• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71 #include <linux/sched.h>
72 
73 #include <asm/cacheflush.h>
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/io.h>
77 
78 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
80 #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
81 #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
82 #define PCPU_EMPTY_POP_PAGES_LOW	2
83 #define PCPU_EMPTY_POP_PAGES_HIGH	4
84 
85 #ifdef CONFIG_SMP
86 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
87 #ifndef __addr_to_pcpu_ptr
88 #define __addr_to_pcpu_ptr(addr)					\
89 	(void __percpu *)((unsigned long)(addr) -			\
90 			  (unsigned long)pcpu_base_addr	+		\
91 			  (unsigned long)__per_cpu_start)
92 #endif
93 #ifndef __pcpu_ptr_to_addr
94 #define __pcpu_ptr_to_addr(ptr)						\
95 	(void __force *)((unsigned long)(ptr) +				\
96 			 (unsigned long)pcpu_base_addr -		\
97 			 (unsigned long)__per_cpu_start)
98 #endif
99 #else	/* CONFIG_SMP */
100 /* on UP, it's always identity mapped */
101 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
102 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
103 #endif	/* CONFIG_SMP */
104 
105 struct pcpu_chunk {
106 	struct list_head	list;		/* linked to pcpu_slot lists */
107 	int			free_size;	/* free bytes in the chunk */
108 	int			contig_hint;	/* max contiguous size hint */
109 	void			*base_addr;	/* base address of this chunk */
110 
111 	int			map_used;	/* # of map entries used before the sentry */
112 	int			map_alloc;	/* # of map entries allocated */
113 	int			*map;		/* allocation map */
114 	struct list_head	map_extend_list;/* on pcpu_map_extend_chunks */
115 
116 	void			*data;		/* chunk data */
117 	int			first_free;	/* no free below this */
118 	bool			immutable;	/* no [de]population allowed */
119 	int			nr_populated;	/* # of populated pages */
120 	unsigned long		populated[];	/* populated bitmap */
121 };
122 
123 static int pcpu_unit_pages __read_mostly;
124 static int pcpu_unit_size __read_mostly;
125 static int pcpu_nr_units __read_mostly;
126 static int pcpu_atom_size __read_mostly;
127 static int pcpu_nr_slots __read_mostly;
128 static size_t pcpu_chunk_struct_size __read_mostly;
129 
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __read_mostly;
132 static unsigned int pcpu_high_unit_cpu __read_mostly;
133 
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __read_mostly;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137 
138 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
140 
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __read_mostly;
143 static const unsigned long *pcpu_group_offsets __read_mostly;
144 static const size_t *pcpu_group_sizes __read_mostly;
145 
146 /*
147  * The first chunk which always exists.  Note that unlike other
148  * chunks, this one can be allocated and mapped in several different
149  * ways and thus often doesn't live in the vmalloc area.
150  */
151 static struct pcpu_chunk *pcpu_first_chunk;
152 
153 /*
154  * Optional reserved chunk.  This chunk reserves part of the first
155  * chunk and serves it for reserved allocations.  The amount of
156  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
157  * area doesn't exist, the following variables contain NULL and 0
158  * respectively.
159  */
160 static struct pcpu_chunk *pcpu_reserved_chunk;
161 static int pcpu_reserved_chunk_limit;
162 
163 static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
164 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
165 
166 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
167 
168 /* chunks which need their map areas extended, protected by pcpu_lock */
169 static LIST_HEAD(pcpu_map_extend_chunks);
170 
171 /*
172  * The number of empty populated pages, protected by pcpu_lock.  The
173  * reserved chunk doesn't contribute to the count.
174  */
175 static int pcpu_nr_empty_pop_pages;
176 
177 /*
178  * Balance work is used to populate or destroy chunks asynchronously.  We
179  * try to keep the number of populated free pages between
180  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
181  * empty chunk.
182  */
183 static void pcpu_balance_workfn(struct work_struct *work);
184 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
185 static bool pcpu_async_enabled __read_mostly;
186 static bool pcpu_atomic_alloc_failed;
187 
pcpu_schedule_balance_work(void)188 static void pcpu_schedule_balance_work(void)
189 {
190 	if (pcpu_async_enabled)
191 		schedule_work(&pcpu_balance_work);
192 }
193 
pcpu_addr_in_first_chunk(void * addr)194 static bool pcpu_addr_in_first_chunk(void *addr)
195 {
196 	void *first_start = pcpu_first_chunk->base_addr;
197 
198 	return addr >= first_start && addr < first_start + pcpu_unit_size;
199 }
200 
pcpu_addr_in_reserved_chunk(void * addr)201 static bool pcpu_addr_in_reserved_chunk(void *addr)
202 {
203 	void *first_start = pcpu_first_chunk->base_addr;
204 
205 	return addr >= first_start &&
206 		addr < first_start + pcpu_reserved_chunk_limit;
207 }
208 
__pcpu_size_to_slot(int size)209 static int __pcpu_size_to_slot(int size)
210 {
211 	int highbit = fls(size);	/* size is in bytes */
212 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
213 }
214 
pcpu_size_to_slot(int size)215 static int pcpu_size_to_slot(int size)
216 {
217 	if (size == pcpu_unit_size)
218 		return pcpu_nr_slots - 1;
219 	return __pcpu_size_to_slot(size);
220 }
221 
pcpu_chunk_slot(const struct pcpu_chunk * chunk)222 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
223 {
224 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
225 		return 0;
226 
227 	return pcpu_size_to_slot(chunk->free_size);
228 }
229 
230 /* set the pointer to a chunk in a page struct */
pcpu_set_page_chunk(struct page * page,struct pcpu_chunk * pcpu)231 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
232 {
233 	page->index = (unsigned long)pcpu;
234 }
235 
236 /* obtain pointer to a chunk from a page struct */
pcpu_get_page_chunk(struct page * page)237 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
238 {
239 	return (struct pcpu_chunk *)page->index;
240 }
241 
pcpu_page_idx(unsigned int cpu,int page_idx)242 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
243 {
244 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
245 }
246 
pcpu_chunk_addr(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)247 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
248 				     unsigned int cpu, int page_idx)
249 {
250 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
251 		(page_idx << PAGE_SHIFT);
252 }
253 
pcpu_next_unpop(struct pcpu_chunk * chunk,int * rs,int * re,int end)254 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
255 					   int *rs, int *re, int end)
256 {
257 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
258 	*re = find_next_bit(chunk->populated, end, *rs + 1);
259 }
260 
pcpu_next_pop(struct pcpu_chunk * chunk,int * rs,int * re,int end)261 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
262 					 int *rs, int *re, int end)
263 {
264 	*rs = find_next_bit(chunk->populated, end, *rs);
265 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
266 }
267 
268 /*
269  * (Un)populated page region iterators.  Iterate over (un)populated
270  * page regions between @start and @end in @chunk.  @rs and @re should
271  * be integer variables and will be set to start and end page index of
272  * the current region.
273  */
274 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
275 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
276 	     (rs) < (re);						    \
277 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
278 
279 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
280 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
281 	     (rs) < (re);						    \
282 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
283 
284 /**
285  * pcpu_mem_zalloc - allocate memory
286  * @size: bytes to allocate
287  *
288  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
289  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
290  * memory is always zeroed.
291  *
292  * CONTEXT:
293  * Does GFP_KERNEL allocation.
294  *
295  * RETURNS:
296  * Pointer to the allocated area on success, NULL on failure.
297  */
pcpu_mem_zalloc(size_t size)298 static void *pcpu_mem_zalloc(size_t size)
299 {
300 	if (WARN_ON_ONCE(!slab_is_available()))
301 		return NULL;
302 
303 	if (size <= PAGE_SIZE)
304 		return kzalloc(size, GFP_KERNEL);
305 	else
306 		return vzalloc(size);
307 }
308 
309 /**
310  * pcpu_mem_free - free memory
311  * @ptr: memory to free
312  * @size: size of the area
313  *
314  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
315  */
pcpu_mem_free(void * ptr,size_t size)316 static void pcpu_mem_free(void *ptr, size_t size)
317 {
318 	if (size <= PAGE_SIZE)
319 		kfree(ptr);
320 	else
321 		vfree(ptr);
322 }
323 
324 /**
325  * pcpu_count_occupied_pages - count the number of pages an area occupies
326  * @chunk: chunk of interest
327  * @i: index of the area in question
328  *
329  * Count the number of pages chunk's @i'th area occupies.  When the area's
330  * start and/or end address isn't aligned to page boundary, the straddled
331  * page is included in the count iff the rest of the page is free.
