 776 EXT4_SB(sb)->s_mb_buddies_generated++; 777 EXT4_SB(sb)->s_mb_generation_time += period; 778 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 779 } 780 mb_regenerate_buddy(struct ext4_buddy * e4b)781 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 782 { 783 int count; 784 int order = 1; 785 void *buddy; 786 787 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 788 ext4_set_bits(buddy, 0, count); 789 } 790 e4b->bd_info->bb_fragments = 0; 791 memset(e4b->bd_info->bb_counters, 0, 792 sizeof(*e4b->bd_info->bb_counters) * 793 (e4b->bd_sb->s_blocksize_bits + 2)); 794 795 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 796 e4b->bd_bitmap, e4b->bd_group); 797 } 798 799 /* The buddy information is attached the buddy cache inode 800 * for convenience. The information regarding each group 801 * is loaded via ext4_mb_load_buddy. The information involve 802 * block bitmap and buddy information. The information are 803 * stored in the inode as 804 * 805 * { page } 806 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 807 * 808 * 809 * one block each for bitmap and buddy information. 810 * So for each group we take up 2 blocks. A page can 811 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 812 * So it can have information regarding groups_per_page which 813 * is blocks_per_page/2 814 * 815 * Locking note: This routine takes the block group lock of all groups 816 * for this page; do not hold this lock when calling this routine! 817 */ 818 ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)819 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 820 { 821 ext4_group_t ngroups; 822 int blocksize; 823 int blocks_per_page; 824 int groups_per_page; 825 int err = 0; 826 int i; 827 ext4_group_t first_group, group; 828 int first_block; 829 struct super_block *sb; 830 struct buffer_head *bhs; 831 struct buffer_head **bh = NULL; 832 struct inode *inode; 833 char *data; 834 char *bitmap; 835 struct ext4_group_info *grinfo; 836 837 mb_debug(1, "init page %lu\n", page->index); 838 839 inode = page->mapping->host; 840 sb = inode->i_sb; 841 ngroups = ext4_get_groups_count(sb); 842 blocksize = 1 << inode->i_blkbits; 843 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 844 845 groups_per_page = blocks_per_page >> 1; 846 if (groups_per_page == 0) 847 groups_per_page = 1; 848 849 /* allocate buffer_heads to read bitmaps */ 850 if (groups_per_page > 1) { 851 i = sizeof(struct buffer_head *) * groups_per_page; 852 bh = kzalloc(i, gfp); 853 if (bh == NULL) { 854 err = -ENOMEM; 855 goto out; 856 } 857 } else 858 bh = &bhs; 859 860 first_group = page->index * blocks_per_page / 2; 861 862 /* read all groups the page covers into the cache */ 863 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 864 if (group >= ngroups) 865 break; 866 867 grinfo = ext4_get_group_info(sb, group); 868 /* 869 * If page is uptodate then we came here after online resize 870 * which added some new uninitialized group info structs, so 871 * we must skip all initialized uptodate buddies on the page, 872 * which may be currently in use by an allocating task. 873 */ 874 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 875 bh[i] = NULL; 876 continue; 877 } 878 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 879 if (IS_ERR(bh[i])) { 880 err = PTR_ERR(bh[i]); 881 bh[i] = NULL; 882 goto out; 883 } 884 mb_debug(1, "read bitmap for group %u\n", group); 885 } 886 887 /* wait for I/O completion */ 888 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 889 int err2; 890 891 if (!bh[i]) 892 continue; 893 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 894 if (!err) 895 err = err2; 896 } 897 898 first_block = page->index * blocks_per_page; 899 for (i = 0; i < blocks_per_page; i++) { 900 group = (first_block + i) >> 1; 901 if (group >= ngroups) 902 break; 903 904 if (!bh[group - first_group]) 905 /* skip initialized uptodate buddy */ 906 continue; 907 908 if (!buffer_verified(bh[group - first_group])) 909 /* Skip faulty bitmaps */ 910 continue; 911 err = 0; 912 913 /* 914 * data carry information regarding this 915 * particular group in the format specified 916 * above 917 * 918 */ 919 data = page_address(page) + (i * blocksize); 920 bitmap = bh[group - first_group]->b_data; 921 922 /* 923 * We place the buddy block and bitmap block 924 * close together 925 */ 926 if ((first_block + i) & 1) { 927 /* this is block of buddy */ 928 BUG_ON(incore == NULL); 929 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 930 group, page->index, i * blocksize); 931 trace_ext4_mb_buddy_bitmap_load(sb, group); 932 grinfo = ext4_get_group_info(sb, group); 933 grinfo->bb_fragments = 0; 934 memset(grinfo->bb_counters, 0, 935 sizeof(*grinfo->bb_counters) * 936 (sb->s_blocksize_bits+2)); 937 /* 938 * incore got set to the group block bitmap below 939 */ 940 ext4_lock_group(sb, group); 941 /* init the buddy */ 942 memset(data, 0xff, blocksize); 943 ext4_mb_generate_buddy(sb, data, incore, group); 944 ext4_unlock_group(sb, group); 945 incore = NULL; 946 } else { 947 /* this is block of bitmap */ 948 BUG_ON(incore != NULL); 949 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 950 group, page->index, i * blocksize); 951 trace_ext4_mb_bitmap_load(sb, group); 952 953 /* see comments in ext4_mb_put_pa() */ 954 ext4_lock_group(sb, group); 955 memcpy(data, bitmap, blocksize); 956 957 /* mark all preallocated blks used in in-core bitmap */ 958 ext4_mb_generate_from_pa(sb, data, group); 959 ext4_mb_generate_from_freelist(sb, data, group); 960 ext4_unlock_group(sb, group); 961 962 /* set incore so that the buddy information can be 963 * generated using this 964 */ 965 incore = data; 966 } 967 } 968 SetPageUptodate(page); 969 970 out: 971 if (bh) { 972 for (i = 0; i < groups_per_page; i++) 973 brelse(bh[i]); 974 if (bh != &bhs) 975 kfree(bh); 976 } 977 return err; 978 } 979 980 /* 981 * Lock the buddy and bitmap pages. This make sure other parallel init_group 982 * on the same buddy page doesn't happen whild holding the buddy page lock. 983 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 984 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 985 */ ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)986 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 987 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 988 { 989 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 990 int block, pnum, poff; 991 int blocks_per_page; 992 struct page *page; 993 994 e4b->bd_buddy_page = NULL; 995 e4b->bd_bitmap_page = NULL; 996 997 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 998 /* 999 * the buddy cache inode stores the block bitmap 1000 * and buddy information in consecutive blocks. 1001 * So for each group we need two blocks. 1002 */ 1003 block = group * 2; 1004 pnum = block / blocks_per_page; 1005 poff = block % blocks_per_page; 1006 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1007 if (!page) 1008 return -ENOMEM; 1009 BUG_ON(page->mapping != inode->i_mapping); 1010 e4b->bd_bitmap_page = page; 1011 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1012 1013 if (blocks_per_page >= 2) { 1014 /* buddy and bitmap are on the same page */ 1015 return 0; 1016 } 1017 1018 block++; 1019 pnum = block / blocks_per_page; 1020 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1021 if (!page) 1022 return -ENOMEM; 1023 BUG_ON(page->mapping != inode->i_mapping); 1024 e4b->bd_buddy_page = page; 1025 return 0; 1026 } 1027 ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1028 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1029 { 1030 if (e4b->bd_bitmap_page) { 1031 unlock_page(e4b->bd_bitmap_page); 1032 page_cache_release(e4b->bd_bitmap_page); 1033 } 1034 if (e4b->bd_buddy_page) { 1035 unlock_page(e4b->bd_buddy_page); 1036 page_cache_release(e4b->bd_buddy_page); 1037 } 1038 } 1039 1040 /* 1041 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1042 * block group lock of all groups for this page; do not hold the BG lock when 1043 * calling this routine! 1044 */ 1045 static noinline_for_stack ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1046 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1047 { 1048 1049 struct ext4_group_info *this_grp; 1050 struct ext4_buddy e4b; 1051 struct page *page; 1052 int ret = 0; 1053 1054 might_sleep(); 1055 mb_debug(1, "init group %u\n", group); 1056 this_grp = ext4_get_group_info(sb, group); 1057 /* 1058 * This ensures that we don't reinit the buddy cache 1059 * page which map to the group from which we are already 1060 * allocating. If we are looking at the buddy cache we would 1061 * have taken a reference using ext4_mb_load_buddy and that 1062 * would have pinned buddy page to page cache. 1063 * The call to ext4_mb_get_buddy_page_lock will mark the 1064 * page accessed. 1065 */ 1066 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1067 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1068 /* 1069 * somebody initialized the group 1070 * return without doing anything 1071 */ 1072 goto err; 1073 } 1074 1075 page = e4b.bd_bitmap_page; 1076 ret = ext4_mb_init_cache(page, NULL, gfp); 1077 if (ret) 1078 goto err; 1079 if (!PageUptodate(page)) { 1080 ret = -EIO; 1081 goto err; 1082 } 1083 1084 if (e4b.bd_buddy_page == NULL) { 1085 /* 1086 * If both the bitmap and buddy are in 1087 * the same page we don't need to force 1088 * init the buddy 1089 */ 1090 ret = 0; 1091 goto err; 1092 } 1093 /* init buddy cache */ 1094 page = e4b.bd_buddy_page; 1095 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1096 if (ret) 1097 goto err; 1098 if (!PageUptodate(page)) { 1099 ret = -EIO; 1100 goto err; 1101 } 1102 err: 1103 ext4_mb_put_buddy_page_lock(&e4b); 1104 return ret; 1105 } 1106 1107 /* 1108 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1109 * block group lock of all groups for this page; do not hold the BG lock when 1110 * calling this routine! 1111 */ 1112 static noinline_for_stack int ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1113 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1114 struct ext4_buddy *e4b, gfp_t gfp) 1115 { 1116 int blocks_per_page; 1117 int block; 1118 int pnum; 1119 int poff; 1120 struct page *page; 1121 int ret; 1122 struct ext4_group_info *grp; 1123 struct ext4_sb_info *sbi = EXT4_SB(sb); 1124 struct inode *inode = sbi->s_buddy_cache; 1125 1126 might_sleep(); 1127 mb_debug(1, "load group %u\n", group); 1128 1129 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1130 grp = ext4_get_group_info(sb, group); 1131 1132 e4b->bd_blkbits = sb->s_blocksize_bits; 1133 e4b->bd_info = grp; 1134 e4b->bd_sb = sb; 1135 e4b->bd_group = group; 1136 e4b->bd_buddy_page = NULL; 1137 e4b->bd_bitmap_page = NULL; 1138 1139 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1140 /* 1141 * we need full data about the group 1142 * to make a good selection 1143 */ 1144 ret = ext4_mb_init_group(sb, group, gfp); 1145 if (ret) 1146 return ret; 1147 } 1148 1149 /* 1150 * the buddy cache inode stores the block bitmap 1151 * and buddy information in consecutive blocks. 1152 * So for each group we need two blocks. 1153 */ 1154 block = group * 2; 1155 pnum = block / blocks_per_page; 1156 poff = block % blocks_per_page; 1157 1158 /* we could use find_or_create_page(), but it locks page 1159 * what we'd like to avoid in fast path ... */ 1160 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1161 if (page == NULL || !PageUptodate(page)) { 1162 if (page) 1163 /* 1164 * drop the page reference and try 1165 * to get the page with lock. If we 1166 * are not uptodate that implies 1167 * somebody just created the page but 1168 * is yet to initialize the same. So 1169 * wait for it to initialize. 1170 */ 1171 page_cache_release(page); 1172 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1173 if (page) { 1174 BUG_ON(page->mapping != inode->i_mapping); 1175 if (!PageUptodate(page)) { 1176 ret = ext4_mb_init_cache(page, NULL, gfp); 1177 if (ret) { 1178 unlock_page(page); 1179 goto err; 1180 } 1181 mb_cmp_bitmaps(e4b, page_address(page) + 1182 (poff * sb->s_blocksize)); 1183 } 1184 unlock_page(page); 1185 } 1186 } 1187 if (page == NULL) { 1188 ret = -ENOMEM; 1189 goto err; 1190 } 1191 if (!PageUptodate(page)) { 1192 ret = -EIO; 1193 goto err; 1194 } 1195 1196 /* Pages marked accessed already */ 1197 e4b->bd_bitmap_page = page; 1198 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1199 1200 block++; 1201 pnum = block / blocks_per_page; 1202 poff = block % blocks_per_page; 1203 1204 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1205 if (page == NULL || !PageUptodate(page)) { 1206 if (page) 1207 page_cache_release(page); 1208 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1209 if (page) { 1210 BUG_ON(page->mapping != inode->i_mapping); 1211 if (!PageUptodate(page)) { 1212 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1213 gfp); 1214 if (ret) { 1215 unlock_page(page); 1216 goto err; 1217 } 1218 } 1219 unlock_page(page); 1220 } 1221 } 1222 if (page == NULL) { 1223 ret = -ENOMEM; 1224 goto err; 1225 } 1226 if (!PageUptodate(page)) { 1227 ret = -EIO; 1228 goto err; 1229 } 1230 1231 /* Pages marked accessed already */ 1232 e4b->bd_buddy_page = page; 1233 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1234 1235 BUG_ON(e4b->bd_bitmap_page == NULL); 1236 BUG_ON(e4b->bd_buddy_page == NULL); 1237 1238 return 0; 1239 1240 err: 1241 if (page) 1242 page_cache_release(page); 1243 if (e4b->bd_bitmap_page) 1244 page_cache_release(e4b->bd_bitmap_page); 1245 if (e4b->bd_buddy_page) 1246 page_cache_release(e4b->bd_buddy_page); 1247 e4b->bd_buddy = NULL; 1248 e4b->bd_bitmap = NULL; 1249 return ret; 1250 } 1251 ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1252 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1253 struct ext4_buddy *e4b) 1254 { 1255 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1256 } 1257 ext4_mb_unload_buddy(struct ext4_buddy * e4b)1258 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1259 { 1260 if (e4b->bd_bitmap_page) 1261 page_cache_release(e4b->bd_bitmap_page); 1262 if (e4b->bd_buddy_page) 1263 page_cache_release(e4b->bd_buddy_page); 1264 } 1265 1266 mb_find_order_for_block(struct ext4_buddy * e4b,int block)1267 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1268 { 1269 int order = 1; 1270 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1271 void *bb; 1272 1273 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1274 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1275 1276 bb = e4b->bd_buddy; 1277 while (order <= e4b->bd_blkbits + 1) { 1278 block = block >> 1; 1279 if (!mb_test_bit(block, bb)) { 1280 /* this block is part of buddy of order 'order' */ 1281 return order; 1282 } 1283 bb += bb_incr; 1284 bb_incr >>= 1; 1285 order++; 1286 } 1287 return 0; 1288 } 1289 mb_clear_bits(void * bm,int cur,int len)1290 static void mb_clear_bits(void *bm, int cur, int len) 1291 { 1292 __u32 *addr; 1293 1294 len = cur + len; 1295 while (cur < len) { 1296 if ((cur & 31) == 0 && (len - cur) >= 32) { 1297 /* fast path: clear whole word at once */ 1298 addr = bm + (cur >> 3); 1299 *addr = 0; 1300 cur += 32; 1301 continue; 1302 } 1303 mb_clear_bit(cur, bm); 1304 cur++; 1305 } 1306 } 1307 1308 /* clear bits in given range 1309 * will return first found zero bit if any, -1 otherwise 1310 */ mb_test_and_clear_bits(void * bm,int cur,int len)1311 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1312 { 1313 __u32 *addr; 1314 int zero_bit = -1; 1315 1316 len = cur + len; 1317 while (cur < len) { 1318 if ((cur & 31) == 0 && (len - cur) >= 32) { 1319 /* fast path: clear whole word at once */ 1320 addr = bm + (cur >> 3); 1321 if (*addr != (__u32)(-1) && zero_bit == -1) 1322 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1323 *addr = 0; 1324 cur += 32; 1325 continue; 1326 } 1327 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1328 zero_bit = cur; 1329 cur++; 1330 } 1331 1332 return zero_bit; 1333 } 1334 ext4_set_bits(void * bm,int cur,int len)1335 void ext4_set_bits(void *bm, int cur, int len) 1336 { 1337 __u32 *addr; 1338 1339 len = cur + len; 1340 while (cur < len) { 1341 if ((cur & 31) == 0 && (len - cur) >= 32) { 1342 /* fast path: set whole word at once */ 1343 addr = bm + (cur >> 3); 1344 *addr = 0xffffffff; 1345 cur += 32; 1346 continue; 1347 } 1348 mb_set_bit(cur, bm); 1349 cur++; 1350 } 1351 } 1352 1353 /* 1354 * _________________________________________________________________ */ 1355 mb_buddy_adjust_border(int * bit,void * bitmap,int side)1356 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1357 { 1358 if (mb_test_bit(*bit + side, bitmap)) { 1359 mb_clear_bit(*bit, bitmap); 1360 (*bit) -= side; 1361 return 1; 1362 } 1363 else { 1364 (*bit) += side; 1365 mb_set_bit(*bit, bitmap); 1366 return -1; 1367 } 1368 } 1369 mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1370 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1371 { 1372 int max; 1373 int order = 1; 1374 void *buddy = mb_find_buddy(e4b, order, &max); 1375 1376 while (buddy) { 1377 void *buddy2; 1378 1379 /* Bits in range [first; last] are known to be set since 1380 * corresponding blocks were allocated. Bits in range 1381 * (first; last) will stay set because they form buddies on 1382 * upper layer. We just deal with borders if they don't 1383 * align with upper layer and then go up. 1384 * Releasing entire group is all about clearing 1385 * single bit of highest order buddy. 1386 */ 1387 1388 /* Example: 1389 * --------------------------------- 1390 * | 1 | 1 | 1 | 1 | 1391 * --------------------------------- 1392 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1393 * --------------------------------- 1394 * 0 1 2 3 4 5 6 7 1395 * \_____________________/ 1396 * 1397 * Neither [1] nor [6] is aligned to above layer. 1398 * Left neighbour [0] is free, so mark it busy, 1399 * decrease bb_counters and extend range to 1400 * [0; 6] 1401 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1402 * mark [6] free, increase bb_counters and shrink range to 1403 * [0; 5]. 1404 * Then shift range to [0; 2], go up and do the same. 1405 */ 1406 1407 1408 if (first & 1) 1409 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1410 if (!(last & 1)) 1411 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1412 if (first > last) 1413 break; 1414 order++; 1415 1416 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1417 mb_clear_bits(buddy, first, last - first + 1); 1418 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1419 break; 1420 } 1421 first >>= 1; 1422 last >>= 1; 1423 buddy = buddy2; 1424 } 1425 } 1426 mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1427 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1428 int first, int count) 1429 { 1430 int left_is_free = 0; 1431 int right_is_free = 0; 1432 int block; 1433 int last = first + count - 1; 1434 struct super_block *sb = e4b->bd_sb; 1435 1436 if (WARN_ON(count == 0)) 1437 return; 1438 BUG_ON(last >= (sb->s_blocksize << 3)); 1439 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1440 /* Don't bother if the block group is corrupt. */ 1441 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1442 return; 1443 1444 mb_check_buddy(e4b); 1445 mb_free_blocks_double(inode, e4b, first, count); 1446 1447 e4b->bd_info->bb_free += count; 1448 if (first < e4b->bd_info->bb_first_free) 1449 e4b->bd_info->bb_first_free = first; 1450 1451 /* access memory sequentially: check left neighbour, 1452 * clear range and then check right neighbour 1453 */ 1454 if (first != 0) 1455 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1456 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1457 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1458 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1459 1460 if (unlikely(block != -1)) { 1461 struct ext4_sb_info *sbi = EXT4_SB(sb); 1462 ext4_fsblk_t blocknr; 1463 1464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1465 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1466 ext4_grp_locked_error(sb, e4b->bd_group, 1467 inode ? inode->i_ino : 0, 1468 blocknr, 1469 "freeing already freed block " 1470 "(bit %u); block bitmap corrupt.", 1471 block); 1472 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1473 percpu_counter_sub(&sbi->s_freeclusters_counter, 1474 e4b->bd_info->bb_free); 1475 /* Mark the block group as corrupt. */ 1476 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1477 &e4b->bd_info->bb_state); 1478 mb_regenerate_buddy(e4b); 1479 goto done; 1480 } 1481 1482 /* let's maintain fragments counter */ 1483 if (left_is_free && right_is_free) 1484 e4b->bd_info->bb_fragments--; 1485 else if (!left_is_free && !right_is_free) 1486 e4b->bd_info->bb_fragments++; 1487 1488 /* buddy[0] == bd_bitmap is a special case, so handle 1489 * it right away and let mb_buddy_mark_free stay free of 1490 * zero order checks. 1491 * Check if neighbours are to be coaleasced, 1492 * adjust bitmap bb_counters and borders appropriately. 1493 */ 1494 if (first & 1) { 1495 first += !left_is_free; 1496 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1497 } 1498 if (!(last & 1)) { 1499 last -= !right_is_free; 1500 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1501 } 1502 1503 if (first <= last) 1504 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1505 1506 done: 1507 mb_set_largest_free_order(sb, e4b->bd_info); 1508 mb_check_buddy(e4b); 1509 } 1510 mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1511 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1512 int needed, struct ext4_free_extent *ex) 1513 { 1514 int next = block; 1515 int max, order; 1516 void *buddy; 1517 1518 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1519 BUG_ON(ex == NULL); 1520 1521 buddy = mb_find_buddy(e4b, 0, &max); 1522 BUG_ON(buddy == NULL); 1523 BUG_ON(block >= max); 1524 if (mb_test_bit(block, buddy)) { 1525 ex->fe_len = 0; 1526 ex->fe_start = 0; 1527 ex->fe_group = 0; 1528 return 0; 1529 } 1530 1531 /* find actual order */ 1532 order = mb_find_order_for_block(e4b, block); 1533 block = block >> order; 1534 1535 ex->fe_len = 1 << order; 1536 ex->fe_start = block << order; 1537 ex->fe_group = e4b->bd_group; 1538 1539 /* calc difference from given start */ 1540 next = next - ex->fe_start; 1541 ex->fe_len -= next; 1542 ex->fe_start += next; 1543 1544 while (needed > ex->fe_len && 1545 mb_find_buddy(e4b, order, &max)) { 1546 1547 if (block + 1 >= max) 1548 break; 1549 1550 next = (block + 1) * (1 << order); 1551 if (mb_test_bit(next, e4b->bd_bitmap)) 1552 break; 1553 1554 order = mb_find_order_for_block(e4b, next); 1555 1556 block = next >> order; 1557 ex->fe_len += 1 << order; 1558 } 1559 1560 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1561 return ex->fe_len; 1562 } 1563 mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1564 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1565 { 1566 int ord; 1567 int mlen = 0; 1568 int max = 0; 1569 int cur; 1570 int start = ex->fe_start; 1571 int len = ex->fe_len; 1572 unsigned ret = 0; 1573 int len0 = len; 1574 void *buddy; 1575 1576 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1577 BUG_ON(e4b->bd_group != ex->fe_group); 1578 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1579 mb_check_buddy(e4b); 1580 mb_mark_used_double(e4b, start, len); 1581 1582 e4b->bd_info->bb_free -= len; 1583 if (e4b->bd_info->bb_first_free == start) 1584 e4b->bd_info->bb_first_free += len; 1585 1586 /* let's maintain fragments counter */ 1587 if (start != 0) 1588 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1589 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1590 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1591 if (mlen && max) 1592 e4b->bd_info->bb_fragments++; 1593 else if (!mlen && !max) 1594 e4b->bd_info->bb_fragments--; 1595 1596 /* let's maintain buddy itself */ 1597 while (len) { 1598 ord = mb_find_order_for_block(e4b, start); 1599 1600 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1601 /* the whole chunk may be allocated at once! */ 1602 mlen = 1 << ord; 1603 buddy = mb_find_buddy(e4b, ord, &max); 1604 BUG_ON((start >> ord) >= max); 1605 mb_set_bit(start >> ord, buddy); 1606 e4b->bd_info->bb_counters[ord]--; 1607 start += mlen; 1608 len -= mlen; 1609 BUG_ON(len < 0); 1610 continue; 1611 } 1612 1613 /* store for history */ 1614 if (ret == 0) 1615 ret = len | (ord << 16); 1616 1617 /* we have to split large buddy */ 1618 BUG_ON(ord <= 0); 1619 buddy = mb_find_buddy(e4b, ord, &max); 1620 mb_set_bit(start >> ord, buddy); 1621 e4b->bd_info->bb_counters[ord]--; 1622 1623 ord--; 1624 cur = (start >> ord) & ~1U; 1625 buddy = mb_find_buddy(e4b, ord, &max); 1626 mb_clear_bit(cur, buddy); 1627 mb_clear_bit(cur + 1, buddy); 1628 e4b->bd_info->bb_counters[ord]++; 1629 e4b->bd_info->bb_counters[ord]++; 1630 } 1631 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1632 1633 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1634 mb_check_buddy(e4b); 1635 1636 return ret; 1637 } 1638 1639 /* 1640 * Must be called under group lock! 1641 */ ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1642 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1643 struct ext4_buddy *e4b) 1644 { 1645 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1646 int ret; 1647 1648 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1649 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1650 1651 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1652 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1653 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1654 1655 /* preallocation can change ac_b_ex, thus we store actually 1656 * allocated blocks for history */ 1657 ac->ac_f_ex = ac->ac_b_ex; 1658 1659 ac->ac_status = AC_STATUS_FOUND; 1660 ac->ac_tail = ret & 0xffff; 1661 ac->ac_buddy = ret >> 16; 1662 1663 /* 1664 * take the page reference. We want the page to be pinned 1665 * so that we don't get a ext4_mb_init_cache_call for this 1666 * group until we update the bitmap. That would mean we 1667 * double allocate blocks. The reference is dropped 1668 * in ext4_mb_release_context 1669 */ 1670 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1671 get_page(ac->ac_bitmap_page); 1672 ac->ac_buddy_page = e4b->bd_buddy_page; 1673 get_page(ac->ac_buddy_page); 1674 /* store last allocated for subsequent stream allocation */ 1675 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1676 spin_lock(&sbi->s_md_lock); 1677 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1678 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1679 spin_unlock(&sbi->s_md_lock); 1680 } 1681 } 1682 1683 /* 1684 * regular allocator, for general purposes allocation 1685 */ 1686 ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1687 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1688 struct ext4_buddy *e4b, 1689 int finish_group) 1690 { 1691 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1692 struct ext4_free_extent *bex = &ac->ac_b_ex; 1693 struct ext4_free_extent *gex = &ac->ac_g_ex; 1694 struct ext4_free_extent ex; 1695 int max; 1696 1697 if (ac->ac_status == AC_STATUS_FOUND) 1698 return; 1699 /* 1700 * We don't want to scan for a whole year 1701 */ 1702 if (ac->ac_found > sbi->s_mb_max_to_scan && 1703 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1704 ac->ac_status = AC_STATUS_BREAK; 1705 return; 1706 } 1707 1708 /* 1709 * Haven't found good chunk so far, let's continue 1710 */ 1711 if (bex->fe_len < gex->fe_len) 1712 return; 1713 1714 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1715 && bex->fe_group == e4b->bd_group) { 1716 /* recheck chunk's availability - we don't know 1717 * when it was found (within this lock-unlock 1718 * period or not) */ 1719 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1720 if (max >= gex->fe_len) { 1721 ext4_mb_use_best_found(ac, e4b); 1722 return; 1723 } 1724 } 1725 } 1726 1727 /* 1728 * The routine checks whether found extent is good enough. If it is, 1729 * then the extent gets marked used and flag is set to the context 1730 * to stop scanning. Otherwise, the extent is compared with the 1731 * previous found extent and if new one is better, then it's stored 1732 * in the context. Later, the best found extent will be used, if 1733 * mballoc can't find good enough extent. 1734 * 1735 * FIXME: real allocation policy is to be designed yet! 1736 */ ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1737 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1738 struct ext4_free_extent *ex, 1739 struct ext4_buddy *e4b) 1740 { 1741 struct ext4_free_extent *bex = &ac->ac_b_ex; 1742 struct ext4_free_extent *gex = &ac->ac_g_ex; 1743 1744 BUG_ON(ex->fe_len <= 0); 1745 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1746 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1747 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1748 1749 ac->ac_found++; 1750 1751 /* 1752 * The special case - take what you catch first 1753 */ 1754 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1755 *bex = *ex; 1756 ext4_mb_use_best_found(ac, e4b); 1757 return; 1758 } 1759 1760 /* 1761 * Let's check whether the chuck is good enough 1762 */ 1763 if (ex->fe_len == gex->fe_len) { 1764 *bex = *ex; 1765 ext4_mb_use_best_found(ac, e4b); 1766 return; 1767 } 1768 1769 /* 1770 * If this is first found extent, just store it in the context 1771 */ 1772 if (bex->fe_len == 0) { 1773 *bex = *ex; 1774 return; 1775 } 1776 1777 /* 1778 * If new found extent is better, store it in the context 1779 */ 1780 if (bex->fe_len < gex->fe_len) { 1781 /* if the request isn't satisfied, any found extent 1782 * larger than previous best one is better */ 1783 if (ex->fe_len > bex->fe_len) 1784 *bex = *ex; 1785 } else if (ex->fe_len > gex->fe_len) { 1786 /* if the request is satisfied, then we try to find 1787 * an extent that still satisfy the request, but is 1788 * smaller than previous one */ 1789 if (ex->fe_len < bex->fe_len) 1790 *bex = *ex; 1791 } 1792 1793 ext4_mb_check_limits(ac, e4b, 0); 1794 } 1795 1796 static noinline_for_stack ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1797 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1798 struct ext4_buddy *e4b) 1799 { 1800 struct ext4_free_extent ex = ac->ac_b_ex; 1801 ext4_group_t group = ex.fe_group; 1802 int max; 1803 int err; 1804 1805 BUG_ON(ex.fe_len <= 0); 1806 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1807 if (err) 1808 return err; 1809 1810 ext4_lock_group(ac->ac_sb, group); 1811 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1812 1813 if (max > 0) { 1814 ac->ac_b_ex = ex; 1815 ext4_mb_use_best_found(ac, e4b); 1816 } 1817 1818 ext4_unlock_group(ac->ac_sb, group); 1819 ext4_mb_unload_buddy(e4b); 1820 1821 return 0; 1822 } 1823 1824 static noinline_for_stack ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1825 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1826 struct ext4_buddy *e4b) 1827 { 1828 ext4_group_t group = ac->ac_g_ex.fe_group; 1829 int max; 1830 int err; 1831 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1832 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1833 struct ext4_free_extent ex; 1834 1835 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1836 return 0; 1837 if (grp->bb_free == 0) 1838 return 0; 1839 1840 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1841 if (err) 1842 return err; 1843 1844 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1845 ext4_mb_unload_buddy(e4b); 1846 return 0; 1847 } 1848 1849 ext4_lock_group(ac->ac_sb, group); 1850 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1851 ac->ac_g_ex.fe_len, &ex); 1852 ex.fe_logical = 0xDEADFA11; /* debug value */ 1853 1854 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1855 ext4_fsblk_t start; 1856 1857 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1858 ex.fe_start; 1859 /* use do_div to get remainder (would be 64-bit modulo) */ 1860 if (do_div(start, sbi->s_stripe) == 0) { 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } 1865 } else if (max >= ac->ac_g_ex.fe_len) { 1866 BUG_ON(ex.fe_len <= 0); 1867 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1868 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1869 ac->ac_found++; 1870 ac->ac_b_ex = ex; 1871 ext4_mb_use_best_found(ac, e4b); 1872 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1873 /* Sometimes, caller may want to merge even small 1874 * number of blocks to an existing extent */ 1875 BUG_ON(ex.fe_len <= 0); 1876 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1877 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1878 ac->ac_found++; 1879 ac->ac_b_ex = ex; 1880 ext4_mb_use_best_found(ac, e4b); 1881 } 1882 ext4_unlock_group(ac->ac_sb, group); 1883 ext4_mb_unload_buddy(e4b); 1884 1885 return 0; 1886 } 1887 1888 /* 1889 * The routine scans buddy structures (not bitmap!) from given order 1890 * to max order and tries to find big enough chunk to satisfy the req 1891 */ 1892 static noinline_for_stack ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1893 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1894 struct ext4_buddy *e4b) 1895 { 1896 struct super_block *sb = ac->ac_sb; 1897 struct ext4_group_info *grp = e4b->bd_info; 1898 void *buddy; 1899 int i; 1900 int k; 1901 int max; 1902 1903 BUG_ON(ac->ac_2order <= 0); 1904 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1905 if (grp->bb_counters[i] == 0) 1906 continue; 1907 1908 buddy = mb_find_buddy(e4b, i, &max); 1909 BUG_ON(buddy == NULL); 1910 1911 k = mb_find_next_zero_bit(buddy, max, 0); 1912 BUG_ON(k >= max); 1913 1914 ac->ac_found++; 1915 1916 ac->ac_b_ex.fe_len = 1 << i; 1917 ac->ac_b_ex.fe_start = k << i; 1918 ac->ac_b_ex.fe_group = e4b->bd_group; 1919 1920 ext4_mb_use_best_found(ac, e4b); 1921 1922 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1923 1924 if (EXT4_SB(sb)->s_mb_stats) 1925 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1926 1927 break; 1928 } 1929 } 1930 1931 /* 1932 * The routine scans the group and measures all found extents. 1933 * In order to optimize scanning, caller must pass number of 1934 * free blocks in the group, so the routine can know upper limit. 1935 */ 1936 static noinline_for_stack ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1937 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1938 struct ext4_buddy *e4b) 1939 { 1940 struct super_block *sb = ac->ac_sb; 1941 void *bitmap = e4b->bd_bitmap; 1942 struct ext4_free_extent ex; 1943 int i; 1944 int free; 1945 1946 free = e4b->bd_info->bb_free; 1947 if (WARN_ON(free <= 0)) 1948 return; 1949 1950 i = e4b->bd_info->bb_first_free; 1951 1952 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1953 i = mb_find_next_zero_bit(bitmap, 1954 EXT4_CLUSTERS_PER_GROUP(sb), i); 1955 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1956 /* 1957 * IF we have corrupt bitmap, we won't find any 1958 * free blocks even though group info says we 1959 * we have free blocks 1960 */ 1961 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1962 "%d free clusters as per " 1963 "group info. But bitmap says 0", 1964 free); 1965 break; 1966 } 1967 1968 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1969 if (WARN_ON(ex.fe_len <= 0)) 1970 break; 1971 if (free < ex.fe_len) { 1972 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1973 "%d free clusters as per " 1974 "group info. But got %d blocks", 1975 free, ex.fe_len); 1976 /* 1977 * The number of free blocks differs. This mostly 1978 * indicate that the bitmap is corrupt. So exit 1979 * without claiming the space. 