332  */
pcpu_count_occupied_pages(struct pcpu_chunk * chunk,int i)333 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
334 {
335 	int off = chunk->map[i] & ~1;
336 	int end = chunk->map[i + 1] & ~1;
337 
338 	if (!PAGE_ALIGNED(off) && i > 0) {
339 		int prev = chunk->map[i - 1];
340 
341 		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
342 			off = round_down(off, PAGE_SIZE);
343 	}
344 
345 	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
346 		int next = chunk->map[i + 1];
347 		int nend = chunk->map[i + 2] & ~1;
348 
349 		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
350 			end = round_up(end, PAGE_SIZE);
351 	}
352 
353 	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
354 }
355 
356 /**
357  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
358  * @chunk: chunk of interest
359  * @oslot: the previous slot it was on
360  *
361  * This function is called after an allocation or free changed @chunk.
362  * New slot according to the changed state is determined and @chunk is
363  * moved to the slot.  Note that the reserved chunk is never put on
364  * chunk slots.
365  *
366  * CONTEXT:
367  * pcpu_lock.
368  */
pcpu_chunk_relocate(struct pcpu_chunk * chunk,int oslot)369 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
370 {
371 	int nslot = pcpu_chunk_slot(chunk);
372 
373 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
374 		if (oslot < nslot)
375 			list_move(&chunk->list, &pcpu_slot[nslot]);
376 		else
377 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
378 	}
379 }
380 
381 /**
382  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
383  * @chunk: chunk of interest
384  * @is_atomic: the allocation context
385  *
386  * Determine whether area map of @chunk needs to be extended.  If
387  * @is_atomic, only the amount necessary for a new allocation is
388  * considered; however, async extension is scheduled if the left amount is
389  * low.  If !@is_atomic, it aims for more empty space.  Combined, this
390  * ensures that the map is likely to have enough available space to
391  * accomodate atomic allocations which can't extend maps directly.
392  *
393  * CONTEXT:
394  * pcpu_lock.
395  *
396  * RETURNS:
397  * New target map allocation length if extension is necessary, 0
398  * otherwise.
399  */
pcpu_need_to_extend(struct pcpu_chunk * chunk,bool is_atomic)400 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
401 {
402 	int margin, new_alloc;
403 
404 	lockdep_assert_held(&pcpu_lock);
405 
406 	if (is_atomic) {
407 		margin = 3;
408 
409 		if (chunk->map_alloc <
410 		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
411 			if (list_empty(&chunk->map_extend_list)) {
412 				list_add_tail(&chunk->map_extend_list,
413 					      &pcpu_map_extend_chunks);
414 				pcpu_schedule_balance_work();
415 			}
416 		}
417 	} else {
418 		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
419 	}
420 
421 	if (chunk->map_alloc >= chunk->map_used + margin)
422 		return 0;
423 
424 	new_alloc = PCPU_DFL_MAP_ALLOC;
425 	while (new_alloc < chunk->map_used + margin)
426 		new_alloc *= 2;
427 
428 	return new_alloc;
429 }
430 
431 /**
432  * pcpu_extend_area_map - extend area map of a chunk
433  * @chunk: chunk of interest
434  * @new_alloc: new target allocation length of the area map
435  *
436  * Extend area map of @chunk to have @new_alloc entries.
437  *
438  * CONTEXT:
439  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
440  *
441  * RETURNS:
442  * 0 on success, -errno on failure.
443  */
pcpu_extend_area_map(struct pcpu_chunk * chunk,int new_alloc)444 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
445 {
446 	int *old = NULL, *new = NULL;
447 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
448 	unsigned long flags;
449 
450 	lockdep_assert_held(&pcpu_alloc_mutex);
451 
452 	new = pcpu_mem_zalloc(new_size);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	/* acquire pcpu_lock and switch to new area map */
457 	spin_lock_irqsave(&pcpu_lock, flags);
458 
459 	if (new_alloc <= chunk->map_alloc)
460 		goto out_unlock;
461 
462 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
463 	old = chunk->map;
464 
465 	memcpy(new, old, old_size);
466 
467 	chunk->map_alloc = new_alloc;
468 	chunk->map = new;
469 	new = NULL;
470 
471 out_unlock:
472 	spin_unlock_irqrestore(&pcpu_lock, flags);
473 
474 	/*
475 	 * pcpu_mem_free() might end up calling vfree() which uses
476 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
477 	 */
478 	pcpu_mem_free(old, old_size);
479 	pcpu_mem_free(new, new_size);
480 
481 	return 0;
482 }
483 
484 /**
485  * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486  * @chunk: chunk the candidate area belongs to
487  * @off: the offset to the start of the candidate area
488  * @this_size: the size of the candidate area
489  * @size: the size of the target allocation
490  * @align: the alignment of the target allocation
491  * @pop_only: only allocate from already populated region
492  *
493  * We're trying to allocate @size bytes aligned at @align.  @chunk's area
494  * at @off sized @this_size is a candidate.  This function determines
495  * whether the target allocation fits in the candidate area and returns the
496  * number of bytes to pad after @off.  If the target area doesn't fit, -1
497  * is returned.
498  *
499  * If @pop_only is %true, this function only considers the already
500  * populated part of the candidate area.
501  */
pcpu_fit_in_area(struct pcpu_chunk * chunk,int off,int this_size,int size,int align,bool pop_only)502 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
503 			    int size, int align, bool pop_only)
504 {
505 	int cand_off = off;
506 
507 	while (true) {
508 		int head = ALIGN(cand_off, align) - off;
509 		int page_start, page_end, rs, re;
510 
511 		if (this_size < head + size)
512 			return -1;
513 
514 		if (!pop_only)
515 			return head;
516 
517 		/*
518 		 * If the first unpopulated page is beyond the end of the
519 		 * allocation, the whole allocation is populated;
520 		 * otherwise, retry from the end of the unpopulated area.
521 		 */
522 		page_start = PFN_DOWN(head + off);
523 		page_end = PFN_UP(head + off + size);
524 
525 		rs = page_start;
526 		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
527 		if (rs >= page_end)
528 			return head;
529 		cand_off = re * PAGE_SIZE;
530 	}
531 }
532 
533 /**
534  * pcpu_alloc_area - allocate area from a pcpu_chunk
535  * @chunk: chunk of interest
536  * @size: wanted size in bytes
537  * @align: wanted align
538  * @pop_only: allocate only from the populated area
539  * @occ_pages_p: out param for the number of pages the area occupies
540  *
541  * Try to allocate @size bytes area aligned at @align from @chunk.
542  * Note that this function only allocates the offset.  It doesn't
543  * populate or map the area.
544  *
545  * @chunk->map must have at least two free slots.
546  *
547  * CONTEXT:
548  * pcpu_lock.
549  *
550  * RETURNS:
551  * Allocated offset in @chunk on success, -1 if no matching area is
552  * found.
553  */
pcpu_alloc_area(struct pcpu_chunk * chunk,int size,int align,bool pop_only,int * occ_pages_p)554 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
555 			   bool pop_only, int *occ_pages_p)
556 {
557 	int oslot = pcpu_chunk_slot(chunk);
558 	int max_contig = 0;
559 	int i, off;
560 	bool seen_free = false;
561 	int *p;
562 
563 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
564 		int head, tail;
565 		int this_size;
566 
567 		off = *p;
568 		if (off & 1)
569 			continue;
570 
571 		this_size = (p[1] & ~1) - off;
572 
573 		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 					pop_only);
575 		if (head < 0) {
576 			if (!seen_free) {
577 				chunk->first_free = i;
578 				seen_free = true;
579 			}
580 			max_contig = max(this_size, max_contig);
581 			continue;
582 		}
583 
584 		/*
585 		 * If head is small or the previous block is free,
586 		 * merge'em.  Note that 'small' is defined as smaller
587 		 * than sizeof(int), which is very small but isn't too
588 		 * uncommon for percpu allocations.