1980 */ 1981 break; 1982 } 1983 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1984 ext4_mb_measure_extent(ac, &ex, e4b); 1985 1986 i += ex.fe_len; 1987 free -= ex.fe_len; 1988 } 1989 1990 ext4_mb_check_limits(ac, e4b, 1); 1991 } 1992 1993 /* 1994 * This is a special case for storages like raid5 1995 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1996 */ 1997 static noinline_for_stack ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1998 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1999 struct ext4_buddy *e4b) 2000 { 2001 struct super_block *sb = ac->ac_sb; 2002 struct ext4_sb_info *sbi = EXT4_SB(sb); 2003 void *bitmap = e4b->bd_bitmap; 2004 struct ext4_free_extent ex; 2005 ext4_fsblk_t first_group_block; 2006 ext4_fsblk_t a; 2007 ext4_grpblk_t i; 2008 int max; 2009 2010 BUG_ON(sbi->s_stripe == 0); 2011 2012 /* find first stripe-aligned block in group */ 2013 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2014 2015 a = first_group_block + sbi->s_stripe - 1; 2016 do_div(a, sbi->s_stripe); 2017 i = (a * sbi->s_stripe) - first_group_block; 2018 2019 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2020 if (!mb_test_bit(i, bitmap)) { 2021 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2022 if (max >= sbi->s_stripe) { 2023 ac->ac_found++; 2024 ex.fe_logical = 0xDEADF00D; /* debug value */ 2025 ac->ac_b_ex = ex; 2026 ext4_mb_use_best_found(ac, e4b); 2027 break; 2028 } 2029 } 2030 i += sbi->s_stripe; 2031 } 2032 } 2033 2034 /* 2035 * This is now called BEFORE we load the buddy bitmap. 2036 * Returns either 1 or 0 indicating that the group is either suitable 2037 * for the allocation or not. In addition it can also return negative 2038 * error code when something goes wrong. 2039 */ ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2040 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2041 ext4_group_t group, int cr) 2042 { 2043 unsigned free, fragments; 2044 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2045 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2046 2047 BUG_ON(cr < 0 || cr >= 4); 2048 2049 free = grp->bb_free; 2050 if (free == 0) 2051 return 0; 2052 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2053 return 0; 2054 2055 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2056 return 0; 2057 2058 /* We only do this if the grp has never been initialized */ 2059 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2060 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2061 if (ret) 2062 return ret; 2063 } 2064 2065 fragments = grp->bb_fragments; 2066 if (fragments == 0) 2067 return 0; 2068 2069 switch (cr) { 2070 case 0: 2071 BUG_ON(ac->ac_2order == 0); 2072 2073 /* Avoid using the first bg of a flexgroup for data files */ 2074 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2075 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2076 ((group % flex_size) == 0)) 2077 return 0; 2078 2079 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2080 (free / fragments) >= ac->ac_g_ex.fe_len) 2081 return 1; 2082 2083 if (grp->bb_largest_free_order < ac->ac_2order) 2084 return 0; 2085 2086 return 1; 2087 case 1: 2088 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2089 return 1; 2090 break; 2091 case 2: 2092 if (free >= ac->ac_g_ex.fe_len) 2093 return 1; 2094 break; 2095 case 3: 2096 return 1; 2097 default: 2098 BUG(); 2099 } 2100 2101 return 0; 2102 } 2103 2104 static noinline_for_stack int ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2105 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2106 { 2107 ext4_group_t ngroups, group, i; 2108 int cr; 2109 int err = 0, first_err = 0; 2110 struct ext4_sb_info *sbi; 2111 struct super_block *sb; 2112 struct ext4_buddy e4b; 2113 2114 sb = ac->ac_sb; 2115 sbi = EXT4_SB(sb); 2116 ngroups = ext4_get_groups_count(sb); 2117 /* non-extent files are limited to low blocks/groups */ 2118 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2119 ngroups = sbi->s_blockfile_groups; 2120 2121 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2122 2123 /* first, try the goal */ 2124 err = ext4_mb_find_by_goal(ac, &e4b); 2125 if (err || ac->ac_status == AC_STATUS_FOUND) 2126 goto out; 2127 2128 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2129 goto out; 2130 2131 /* 2132 * ac->ac2_order is set only if the fe_len is a power of 2 2133 * if ac2_order is set we also set criteria to 0 so that we 2134 * try exact allocation using buddy. 2135 */ 2136 i = fls(ac->ac_g_ex.fe_len); 2137 ac->ac_2order = 0; 2138 /* 2139 * We search using buddy data only if the order of the request 2140 * is greater than equal to the sbi_s_mb_order2_reqs 2141 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2142 * We also support searching for power-of-two requests only for 2143 * requests upto maximum buddy size we have constructed. 2144 */ 2145 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2146 /* 2147 * This should tell if fe_len is exactly power of 2 2148 */ 2149 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2150 ac->ac_2order = array_index_nospec(i - 1, 2151 sb->s_blocksize_bits + 2); 2152 } 2153 2154 /* if stream allocation is enabled, use global goal */ 2155 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2156 /* TBD: may be hot point */ 2157 spin_lock(&sbi->s_md_lock); 2158 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2159 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2160 spin_unlock(&sbi->s_md_lock); 2161 } 2162 2163 /* Let's just scan groups to find more-less suitable blocks */ 2164 cr = ac->ac_2order ? 0 : 1; 2165 /* 2166 * cr == 0 try to get exact allocation, 2167 * cr == 3 try to get anything 2168 */ 2169 repeat: 2170 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2171 ac->ac_criteria = cr; 2172 /* 2173 * searching for the right group start 2174 * from the goal value specified 2175 */ 2176 group = ac->ac_g_ex.fe_group; 2177 2178 for (i = 0; i < ngroups; group++, i++) { 2179 int ret = 0; 2180 cond_resched(); 2181 /* 2182 * Artificially restricted ngroups for non-extent 2183 * files makes group > ngroups possible on first loop. 2184 */ 2185 if (group >= ngroups) 2186 group = 0; 2187 2188 /* This now checks without needing the buddy page */ 2189 ret = ext4_mb_good_group(ac, group, cr); 2190 if (ret <= 0) { 2191 if (!first_err) 2192 first_err = ret; 2193 continue; 2194 } 2195 2196 err = ext4_mb_load_buddy(sb, group, &e4b); 2197 if (err) 2198 goto out; 2199 2200 ext4_lock_group(sb, group); 2201 2202 /* 2203 * We need to check again after locking the 2204 * block group 2205 */ 2206 ret = ext4_mb_good_group(ac, group, cr); 2207 if (ret <= 0) { 2208 ext4_unlock_group(sb, group); 2209 ext4_mb_unload_buddy(&e4b); 2210 if (!first_err) 2211 first_err = ret; 2212 continue; 2213 } 2214 2215 ac->ac_groups_scanned++; 2216 if (cr == 0) 2217 ext4_mb_simple_scan_group(ac, &e4b); 2218 else if (cr == 1 && sbi->s_stripe && 2219 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2220 ext4_mb_scan_aligned(ac, &e4b); 2221 else 2222 ext4_mb_complex_scan_group(ac, &e4b); 2223 2224 ext4_unlock_group(sb, group); 2225 ext4_mb_unload_buddy(&e4b); 2226 2227 if (ac->ac_status != AC_STATUS_CONTINUE) 2228 break; 2229 } 2230 } 2231 2232 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2233 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2234 /* 2235 * We've been searching too long. Let's try to allocate 2236 * the best chunk we've found so far 2237 */ 2238 2239 ext4_mb_try_best_found(ac, &e4b); 2240 if (ac->ac_status != AC_STATUS_FOUND) { 2241 /* 2242 * Someone more lucky has already allocated it. 2243 * The only thing we can do is just take first 2244 * found block(s) 2245 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2246 */ 2247 ac->ac_b_ex.fe_group = 0; 2248 ac->ac_b_ex.fe_start = 0; 2249 ac->ac_b_ex.fe_len = 0; 2250 ac->ac_status = AC_STATUS_CONTINUE; 2251 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2252 cr = 3; 2253 atomic_inc(&sbi->s_mb_lost_chunks); 2254 goto repeat; 2255 } 2256 } 2257 out: 2258 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2259 err = first_err; 2260 return err; 2261 } 2262 ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2263 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2264 { 2265 struct super_block *sb = seq->private; 2266 ext4_group_t group; 2267 2268 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2269 return NULL; 2270 group = *pos + 1; 2271 return (void *) ((unsigned long) group); 2272 } 2273 ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2274 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2275 { 2276 struct super_block *sb = seq->private; 2277 ext4_group_t group; 2278 2279 ++*pos; 2280 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2281 return NULL; 2282 group = *pos + 1; 2283 return (void *) ((unsigned long) group); 2284 } 2285 ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2286 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2287 { 2288 struct super_block *sb = seq->private; 2289 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2290 int i; 2291 int err, buddy_loaded = 0; 2292 struct ext4_buddy e4b; 2293 struct ext4_group_info *grinfo; 2294 struct sg { 2295 struct ext4_group_info info; 2296 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2297 } sg; 2298 2299 group--; 2300 if (group == 0) 2301 seq_puts(seq, "#group: free frags first [" 2302 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2303 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]"); 2304 2305 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2306 sizeof(struct ext4_group_info); 2307 grinfo = ext4_get_group_info(sb, group); 2308 /* Load the group info in memory only if not already loaded. */ 2309 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2310 err = ext4_mb_load_buddy(sb, group, &e4b); 2311 if (err) { 2312 seq_printf(seq, "#%-5u: I/O error\n", group); 2313 return 0; 2314 } 2315 buddy_loaded = 1; 2316 } 2317 2318 memcpy(&sg, ext4_get_group_info(sb, group), i); 2319 2320 if (buddy_loaded) 2321 ext4_mb_unload_buddy(&e4b); 2322 2323 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2324 sg.info.bb_fragments, sg.info.bb_first_free); 2325 for (i = 0; i <= 13; i++) 2326 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2327 sg.info.bb_counters[i] : 0); 2328 seq_printf(seq, " ]\n"); 2329 2330 return 0; 2331 } 2332 ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2333 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2334 { 2335 } 2336 2337 static const struct seq_operations ext4_mb_seq_groups_ops = { 2338 .start = ext4_mb_seq_groups_start, 2339 .next = ext4_mb_seq_groups_next, 2340 .stop = ext4_mb_seq_groups_stop, 2341 .show = ext4_mb_seq_groups_show, 2342 }; 2343 ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2344 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2345 { 2346 struct super_block *sb = PDE_DATA(inode); 2347 int rc; 2348 2349 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2350 if (rc == 0) { 2351 struct seq_file *m = file->private_data; 2352 m->private = sb; 2353 } 2354 return rc; 2355 2356 } 2357 2358 const struct file_operations ext4_seq_mb_groups_fops = { 2359 .owner = THIS_MODULE, 2360 .open = ext4_mb_seq_groups_open, 2361 .read = seq_read, 2362 .llseek = seq_lseek, 2363 .release = seq_release, 2364 }; 2365 get_groupinfo_cache(int blocksize_bits)2366 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2367 { 2368 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2369 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2370 2371 BUG_ON(!cachep); 2372 return cachep; 2373 } 2374 2375 /* 2376 * Allocate the top-level s_group_info array for the specified number 2377 * of groups 2378 */ ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2379 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2380 { 2381 struct ext4_sb_info *sbi = EXT4_SB(sb); 2382 unsigned size; 2383 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2384 2385 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2386 EXT4_DESC_PER_BLOCK_BITS(sb); 2387 if (size <= sbi->s_group_info_size) 2388 return 0; 2389 2390 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2391 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2392 if (!new_groupinfo) { 2393 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2394 return -ENOMEM; 2395 } 2396 rcu_read_lock(); 2397 old_groupinfo = rcu_dereference(sbi->s_group_info); 2398 if (old_groupinfo) 2399 memcpy(new_groupinfo, old_groupinfo, 2400 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2401 rcu_read_unlock(); 2402 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2403 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2404 if (old_groupinfo) 2405 ext4_kvfree_array_rcu(old_groupinfo); 2406 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2407 sbi->s_group_info_size); 2408 return 0; 2409 } 2410 2411 /* Create and initialize ext4_group_info data for the given group. */ ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2412 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2413 struct ext4_group_desc *desc) 2414 { 2415 int i; 2416 int metalen = 0; 2417 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2418 struct ext4_sb_info *sbi = EXT4_SB(sb); 2419 struct ext4_group_info **meta_group_info; 2420 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2421 2422 /* 2423 * First check if this group is the first of a reserved block. 2424 * If it's true, we have to allocate a new table of pointers 2425 * to ext4_group_info structures 2426 */ 2427 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2428 metalen = sizeof(*meta_group_info) << 2429 EXT4_DESC_PER_BLOCK_BITS(sb); 2430 meta_group_info = kmalloc(metalen, GFP_NOFS); 2431 if (meta_group_info == NULL) { 2432 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2433 "for a buddy group"); 2434 goto exit_meta_group_info; 2435 } 2436 rcu_read_lock(); 2437 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2438 rcu_read_unlock(); 2439 } 2440 2441 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2442 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2443 2444 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2445 if (meta_group_info[i] == NULL) { 2446 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2447 goto exit_group_info; 2448 } 2449 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2450 &(meta_group_info[i]->bb_state)); 2451 2452 /* 2453 * initialize bb_free to be able to skip 2454 * empty groups without initialization 2455 */ 2456 if (ext4_has_group_desc_csum(sb) && 2457 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2458 meta_group_info[i]->bb_free = 2459 ext4_free_clusters_after_init(sb, group, desc); 2460 } else { 2461 meta_group_info[i]->bb_free = 2462 ext4_free_group_clusters(sb, desc); 2463 } 2464 2465 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2466 init_rwsem(&meta_group_info[i]->alloc_sem); 2467 meta_group_info[i]->bb_free_root = RB_ROOT; 2468 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2469 2470 #ifdef DOUBLE_CHECK 2471 { 2472 struct buffer_head *bh; 2473 meta_group_info[i]->bb_bitmap = 2474 kmalloc(sb->s_blocksize, GFP_NOFS); 2475 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2476 bh = ext4_read_block_bitmap(sb, group); 2477 BUG_ON(IS_ERR_OR_NULL(bh)); 2478 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2479 sb->s_blocksize); 2480 put_bh(bh); 2481 } 2482 #endif 2483 2484 return 0; 2485 2486 exit_group_info: 2487 /* If a meta_group_info table has been allocated, release it now */ 2488 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2489 struct ext4_group_info ***group_info; 2490 2491 rcu_read_lock(); 2492 group_info = rcu_dereference(sbi->s_group_info); 2493 kfree(group_info[idx]); 2494 group_info[idx] = NULL; 2495 rcu_read_unlock(); 2496 } 2497 exit_meta_group_info: 2498 return -ENOMEM; 2499 } /* ext4_mb_add_groupinfo */ 2500 ext4_mb_init_backend(struct super_block * sb)2501 static int ext4_mb_init_backend(struct super_block *sb) 2502 { 2503 ext4_group_t ngroups = ext4_get_groups_count(sb); 2504 ext4_group_t i; 2505 struct ext4_sb_info *sbi = EXT4_SB(sb); 2506 int err; 2507 struct ext4_group_desc *desc; 2508 struct ext4_group_info ***group_info; 2509 struct kmem_cache *cachep; 2510 2511 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2512 if (err) 2513 return err; 2514 2515 sbi->s_buddy_cache = new_inode(sb); 2516 if (sbi->s_buddy_cache == NULL) { 2517 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2518 goto err_freesgi; 2519 } 2520 /* To avoid potentially colliding with an valid on-disk inode number, 2521 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2522 * not in the inode hash, so it should never be found by iget(), but 2523 * this will avoid confusion if it ever shows up during debugging. */ 2524 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2525 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2526 for (i = 0; i < ngroups; i++) { 2527 desc = ext4_get_group_desc(sb, i, NULL); 2528 if (desc == NULL) { 2529 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2530 goto err_freebuddy; 2531 } 2532 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2533 goto err_freebuddy; 2534 } 2535 2536 return 0; 2537 2538 err_freebuddy: 2539 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2540 while (i-- > 0) 2541 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2542 i = sbi->s_group_info_size; 2543 rcu_read_lock(); 2544 group_info = rcu_dereference(sbi->s_group_info); 2545 while (i-- > 0) 2546 kfree(group_info[i]); 2547 rcu_read_unlock(); 2548 iput(sbi->s_buddy_cache); 2549 err_freesgi: 2550 rcu_read_lock(); 2551 kvfree(rcu_dereference(sbi->s_group_info)); 2552 rcu_read_unlock(); 2553 return -ENOMEM; 2554 } 2555 ext4_groupinfo_destroy_slabs(void)2556 static void ext4_groupinfo_destroy_slabs(void) 2557 { 2558 int i; 2559 2560 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2561 if (ext4_groupinfo_caches[i]) 2562 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2563 ext4_groupinfo_caches[i] = NULL; 2564 } 2565 } 2566 ext4_groupinfo_create_slab(size_t size)2567 static int ext4_groupinfo_create_slab(size_t size) 2568 { 2569 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2570 int slab_size; 2571 int blocksize_bits = order_base_2(size); 2572 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2573 struct kmem_cache *cachep; 2574 2575 if (cache_index >= NR_GRPINFO_CACHES) 2576 return -EINVAL; 2577 2578 if (unlikely(cache_index < 0)) 2579 cache_index = 0; 2580 2581 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2582 if (ext4_groupinfo_caches[cache_index]) { 2583 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2584 return 0; /* Already created */ 2585 } 2586 2587 slab_size = offsetof(struct ext4_group_info, 2588 bb_counters[blocksize_bits + 2]); 2589 2590 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2591 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2592 NULL); 2593 2594 ext4_groupinfo_caches[cache_index] = cachep; 2595 2596 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2597 if (!cachep) { 2598 printk(KERN_EMERG 2599 "EXT4-fs: no memory for groupinfo slab cache\n"); 2600 return -ENOMEM; 2601 } 2602 2603 return 0; 2604 } 2605 ext4_mb_init(struct super_block * sb)2606 int ext4_mb_init(struct super_block *sb) 2607 { 2608 struct ext4_sb_info *sbi = EXT4_SB(sb); 2609 unsigned i, j; 2610 unsigned offset, offset_incr; 2611 unsigned max; 2612 int ret; 2613 2614 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2615 2616 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2617 if (sbi->s_mb_offsets == NULL) { 2618 ret = -ENOMEM; 2619 goto out; 2620 } 2621 2622 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2623 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2624 if (sbi->s_mb_maxs == NULL) { 2625 ret = -ENOMEM; 2626 goto out; 2627 } 2628 2629 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2630 if (ret < 0) 2631 goto out; 2632 2633 /* order 0 is regular bitmap */ 2634 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2635 sbi->s_mb_offsets[0] = 0; 2636 2637 i = 1; 2638 offset = 0; 2639 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2640 max = sb->s_blocksize << 2; 2641 do { 2642 sbi->s_mb_offsets[i] = offset; 2643 sbi->s_mb_maxs[i] = max; 2644 offset += offset_incr; 2645 offset_incr = offset_incr >> 1; 2646 max = max >> 1; 2647 i++; 2648 } while (i <= sb->s_blocksize_bits + 1); 2649 2650 spin_lock_init(&sbi->s_md_lock); 2651 spin_lock_init(&sbi->s_bal_lock); 2652 2653 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2654 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2655 sbi->s_mb_stats = MB_DEFAULT_STATS; 2656 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2657 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2658 /* 2659 * The default group preallocation is 512, which for 4k block 2660 * sizes translates to 2 megabytes. However for bigalloc file 2661 * systems, this is probably too big (i.e, if the cluster size 2662 * is 1 megabyte, then group preallocation size becomes half a 2663 * gigabyte!). As a default, we will keep a two megabyte 2664 * group pralloc size for cluster sizes up to 64k, and after 2665 * that, we will force a minimum group preallocation size of 2666 * 32 clusters. This translates to 8 megs when the cluster 2667 * size is 256k, and 32 megs when the cluster size is 1 meg, 2668 * which seems reasonable as a default. 2669 */ 2670 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2671 sbi->s_cluster_bits, 32); 2672 /* 2673 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2674 * to the lowest multiple of s_stripe which is bigger than 2675 * the s_mb_group_prealloc as determined above. We want 2676 * the preallocation size to be an exact multiple of the 2677 * RAID stripe size so that preallocations don't fragment 2678 * the stripes. 2679 */ 2680 if (sbi->s_stripe > 1) { 2681 sbi->s_mb_group_prealloc = roundup( 2682 sbi->s_mb_group_prealloc, sbi->s_stripe); 2683 } 2684 2685 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2686 if (sbi->s_locality_groups == NULL) { 2687 ret = -ENOMEM; 2688 goto out; 2689 } 2690 for_each_possible_cpu(i) { 2691 struct ext4_locality_group *lg; 2692 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2693 mutex_init(&lg->lg_mutex); 2694 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2695 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2696 spin_lock_init(&lg->lg_prealloc_lock); 2697 } 2698 2699 /* init file for buddy data */ 2700 ret = ext4_mb_init_backend(sb); 2701 if (ret != 0) 2702 goto out_free_locality_groups; 2703 2704 return 0; 2705 2706 out_free_locality_groups: 2707 free_percpu(sbi->s_locality_groups); 2708 sbi->s_locality_groups = NULL; 2709 out: 2710 kfree(sbi->s_mb_offsets); 2711 sbi->s_mb_offsets = NULL; 2712 kfree(sbi->s_mb_maxs); 2713 sbi->s_mb_maxs = NULL; 2714 return ret; 2715 } 2716 2717 /* need to called with the ext4 group lock held */ ext4_mb_cleanup_pa(struct ext4_group_info * grp)2718 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2719 { 2720 struct ext4_prealloc_space *pa; 2721 struct list_head *cur, *tmp; 2722 int count = 0; 2723 2724 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2725 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2726 list_del(&pa->pa_group_list); 2727 count++; 2728 kmem_cache_free(ext4_pspace_cachep, pa); 2729 } 2730 if (count) 2731 mb_debug(1, "mballoc: %u PAs left\n", count); 2732 2733 } 2734 ext4_mb_release(struct super_block * sb)2735 int ext4_mb_release(struct super_block *sb) 2736 { 2737 ext4_group_t ngroups = ext4_get_groups_count(sb); 2738 ext4_group_t i; 2739 int num_meta_group_infos; 2740 struct ext4_group_info *grinfo, ***group_info; 2741 struct ext4_sb_info *sbi = EXT4_SB(sb); 2742 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2743 2744 if (sbi->s_group_info) { 2745 for (i = 0; i < ngroups; i++) { 2746 grinfo = ext4_get_group_info(sb, i); 2747 #ifdef DOUBLE_CHECK 2748 kfree(grinfo->bb_bitmap); 2749 #endif 2750 ext4_lock_group(sb, i); 2751 ext4_mb_cleanup_pa(grinfo); 2752 ext4_unlock_group(sb, i); 2753 kmem_cache_free(cachep, grinfo); 2754 } 2755 num_meta_group_infos = (ngroups + 2756 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2757 EXT4_DESC_PER_BLOCK_BITS(sb); 2758 rcu_read_lock(); 2759 group_info = rcu_dereference(sbi->s_group_info); 2760 for (i = 0; i < num_meta_group_infos; i++) 2761 kfree(group_info[i]); 2762 kvfree(group_info); 2763 rcu_read_unlock(); 2764 } 2765 kfree(sbi->s_mb_offsets); 2766 kfree(sbi->s_mb_maxs); 2767 iput(sbi->s_buddy_cache); 2768 if (sbi->s_mb_stats) { 2769 ext4_msg(sb, KERN_INFO, 2770 "mballoc: %u blocks %u reqs (%u success)", 2771 atomic_read(&sbi->s_bal_allocated), 2772 atomic_read(&sbi->s_bal_reqs), 2773 atomic_read(&sbi->s_bal_success)); 2774 ext4_msg(sb, KERN_INFO, 2775 "mballoc: %u extents scanned, %u goal hits, " 2776 "%u 2^N hits, %u breaks, %u lost", 2777 atomic_read(&sbi->s_bal_ex_scanned), 2778 atomic_read(&sbi->s_bal_goals), 2779 atomic_read(&sbi->s_bal_2orders), 2780 atomic_read(&sbi->s_bal_breaks), 2781 atomic_read(&sbi->s_mb_lost_chunks)); 2782 ext4_msg(sb, KERN_INFO, 2783 "mballoc: %lu generated and it took %Lu", 2784 sbi->s_mb_buddies_generated, 2785 sbi->s_mb_generation_time); 2786 ext4_msg(sb, KERN_INFO, 2787 "mballoc: %u preallocated, %u discarded", 2788 atomic_read(&sbi->s_mb_preallocated), 2789 atomic_read(&sbi->s_mb_discarded)); 2790 } 2791 2792 free_percpu(sbi->s_locality_groups); 2793 2794 return 0; 2795 } 2796 ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,unsigned long flags)2797 static inline int ext4_issue_discard(struct super_block *sb, 2798 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2799 unsigned long flags) 2800 { 2801 ext4_fsblk_t discard_block; 2802 2803 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2804 ext4_group_first_block_no(sb, block_group)); 2805 count = EXT4_C2B(EXT4_SB(sb), count); 2806 trace_ext4_discard_blocks(sb, 2807 (unsigned long long) discard_block, count); 2808 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, flags); 2809 } 2810 2811 /* 2812 * This function is called by the jbd2 layer once the commit has finished, 2813 * so we know we can free the blocks that were released with that commit. 2814 */ ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2815 static void ext4_free_data_callback(struct super_block *sb, 2816 struct ext4_journal_cb_entry *jce, 2817 int rc) 2818 { 2819 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2820 struct ext4_buddy e4b; 2821 struct ext4_group_info *db; 2822 int err, count = 0, count2 = 0; 2823 2824 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2825 entry->efd_count, entry->efd_group, entry); 2826 2827 if (test_opt(sb, DISCARD)) { 2828 err = ext4_issue_discard(sb, entry->efd_group, 2829 entry->efd_start_cluster, 2830 entry->efd_count, 0); 2831 if (err && err != -EOPNOTSUPP) 2832 ext4_msg(sb, KERN_WARNING, "discard request in" 2833 " group:%d block:%d count:%d failed" 2834 " with %d", entry->efd_group, 2835 entry->efd_start_cluster, 2836 entry->efd_count, err); 2837 } 2838 2839 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2840 /* we expect to find existing buddy because it's pinned */ 2841 BUG_ON(err != 0); 2842 2843 2844 db = e4b.bd_info; 2845 /* there are blocks to put in buddy to make them really free */ 2846 count += entry->efd_count; 2847 count2++; 2848 ext4_lock_group(sb, entry->efd_group); 2849 /* Take it out of per group rb tree */ 2850 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2851 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2852 2853 /* 2854 * Clear the trimmed flag for the group so that the next 2855 * ext4_trim_fs can trim it. 2856 * If the volume is mounted with -o discard, online discard 2857 * is supported and the free blocks will be trimmed online. 2858 */ 2859 if (!test_opt(sb, DISCARD)) 2860 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2861 2862 if (!db->bb_free_root.rb_node) { 2863 /* No more items in the per group rb tree 2864 * balance refcounts from ext4_mb_free_metadata() 2865 */ 2866 page_cache_release(e4b.bd_buddy_page); 2867 page_cache_release(e4b.bd_bitmap_page); 2868 } 2869 ext4_unlock_group(sb, entry->efd_group); 2870 kmem_cache_free(ext4_free_data_cachep, entry); 2871 ext4_mb_unload_buddy(&e4b); 2872 2873 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2874 } 2875 ext4_init_mballoc(void)2876 int __init ext4_init_mballoc(void) 2877 { 2878 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2879 SLAB_RECLAIM_ACCOUNT); 2880 if (ext4_pspace_cachep == NULL) 2881 return -ENOMEM; 2882 2883 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2884 SLAB_RECLAIM_ACCOUNT); 2885 if (ext4_ac_cachep == NULL) { 2886 kmem_cache_destroy(ext4_pspace_cachep); 2887 return -ENOMEM; 2888 } 2889 2890 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2891 SLAB_RECLAIM_ACCOUNT); 2892 if (ext4_free_data_cachep == NULL) { 2893 kmem_cache_destroy(ext4_pspace_cachep); 2894 kmem_cache_destroy(ext4_ac_cachep); 2895 return -ENOMEM; 2896 } 2897 return 0; 2898 } 2899 ext4_exit_mballoc(void)2900 void ext4_exit_mballoc(void) 2901 { 2902 /* 2903 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2904 * before destroying the slab cache. 2905 */ 2906 rcu_barrier(); 2907 kmem_cache_destroy(ext4_pspace_cachep); 2908 kmem_cache_destroy(ext4_ac_cachep); 2909 kmem_cache_destroy(ext4_free_data_cachep); 2910 ext4_groupinfo_destroy_slabs(); 2911 } 2912 2913 2914 /* 2915 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2916 * Returns 0 if success or error code 2917 */ 2918 static noinline_for_stack int ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2919 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2920 handle_t *handle, unsigned int reserv_clstrs) 2921 { 2922 struct buffer_head *bitmap_bh = NULL; 2923 struct ext4_group_desc *gdp; 2924 struct buffer_head *gdp_bh; 2925 struct ext4_sb_info *sbi; 2926 struct super_block *sb; 2927 ext4_fsblk_t block; 2928 int err, len; 2929 2930 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2931 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2932 2933 sb = ac->ac_sb; 2934 sbi = EXT4_SB(sb); 2935 2936 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2937 if (IS_ERR(bitmap_bh)) { 2938 err = PTR_ERR(bitmap_bh); 2939 bitmap_bh = NULL; 2940 goto out_err; 2941 } 2942 2943 BUFFER_TRACE(bitmap_bh, "getting write access"); 2944 err = ext4_journal_get_write_access(handle, bitmap_bh); 2945 if (err) 2946 goto out_err; 2947 2948 err = -EIO; 2949 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2950 if (!gdp) 2951 goto out_err; 2952 2953 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2954 ext4_free_group_clusters(sb, gdp)); 2955 2956 BUFFER_TRACE(gdp_bh, "get_write_access"); 2957 err = ext4_journal_get_write_access(handle, gdp_bh); 2958 if (err) 2959 goto out_err; 2960 2961 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2962 2963 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2964 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 2965 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2966 "fs metadata", block, block+len); 2967 /* File system mounted not to panic on error 2968 * Fix the bitmap and return EFSCORRUPTED 2969 * We leak some of the blocks here. 2970 */ 2971 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2972 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2973 ac->ac_b_ex.fe_len); 2974 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2975 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2976 if (!err) 2977 err = -EFSCORRUPTED; 2978 goto out_err; 2979 } 2980 2981 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2982 #ifdef AGGRESSIVE_CHECK 2983 { 2984 int i; 2985 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2986 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2987 bitmap_bh->b_data)); 2988 } 2989 } 2990 #endif 2991 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2992 ac->ac_b_ex.fe_len); 2993 if (ext4_has_group_desc_csum(sb) && 2994 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2995 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2996 ext4_free_group_clusters_set(sb, gdp, 2997 ext4_free_clusters_after_init(sb, 2998 ac->ac_b_ex.fe_group, gdp)); 2999 } 3000 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3001 ext4_free_group_clusters_set(sb, gdp, len); 3002 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3003 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3004 3005 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3006 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3007 /* 3008 * Now reduce the dirty block count also. Should not go negative 3009 */ 3010 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3011 /* release all the reserved blocks if non delalloc */ 3012 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3013 reserv_clstrs); 3014 3015 if (sbi->s_log_groups_per_flex) { 3016 ext4_group_t flex_group = ext4_flex_group(sbi, 3017 ac->ac_b_ex.fe_group); 3018 atomic64_sub(ac->ac_b_ex.fe_len, 3019 &sbi_array_rcu_deref(sbi, s_flex_groups, 3020 flex_group)->free_clusters); 3021 } 3022 3023 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3024 if (err) 3025 goto out_err; 3026 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3027 3028 out_err: 3029 brelse(bitmap_bh); 3030 return err; 3031 } 3032 3033 /* 3034 * here we normalize request for locality group 3035 * Group request are normalized to s_mb_group_prealloc, which goes to 3036 * s_strip if we set the same via mount option. 3037 * s_mb_group_prealloc can be configured via 3038 * /sys/fs/ext4/<partition>/mb_group_prealloc 3039 * 3040 * XXX: should we try to preallocate more than the group has now? 3041 */ ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3042 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3043 { 3044 struct super_block *sb = ac->ac_sb; 3045 struct ext4_locality_group *lg = ac->ac_lg; 3046 3047 BUG_ON(lg == NULL); 3048 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3049 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3050 current->pid, ac->ac_g_ex.fe_len); 3051 } 3052 3053 /* 3054 * Normalization means making request better in terms of 3055 * size and alignment 3056 */ 3057 static noinline_for_stack void ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3058 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3059 struct ext4_allocation_request *ar) 3060 { 3061 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3062 int bsbits, max; 3063 ext4_lblk_t end; 3064 loff_t size, start_off; 3065 loff_t orig_size __maybe_unused; 3066 ext4_lblk_t start; 3067 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3068 struct ext4_prealloc_space *pa; 3069 3070 /* do normalize only data requests, metadata requests 3071 do not need preallocation */ 3072 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3073 return; 3074 3075 /* sometime caller may want exact blocks */ 3076 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3077 return; 3078 3079 /* caller may indicate that preallocation isn't 3080 * required (it's a tail, for example) */ 3081 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3082 return; 3083 3084 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3085 ext4_mb_normalize_group_request(ac); 3086 return ; 3087 } 3088 3089 bsbits = ac->ac_sb->s_blocksize_bits; 3090 3091 /* first, let's learn actual file size 3092 * given current request is allocated */ 3093 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3094 size = size << bsbits; 3095 if (size < i_size_read(ac->ac_inode)) 3096 size = i_size_read(ac->ac_inode); 3097 orig_size = size; 3098 3099 /* max size of free chunks */ 3100 max = 2 << bsbits; 3101 3102 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3103 (req <= (size) || max <= (chunk_size)) 3104 3105 /* first, try to predict filesize */ 3106 /* XXX: should this table be tunable? */ 3107 start_off = 0; 3108 if (size <= 16 * 1024) { 3109 size = 16 * 1024; 3110 } else if (size <= 32 * 1024) { 3111 size = 32 * 1024; 3112 } else if (size <= 64 * 1024) { 3113 size = 64 * 1024; 3114 } else if (size <= 128 * 1024) { 3115 size = 128 * 1024; 3116 } else if (size <= 256 * 1024) { 3117 size = 256 * 1024; 3118 } else if (size <= 512 * 1024) { 3119 size = 512 * 1024; 3120 } else if (size <= 1024 * 1024) { 3121 size = 1024 * 1024; 3122 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3123 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3124 (21 - bsbits)) << 21; 3125 size = 2 * 1024 * 1024; 3126 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3127 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3128 (22 - bsbits)) << 22; 3129 size = 4 * 1024 * 1024; 3130 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3131 (8<<20)>>bsbits, max, 8 * 1024)) { 3132 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3133 (23 - bsbits)) << 23; 3134 size = 8 * 1024 * 1024; 3135 } else { 3136 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3137 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3138 ac->ac_o_ex.fe_len) << bsbits; 3139 } 3140 size = size >> bsbits; 3141 start = start_off >> bsbits; 3142 3143 /* don't cover already allocated blocks in selected range */ 3144 if (ar->pleft && start <= ar->lleft) { 3145 size -= ar->lleft + 1 - start; 3146 start = ar->lleft + 1; 3147 } 3148 if (ar->pright && start + size - 1 >= ar->lright) 3149 size -= start + size - ar->lright; 3150 3151 /* 3152 * Trim allocation request for filesystems with artificially small 3153 * groups. 