589 		 */
590 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
591 			*p = off += head;
592 			if (p[-1] & 1)
593 				chunk->free_size -= head;
594 			else
595 				max_contig = max(*p - p[-1], max_contig);
596 			this_size -= head;
597 			head = 0;
598 		}
599 
600 		/* if tail is small, just keep it around */
601 		tail = this_size - head - size;
602 		if (tail < sizeof(int)) {
603 			tail = 0;
604 			size = this_size - head;
605 		}
606 
607 		/* split if warranted */
608 		if (head || tail) {
609 			int nr_extra = !!head + !!tail;
610 
611 			/* insert new subblocks */
612 			memmove(p + nr_extra + 1, p + 1,
613 				sizeof(chunk->map[0]) * (chunk->map_used - i));
614 			chunk->map_used += nr_extra;
615 
616 			if (head) {
617 				if (!seen_free) {
618 					chunk->first_free = i;
619 					seen_free = true;
620 				}
621 				*++p = off += head;
622 				++i;
623 				max_contig = max(head, max_contig);
624 			}
625 			if (tail) {
626 				p[1] = off + size;
627 				max_contig = max(tail, max_contig);
628 			}
629 		}
630 
631 		if (!seen_free)
632 			chunk->first_free = i + 1;
633 
634 		/* update hint and mark allocated */
635 		if (i + 1 == chunk->map_used)
636 			chunk->contig_hint = max_contig; /* fully scanned */
637 		else
638 			chunk->contig_hint = max(chunk->contig_hint,
639 						 max_contig);
640 
641 		chunk->free_size -= size;
642 		*p |= 1;
643 
644 		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
645 		pcpu_chunk_relocate(chunk, oslot);
646 		return off;
647 	}
648 
649 	chunk->contig_hint = max_contig;	/* fully scanned */
650 	pcpu_chunk_relocate(chunk, oslot);
651 
652 	/* tell the upper layer that this chunk has no matching area */
653 	return -1;
654 }
655 
656 /**
657  * pcpu_free_area - free area to a pcpu_chunk
658  * @chunk: chunk of interest
659  * @freeme: offset of area to free
660  * @occ_pages_p: out param for the number of pages the area occupies
661  *
662  * Free area starting from @freeme to @chunk.  Note that this function
663  * only modifies the allocation map.  It doesn't depopulate or unmap
664  * the area.
665  *
666  * CONTEXT:
667  * pcpu_lock.
668  */
pcpu_free_area(struct pcpu_chunk * chunk,int freeme,int * occ_pages_p)669 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
670 			   int *occ_pages_p)
671 {
672 	int oslot = pcpu_chunk_slot(chunk);
673 	int off = 0;
674 	unsigned i, j;
675 	int to_free = 0;
676 	int *p;
677 
678 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
679 
680 	i = 0;
681 	j = chunk->map_used;
682 	while (i != j) {
683 		unsigned k = (i + j) / 2;
684 		off = chunk->map[k];
685 		if (off < freeme)
686 			i = k + 1;
687 		else if (off > freeme)
688 			j = k;
689 		else
690 			i = j = k;
691 	}
692 	BUG_ON(off != freeme);
693 
694 	if (i < chunk->first_free)
695 		chunk->first_free = i;
696 
697 	p = chunk->map + i;
698 	*p = off &= ~1;
699 	chunk->free_size += (p[1] & ~1) - off;
700 
701 	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
702 
703 	/* merge with next? */
704 	if (!(p[1] & 1))
705 		to_free++;
706 	/* merge with previous? */
707 	if (i > 0 && !(p[-1] & 1)) {
708 		to_free++;
709 		i--;
710 		p--;
711 	}
712 	if (to_free) {
713 		chunk->map_used -= to_free;
714 		memmove(p + 1, p + 1 + to_free,
715 			(chunk->map_used - i) * sizeof(chunk->map[0]));
716 	}
717 
718 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
719 	pcpu_chunk_relocate(chunk, oslot);
720 }
721 
pcpu_alloc_chunk(void)722 static struct pcpu_chunk *pcpu_alloc_chunk(void)
723 {
724 	struct pcpu_chunk *chunk;
725 
726 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 	if (!chunk)
728 		return NULL;
729 
730 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
731 						sizeof(chunk->map[0]));
732 	if (!chunk->map) {
733 		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
734 		return NULL;
735 	}
736 
737 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
738 	chunk->map[0] = 0;
739 	chunk->map[1] = pcpu_unit_size | 1;
740 	chunk->map_used = 1;
741 
742 	INIT_LIST_HEAD(&chunk->list);
743 	INIT_LIST_HEAD(&chunk->map_extend_list);
744 	chunk->free_size = pcpu_unit_size;
745 	chunk->contig_hint = pcpu_unit_size;
746 
747 	return chunk;
748 }
749 
pcpu_free_chunk(struct pcpu_chunk * chunk)750 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
751 {
752 	if (!chunk)
753 		return;
754 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
755 	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
756 }
757 
758 /**
759  * pcpu_chunk_populated - post-population bookkeeping
760  * @chunk: pcpu_chunk which got populated
761  * @page_start: the start page
762  * @page_end: the end page
763  *
764  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
765  * the bookkeeping information accordingly.  Must be called after each
766  * successful population.
767  */
pcpu_chunk_populated(struct pcpu_chunk * chunk,int page_start,int page_end)768 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
769 				 int page_start, int page_end)
770 {
771 	int nr = page_end - page_start;
772 
773 	lockdep_assert_held(&pcpu_lock);
774 
775 	bitmap_set(chunk->populated, page_start, nr);
776 	chunk->nr_populated += nr;
777 	pcpu_nr_empty_pop_pages += nr;
778 }
779 
780 /**
781  * pcpu_chunk_depopulated - post-depopulation bookkeeping
782  * @chunk: pcpu_chunk which got depopulated
783  * @page_start: the start page
784  * @page_end: the end page
785  *
786  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787  * Update the bookkeeping information accordingly.  Must be called after
788  * each successful depopulation.
789  */
pcpu_chunk_depopulated(struct pcpu_chunk * chunk,int page_start,int page_end)790 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
791 				   int page_start, int page_end)
792 {
793 	int nr = page_end - page_start;
794 
795 	lockdep_assert_held(&pcpu_lock);
796 
797 	bitmap_clear(chunk->populated, page_start, nr);
798 	chunk->nr_populated -= nr;
799 	pcpu_nr_empty_pop_pages -= nr;
800 }
801 
802 /*
803  * Chunk management implementation.
804  *
805  * To allow different implementations, chunk alloc/free and
806  * [de]population are implemented in a separate file which is pulled
807  * into this file and compiled together.  The following functions
808  * should be implemented.
809  *
810  * pcpu_populate_chunk		- populate the specified range of a chunk
811  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
812  * pcpu_create_chunk		- create a new chunk
813  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
814  * pcpu_addr_to_page		- translate address to physical address
815  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
816  */
817 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
818 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
819 static struct pcpu_chunk *pcpu_create_chunk(void);
820 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
821 static struct page *pcpu_addr_to_page(void *addr);
822 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
823 
824 #ifdef CONFIG_NEED_PER_CPU_KM
825 #include "percpu-km.c"
826 #else
827 #include "percpu-vm.c"
828 #endif
829 
830 /**
831  * pcpu_chunk_addr_search - determine chunk containing specified address
832  * @addr: address for which the chunk needs to be determined.
833  *
834  * RETURNS:
835  * The address of the found chunk.
836  */
pcpu_chunk_addr_search(void * addr)837 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
838 {
839 	/* is it in the first chunk? */
840 	if (pcpu_addr_in_first_chunk(addr)) {
841 		/* is it in the reserved area? */
842 		if (pcpu_addr_in_reserved_chunk(addr))
843 			return pcpu_reserved_chunk;
844 		return pcpu_first_chunk;
845 	}
846 
847 	/*
848 	 * The address is relative to unit0 which might be unused and
849 	 * thus unmapped.  Offset the address to the unit space of the
850 	 * current processor before looking it up in the vmalloc
851 	 * space.  Note that any possible cpu id can be used here, so
852 	 * there's no need to worry about preemption or cpu hotplug.
853 	 */
854 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
855 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
856 }
857 
858 /**
859  * pcpu_alloc - the percpu allocator
860  * @size: size of area to allocate in bytes
861  * @align: alignment of area (max PAGE_SIZE)
862  * @reserved: allocate from the reserved chunk if available
863  * @gfp: allocation flags
864  *
865  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
866  * contain %GFP_KERNEL, the allocation is atomic.
867  *
868  * RETURNS:
869  * Percpu pointer to the allocated area on success, NULL on failure.
870  */
pcpu_alloc(size_t size,size_t align,bool reserved,gfp_t gfp)871 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
872 				 gfp_t gfp)
873 {
874 	static int warn_limit = 10;
875 	struct pcpu_chunk *chunk;
876 	const char *err;
877 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
878 	int occ_pages = 0;
879 	int slot, off, new_alloc, cpu, ret;
880 	unsigned long flags;
881 	void __percpu *ptr;
882 
883 	/*
884 	 * We want the lowest bit of offset available for in-use/free
885 	 * indicator, so force >= 16bit alignment and make size even.