3154 */ 3155 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3156 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3157 3158 end = start + size; 3159 3160 /* check we don't cross already preallocated blocks */ 3161 rcu_read_lock(); 3162 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3163 ext4_lblk_t pa_end; 3164 3165 if (pa->pa_deleted) 3166 continue; 3167 spin_lock(&pa->pa_lock); 3168 if (pa->pa_deleted) { 3169 spin_unlock(&pa->pa_lock); 3170 continue; 3171 } 3172 3173 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3174 pa->pa_len); 3175 3176 /* PA must not overlap original request */ 3177 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3178 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3179 3180 /* skip PAs this normalized request doesn't overlap with */ 3181 if (pa->pa_lstart >= end || pa_end <= start) { 3182 spin_unlock(&pa->pa_lock); 3183 continue; 3184 } 3185 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3186 3187 /* adjust start or end to be adjacent to this pa */ 3188 if (pa_end <= ac->ac_o_ex.fe_logical) { 3189 BUG_ON(pa_end < start); 3190 start = pa_end; 3191 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3192 BUG_ON(pa->pa_lstart > end); 3193 end = pa->pa_lstart; 3194 } 3195 spin_unlock(&pa->pa_lock); 3196 } 3197 rcu_read_unlock(); 3198 size = end - start; 3199 3200 /* XXX: extra loop to check we really don't overlap preallocations */ 3201 rcu_read_lock(); 3202 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3203 ext4_lblk_t pa_end; 3204 3205 spin_lock(&pa->pa_lock); 3206 if (pa->pa_deleted == 0) { 3207 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3208 pa->pa_len); 3209 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3210 } 3211 spin_unlock(&pa->pa_lock); 3212 } 3213 rcu_read_unlock(); 3214 3215 if (start + size <= ac->ac_o_ex.fe_logical && 3216 start > ac->ac_o_ex.fe_logical) { 3217 ext4_msg(ac->ac_sb, KERN_ERR, 3218 "start %lu, size %lu, fe_logical %lu", 3219 (unsigned long) start, (unsigned long) size, 3220 (unsigned long) ac->ac_o_ex.fe_logical); 3221 BUG(); 3222 } 3223 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3224 3225 /* now prepare goal request */ 3226 3227 /* XXX: is it better to align blocks WRT to logical 3228 * placement or satisfy big request as is */ 3229 ac->ac_g_ex.fe_logical = start; 3230 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3231 3232 /* define goal start in order to merge */ 3233 if (ar->pright && (ar->lright == (start + size))) { 3234 /* merge to the right */ 3235 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3236 &ac->ac_f_ex.fe_group, 3237 &ac->ac_f_ex.fe_start); 3238 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3239 } 3240 if (ar->pleft && (ar->lleft + 1 == start)) { 3241 /* merge to the left */ 3242 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3243 &ac->ac_f_ex.fe_group, 3244 &ac->ac_f_ex.fe_start); 3245 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3246 } 3247 3248 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3249 (unsigned) orig_size, (unsigned) start); 3250 } 3251 ext4_mb_collect_stats(struct ext4_allocation_context * ac)3252 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3253 { 3254 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3255 3256 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3257 atomic_inc(&sbi->s_bal_reqs); 3258 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3259 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3260 atomic_inc(&sbi->s_bal_success); 3261 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3262 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3263 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3264 atomic_inc(&sbi->s_bal_goals); 3265 if (ac->ac_found > sbi->s_mb_max_to_scan) 3266 atomic_inc(&sbi->s_bal_breaks); 3267 } 3268 3269 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3270 trace_ext4_mballoc_alloc(ac); 3271 else 3272 trace_ext4_mballoc_prealloc(ac); 3273 } 3274 3275 /* 3276 * Called on failure; free up any blocks from the inode PA for this 3277 * context. We don't need this for MB_GROUP_PA because we only change 3278 * pa_free in ext4_mb_release_context(), but on failure, we've already 3279 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3280 */ ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3281 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3282 { 3283 struct ext4_prealloc_space *pa = ac->ac_pa; 3284 struct ext4_buddy e4b; 3285 int err; 3286 3287 if (pa == NULL) { 3288 if (ac->ac_f_ex.fe_len == 0) 3289 return; 3290 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3291 if (err) { 3292 /* 3293 * This should never happen since we pin the 3294 * pages in the ext4_allocation_context so 3295 * ext4_mb_load_buddy() should never fail. 3296 */ 3297 WARN(1, "mb_load_buddy failed (%d)", err); 3298 return; 3299 } 3300 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3301 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3302 ac->ac_f_ex.fe_len); 3303 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3304 ext4_mb_unload_buddy(&e4b); 3305 return; 3306 } 3307 if (pa->pa_type == MB_INODE_PA) 3308 pa->pa_free += ac->ac_b_ex.fe_len; 3309 } 3310 3311 /* 3312 * use blocks preallocated to inode 3313 */ ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3314 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3315 struct ext4_prealloc_space *pa) 3316 { 3317 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3318 ext4_fsblk_t start; 3319 ext4_fsblk_t end; 3320 int len; 3321 3322 /* found preallocated blocks, use them */ 3323 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3324 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3325 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3326 len = EXT4_NUM_B2C(sbi, end - start); 3327 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3328 &ac->ac_b_ex.fe_start); 3329 ac->ac_b_ex.fe_len = len; 3330 ac->ac_status = AC_STATUS_FOUND; 3331 ac->ac_pa = pa; 3332 3333 BUG_ON(start < pa->pa_pstart); 3334 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3335 BUG_ON(pa->pa_free < len); 3336 pa->pa_free -= len; 3337 3338 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3339 } 3340 3341 /* 3342 * use blocks preallocated to locality group 3343 */ ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3344 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3345 struct ext4_prealloc_space *pa) 3346 { 3347 unsigned int len = ac->ac_o_ex.fe_len; 3348 3349 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3350 &ac->ac_b_ex.fe_group, 3351 &ac->ac_b_ex.fe_start); 3352 ac->ac_b_ex.fe_len = len; 3353 ac->ac_status = AC_STATUS_FOUND; 3354 ac->ac_pa = pa; 3355 3356 /* we don't correct pa_pstart or pa_plen here to avoid 3357 * possible race when the group is being loaded concurrently 3358 * instead we correct pa later, after blocks are marked 3359 * in on-disk bitmap -- see ext4_mb_release_context() 3360 * Other CPUs are prevented from allocating from this pa by lg_mutex 3361 */ 3362 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3363 } 3364 3365 /* 3366 * Return the prealloc space that have minimal distance 3367 * from the goal block. @cpa is the prealloc 3368 * space that is having currently known minimal distance 3369 * from the goal block. 3370 */ 3371 static struct ext4_prealloc_space * ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3372 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3373 struct ext4_prealloc_space *pa, 3374 struct ext4_prealloc_space *cpa) 3375 { 3376 ext4_fsblk_t cur_distance, new_distance; 3377 3378 if (cpa == NULL) { 3379 atomic_inc(&pa->pa_count); 3380 return pa; 3381 } 3382 cur_distance = abs(goal_block - cpa->pa_pstart); 3383 new_distance = abs(goal_block - pa->pa_pstart); 3384 3385 if (cur_distance <= new_distance) 3386 return cpa; 3387 3388 /* drop the previous reference */ 3389 atomic_dec(&cpa->pa_count); 3390 atomic_inc(&pa->pa_count); 3391 return pa; 3392 } 3393 3394 /* 3395 * search goal blocks in preallocated space 3396 */ 3397 static noinline_for_stack int ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3398 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3399 { 3400 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3401 int order, i; 3402 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3403 struct ext4_locality_group *lg; 3404 struct ext4_prealloc_space *pa, *cpa = NULL; 3405 ext4_fsblk_t goal_block; 3406 3407 /* only data can be preallocated */ 3408 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3409 return 0; 3410 3411 /* first, try per-file preallocation */ 3412 rcu_read_lock(); 3413 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3414 3415 /* all fields in this condition don't change, 3416 * so we can skip locking for them */ 3417 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3418 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3419 EXT4_C2B(sbi, pa->pa_len))) 3420 continue; 3421 3422 /* non-extent files can't have physical blocks past 2^32 */ 3423 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3424 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3425 EXT4_MAX_BLOCK_FILE_PHYS)) 3426 continue; 3427 3428 /* found preallocated blocks, use them */ 3429 spin_lock(&pa->pa_lock); 3430 if (pa->pa_deleted == 0 && pa->pa_free) { 3431 atomic_inc(&pa->pa_count); 3432 ext4_mb_use_inode_pa(ac, pa); 3433 spin_unlock(&pa->pa_lock); 3434 ac->ac_criteria = 10; 3435 rcu_read_unlock(); 3436 return 1; 3437 } 3438 spin_unlock(&pa->pa_lock); 3439 } 3440 rcu_read_unlock(); 3441 3442 /* can we use group allocation? */ 3443 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3444 return 0; 3445 3446 /* inode may have no locality group for some reason */ 3447 lg = ac->ac_lg; 3448 if (lg == NULL) 3449 return 0; 3450 order = fls(ac->ac_o_ex.fe_len) - 1; 3451 if (order > PREALLOC_TB_SIZE - 1) 3452 /* The max size of hash table is PREALLOC_TB_SIZE */ 3453 order = PREALLOC_TB_SIZE - 1; 3454 3455 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3456 /* 3457 * search for the prealloc space that is having 3458 * minimal distance from the goal block. 3459 */ 3460 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3461 rcu_read_lock(); 3462 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3463 pa_inode_list) { 3464 spin_lock(&pa->pa_lock); 3465 if (pa->pa_deleted == 0 && 3466 pa->pa_free >= ac->ac_o_ex.fe_len) { 3467 3468 cpa = ext4_mb_check_group_pa(goal_block, 3469 pa, cpa); 3470 } 3471 spin_unlock(&pa->pa_lock); 3472 } 3473 rcu_read_unlock(); 3474 } 3475 if (cpa) { 3476 ext4_mb_use_group_pa(ac, cpa); 3477 ac->ac_criteria = 20; 3478 return 1; 3479 } 3480 return 0; 3481 } 3482 3483 /* 3484 * the function goes through all block freed in the group 3485 * but not yet committed and marks them used in in-core bitmap. 3486 * buddy must be generated from this bitmap 3487 * Need to be called with the ext4 group lock held 3488 */ ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3489 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3490 ext4_group_t group) 3491 { 3492 struct rb_node *n; 3493 struct ext4_group_info *grp; 3494 struct ext4_free_data *entry; 3495 3496 grp = ext4_get_group_info(sb, group); 3497 n = rb_first(&(grp->bb_free_root)); 3498 3499 while (n) { 3500 entry = rb_entry(n, struct ext4_free_data, efd_node); 3501 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3502 n = rb_next(n); 3503 } 3504 return; 3505 } 3506 3507 /* 3508 * the function goes through all preallocation in this group and marks them 3509 * used in in-core bitmap. buddy must be generated from this bitmap 3510 * Need to be called with ext4 group lock held 3511 */ 3512 static noinline_for_stack ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3513 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3514 ext4_group_t group) 3515 { 3516 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3517 struct ext4_prealloc_space *pa; 3518 struct list_head *cur; 3519 ext4_group_t groupnr; 3520 ext4_grpblk_t start; 3521 int preallocated = 0; 3522 int len; 3523 3524 /* all form of preallocation discards first load group, 3525 * so the only competing code is preallocation use. 3526 * we don't need any locking here 3527 * notice we do NOT ignore preallocations with pa_deleted 3528 * otherwise we could leave used blocks available for 3529 * allocation in buddy when concurrent ext4_mb_put_pa() 3530 * is dropping preallocation 3531 */ 3532 list_for_each(cur, &grp->bb_prealloc_list) { 3533 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3534 spin_lock(&pa->pa_lock); 3535 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3536 &groupnr, &start); 3537 len = pa->pa_len; 3538 spin_unlock(&pa->pa_lock); 3539 if (unlikely(len == 0)) 3540 continue; 3541 BUG_ON(groupnr != group); 3542 ext4_set_bits(bitmap, start, len); 3543 preallocated += len; 3544 } 3545 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3546 } 3547 ext4_mb_pa_callback(struct rcu_head * head)3548 static void ext4_mb_pa_callback(struct rcu_head *head) 3549 { 3550 struct ext4_prealloc_space *pa; 3551 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3552 3553 BUG_ON(atomic_read(&pa->pa_count)); 3554 BUG_ON(pa->pa_deleted == 0); 3555 kmem_cache_free(ext4_pspace_cachep, pa); 3556 } 3557 3558 /* 3559 * drops a reference to preallocated space descriptor 3560 * if this was the last reference and the space is consumed 3561 */ ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3562 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3563 struct super_block *sb, struct ext4_prealloc_space *pa) 3564 { 3565 ext4_group_t grp; 3566 ext4_fsblk_t grp_blk; 3567 3568 /* in this short window concurrent discard can set pa_deleted */ 3569 spin_lock(&pa->pa_lock); 3570 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3571 spin_unlock(&pa->pa_lock); 3572 return; 3573 } 3574 3575 if (pa->pa_deleted == 1) { 3576 spin_unlock(&pa->pa_lock); 3577 return; 3578 } 3579 3580 pa->pa_deleted = 1; 3581 spin_unlock(&pa->pa_lock); 3582 3583 grp_blk = pa->pa_pstart; 3584 /* 3585 * If doing group-based preallocation, pa_pstart may be in the 3586 * next group when pa is used up 3587 */ 3588 if (pa->pa_type == MB_GROUP_PA) 3589 grp_blk--; 3590 3591 grp = ext4_get_group_number(sb, grp_blk); 3592 3593 /* 3594 * possible race: 3595 * 3596 * P1 (buddy init) P2 (regular allocation) 3597 * find block B in PA 3598 * copy on-disk bitmap to buddy 3599 * mark B in on-disk bitmap 3600 * drop PA from group 3601 * mark all PAs in buddy 3602 * 3603 * thus, P1 initializes buddy with B available. to prevent this 3604 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3605 * against that pair 3606 */ 3607 ext4_lock_group(sb, grp); 3608 list_del(&pa->pa_group_list); 3609 ext4_unlock_group(sb, grp); 3610 3611 spin_lock(pa->pa_obj_lock); 3612 list_del_rcu(&pa->pa_inode_list); 3613 spin_unlock(pa->pa_obj_lock); 3614 3615 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3616 } 3617 3618 /* 3619 * creates new preallocated space for given inode 3620 */ 3621 static noinline_for_stack int ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3622 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3623 { 3624 struct super_block *sb = ac->ac_sb; 3625 struct ext4_sb_info *sbi = EXT4_SB(sb); 3626 struct ext4_prealloc_space *pa; 3627 struct ext4_group_info *grp; 3628 struct ext4_inode_info *ei; 3629 3630 /* preallocate only when found space is larger then requested */ 3631 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3632 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3633 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3634 3635 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3636 if (pa == NULL) 3637 return -ENOMEM; 3638 3639 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3640 int winl; 3641 int wins; 3642 int win; 3643 int offs; 3644 3645 /* we can't allocate as much as normalizer wants. 