886 	 */
887 	if (unlikely(align < 2))
888 		align = 2;
889 
890 	size = ALIGN(size, 2);
891 
892 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
893 		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
894 		     size, align);
895 		return NULL;
896 	}
897 
898 	if (!is_atomic)
899 		mutex_lock(&pcpu_alloc_mutex);
900 
901 	spin_lock_irqsave(&pcpu_lock, flags);
902 
903 	/* serve reserved allocations from the reserved chunk if available */
904 	if (reserved && pcpu_reserved_chunk) {
905 		chunk = pcpu_reserved_chunk;
906 
907 		if (size > chunk->contig_hint) {
908 			err = "alloc from reserved chunk failed";
909 			goto fail_unlock;
910 		}
911 
912 		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
913 			spin_unlock_irqrestore(&pcpu_lock, flags);
914 			if (is_atomic ||
915 			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
916 				err = "failed to extend area map of reserved chunk";
917 				goto fail;
918 			}
919 			spin_lock_irqsave(&pcpu_lock, flags);
920 		}
921 
922 		off = pcpu_alloc_area(chunk, size, align, is_atomic,
923 				      &occ_pages);
924 		if (off >= 0)
925 			goto area_found;
926 
927 		err = "alloc from reserved chunk failed";
928 		goto fail_unlock;
929 	}
930 
931 restart:
932 	/* search through normal chunks */
933 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
934 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
935 			if (size > chunk->contig_hint)
936 				continue;
937 
938 			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
939 			if (new_alloc) {
940 				if (is_atomic)
941 					continue;
942 				spin_unlock_irqrestore(&pcpu_lock, flags);
943 				if (pcpu_extend_area_map(chunk,
944 							 new_alloc) < 0) {
945 					err = "failed to extend area map";
946 					goto fail;
947 				}
948 				spin_lock_irqsave(&pcpu_lock, flags);
949 				/*
950 				 * pcpu_lock has been dropped, need to
951 				 * restart cpu_slot list walking.
952 				 */
953 				goto restart;
954 			}
955 
956 			off = pcpu_alloc_area(chunk, size, align, is_atomic,
957 					      &occ_pages);
958 			if (off >= 0)
959 				goto area_found;
960 		}
961 	}
962 
963 	spin_unlock_irqrestore(&pcpu_lock, flags);
964 
965 	/*
966 	 * No space left.  Create a new chunk.  We don't want multiple
967 	 * tasks to create chunks simultaneously.  Serialize and create iff
968 	 * there's still no empty chunk after grabbing the mutex.
969 	 */
970 	if (is_atomic)
971 		goto fail;
972 
973 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
974 		chunk = pcpu_create_chunk();
975 		if (!chunk) {
976 			err = "failed to allocate new chunk";
977 			goto fail;
978 		}
979 
980 		spin_lock_irqsave(&pcpu_lock, flags);
981 		pcpu_chunk_relocate(chunk, -1);
982 	} else {
983 		spin_lock_irqsave(&pcpu_lock, flags);
984 	}
985 
986 	goto restart;
987 
988 area_found:
989 	spin_unlock_irqrestore(&pcpu_lock, flags);
990 
991 	/* populate if not all pages are already there */
992 	if (!is_atomic) {
993 		int page_start, page_end, rs, re;
994 
995 		page_start = PFN_DOWN(off);
996 		page_end = PFN_UP(off + size);
997 
998 		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
999 			WARN_ON(chunk->immutable);
1000 
1001 			ret = pcpu_populate_chunk(chunk, rs, re);
1002 
1003 			spin_lock_irqsave(&pcpu_lock, flags);
1004 			if (ret) {
1005 				pcpu_free_area(chunk, off, &occ_pages);
1006 				err = "failed to populate";
1007 				goto fail_unlock;
1008 			}
1009 			pcpu_chunk_populated(chunk, rs, re);
1010 			spin_unlock_irqrestore(&pcpu_lock, flags);
1011 		}
1012 
1013 		mutex_unlock(&pcpu_alloc_mutex);
1014 	}
1015 
1016 	if (chunk != pcpu_reserved_chunk) {
1017 		spin_lock_irqsave(&pcpu_lock, flags);
1018 		pcpu_nr_empty_pop_pages -= occ_pages;
1019 		spin_unlock_irqrestore(&pcpu_lock, flags);
1020 	}
1021 
1022 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1023 		pcpu_schedule_balance_work();
1024 
1025 	/* clear the areas and return address relative to base address */
1026 	for_each_possible_cpu(cpu)
1027 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1028 
1029 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1030 	kmemleak_alloc_percpu(ptr, size, gfp);
1031 	return ptr;
1032 
1033 fail_unlock:
1034 	spin_unlock_irqrestore(&pcpu_lock, flags);
1035 fail:
1036 	if (!is_atomic && warn_limit) {
1037 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1038 			   size, align, is_atomic, err);
1039 		dump_stack();
1040 		if (!--warn_limit)
1041 			pr_info("PERCPU: limit reached, disable warning\n");
1042 	}
1043 	if (is_atomic) {
1044 		/* see the flag handling in pcpu_blance_workfn() */
1045 		pcpu_atomic_alloc_failed = true;
1046 		pcpu_schedule_balance_work();
1047 	} else {
1048 		mutex_unlock(&pcpu_alloc_mutex);
1049 	}
1050 	return NULL;
1051 }
1052 
1053 /**
1054  * __alloc_percpu_gfp - allocate dynamic percpu area
1055  * @size: size of area to allocate in bytes
1056  * @align: alignment of area (max PAGE_SIZE)
1057  * @gfp: allocation flags
1058  *
1059  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1060  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1061  * be called from any context but is a lot more likely to fail.
1062  *
1063  * RETURNS:
1064  * Percpu pointer to the allocated area on success, NULL on failure.
1065  */
__alloc_percpu_gfp(size_t size,size_t align,gfp_t gfp)1066 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1067 {
1068 	return pcpu_alloc(size, align, false, gfp);
1069 }
1070 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1071 
1072 /**
1073  * __alloc_percpu - allocate dynamic percpu area
1074  * @size: size of area to allocate in bytes
1075  * @align: alignment of area (max PAGE_SIZE)
1076  *
1077  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1078  */
__alloc_percpu(size_t size,size_t align)1079 void __percpu *__alloc_percpu(size_t size, size_t align)
1080 {
1081 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1082 }
1083 EXPORT_SYMBOL_GPL(__alloc_percpu);
1084 
1085 /**
1086  * __alloc_reserved_percpu - allocate reserved percpu area
1087  * @size: size of area to allocate in bytes
1088  * @align: alignment of area (max PAGE_SIZE)
1089  *
1090  * Allocate zero-filled percpu area of @size bytes aligned at @align
1091  * from reserved percpu area if arch has set it up; otherwise,
1092  * allocation is served from the same dynamic area.  Might sleep.
1093  * Might trigger writeouts.
1094  *
1095  * CONTEXT:
1096  * Does GFP_KERNEL allocation.
1097  *
1098  * RETURNS:
1099  * Percpu pointer to the allocated area on success, NULL on failure.
1100  */
__alloc_reserved_percpu(size_t size,size_t align)1101 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1102 {
1103 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1104 }
1105 
1106 /**
1107  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1108  * @work: unused
1109  *
1110  * Reclaim all fully free chunks except for the first one.
1111  */
pcpu_balance_workfn(struct work_struct * work)1112 static void pcpu_balance_workfn(struct work_struct *work)
1113 {
1114 	LIST_HEAD(to_free);
1115 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1116 	struct pcpu_chunk *chunk, *next;
1117 	int slot, nr_to_pop, ret;
1118 
1119 	/*
1120 	 * There's no reason to keep around multiple unused chunks and VM
1121 	 * areas can be scarce.  Destroy all free chunks except for one.