3646 * so, found space must get proper lstart 3647 * to cover original request */ 3648 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3649 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3650 3651 /* we're limited by original request in that 3652 * logical block must be covered any way 3653 * winl is window we can move our chunk within */ 3654 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3655 3656 /* also, we should cover whole original request */ 3657 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3658 3659 /* the smallest one defines real window */ 3660 win = min(winl, wins); 3661 3662 offs = ac->ac_o_ex.fe_logical % 3663 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3664 if (offs && offs < win) 3665 win = offs; 3666 3667 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3668 EXT4_NUM_B2C(sbi, win); 3669 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3670 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3671 } 3672 3673 /* preallocation can change ac_b_ex, thus we store actually 3674 * allocated blocks for history */ 3675 ac->ac_f_ex = ac->ac_b_ex; 3676 3677 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3678 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3679 pa->pa_len = ac->ac_b_ex.fe_len; 3680 pa->pa_free = pa->pa_len; 3681 atomic_set(&pa->pa_count, 1); 3682 spin_lock_init(&pa->pa_lock); 3683 INIT_LIST_HEAD(&pa->pa_inode_list); 3684 INIT_LIST_HEAD(&pa->pa_group_list); 3685 pa->pa_deleted = 0; 3686 pa->pa_type = MB_INODE_PA; 3687 3688 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3689 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3690 trace_ext4_mb_new_inode_pa(ac, pa); 3691 3692 ext4_mb_use_inode_pa(ac, pa); 3693 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3694 3695 ei = EXT4_I(ac->ac_inode); 3696 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3697 3698 pa->pa_obj_lock = &ei->i_prealloc_lock; 3699 pa->pa_inode = ac->ac_inode; 3700 3701 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3702 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3703 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3704 3705 spin_lock(pa->pa_obj_lock); 3706 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3707 spin_unlock(pa->pa_obj_lock); 3708 3709 return 0; 3710 } 3711 3712 /* 3713 * creates new preallocated space for locality group inodes belongs to 3714 */ 3715 static noinline_for_stack int ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3716 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3717 { 3718 struct super_block *sb = ac->ac_sb; 3719 struct ext4_locality_group *lg; 3720 struct ext4_prealloc_space *pa; 3721 struct ext4_group_info *grp; 3722 3723 /* preallocate only when found space is larger then requested */ 3724 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3725 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3726 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3727 3728 BUG_ON(ext4_pspace_cachep == NULL); 3729 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3730 if (pa == NULL) 3731 return -ENOMEM; 3732 3733 /* preallocation can change ac_b_ex, thus we store actually 3734 * allocated blocks for history */ 3735 ac->ac_f_ex = ac->ac_b_ex; 3736 3737 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3738 pa->pa_lstart = pa->pa_pstart; 3739 pa->pa_len = ac->ac_b_ex.fe_len; 3740 pa->pa_free = pa->pa_len; 3741 atomic_set(&pa->pa_count, 1); 3742 spin_lock_init(&pa->pa_lock); 3743 INIT_LIST_HEAD(&pa->pa_inode_list); 3744 INIT_LIST_HEAD(&pa->pa_group_list); 3745 pa->pa_deleted = 0; 3746 pa->pa_type = MB_GROUP_PA; 3747 3748 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3749 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3750 trace_ext4_mb_new_group_pa(ac, pa); 3751 3752 ext4_mb_use_group_pa(ac, pa); 3753 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3754 3755 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3756 lg = ac->ac_lg; 3757 BUG_ON(lg == NULL); 3758 3759 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3760 pa->pa_inode = NULL; 3761 3762 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3763 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3764 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3765 3766 /* 3767 * We will later add the new pa to the right bucket 3768 * after updating the pa_free in ext4_mb_release_context 3769 */ 3770 return 0; 3771 } 3772 ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3773 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3774 { 3775 int err; 3776 3777 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3778 err = ext4_mb_new_group_pa(ac); 3779 else 3780 err = ext4_mb_new_inode_pa(ac); 3781 return err; 3782 } 3783 3784 /* 3785 * finds all unused blocks in on-disk bitmap, frees them in 3786 * in-core bitmap and buddy. 3787 * @pa must be unlinked from inode and group lists, so that 3788 * nobody else can find/use it. 3789 * the caller MUST hold group/inode locks. 3790 * TODO: optimize the case when there are no in-core structures yet 3791 */ 3792 static noinline_for_stack int ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3793 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3794 struct ext4_prealloc_space *pa) 3795 { 3796 struct super_block *sb = e4b->bd_sb; 3797 struct ext4_sb_info *sbi = EXT4_SB(sb); 3798 unsigned int end; 3799 unsigned int next; 3800 ext4_group_t group; 3801 ext4_grpblk_t bit; 3802 unsigned long long grp_blk_start; 3803 int err = 0; 3804 int free = 0; 3805 3806 BUG_ON(pa->pa_deleted == 0); 3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3808 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3810 end = bit + pa->pa_len; 3811 3812 while (bit < end) { 3813 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3814 if (bit >= end) 3815 break; 3816 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3817 mb_debug(1, " free preallocated %u/%u in group %u\n", 3818 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3819 (unsigned) next - bit, (unsigned) group); 3820 free += next - bit; 3821 3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3823 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3824 EXT4_C2B(sbi, bit)), 3825 next - bit); 3826 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3827 bit = next + 1; 3828 } 3829 if (free != pa->pa_free) { 3830 ext4_msg(e4b->bd_sb, KERN_CRIT, 3831 "pa %p: logic %lu, phys. %lu, len %lu", 3832 pa, (unsigned long) pa->pa_lstart, 3833 (unsigned long) pa->pa_pstart, 3834 (unsigned long) pa->pa_len); 3835 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3836 free, pa->pa_free); 3837 /* 3838 * pa is already deleted so we use the value obtained 3839 * from the bitmap and continue. 3840 */ 3841 } 3842 atomic_add(free, &sbi->s_mb_discarded); 3843 3844 return err; 3845 } 3846 3847 static noinline_for_stack int ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3849 struct ext4_prealloc_space *pa) 3850 { 3851 struct super_block *sb = e4b->bd_sb; 3852 ext4_group_t group; 3853 ext4_grpblk_t bit; 3854 3855 trace_ext4_mb_release_group_pa(sb, pa); 3856 BUG_ON(pa->pa_deleted == 0); 3857 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3858 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3859 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3860 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3861 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3862 3863 return 0; 3864 } 3865 3866 /* 3867 * releases all preallocations in given group 3868 * 3869 * first, we need to decide discard policy: 3870 * - when do we discard 3871 * 1) ENOSPC 3872 * - how many do we discard 3873 * 1) how many requested 3874 */ 3875 static noinline_for_stack int ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3876 ext4_mb_discard_group_preallocations(struct super_block *sb, 3877 ext4_group_t group, int needed) 3878 { 3879 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3880 struct buffer_head *bitmap_bh = NULL; 3881 struct ext4_prealloc_space *pa, *tmp; 3882 struct list_head list; 3883 struct ext4_buddy e4b; 3884 int err; 3885 int busy = 0; 3886 int free = 0; 3887 3888 mb_debug(1, "discard preallocation for group %u\n", group); 3889 3890 if (list_empty(&grp->bb_prealloc_list)) 3891 return 0; 3892 3893 bitmap_bh = ext4_read_block_bitmap(sb, group); 3894 if (IS_ERR(bitmap_bh)) { 3895 err = PTR_ERR(bitmap_bh); 3896 ext4_error(sb, "Error %d reading block bitmap for %u", 3897 err, group); 3898 return 0; 3899 } 3900 3901 err = ext4_mb_load_buddy(sb, group, &e4b); 3902 if (err) { 3903 ext4_warning(sb, "Error %d loading buddy information for %u", 3904 err, group); 3905 put_bh(bitmap_bh); 3906 return 0; 3907 } 3908 3909 if (needed == 0) 3910 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3911 3912 INIT_LIST_HEAD(&list); 3913 repeat: 3914 ext4_lock_group(sb, group); 3915 list_for_each_entry_safe(pa, tmp, 3916 &grp->bb_prealloc_list, pa_group_list) { 3917 spin_lock(&pa->pa_lock); 3918 if (atomic_read(&pa->pa_count)) { 3919 spin_unlock(&pa->pa_lock); 3920 busy = 1; 3921 continue; 3922 } 3923 if (pa->pa_deleted) { 3924 spin_unlock(&pa->pa_lock); 3925 continue; 3926 } 3927 3928 /* seems this one can be freed ... */ 3929 pa->pa_deleted = 1; 3930 3931 /* we can trust pa_free ... */ 3932 free += pa->pa_free; 3933 3934 spin_unlock(&pa->pa_lock); 3935 3936 list_del(&pa->pa_group_list); 3937 list_add(&pa->u.pa_tmp_list, &list); 3938 } 3939 3940 /* if we still need more blocks and some PAs were used, try again */ 3941 if (free < needed && busy) { 3942 busy = 0; 3943 ext4_unlock_group(sb, group); 3944 cond_resched(); 3945 goto repeat; 3946 } 3947 3948 /* found anything to free? */ 3949 if (list_empty(&list)) { 3950 BUG_ON(free != 0); 3951 goto out; 3952 } 3953 3954 /* now free all selected PAs */ 3955 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3956 3957 /* remove from object (inode or locality group) */ 3958 spin_lock(pa->pa_obj_lock); 3959 list_del_rcu(&pa->pa_inode_list); 3960 spin_unlock(pa->pa_obj_lock); 3961 3962 if (pa->pa_type == MB_GROUP_PA) 3963 ext4_mb_release_group_pa(&e4b, pa); 3964 else 3965 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3966 3967 list_del(&pa->u.pa_tmp_list); 3968 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3969 } 3970 3971 out: 3972 ext4_unlock_group(sb, group); 3973 ext4_mb_unload_buddy(&e4b); 3974 put_bh(bitmap_bh); 3975 return free; 3976 } 3977 3978 /* 3979 * releases all non-used preallocated blocks for given inode 3980 * 3981 * It's important to discard preallocations under i_data_sem 3982 * We don't want another block to be served from the prealloc 3983 * space when we are discarding the inode prealloc space. 3984 * 3985 * FIXME!! Make sure it is valid at all the call sites 3986 */ ext4_discard_preallocations(struct inode * inode)3987 void ext4_discard_preallocations(struct inode *inode) 3988 { 3989 struct ext4_inode_info *ei = EXT4_I(inode); 3990 struct super_block *sb = inode->i_sb; 3991 struct buffer_head *bitmap_bh = NULL; 3992 struct ext4_prealloc_space *pa, *tmp; 3993 ext4_group_t group = 0; 3994 struct list_head list; 3995 struct ext4_buddy e4b; 3996 int err; 3997 3998 if (!S_ISREG(inode->i_mode)) { 3999 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4000 return; 4001 } 4002 4003 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4004 trace_ext4_discard_preallocations(inode); 4005 4006 INIT_LIST_HEAD(&list); 4007 4008 repeat: 4009 /* first, collect all pa's in the inode */ 4010 spin_lock(&ei->i_prealloc_lock); 4011 while (!list_empty(&ei->i_prealloc_list)) { 4012 pa = list_entry(ei->i_prealloc_list.next, 4013 struct ext4_prealloc_space, pa_inode_list); 4014 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4015 spin_lock(&pa->pa_lock); 4016 if (atomic_read(&pa->pa_count)) { 4017 /* this shouldn't happen often - nobody should 4018 * use preallocation while we're discarding it */ 4019 spin_unlock(&pa->pa_lock); 4020 spin_unlock(&ei->i_prealloc_lock); 4021 ext4_msg(sb, KERN_ERR, 4022 "uh-oh! used pa while discarding"); 4023 WARN_ON(1); 4024 schedule_timeout_uninterruptible(HZ); 4025 goto repeat; 4026 4027 } 4028 if (pa->pa_deleted == 0) { 4029 pa->pa_deleted = 1; 4030 spin_unlock(&pa->pa_lock); 4031 list_del_rcu(&pa->pa_inode_list); 4032 list_add(&pa->u.pa_tmp_list, &list); 4033 continue; 4034 } 4035 4036 /* someone is deleting pa right now */ 4037 spin_unlock(&pa->pa_lock); 4038 spin_unlock(&ei->i_prealloc_lock); 4039 4040 /* we have to wait here because pa_deleted 4041 * doesn't mean pa is already unlinked from 4042 * the list. as we might be called from 4043 * ->clear_inode() the inode will get freed 4044 * and concurrent thread which is unlinking 4045 * pa from inode's list may access already 4046 * freed memory, bad-bad-bad */ 4047 4048 /* XXX: if this happens too often, we can 4049 * add a flag to force wait only in case 4050 * of ->clear_inode(), but not in case of 4051 * regular truncate */ 4052 schedule_timeout_uninterruptible(HZ); 4053 goto repeat; 4054 } 4055 spin_unlock(&ei->i_prealloc_lock); 4056 4057 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4058 BUG_ON(pa->pa_type != MB_INODE_PA); 4059 group = ext4_get_group_number(sb, pa->pa_pstart); 4060 4061 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4062 GFP_NOFS|__GFP_NOFAIL); 4063 if (err) { 4064 ext4_error(sb, "Error %d loading buddy information for %u", 4065 err, group); 4066 continue; 4067 } 4068 4069 bitmap_bh = ext4_read_block_bitmap(sb, group); 4070 if (IS_ERR(bitmap_bh)) { 4071 err = PTR_ERR(bitmap_bh); 4072 ext4_error(sb, "Error %d reading block bitmap for %u", 4073 err, group); 4074 ext4_mb_unload_buddy(&e4b); 4075 continue; 4076 } 4077 4078 ext4_lock_group(sb, group); 4079 list_del(&pa->pa_group_list); 4080 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4081 ext4_unlock_group(sb, group); 4082 4083 ext4_mb_unload_buddy(&e4b); 4084 put_bh(bitmap_bh); 4085 4086 list_del(&pa->u.pa_tmp_list); 4087 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4088 } 4089 } 4090 4091 #ifdef CONFIG_EXT4_DEBUG ext4_mb_show_ac(struct ext4_allocation_context * ac)4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4093 { 4094 struct super_block *sb = ac->ac_sb; 4095 ext4_group_t ngroups, i; 4096 4097 if (!ext4_mballoc_debug || 4098 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4099 return; 4100 4101 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4102 " Allocation context details:"); 4103 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4104 ac->ac_status, ac->ac_flags); 4105 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4106 "goal %lu/%lu/%lu@%lu, " 4107 "best %lu/%lu/%lu@%lu cr %d", 4108 (unsigned long)ac->ac_o_ex.fe_group, 4109 (unsigned long)ac->ac_o_ex.fe_start, 4110 (unsigned long)ac->ac_o_ex.fe_len, 4111 (unsigned long)ac->ac_o_ex.fe_logical, 4112 (unsigned long)ac->ac_g_ex.fe_group, 4113 (unsigned long)ac->ac_g_ex.fe_start, 4114 (unsigned long)ac->ac_g_ex.fe_len, 4115 (unsigned long)ac->ac_g_ex.fe_logical, 4116 (unsigned long)ac->ac_b_ex.fe_group, 4117 (unsigned long)ac->ac_b_ex.fe_start, 4118 (unsigned long)ac->ac_b_ex.fe_len, 4119 (unsigned long)ac->ac_b_ex.fe_logical, 4120 (int)ac->ac_criteria); 4121 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4122 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4123 ngroups = ext4_get_groups_count(sb); 4124 for (i = 0; i < ngroups; i++) { 4125 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4126 struct ext4_prealloc_space *pa; 4127 ext4_grpblk_t start; 4128 struct list_head *cur; 4129 ext4_lock_group(sb, i); 4130 list_for_each(cur, &grp->bb_prealloc_list) { 4131 pa = list_entry(cur, struct ext4_prealloc_space, 4132 pa_group_list); 4133 spin_lock(&pa->pa_lock); 4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4135 NULL, &start); 4136 spin_unlock(&pa->pa_lock); 4137 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4138 start, pa->pa_len); 4139 } 4140 ext4_unlock_group(sb, i); 4141 4142 if (grp->bb_free == 0) 4143 continue; 4144 printk(KERN_ERR "%u: %d/%d \n", 4145 i, grp->bb_free, grp->bb_fragments); 4146 } 4147 printk(KERN_ERR "\n"); 4148 } 4149 #else ext4_mb_show_ac(struct ext4_allocation_context * ac)4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4151 { 4152 return; 4153 } 4154 #endif 4155 4156 /* 4157 * We use locality group preallocation for small size file. The size of the 4158 * file is determined by the current size or the resulting size after 4159 * allocation which ever is larger 4160 * 4161 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4162 */ ext4_mb_group_or_file(struct ext4_allocation_context * ac)4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4164 { 4165 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4166 int bsbits = ac->ac_sb->s_blocksize_bits; 4167 loff_t size, isize; 4168 4169 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4170 return; 4171 4172 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4173 return; 4174 4175 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4176 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4177 >> bsbits; 4178 4179 if ((size == isize) && 4180 !ext4_fs_is_busy(sbi) && 4181 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4182 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4183 return; 4184 } 4185 4186 if (sbi->s_mb_group_prealloc <= 0) { 4187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4188 return; 4189 } 4190 4191 /* don't use group allocation for large files */ 4192 size = max(size, isize); 4193 if (size > sbi->s_mb_stream_request) { 4194 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4195 return; 4196 } 4197 4198 BUG_ON(ac->ac_lg != NULL); 4199 /* 