1122 	 */
1123 	mutex_lock(&pcpu_alloc_mutex);
1124 	spin_lock_irq(&pcpu_lock);
1125 
1126 	list_for_each_entry_safe(chunk, next, free_head, list) {
1127 		WARN_ON(chunk->immutable);
1128 
1129 		/* spare the first one */
1130 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1131 			continue;
1132 
1133 		list_del_init(&chunk->map_extend_list);
1134 		list_move(&chunk->list, &to_free);
1135 	}
1136 
1137 	spin_unlock_irq(&pcpu_lock);
1138 
1139 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1140 		int rs, re;
1141 
1142 		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1143 			pcpu_depopulate_chunk(chunk, rs, re);
1144 			spin_lock_irq(&pcpu_lock);
1145 			pcpu_chunk_depopulated(chunk, rs, re);
1146 			spin_unlock_irq(&pcpu_lock);
1147 		}
1148 		pcpu_destroy_chunk(chunk);
1149 	}
1150 
1151 	/* service chunks which requested async area map extension */
1152 	do {
1153 		int new_alloc = 0;
1154 
1155 		spin_lock_irq(&pcpu_lock);
1156 
1157 		chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1158 					struct pcpu_chunk, map_extend_list);
1159 		if (chunk) {
1160 			list_del_init(&chunk->map_extend_list);
1161 			new_alloc = pcpu_need_to_extend(chunk, false);
1162 		}
1163 
1164 		spin_unlock_irq(&pcpu_lock);
1165 
1166 		if (new_alloc)
1167 			pcpu_extend_area_map(chunk, new_alloc);
1168 	} while (chunk);
1169 
1170 	/*
1171 	 * Ensure there are certain number of free populated pages for
1172 	 * atomic allocs.  Fill up from the most packed so that atomic
1173 	 * allocs don't increase fragmentation.  If atomic allocation
1174 	 * failed previously, always populate the maximum amount.  This
1175 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1176 	 * failing indefinitely; however, large atomic allocs are not
1177 	 * something we support properly and can be highly unreliable and
1178 	 * inefficient.
1179 	 */
1180 retry_pop:
1181 	if (pcpu_atomic_alloc_failed) {
1182 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1183 		/* best effort anyway, don't worry about synchronization */
1184 		pcpu_atomic_alloc_failed = false;
1185 	} else {
1186 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1187 				  pcpu_nr_empty_pop_pages,
1188 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1189 	}
1190 
1191 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1192 		int nr_unpop = 0, rs, re;
1193 
1194 		if (!nr_to_pop)
1195 			break;
1196 
1197 		spin_lock_irq(&pcpu_lock);
1198 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1199 			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1200 			if (nr_unpop)
1201 				break;
1202 		}
1203 		spin_unlock_irq(&pcpu_lock);
1204 
1205 		if (!nr_unpop)
1206 			continue;
1207 
1208 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1209 		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1210 			int nr = min(re - rs, nr_to_pop);
1211 
1212 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1213 			if (!ret) {
1214 				nr_to_pop -= nr;
1215 				spin_lock_irq(&pcpu_lock);
1216 				pcpu_chunk_populated(chunk, rs, rs + nr);
1217 				spin_unlock_irq(&pcpu_lock);
1218 			} else {
1219 				nr_to_pop = 0;
1220 			}
1221 
1222 			if (!nr_to_pop)
1223 				break;
1224 		}
1225 	}
1226 
1227 	if (nr_to_pop) {
1228 		/* ran out of chunks to populate, create a new one and retry */
1229 		chunk = pcpu_create_chunk();
1230 		if (chunk) {
1231 			spin_lock_irq(&pcpu_lock);
1232 			pcpu_chunk_relocate(chunk, -1);
1233 			spin_unlock_irq(&pcpu_lock);
1234 			goto retry_pop;
1235 		}
1236 	}
1237 
1238 	mutex_unlock(&pcpu_alloc_mutex);
1239 }
1240 
1241 /**
1242  * free_percpu - free percpu area
1243  * @ptr: pointer to area to free
1244  *
1245  * Free percpu area @ptr.
1246  *
1247  * CONTEXT:
1248  * Can be called from atomic context.
1249  */
free_percpu(void __percpu * ptr)1250 void free_percpu(void __percpu *ptr)
1251 {
1252 	void *addr;
1253 	struct pcpu_chunk *chunk;
1254 	unsigned long flags;
1255 	int off, occ_pages;
1256 
1257 	if (!ptr)
1258 		return;
1259 
1260 	kmemleak_free_percpu(ptr);
1261 
1262 	addr = __pcpu_ptr_to_addr(ptr);
1263 
1264 	spin_lock_irqsave(&pcpu_lock, flags);
1265 
1266 	chunk = pcpu_chunk_addr_search(addr);
1267 	off = addr - chunk->base_addr;
1268 
1269 	pcpu_free_area(chunk, off, &occ_pages);
1270 
1271 	if (chunk != pcpu_reserved_chunk)
1272 		pcpu_nr_empty_pop_pages += occ_pages;
1273 
1274 	/* if there are more than one fully free chunks, wake up grim reaper */
1275 	if (chunk->free_size == pcpu_unit_size) {
1276 		struct pcpu_chunk *pos;
1277 
1278 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1279 			if (pos != chunk) {
1280 				pcpu_schedule_balance_work();
1281 				break;
1282 			}
1283 	}
1284 
1285 	spin_unlock_irqrestore(&pcpu_lock, flags);
1286 }
1287 EXPORT_SYMBOL_GPL(free_percpu);
1288 
1289 /**
1290  * is_kernel_percpu_address - test whether address is from static percpu area
1291  * @addr: address to test
1292  *
1293  * Test whether @addr belongs to in-kernel static percpu area.  Module
1294  * static percpu areas are not considered.  For those, use
1295  * is_module_percpu_address().
1296  *
1297  * RETURNS:
1298  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1299  */
is_kernel_percpu_address(unsigned long addr)1300 bool is_kernel_percpu_address(unsigned long addr)
1301 {
1302 #ifdef CONFIG_SMP
1303 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1304 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1305 	unsigned int cpu;
1306 
1307 	for_each_possible_cpu(cpu) {
1308 		void *start = per_cpu_ptr(base, cpu);
1309 
1310 		if ((void *)addr >= start && (void *)addr < start + static_size)
1311 			return true;
1312         }
1313 #endif
1314 	/* on UP, can't distinguish from other static vars, always false */
1315 	return false;
1316 }
1317 
1318 /**
1319  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1320  * @addr: the address to be converted to physical address
1321  *
1322  * Given @addr which is dereferenceable address obtained via one of
1323  * percpu access macros, this function translates it into its physical
1324  * address.  The caller is responsible for ensuring @addr stays valid
1325  * until this function finishes.
1326  *
1327  * percpu allocator has special setup for the first chunk, which currently
1328  * supports either embedding in linear address space or vmalloc mapping,
1329  * and, from the second one, the backing allocator (currently either vm or
1330  * km) provides translation.
1331  *
1332  * The addr can be translated simply without checking if it falls into the
1333  * first chunk. But the current code reflects better how percpu allocator
1334  * actually works, and the verification can discover both bugs in percpu
1335  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1336  * code.
1337  *
1338  * RETURNS:
1339  * The physical address for @addr.
1340  */
per_cpu_ptr_to_phys(void * addr)1341 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1342 {
1343 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1344 	bool in_first_chunk = false;
1345 	unsigned long first_low, first_high;
1346 	unsigned int cpu;
1347 
1348 	/*
1349 	 * The following test on unit_low/high isn't strictly
1350 	 * necessary but will speed up lookups of addresses which
1351 	 * aren't in the first chunk.
1352 	 */
1353 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1354 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1355 				     pcpu_unit_pages);
1356 	if ((unsigned long)addr >= first_low &&
1357 	    (unsigned long)addr < first_high) {
1358 		for_each_possible_cpu(cpu) {
1359 			void *start = per_cpu_ptr(base, cpu);
1360 
1361 			if (addr >= start && addr < start + pcpu_unit_size) {
1362 				in_first_chunk = true;
1363 				break;
1364 			}
1365 		}
1366 	}
1367 
1368 	if (in_first_chunk) {
1369 		if (!is_vmalloc_addr(addr))
1370 			return __pa(addr);
1371 		else
1372 			return page_to_phys(vmalloc_to_page(addr)) +
1373 			       offset_in_page(addr);
1374 	} else
1375 		return page_to_phys(pcpu_addr_to_page(addr)) +
1376 		       offset_in_page(addr);
1377 }
1378 
1379 /**
1380  * pcpu_alloc_alloc_info - allocate percpu allocation info
1381  * @nr_groups: the number of groups
1382  * @nr_units: the number of units
1383  *
1384  * Allocate ai which is large enough for @nr_groups groups containing
1385  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1386  * cpu_map array which is long enough for @nr_units and filled with
1387  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1388  * pointer of other groups.
1389  *
1390  * RETURNS:
1391  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1392  * failure.
1393  */
pcpu_alloc_alloc_info(int nr_groups,int nr_units)1394 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1395 						      int nr_units)
1396 {
1397 	struct pcpu_alloc_info *ai;
1398 	size_t base_size, ai_size;
1399 	void *ptr;
1400 	int unit;
1401 
1402 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1403 			  __alignof__(ai->groups[0].cpu_map[0]));
1404 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1405 
1406 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1407 	if (!ptr)
1408 		return NULL;
1409 	ai = ptr;
1410 	ptr += base_size;
1411 
1412 	ai->groups[0].cpu_map = ptr;
1413 
1414 	for (unit = 0; unit < nr_units; unit++)
1415 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1416 
1417 	ai->nr_groups = nr_groups;
1418 	ai->__ai_size = PFN_ALIGN(ai_size);
1419 
1420 	return ai;
1421 }
1422 
1423 /**
1424  * pcpu_free_alloc_info - free percpu allocation info
1425  * @ai: pcpu_alloc_info to free
1426  *
1427  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1428  */
pcpu_free_alloc_info(struct pcpu_alloc_info * ai)1429 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1430 {
1431 	memblock_free_early(__pa(ai), ai->__ai_size);
1432 }
1433 
1434 /**
1435  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1436  * @lvl: loglevel
1437  * @ai: allocation info to dump
1438  *
1439  * Print out information about @ai using loglevel @lvl.
1440  */
pcpu_dump_alloc_info(const char * lvl,const struct pcpu_alloc_info * ai)1441 static void pcpu_dump_alloc_info(const char *lvl,
1442 				 const struct pcpu_alloc_info *ai)
1443 {
1444 	int group_width = 1, cpu_width = 1, width;
1445 	char empty_str[] = "--------";
1446 	int alloc = 0, alloc_end = 0;
1447 	int group, v;
1448 	int upa, apl;	/* units per alloc, allocs per line */
1449 
1450 	v = ai->nr_groups;
1451 	while (v /= 10)
1452 		group_width++;
1453 
1454 	v = num_possible_cpus();
1455 	while (v /= 10)
1456 		cpu_width++;
1457 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1458 
1459 	upa = ai->alloc_size / ai->unit_size;
1460 	width = upa * (cpu_width + 1) + group_width + 3;
1461 	apl = rounddown_pow_of_two(max(60 / width, 1));
1462 
1463 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1464 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1465 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1466 
1467 	for (group = 0; group < ai->nr_groups; group++) {
1468 		const struct pcpu_group_info *gi = &ai->groups[group];
1469 		int unit = 0, unit_end = 0;
1470 
1471 		BUG_ON(gi->nr_units % upa);
1472 		for (alloc_end += gi->nr_units / upa;
1473 		     alloc < alloc_end; alloc++) {
1474 			if (!(alloc % apl)) {
1475 				printk(KERN_CONT "\n");
1476 				printk("%spcpu-alloc: ", lvl);
1477 			}
1478 			printk(KERN_CONT "[%0*d] ", group_width, group);
1479 
1480 			for (unit_end += upa; unit < unit_end; unit++)
1481 				if (gi->cpu_map[unit] != NR_CPUS)
1482 					printk(KERN_CONT "%0*d ", cpu_width,
1483 					       gi->cpu_map[unit]);
1484 				else
1485 					printk(KERN_CONT "%s ", empty_str);
1486 		}
1487 	}
1488 	printk(KERN_CONT "\n");
1489 }
1490 
1491 /**
1492  * pcpu_setup_first_chunk - initialize the first percpu chunk
1493  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1494  * @base_addr: mapped address
1495  *
1496  * Initialize the first percpu chunk which contains the kernel static
1497  * perpcu area.  This function is to be called from arch percpu area
1498  * setup path.
1499  *
1500  * @ai contains all information necessary to initialize the first
1501  * chunk and prime the dynamic percpu allocator.
1502  *
1503  * @ai->static_size is the size of static percpu area.
1504  *
1505  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1506  * reserve after the static area in the first chunk.  This reserves
1507  * the first chunk such that it's available only through reserved
1508  * percpu allocation.  This is primarily used to serve module percpu
1509  * static areas on architectures where the addressing model has
1510  * limited offset range for symbol relocations to guarantee module
1511  * percpu symbols fall inside the relocatable range.
1512  *
1513  * @ai->dyn_size determines the number of bytes available for dynamic
1514  * allocation in the first chunk.  The area between @ai->static_size +
1515  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1516  *
1517  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1518  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1519  * @ai->dyn_size.
1520  *
1521  * @ai->atom_size is the allocation atom size and used as alignment
1522  * for vm areas.
1523  *
1524  * @ai->alloc_size is the allocation size and always multiple of
1525  * @ai->atom_size.  This is larger than @ai->atom_size if
1526  * @ai->unit_size is larger than @ai->atom_size.
1527  *
1528  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1529  * percpu areas.  Units which should be colocated are put into the
1530  * same group.  Dynamic VM areas will be allocated according to these
1531  * groupings.  If @ai->nr_groups is zero, a single group containing
1532  * all units is assumed.
1533  *
1534  * The caller should have mapped the first chunk at @base_addr and
1535  * copied static data to each unit.
1536  *
1537  * If the first chunk ends up with both reserved and dynamic areas, it
1538  * is served by two chunks - one to serve the core static and reserved
1539  * areas and the other for the dynamic area.  They share the same vm
1540  * and page map but uses different area allocation map to stay away
1541  * from each other.  The latter chunk is circulated in the chunk slots
1542  * and available for dynamic allocation like any other chunks.
1543  *
1544  * RETURNS:
1545  * 0 on success, -errno on failure.
1546  */
pcpu_setup_first_chunk(const struct pcpu_alloc_info * ai,void * base_addr)1547 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1548 				  void *base_addr)
1549 {
1550 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1551 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1552 	size_t dyn_size = ai->dyn_size;
1553 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1554 	struct pcpu_chunk *schunk, *dchunk = NULL;
1555 	unsigned long *group_offsets;
1556 	size_t *group_sizes;
1557 	unsigned long *unit_off;
1558 	unsigned int cpu;
1559 	int *unit_map;
1560 	int group, unit, i;
1561 
1562 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1563 	if (unlikely(cond)) {						\
1564 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1565 		pr_emerg("PERCPU: cpu_possible_mask=%*pb\n",		\
1566 			 cpumask_pr_args(cpu_possible_mask));		\
1567 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1568 		BUG();							\
1569 	}								\
1570 } while (0)
1571 
1572 	/* sanity checks */
1573 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1574 #ifdef CONFIG_SMP
1575 	PCPU_SETUP_BUG_ON(!ai->static_size);
1576 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1577 #endif
1578 	PCPU_SETUP_BUG_ON(!base_addr);
1579 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1580 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1581 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1582 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1583 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1584 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1585 
1586 	/* process group information and build config tables accordingly */
1587 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1588 					     sizeof(group_offsets[0]), 0);
1589 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1590 					   sizeof(group_sizes[0]), 0);
1591 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1592 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1593 
1594 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1595 		unit_map[cpu] = UINT_MAX;
1596 
1597 	pcpu_low_unit_cpu = NR_CPUS;
1598 	pcpu_high_unit_cpu = NR_CPUS;
1599 
1600 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1601 		const struct pcpu_group_info *gi = &ai->groups[group];
1602 
1603 		group_offsets[group] = gi->base_offset;
1604 		group_sizes[group] = gi->nr_units * ai->unit_size;
1605 
1606 		for (i = 0; i < gi->nr_units; i++) {
1607 			cpu = gi->cpu_map[i];
1608 			if (cpu == NR_CPUS)
1609 				continue;
1610 
1611 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1612 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1613 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1614 
1615 			unit_map[cpu] = unit + i;
1616 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1617 
1618 			/* determine low/high unit_cpu */
1619 			if (pcpu_low_unit_cpu == NR_CPUS ||
1620 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1621 				pcpu_low_unit_cpu = cpu;
1622 			if (pcpu_high_unit_cpu == NR_CPUS ||
1623 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1624 				pcpu_high_unit_cpu = cpu;
1625 		}
1626 	}
1627 	pcpu_nr_units = unit;
1628 
1629 	for_each_possible_cpu(cpu)
1630 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1631 
1632 	/* we're done parsing the input, undefine BUG macro and dump config */
1633 #undef PCPU_SETUP_BUG_ON
1634 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1635 
1636 	pcpu_nr_groups = ai->nr_groups;
1637 	pcpu_group_offsets = group_offsets;
1638 	pcpu_group_sizes = group_sizes;
1639 	pcpu_unit_map = unit_map;
1640 	pcpu_unit_offsets = unit_off;
1641 
1642 	/* determine basic parameters */
1643 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1644 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1645 	pcpu_atom_size = ai->atom_size;
1646 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1647 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1648 
1649 	/*
1650 	 * Allocate chunk slots.  The additional last slot is for
1651 	 * empty chunks.