4200 * locality group prealloc space are per cpu. The reason for having 4201 * per cpu locality group is to reduce the contention between block 4202 * request from multiple CPUs. 4203 */ 4204 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4205 4206 /* we're going to use group allocation */ 4207 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4208 4209 /* serialize all allocations in the group */ 4210 mutex_lock(&ac->ac_lg->lg_mutex); 4211 } 4212 4213 static noinline_for_stack int ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4215 struct ext4_allocation_request *ar) 4216 { 4217 struct super_block *sb = ar->inode->i_sb; 4218 struct ext4_sb_info *sbi = EXT4_SB(sb); 4219 struct ext4_super_block *es = sbi->s_es; 4220 ext4_group_t group; 4221 unsigned int len; 4222 ext4_fsblk_t goal; 4223 ext4_grpblk_t block; 4224 4225 /* we can't allocate > group size */ 4226 len = ar->len; 4227 4228 /* just a dirty hack to filter too big requests */ 4229 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4230 len = EXT4_CLUSTERS_PER_GROUP(sb); 4231 4232 /* start searching from the goal */ 4233 goal = ar->goal; 4234 if (goal < le32_to_cpu(es->s_first_data_block) || 4235 goal >= ext4_blocks_count(es)) 4236 goal = le32_to_cpu(es->s_first_data_block); 4237 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4238 4239 /* set up allocation goals */ 4240 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4241 ac->ac_status = AC_STATUS_CONTINUE; 4242 ac->ac_sb = sb; 4243 ac->ac_inode = ar->inode; 4244 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4245 ac->ac_o_ex.fe_group = group; 4246 ac->ac_o_ex.fe_start = block; 4247 ac->ac_o_ex.fe_len = len; 4248 ac->ac_g_ex = ac->ac_o_ex; 4249 ac->ac_flags = ar->flags; 4250 4251 /* we have to define context: we'll we work with a file or 4252 * locality group. this is a policy, actually */ 4253 ext4_mb_group_or_file(ac); 4254 4255 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4256 "left: %u/%u, right %u/%u to %swritable\n", 4257 (unsigned) ar->len, (unsigned) ar->logical, 4258 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4259 (unsigned) ar->lleft, (unsigned) ar->pleft, 4260 (unsigned) ar->lright, (unsigned) ar->pright, 4261 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4262 return 0; 4263 4264 } 4265 4266 static noinline_for_stack void ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4267 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4268 struct ext4_locality_group *lg, 4269 int order, int total_entries) 4270 { 4271 ext4_group_t group = 0; 4272 struct ext4_buddy e4b; 4273 struct list_head discard_list; 4274 struct ext4_prealloc_space *pa, *tmp; 4275 4276 mb_debug(1, "discard locality group preallocation\n"); 4277 4278 INIT_LIST_HEAD(&discard_list); 4279 4280 spin_lock(&lg->lg_prealloc_lock); 4281 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4282 pa_inode_list) { 4283 spin_lock(&pa->pa_lock); 4284 if (atomic_read(&pa->pa_count)) { 4285 /* 4286 * This is the pa that we just used 4287 * for block allocation. So don't 4288 * free that 4289 */ 4290 spin_unlock(&pa->pa_lock); 4291 continue; 4292 } 4293 if (pa->pa_deleted) { 4294 spin_unlock(&pa->pa_lock); 4295 continue; 4296 } 4297 /* only lg prealloc space */ 4298 BUG_ON(pa->pa_type != MB_GROUP_PA); 4299 4300 /* seems this one can be freed ... */ 4301 pa->pa_deleted = 1; 4302 spin_unlock(&pa->pa_lock); 4303 4304 list_del_rcu(&pa->pa_inode_list); 4305 list_add(&pa->u.pa_tmp_list, &discard_list); 4306 4307 total_entries--; 4308 if (total_entries <= 5) { 4309 /* 4310 * we want to keep only 5 entries 4311 * allowing it to grow to 8. This 4312 * mak sure we don't call discard 4313 * soon for this list. 4314 */ 4315 break; 4316 } 4317 } 4318 spin_unlock(&lg->lg_prealloc_lock); 4319 4320 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4321 int err; 4322 4323 group = ext4_get_group_number(sb, pa->pa_pstart); 4324 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4325 GFP_NOFS|__GFP_NOFAIL); 4326 if (err) { 4327 ext4_error(sb, "Error %d loading buddy information for %u", 4328 err, group); 4329 continue; 4330 } 4331 ext4_lock_group(sb, group); 4332 list_del(&pa->pa_group_list); 4333 ext4_mb_release_group_pa(&e4b, pa); 4334 ext4_unlock_group(sb, group); 4335 4336 ext4_mb_unload_buddy(&e4b); 4337 list_del(&pa->u.pa_tmp_list); 4338 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4339 } 4340 } 4341 4342 /* 4343 * We have incremented pa_count. So it cannot be freed at this 4344 * point. Also we hold lg_mutex. So no parallel allocation is 4345 * possible from this lg. That means pa_free cannot be updated. 4346 * 4347 * A parallel ext4_mb_discard_group_preallocations is possible. 4348 * which can cause the lg_prealloc_list to be updated. 4349 */ 4350 ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4352 { 4353 int order, added = 0, lg_prealloc_count = 1; 4354 struct super_block *sb = ac->ac_sb; 4355 struct ext4_locality_group *lg = ac->ac_lg; 4356 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4357 4358 order = fls(pa->pa_free) - 1; 4359 if (order > PREALLOC_TB_SIZE - 1) 4360 /* The max size of hash table is PREALLOC_TB_SIZE */ 4361 order = PREALLOC_TB_SIZE - 1; 4362 /* Add the prealloc space to lg */ 4363 spin_lock(&lg->lg_prealloc_lock); 4364 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4365 pa_inode_list) { 4366 spin_lock(&tmp_pa->pa_lock); 4367 if (tmp_pa->pa_deleted) { 4368 spin_unlock(&tmp_pa->pa_lock); 4369 continue; 4370 } 4371 if (!added && pa->pa_free < tmp_pa->pa_free) { 4372 /* Add to the tail of the previous entry */ 4373 list_add_tail_rcu(&pa->pa_inode_list, 4374 &tmp_pa->pa_inode_list); 4375 added = 1; 4376 /* 4377 * we want to count the total 4378 * number of entries in the list 4379 */ 4380 } 4381 spin_unlock(&tmp_pa->pa_lock); 4382 lg_prealloc_count++; 4383 } 4384 if (!added) 4385 list_add_tail_rcu(&pa->pa_inode_list, 4386 &lg->lg_prealloc_list[order]); 4387 spin_unlock(&lg->lg_prealloc_lock); 4388 4389 /* Now trim the list to be not more than 8 elements */ 4390 if (lg_prealloc_count > 8) { 4391 ext4_mb_discard_lg_preallocations(sb, lg, 4392 order, lg_prealloc_count); 4393 return; 4394 } 4395 return ; 4396 } 4397 4398 /* 4399 * release all resource we used in allocation 4400 */ ext4_mb_release_context(struct ext4_allocation_context * ac)4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4402 { 4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4404 struct ext4_prealloc_space *pa = ac->ac_pa; 4405 if (pa) { 4406 if (pa->pa_type == MB_GROUP_PA) { 4407 /* see comment in ext4_mb_use_group_pa() */ 4408 spin_lock(&pa->pa_lock); 4409 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4410 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4411 pa->pa_free -= ac->ac_b_ex.fe_len; 4412 pa->pa_len -= ac->ac_b_ex.fe_len; 4413 spin_unlock(&pa->pa_lock); 4414 } 4415 } 4416 if (pa) { 4417 /* 4418 * We want to add the pa to the right bucket. 4419 * Remove it from the list and while adding 4420 * make sure the list to which we are adding 4421 * doesn't grow big. 4422 */ 4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4424 spin_lock(pa->pa_obj_lock); 4425 list_del_rcu(&pa->pa_inode_list); 4426 spin_unlock(pa->pa_obj_lock); 4427 ext4_mb_add_n_trim(ac); 4428 } 4429 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4430 } 4431 if (ac->ac_bitmap_page) 4432 page_cache_release(ac->ac_bitmap_page); 4433 if (ac->ac_buddy_page) 4434 page_cache_release(ac->ac_buddy_page); 4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4436 mutex_unlock(&ac->ac_lg->lg_mutex); 4437 ext4_mb_collect_stats(ac); 4438 return 0; 4439 } 4440 ext4_mb_discard_preallocations(struct super_block * sb,int needed)4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4442 { 4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4444 int ret; 4445 int freed = 0; 4446 4447 trace_ext4_mb_discard_preallocations(sb, needed); 4448 for (i = 0; i < ngroups && needed > 0; i++) { 4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4450 freed += ret; 4451 needed -= ret; 4452 } 4453 4454 return freed; 4455 } 4456 4457 /* 4458 * Main entry point into mballoc to allocate blocks 4459 * it tries to use preallocation first, then falls back 4460 * to usual allocation 4461 */ ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4463 struct ext4_allocation_request *ar, int *errp) 4464 { 4465 int freed; 4466 struct ext4_allocation_context *ac = NULL; 4467 struct ext4_sb_info *sbi; 4468 struct super_block *sb; 4469 ext4_fsblk_t block = 0; 4470 unsigned int inquota = 0; 4471 unsigned int reserv_clstrs = 0; 4472 4473 might_sleep(); 4474 sb = ar->inode->i_sb; 4475 sbi = EXT4_SB(sb); 4476 4477 trace_ext4_request_blocks(ar); 4478 4479 /* Allow to use superuser reservation for quota file */ 4480 if (IS_NOQUOTA(ar->inode)) 4481 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4482 4483 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4484 /* Without delayed allocation we need to verify 4485 * there is enough free blocks to do block allocation 4486 * and verify allocation doesn't exceed the quota limits. 4487 */ 4488 while (ar->len && 4489 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4490 4491 /* let others to free the space */ 4492 cond_resched(); 4493 ar->len = ar->len >> 1; 4494 } 4495 if (!ar->len) { 4496 *errp = -ENOSPC; 4497 return 0; 4498 } 4499 reserv_clstrs = ar->len; 4500 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4501 dquot_alloc_block_nofail(ar->inode, 4502 EXT4_C2B(sbi, ar->len)); 4503 } else { 4504 while (ar->len && 4505 dquot_alloc_block(ar->inode, 4506 EXT4_C2B(sbi, ar->len))) { 4507 4508 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4509 ar->len--; 4510 } 4511 } 4512 inquota = ar->len; 4513 if (ar->len == 0) { 4514 *errp = -EDQUOT; 4515 goto out; 4516 } 4517 } 4518 4519 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4520 if (!ac) { 4521 ar->len = 0; 4522 *errp = -ENOMEM; 4523 goto out; 4524 } 4525 4526 *errp = ext4_mb_initialize_context(ac, ar); 4527 if (*errp) { 4528 ar->len = 0; 4529 goto out; 4530 } 4531 4532 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4533 if (!ext4_mb_use_preallocated(ac)) { 4534 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4535 ext4_mb_normalize_request(ac, ar); 4536 repeat: 4537 /* allocate space in core */ 4538 *errp = ext4_mb_regular_allocator(ac); 4539 if (*errp) 4540 goto discard_and_exit; 4541 4542 /* as we've just preallocated more space than 4543 * user requested originally, we store allocated 4544 * space in a special descriptor */ 4545 if (ac->ac_status == AC_STATUS_FOUND && 4546 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4547 *errp = ext4_mb_new_preallocation(ac); 4548 if (*errp) { 4549 discard_and_exit: 4550 ext4_discard_allocated_blocks(ac); 4551 goto errout; 4552 } 4553 } 4554 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4555 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4556 if (*errp) { 4557 ext4_discard_allocated_blocks(ac); 4558 goto errout; 4559 } else { 4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4561 ar->len = ac->ac_b_ex.fe_len; 4562 } 4563 } else { 4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4565 if (freed) 4566 goto repeat; 4567 *errp = -ENOSPC; 4568 } 4569 4570 errout: 4571 if (*errp) { 4572 ac->ac_b_ex.fe_len = 0; 4573 ar->len = 0; 4574 ext4_mb_show_ac(ac); 4575 } 4576 ext4_mb_release_context(ac); 4577 out: 4578 if (ac) 4579 kmem_cache_free(ext4_ac_cachep, ac); 4580 if (inquota && ar->len < inquota) 4581 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4582 if (!ar->len) { 4583 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4584 /* release all the reserved blocks if non delalloc */ 4585 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4586 reserv_clstrs); 4587 } 4588 4589 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4590 4591 return block; 4592 } 4593 4594 /* 4595 * We can merge two free data extents only if the physical blocks 4596 * are contiguous, AND the extents were freed by the same transaction, 4597 * AND the blocks are associated with the same group. 4598 */ can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4599 static int can_merge(struct ext4_free_data *entry1, 4600 struct ext4_free_data *entry2) 4601 { 4602 if ((entry1->efd_tid == entry2->efd_tid) && 4603 (entry1->efd_group == entry2->efd_group) && 4604 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4605 return 1; 4606 return 0; 4607 } 4608 4609 static noinline_for_stack int ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4610 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4611 struct ext4_free_data *new_entry) 4612 { 4613 ext4_group_t group = e4b->bd_group; 4614 ext4_grpblk_t cluster; 4615 struct ext4_free_data *entry; 4616 struct ext4_group_info *db = e4b->bd_info; 4617 struct super_block *sb = e4b->bd_sb; 4618 struct ext4_sb_info *sbi = EXT4_SB(sb); 4619 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4620 struct rb_node *parent = NULL, *new_node; 4621 4622 BUG_ON(!ext4_handle_valid(handle)); 4623 BUG_ON(e4b->bd_bitmap_page == NULL); 4624 BUG_ON(e4b->bd_buddy_page == NULL); 4625 4626 new_node = &new_entry->efd_node; 4627 cluster = new_entry->efd_start_cluster; 4628 4629 if (!*n) { 4630 /* first free block exent. We need to 4631 protect buddy cache from being freed, 4632 * otherwise we'll refresh it from 4633 * on-disk bitmap and lose not-yet-available 4634 * blocks */ 4635 page_cache_get(e4b->bd_buddy_page); 4636 page_cache_get(e4b->bd_bitmap_page); 4637 } 4638 while (*n) { 4639 parent = *n; 4640 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4641 if (cluster < entry->efd_start_cluster) 4642 n = &(*n)->rb_left; 4643 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4644 n = &(*n)->rb_right; 4645 else { 4646 ext4_grp_locked_error(sb, group, 0, 4647 ext4_group_first_block_no(sb, group) + 4648 EXT4_C2B(sbi, cluster), 4649 "Block already on to-be-freed list"); 4650 kmem_cache_free(ext4_free_data_cachep, new_entry); 4651 return 0; 4652 } 4653 } 4654 4655 rb_link_node(new_node, parent, n); 4656 rb_insert_color(new_node, &db->bb_free_root); 4657 4658 /* Now try to see the extent can be merged to left and right */ 4659 node = rb_prev(new_node); 4660 if (node) { 4661 entry = rb_entry(node, struct ext4_free_data, efd_node); 4662 if (can_merge(entry, new_entry) && 4663 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4664 new_entry->efd_start_cluster = entry->efd_start_cluster; 4665 new_entry->efd_count += entry->efd_count; 4666 rb_erase(node, &(db->bb_free_root)); 4667 kmem_cache_free(ext4_free_data_cachep, entry); 4668 } 4669 } 4670 4671 node = rb_next(new_node); 4672 if (node) { 4673 entry = rb_entry(node, struct ext4_free_data, efd_node); 4674 if (can_merge(new_entry, entry) && 4675 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4676 new_entry->efd_count += entry->efd_count; 4677 rb_erase(node, &(db->bb_free_root)); 4678 kmem_cache_free(ext4_free_data_cachep, entry); 4679 } 4680 } 4681 /* Add the extent to transaction's private list */ 4682 ext4_journal_callback_add(handle, ext4_free_data_callback, 4683 &new_entry->efd_jce); 4684 return 0; 4685 } 4686 4687 /** 4688 * ext4_free_blocks() -- Free given blocks and update quota 4689 * @handle: handle for this transaction 4690 * @inode: inode 4691 * @block: start physical block to free 4692 * @count: number of blocks to count 4693 * @flags: flags used by ext4_free_blocks 4694 */ ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4695 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4696 struct buffer_head *bh, ext4_fsblk_t block, 4697 unsigned long count, int flags) 4698 { 4699 struct buffer_head *bitmap_bh = NULL; 4700 struct super_block *sb = inode->i_sb; 4701 struct ext4_group_desc *gdp; 4702 unsigned int overflow; 4703 ext4_grpblk_t bit; 4704 struct buffer_head *gd_bh; 4705 ext4_group_t block_group; 4706 struct ext4_sb_info *sbi; 4707 struct ext4_buddy e4b; 4708 unsigned int count_clusters; 4709 int err = 0; 4710 int ret; 4711 4712 might_sleep(); 4713 if (bh) { 4714 if (block) 4715 BUG_ON(block != bh->b_blocknr); 4716 else 4717 block = bh->b_blocknr; 4718 } 4719 4720 sbi = EXT4_SB(sb); 4721 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4722 !ext4_inode_block_valid(inode, block, count)) { 4723 ext4_error(sb, "Freeing blocks not in datazone - " 4724 "block = %llu, count = %lu", block, count); 4725 goto error_return; 4726 } 4727 4728 ext4_debug("freeing block %llu\n", block); 4729 trace_ext4_free_blocks(inode, block, count, flags); 4730 4731 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4732 BUG_ON(count > 1); 4733 4734 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4735 inode, bh, block); 4736 } 4737 4738 /* 4739 * We need to make sure we don't reuse the freed block until 4740 * after the transaction is committed, which we can do by 4741 * treating the block as metadata, below. We make an 4742 * exception if the inode is to be written in writeback mode 4743 * since writeback mode has weak data consistency guarantees. 