1652 	 */
1653 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1654 	pcpu_slot = memblock_virt_alloc(
1655 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1656 	for (i = 0; i < pcpu_nr_slots; i++)
1657 		INIT_LIST_HEAD(&pcpu_slot[i]);
1658 
1659 	/*
1660 	 * Initialize static chunk.  If reserved_size is zero, the
1661 	 * static chunk covers static area + dynamic allocation area
1662 	 * in the first chunk.  If reserved_size is not zero, it
1663 	 * covers static area + reserved area (mostly used for module
1664 	 * static percpu allocation).
1665 	 */
1666 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1667 	INIT_LIST_HEAD(&schunk->list);
1668 	INIT_LIST_HEAD(&schunk->map_extend_list);
1669 	schunk->base_addr = base_addr;
1670 	schunk->map = smap;
1671 	schunk->map_alloc = ARRAY_SIZE(smap);
1672 	schunk->immutable = true;
1673 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1674 	schunk->nr_populated = pcpu_unit_pages;
1675 
1676 	if (ai->reserved_size) {
1677 		schunk->free_size = ai->reserved_size;
1678 		pcpu_reserved_chunk = schunk;
1679 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1680 	} else {
1681 		schunk->free_size = dyn_size;
1682 		dyn_size = 0;			/* dynamic area covered */
1683 	}
1684 	schunk->contig_hint = schunk->free_size;
1685 
1686 	schunk->map[0] = 1;
1687 	schunk->map[1] = ai->static_size;
1688 	schunk->map_used = 1;
1689 	if (schunk->free_size)
1690 		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1691 	schunk->map[schunk->map_used] |= 1;
1692 
1693 	/* init dynamic chunk if necessary */
1694 	if (dyn_size) {
1695 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1696 		INIT_LIST_HEAD(&dchunk->list);
1697 		INIT_LIST_HEAD(&dchunk->map_extend_list);
1698 		dchunk->base_addr = base_addr;
1699 		dchunk->map = dmap;
1700 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1701 		dchunk->immutable = true;
1702 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1703 		dchunk->nr_populated = pcpu_unit_pages;
1704 
1705 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1706 		dchunk->map[0] = 1;
1707 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1708 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1709 		dchunk->map_used = 2;
1710 	}
1711 
1712 	/* link the first chunk in */
1713 	pcpu_first_chunk = dchunk ?: schunk;
1714 	pcpu_nr_empty_pop_pages +=
1715 		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1716 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1717 
1718 	/* we're done */
1719 	pcpu_base_addr = base_addr;
1720 	return 0;
1721 }
1722 
1723 #ifdef CONFIG_SMP
1724 
1725 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1726 	[PCPU_FC_AUTO]	= "auto",
1727 	[PCPU_FC_EMBED]	= "embed",
1728 	[PCPU_FC_PAGE]	= "page",
1729 };
1730 
1731 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1732 
percpu_alloc_setup(char * str)1733 static int __init percpu_alloc_setup(char *str)
1734 {
1735 	if (!str)
1736 		return -EINVAL;
1737 
1738 	if (0)
1739 		/* nada */;
1740 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1741 	else if (!strcmp(str, "embed"))
1742 		pcpu_chosen_fc = PCPU_FC_EMBED;
1743 #endif
1744 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1745 	else if (!strcmp(str, "page"))
1746 		pcpu_chosen_fc = PCPU_FC_PAGE;
1747 #endif
1748 	else
1749 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1750 
1751 	return 0;
1752 }
1753 early_param("percpu_alloc", percpu_alloc_setup);
1754 
1755 /*
1756  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1757  * Build it if needed by the arch config or the generic setup is going
1758  * to be used.
1759  */
1760 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1761 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1762 #define BUILD_EMBED_FIRST_CHUNK
1763 #endif
1764 
1765 /* build pcpu_page_first_chunk() iff needed by the arch config */
1766 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1767 #define BUILD_PAGE_FIRST_CHUNK
1768 #endif
1769 
1770 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1771 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1772 /**
1773  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1774  * @reserved_size: the size of reserved percpu area in bytes
1775  * @dyn_size: minimum free size for dynamic allocation in bytes
1776  * @atom_size: allocation atom size
1777  * @cpu_distance_fn: callback to determine distance between cpus, optional
1778  *
1779  * This function determines grouping of units, their mappings to cpus
1780  * and other parameters considering needed percpu size, allocation
1781  * atom size and distances between CPUs.
1782  *
1783  * Groups are always multiples of atom size and CPUs which are of
1784  * LOCAL_DISTANCE both ways are grouped together and share space for
1785  * units in the same group.  The returned configuration is guaranteed
1786  * to have CPUs on different nodes on different groups and >=75% usage
1787  * of allocated virtual address space.
1788  *
1789  * RETURNS:
1790  * On success, pointer to the new allocation_info is returned.  On
1791  * failure, ERR_PTR value is returned.
1792  */
pcpu_build_alloc_info(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn)1793 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1794 				size_t reserved_size, size_t dyn_size,
1795 				size_t atom_size,
1796 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1797 {
1798 	static int group_map[NR_CPUS] __initdata;
1799 	static int group_cnt[NR_CPUS] __initdata;
1800 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1801 	int nr_groups = 1, nr_units = 0;
1802 	size_t size_sum, min_unit_size, alloc_size;
1803 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1804 	int last_allocs, group, unit;
1805 	unsigned int cpu, tcpu;
1806 	struct pcpu_alloc_info *ai;
1807 	unsigned int *cpu_map;
1808 
1809 	/* this function may be called multiple times */
1810 	memset(group_map, 0, sizeof(group_map));
1811 	memset(group_cnt, 0, sizeof(group_cnt));
1812 
1813 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1814 	size_sum = PFN_ALIGN(static_size + reserved_size +
1815 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1816 	dyn_size = size_sum - static_size - reserved_size;
1817 
1818 	/*
1819 	 * Determine min_unit_size, alloc_size and max_upa such that
1820 	 * alloc_size is multiple of atom_size and is the smallest
1821 	 * which can accommodate 4k aligned segments which are equal to
1822 	 * or larger than min_unit_size.
1823 	 */
1824 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1825 
1826 	alloc_size = roundup(min_unit_size, atom_size);
1827 	upa = alloc_size / min_unit_size;
1828 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1829 		upa--;
1830 	max_upa = upa;
1831 
1832 	/* group cpus according to their proximity */
1833 	for_each_possible_cpu(cpu) {
1834 		group = 0;
1835 	next_group:
1836 		for_each_possible_cpu(tcpu) {
1837 			if (cpu == tcpu)
1838 				break;
1839 			if (group_map[tcpu] == group && cpu_distance_fn &&
1840 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1841 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1842 				group++;
1843 				nr_groups = max(nr_groups, group + 1);
1844 				goto next_group;
1845 			}
1846 		}
1847 		group_map[cpu] = group;
1848 		group_cnt[group]++;
1849 	}
1850 
1851 	/*
1852 	 * Expand unit size until address space usage goes over 75%
1853 	 * and then as much as possible without using more address
1854 	 * space.
1855 	 */
1856 	last_allocs = INT_MAX;
1857 	for (upa = max_upa; upa; upa--) {
1858 		int allocs = 0, wasted = 0;
1859 
1860 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1861 			continue;
1862 
1863 		for (group = 0; group < nr_groups; group++) {
1864 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1865 			allocs += this_allocs;
1866 			wasted += this_allocs * upa - group_cnt[group];
1867 		}
1868 
1869 		/*
1870 		 * Don't accept if wastage is over 1/3.  The
1871 		 * greater-than comparison ensures upa==1 always
1872 		 * passes the following check.
1873 		 */
1874 		if (wasted > num_possible_cpus() / 3)
1875 			continue;
1876 
1877 		/* and then don't consume more memory */
1878 		if (allocs > last_allocs)
1879 			break;
1880 		last_allocs = allocs;
1881 		best_upa = upa;
1882 	}
1883 	upa = best_upa;
1884 
1885 	/* allocate and fill alloc_info */
1886 	for (group = 0; group < nr_groups; group++)
1887 		nr_units += roundup(group_cnt[group], upa);
1888 
1889 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1890 	if (!ai)
1891 		return ERR_PTR(-ENOMEM);
1892 	cpu_map = ai->groups[0].cpu_map;
1893 
1894 	for (group = 0; group < nr_groups; group++) {
1895 		ai->groups[group].cpu_map = cpu_map;
1896 		cpu_map += roundup(group_cnt[group], upa);
1897 	}
1898 
1899 	ai->static_size = static_size;
1900 	ai->reserved_size = reserved_size;
1901 	ai->dyn_size = dyn_size;
1902 	ai->unit_size = alloc_size / upa;
1903 	ai->atom_size = atom_size;
1904 	ai->alloc_size = alloc_size;
1905 
1906 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1907 		struct pcpu_group_info *gi = &ai->groups[group];
1908 
1909 		/*
1910 		 * Initialize base_offset as if all groups are located
1911 		 * back-to-back.  The caller should update this to
1912 		 * reflect actual allocation.