4744 */ 4745 if (!ext4_should_writeback_data(inode)) 4746 flags |= EXT4_FREE_BLOCKS_METADATA; 4747 4748 /* 4749 * If the extent to be freed does not begin on a cluster 4750 * boundary, we need to deal with partial clusters at the 4751 * beginning and end of the extent. Normally we will free 4752 * blocks at the beginning or the end unless we are explicitly 4753 * requested to avoid doing so. 4754 */ 4755 overflow = EXT4_PBLK_COFF(sbi, block); 4756 if (overflow) { 4757 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4758 overflow = sbi->s_cluster_ratio - overflow; 4759 block += overflow; 4760 if (count > overflow) 4761 count -= overflow; 4762 else 4763 return; 4764 } else { 4765 block -= overflow; 4766 count += overflow; 4767 } 4768 } 4769 overflow = EXT4_LBLK_COFF(sbi, count); 4770 if (overflow) { 4771 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4772 if (count > overflow) 4773 count -= overflow; 4774 else 4775 return; 4776 } else 4777 count += sbi->s_cluster_ratio - overflow; 4778 } 4779 4780 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4781 int i; 4782 4783 for (i = 0; i < count; i++) { 4784 cond_resched(); 4785 bh = sb_find_get_block(inode->i_sb, block + i); 4786 if (!bh) 4787 continue; 4788 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4789 inode, bh, block + i); 4790 } 4791 } 4792 4793 do_more: 4794 overflow = 0; 4795 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4796 4797 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4798 ext4_get_group_info(sb, block_group)))) 4799 return; 4800 4801 /* 4802 * Check to see if we are freeing blocks across a group 4803 * boundary. 4804 */ 4805 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4806 overflow = EXT4_C2B(sbi, bit) + count - 4807 EXT4_BLOCKS_PER_GROUP(sb); 4808 count -= overflow; 4809 } 4810 count_clusters = EXT4_NUM_B2C(sbi, count); 4811 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4812 if (IS_ERR(bitmap_bh)) { 4813 err = PTR_ERR(bitmap_bh); 4814 bitmap_bh = NULL; 4815 goto error_return; 4816 } 4817 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4818 if (!gdp) { 4819 err = -EIO; 4820 goto error_return; 4821 } 4822 4823 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4824 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4825 in_range(block, ext4_inode_table(sb, gdp), 4826 EXT4_SB(sb)->s_itb_per_group) || 4827 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4828 EXT4_SB(sb)->s_itb_per_group)) { 4829 4830 ext4_error(sb, "Freeing blocks in system zone - " 4831 "Block = %llu, count = %lu", block, count); 4832 /* err = 0. ext4_std_error should be a no op */ 4833 goto error_return; 4834 } 4835 4836 BUFFER_TRACE(bitmap_bh, "getting write access"); 4837 err = ext4_journal_get_write_access(handle, bitmap_bh); 4838 if (err) 4839 goto error_return; 4840 4841 /* 4842 * We are about to modify some metadata. Call the journal APIs 4843 * to unshare ->b_data if a currently-committing transaction is 4844 * using it 4845 */ 4846 BUFFER_TRACE(gd_bh, "get_write_access"); 4847 err = ext4_journal_get_write_access(handle, gd_bh); 4848 if (err) 4849 goto error_return; 4850 #ifdef AGGRESSIVE_CHECK 4851 { 4852 int i; 4853 for (i = 0; i < count_clusters; i++) 4854 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4855 } 4856 #endif 4857 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4858 4859 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4860 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4861 GFP_NOFS|__GFP_NOFAIL); 4862 if (err) 4863 goto error_return; 4864 4865 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4866 struct ext4_free_data *new_entry; 4867 /* 4868 * blocks being freed are metadata. these blocks shouldn't 4869 * be used until this transaction is committed 4870 * 4871 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4872 * to fail. 4873 */ 4874 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4875 GFP_NOFS|__GFP_NOFAIL); 4876 new_entry->efd_start_cluster = bit; 4877 new_entry->efd_group = block_group; 4878 new_entry->efd_count = count_clusters; 4879 new_entry->efd_tid = handle->h_transaction->t_tid; 4880 4881 ext4_lock_group(sb, block_group); 4882 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4883 ext4_mb_free_metadata(handle, &e4b, new_entry); 4884 } else { 4885 /* need to update group_info->bb_free and bitmap 4886 * with group lock held. generate_buddy look at 4887 * them with group lock_held 4888 */ 4889 if (test_opt(sb, DISCARD)) { 4890 err = ext4_issue_discard(sb, block_group, bit, count, 4891 0); 4892 if (err && err != -EOPNOTSUPP) 4893 ext4_msg(sb, KERN_WARNING, "discard request in" 4894 " group:%d block:%d count:%lu failed" 4895 " with %d", block_group, bit, count, 4896 err); 4897 } else 4898 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4899 4900 ext4_lock_group(sb, block_group); 4901 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4902 mb_free_blocks(inode, &e4b, bit, count_clusters); 4903 } 4904 4905 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4906 ext4_free_group_clusters_set(sb, gdp, ret); 4907 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4908 ext4_group_desc_csum_set(sb, block_group, gdp); 4909 ext4_unlock_group(sb, block_group); 4910 4911 if (sbi->s_log_groups_per_flex) { 4912 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4913 atomic64_add(count_clusters, 4914 &sbi_array_rcu_deref(sbi, s_flex_groups, 4915 flex_group)->free_clusters); 4916 } 4917 4918 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4919 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4920 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4921 4922 ext4_mb_unload_buddy(&e4b); 4923 4924 /* We dirtied the bitmap block */ 4925 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4926 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4927 4928 /* And the group descriptor block */ 4929 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4930 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4931 if (!err) 4932 err = ret; 4933 4934 if (overflow && !err) { 4935 block += count; 4936 count = overflow; 4937 put_bh(bitmap_bh); 4938 goto do_more; 4939 } 4940 error_return: 4941 brelse(bitmap_bh); 4942 ext4_std_error(sb, err); 4943 return; 4944 } 4945 4946 /** 4947 * ext4_group_add_blocks() -- Add given blocks to an existing group 4948 * @handle: handle to this transaction 4949 * @sb: super block 4950 * @block: start physical block to add to the block group 4951 * @count: number of blocks to free 4952 * 4953 * This marks the blocks as free in the bitmap and buddy. 4954 */ ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4955 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4956 ext4_fsblk_t block, unsigned long count) 4957 { 4958 struct buffer_head *bitmap_bh = NULL; 4959 struct buffer_head *gd_bh; 4960 ext4_group_t block_group; 4961 ext4_grpblk_t bit; 4962 unsigned int i; 4963 struct ext4_group_desc *desc; 4964 struct ext4_sb_info *sbi = EXT4_SB(sb); 4965 struct ext4_buddy e4b; 4966 int err = 0, ret, blk_free_count; 4967 ext4_grpblk_t blocks_freed; 4968 4969 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4970 4971 if (count == 0) 4972 return 0; 4973 4974 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4975 /* 4976 * Check to see if we are freeing blocks across a group 4977 * boundary. 4978 */ 4979 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4980 ext4_warning(sb, "too much blocks added to group %u\n", 4981 block_group); 4982 err = -EINVAL; 4983 goto error_return; 4984 } 4985 4986 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4987 if (IS_ERR(bitmap_bh)) { 4988 err = PTR_ERR(bitmap_bh); 4989 bitmap_bh = NULL; 4990 goto error_return; 4991 } 4992 4993 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4994 if (!desc) { 4995 err = -EIO; 4996 goto error_return; 4997 } 4998 4999 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5000 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5001 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5002 in_range(block + count - 1, ext4_inode_table(sb, desc), 5003 sbi->s_itb_per_group)) { 5004 ext4_error(sb, "Adding blocks in system zones - " 5005 "Block = %llu, count = %lu", 5006 block, count); 5007 err = -EINVAL; 5008 goto error_return; 5009 } 5010 5011 BUFFER_TRACE(bitmap_bh, "getting write access"); 5012 err = ext4_journal_get_write_access(handle, bitmap_bh); 5013 if (err) 5014 goto error_return; 5015 5016 /* 5017 * We are about to modify some metadata. Call the journal APIs 5018 * to unshare ->b_data if a currently-committing transaction is 5019 * using it 5020 */ 5021 BUFFER_TRACE(gd_bh, "get_write_access"); 5022 err = ext4_journal_get_write_access(handle, gd_bh); 5023 if (err) 5024 goto error_return; 5025 5026 for (i = 0, blocks_freed = 0; i < count; i++) { 5027 BUFFER_TRACE(bitmap_bh, "clear bit"); 5028 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5029 ext4_error(sb, "bit already cleared for block %llu", 5030 (ext4_fsblk_t)(block + i)); 5031 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5032 } else { 5033 blocks_freed++; 5034 } 5035 } 5036 5037 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5038 if (err) 5039 goto error_return; 5040 5041 /* 5042 * need to update group_info->bb_free and bitmap 5043 * with group lock held. generate_buddy look at 5044 * them with group lock_held 5045 */ 5046 ext4_lock_group(sb, block_group); 5047 mb_clear_bits(bitmap_bh->b_data, bit, count); 5048 mb_free_blocks(NULL, &e4b, bit, count); 5049 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 5050 ext4_free_group_clusters_set(sb, desc, blk_free_count); 5051 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5052 ext4_group_desc_csum_set(sb, block_group, desc); 5053 ext4_unlock_group(sb, block_group); 5054 percpu_counter_add(&sbi->s_freeclusters_counter, 5055 EXT4_NUM_B2C(sbi, blocks_freed)); 5056 5057 if (sbi->s_log_groups_per_flex) { 5058 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5059 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 5060 &sbi_array_rcu_deref(sbi, s_flex_groups, 5061 flex_group)->free_clusters); 5062 } 5063 5064 ext4_mb_unload_buddy(&e4b); 5065 5066 /* We dirtied the bitmap block */ 5067 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5068 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5069 5070 /* And the group descriptor block */ 5071 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5072 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5073 if (!err) 5074 err = ret; 5075 5076 error_return: 5077 brelse(bitmap_bh); 5078 ext4_std_error(sb, err); 5079 return err; 5080 } 5081 5082 /** 5083 * ext4_trim_extent -- function to TRIM one single free extent in the group 5084 * @sb: super block for the file system 5085 * @start: starting block of the free extent in the alloc. group 5086 * @count: number of blocks to TRIM 5087 * @group: alloc. group we are working with 5088 * @e4b: ext4 buddy for the group 5089 * @blkdev_flags: flags for the block device 5090 * 5091 * Trim "count" blocks starting at "start" in the "group". To assure that no 5092 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5093 * be called with under the group lock. 5094 */ ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b,unsigned long blkdev_flags)5095 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5096 ext4_group_t group, struct ext4_buddy *e4b, 5097 unsigned long blkdev_flags) 5098 __releases(bitlock) 5099 __acquires(bitlock) 5100 { 5101 struct ext4_free_extent ex; 5102 int ret = 0; 5103 5104 trace_ext4_trim_extent(sb, group, start, count); 5105 5106 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5107 5108 ex.fe_start = start; 5109 ex.fe_group = group; 5110 ex.fe_len = count; 5111 5112 /* 5113 * Mark blocks used, so no one can reuse them while 5114 * being trimmed. 5115 */ 5116 mb_mark_used(e4b, &ex); 5117 ext4_unlock_group(sb, group); 5118 ret = ext4_issue_discard(sb, group, start, count, blkdev_flags); 5119 ext4_lock_group(sb, group); 5120 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5121 return ret; 5122 } 5123 5124 /** 5125 * ext4_trim_all_free -- function to trim all free space in alloc. group 5126 * @sb: super block for file system 5127 * @group: group to be trimmed 5128 * @start: first group block to examine 5129 * @max: last group block to examine 5130 * @minblocks: minimum extent block count 5131 * @blkdev_flags: flags for the block device 5132 * 5133 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5134 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5135 * the extent. 5136 * 5137 * 5138 * ext4_trim_all_free walks through group's block bitmap searching for free 5139 * extents. When the free extent is found, mark it as used in group buddy 5140 * bitmap. Then issue a TRIM command on this extent and free the extent in 5141 * the group buddy bitmap. This is done until whole group is scanned. 5142 */ 5143 static ext4_grpblk_t ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks,unsigned long blkdev_flags)5144 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5145 ext4_grpblk_t start, ext4_grpblk_t max, 5146 ext4_grpblk_t minblocks, unsigned long blkdev_flags) 5147 { 5148 void *bitmap; 5149 ext4_grpblk_t next, count = 0, free_count = 0; 5150 struct ext4_buddy e4b; 5151 int ret = 0; 5152 5153 trace_ext4_trim_all_free(sb, group, start, max); 5154 5155 ret = ext4_mb_load_buddy(sb, group, &e4b); 5156 if (ret) { 5157 ext4_warning(sb, "Error %d loading buddy information for %u", 5158 ret, group); 5159 return ret; 5160 } 5161 bitmap = e4b.bd_bitmap; 5162 5163 ext4_lock_group(sb, group); 5164 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5165 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5166 goto out; 5167 5168 start = (e4b.bd_info->bb_first_free > start) ? 5169 e4b.bd_info->bb_first_free : start; 5170 5171 while (start <= max) { 5172 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5173 if (start > max) 5174 break; 5175 next = mb_find_next_bit(bitmap, max + 1, start); 5176 5177 if ((next - start) >= minblocks) { 5178 ret = ext4_trim_extent(sb, start, 5179 next - start, group, &e4b, 5180 blkdev_flags); 5181 if (ret && ret != -EOPNOTSUPP) 5182 break; 5183 ret = 0; 5184 count += next - start; 5185 } 5186 free_count += next - start; 5187 start = next + 1; 5188 5189 if (fatal_signal_pending(current)) { 5190 count = -ERESTARTSYS; 5191 break; 5192 } 5193 5194 if (need_resched()) { 5195 ext4_unlock_group(sb, group); 5196 cond_resched(); 5197 ext4_lock_group(sb, group); 5198 } 5199 5200 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5201 break; 5202 } 5203 5204 if (!ret) { 5205 ret = count; 5206 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5207 } 5208 out: 5209 ext4_unlock_group(sb, group); 5210 ext4_mb_unload_buddy(&e4b); 5211 5212 ext4_debug("trimmed %d blocks in the group %d\n", 5213 count, group); 5214 5215 return ret; 5216 } 5217 5218 /** 5219 * ext4_trim_fs() -- trim ioctl handle function 5220 * @sb: superblock for filesystem 5221 * @range: fstrim_range structure 5222 * @blkdev_flags: flags for the block device 5223 * 5224 * start: First Byte to trim 5225 * len: number of Bytes to trim from start 5226 * minlen: minimum extent length in Bytes 5227 * ext4_trim_fs goes through all allocation groups containing Bytes from 5228 * start to start+len. For each such a group ext4_trim_all_free function 5229 * is invoked to trim all free space. 5230 */ ext4_trim_fs(struct super_block * sb,struct fstrim_range * range,unsigned long blkdev_flags)5231 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range, 5232 unsigned long blkdev_flags) 5233 { 5234 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5235 struct ext4_group_info *grp; 5236 ext4_group_t group, first_group, last_group; 5237 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5238 uint64_t start, end, minlen, trimmed = 0; 5239 ext4_fsblk_t first_data_blk = 5240 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5241 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5242 int ret = 0; 5243 5244 start = range->start >> sb->s_blocksize_bits; 5245 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5246 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5247 range->minlen >> sb->s_blocksize_bits); 5248 5249 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5250 start >= max_blks || 5251 range->len < sb->s_blocksize) 5252 return -EINVAL; 5253 /* No point to try to trim less than discard granularity */ 5254 if (range->minlen < q->limits.discard_granularity) { 5255 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5256 q->limits.discard_granularity >> sb->s_blocksize_bits); 5257 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 5258 goto out; 5259 } 5260 if (end >= max_blks) 5261 end = max_blks - 1; 5262 if (end <= first_data_blk) 5263 goto out; 5264 if (start < first_data_blk) 5265 start = first_data_blk; 5266 5267 /* Determine first and last group to examine based on start and end */ 5268 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5269 &first_group, &first_cluster); 5270 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5271 &last_group, &last_cluster); 5272 5273 /* end now represents the last cluster to discard in this group */ 5274 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5275 5276 for (group = first_group; group <= last_group; group++) { 5277 grp = ext4_get_group_info(sb, group); 5278 /* We only do this if the grp has never been initialized */ 5279 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5280 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5281 if (ret) 5282 break; 5283 } 5284 5285 /* 5286 * For all the groups except the last one, last cluster will 5287 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5288 * change it for the last group, note that last_cluster is 5289 * already computed earlier by ext4_get_group_no_and_offset() 5290 */ 5291 if (group == last_group) 5292 end = last_cluster; 5293 5294 if (grp->bb_free >= minlen) { 5295 cnt = ext4_trim_all_free(sb, group, first_cluster, 5296 end, minlen, blkdev_flags); 5297 if (cnt < 0) { 5298 ret = cnt; 5299 break; 5300 } 5301 trimmed += cnt; 5302 } 5303 5304 /* 5305 * For every group except the first one, we are sure 5306 * that the first cluster to discard will be cluster #0. 5307 */ 5308 first_cluster = 0; 5309 } 5310 5311 if (!ret) 5312 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5313 5314 out: 5315 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5316 return ret; 5317 } 5318