1913 		 */
1914 		gi->base_offset = unit * ai->unit_size;
1915 
1916 		for_each_possible_cpu(cpu)
1917 			if (group_map[cpu] == group)
1918 				gi->cpu_map[gi->nr_units++] = cpu;
1919 		gi->nr_units = roundup(gi->nr_units, upa);
1920 		unit += gi->nr_units;
1921 	}
1922 	BUG_ON(unit != nr_units);
1923 
1924 	return ai;
1925 }
1926 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1927 
1928 #if defined(BUILD_EMBED_FIRST_CHUNK)
1929 /**
1930  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1931  * @reserved_size: the size of reserved percpu area in bytes
1932  * @dyn_size: minimum free size for dynamic allocation in bytes
1933  * @atom_size: allocation atom size
1934  * @cpu_distance_fn: callback to determine distance between cpus, optional
1935  * @alloc_fn: function to allocate percpu page
1936  * @free_fn: function to free percpu page
1937  *
1938  * This is a helper to ease setting up embedded first percpu chunk and
1939  * can be called where pcpu_setup_first_chunk() is expected.
1940  *
1941  * If this function is used to setup the first chunk, it is allocated
1942  * by calling @alloc_fn and used as-is without being mapped into
1943  * vmalloc area.  Allocations are always whole multiples of @atom_size
1944  * aligned to @atom_size.
1945  *
1946  * This enables the first chunk to piggy back on the linear physical
1947  * mapping which often uses larger page size.  Please note that this
1948  * can result in very sparse cpu->unit mapping on NUMA machines thus
1949  * requiring large vmalloc address space.  Don't use this allocator if
1950  * vmalloc space is not orders of magnitude larger than distances
1951  * between node memory addresses (ie. 32bit NUMA machines).
1952  *
1953  * @dyn_size specifies the minimum dynamic area size.
1954  *
1955  * If the needed size is smaller than the minimum or specified unit
1956  * size, the leftover is returned using @free_fn.
1957  *
1958  * RETURNS:
1959  * 0 on success, -errno on failure.
1960  */
pcpu_embed_first_chunk(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn)1961 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1962 				  size_t atom_size,
1963 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1964 				  pcpu_fc_alloc_fn_t alloc_fn,
1965 				  pcpu_fc_free_fn_t free_fn)
1966 {
1967 	void *base = (void *)ULONG_MAX;
1968 	void **areas = NULL;
1969 	struct pcpu_alloc_info *ai;
1970 	size_t size_sum, areas_size, max_distance;
1971 	int group, i, rc;
1972 
1973 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1974 				   cpu_distance_fn);
1975 	if (IS_ERR(ai))
1976 		return PTR_ERR(ai);
1977 
1978 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1979 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1980 
1981 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1982 	if (!areas) {
1983 		rc = -ENOMEM;
1984 		goto out_free;
1985 	}
1986 
1987 	/* allocate, copy and determine base address */
1988 	for (group = 0; group < ai->nr_groups; group++) {
1989 		struct pcpu_group_info *gi = &ai->groups[group];
1990 		unsigned int cpu = NR_CPUS;
1991 		void *ptr;
1992 
1993 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1994 			cpu = gi->cpu_map[i];
1995 		BUG_ON(cpu == NR_CPUS);
1996 
1997 		/* allocate space for the whole group */
1998 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1999 		if (!ptr) {
2000 			rc = -ENOMEM;
2001 			goto out_free_areas;
2002 		}
2003 		/* kmemleak tracks the percpu allocations separately */
2004 		kmemleak_free(ptr);
2005 		areas[group] = ptr;
2006 
2007 		base = min(ptr, base);
2008 	}
2009 
2010 	/*
2011 	 * Copy data and free unused parts.  This should happen after all
2012 	 * allocations are complete; otherwise, we may end up with
2013 	 * overlapping groups.
2014 	 */
2015 	for (group = 0; group < ai->nr_groups; group++) {
2016 		struct pcpu_group_info *gi = &ai->groups[group];
2017 		void *ptr = areas[group];
2018 
2019 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2020 			if (gi->cpu_map[i] == NR_CPUS) {
2021 				/* unused unit, free whole */
2022 				free_fn(ptr, ai->unit_size);
2023 				continue;
2024 			}
2025 			/* copy and return the unused part */
2026 			memcpy(ptr, __per_cpu_load, ai->static_size);
2027 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2028 		}
2029 	}
2030 
2031 	/* base address is now known, determine group base offsets */
2032 	max_distance = 0;
2033 	for (group = 0; group < ai->nr_groups; group++) {
2034 		ai->groups[group].base_offset = areas[group] - base;
2035 		max_distance = max_t(size_t, max_distance,
2036 				     ai->groups[group].base_offset);
2037 	}
2038 	max_distance += ai->unit_size;
2039 
2040 	/* warn if maximum distance is further than 75% of vmalloc space */
2041 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2042 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2043 			   "space 0x%lx\n", max_distance,
2044 			   VMALLOC_TOTAL);
2045 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2046 		/* and fail if we have fallback */
2047 		rc = -EINVAL;
2048 		goto out_free;
2049 #endif
2050 	}
2051 
2052 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2053 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2054 		ai->dyn_size, ai->unit_size);
2055 
2056 	rc = pcpu_setup_first_chunk(ai, base);
2057 	goto out_free;
2058 
2059 out_free_areas:
2060 	for (group = 0; group < ai->nr_groups; group++)
2061 		if (areas[group])
2062 			free_fn(areas[group],
2063 				ai->groups[group].nr_units * ai->unit_size);
2064 out_free:
2065 	pcpu_free_alloc_info(ai);
2066 	if (areas)
2067 		memblock_free_early(__pa(areas), areas_size);
2068 	return rc;
2069 }
2070 #endif /* BUILD_EMBED_FIRST_CHUNK */
2071 
2072 #ifdef BUILD_PAGE_FIRST_CHUNK
2073 /**
2074  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2075  * @reserved_size: the size of reserved percpu area in bytes
2076  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2077  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2078  * @populate_pte_fn: function to populate pte
2079  *
2080  * This is a helper to ease setting up page-remapped first percpu
2081  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2082  *
2083  * This is the basic allocator.  Static percpu area is allocated
2084  * page-by-page into vmalloc area.
2085  *
2086  * RETURNS:
2087  * 0 on success, -errno on failure.
2088  */
pcpu_page_first_chunk(size_t reserved_size,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn,pcpu_fc_populate_pte_fn_t populate_pte_fn)2089 int __init pcpu_page_first_chunk(size_t reserved_size,
2090 				 pcpu_fc_alloc_fn_t alloc_fn,
2091 				 pcpu_fc_free_fn_t free_fn,
2092 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2093 {
2094 	static struct vm_struct vm;
2095 	struct pcpu_alloc_info *ai;
2096 	char psize_str[16];
2097 	int unit_pages;
2098 	size_t pages_size;
2099 	struct page **pages;
2100 	int unit, i, j, rc;
2101 
2102 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2103 
2104 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2105 	if (IS_ERR(ai))
2106 		return PTR_ERR(ai);
2107 	BUG_ON(ai->nr_groups != 1);
2108 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2109 
2110 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2111 
2112 	/* unaligned allocations can't be freed, round up to page size */
2113 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2114 			       sizeof(pages[0]));
2115 	pages = memblock_virt_alloc(pages_size, 0);
2116 
2117 	/* allocate pages */
2118 	j = 0;
2119 	for (unit = 0; unit < num_possible_cpus(); unit++)
2120 		for (i = 0; i < unit_pages; i++) {
2121 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2122 			void *ptr;
2123 
2124 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2125 			if (!ptr) {
2126 				pr_warning("PERCPU: failed to allocate %s page "
2127 					   "for cpu%u\n", psize_str, cpu);
2128 				goto enomem;
2129 			}
2130 			/* kmemleak tracks the percpu allocations separately */
2131 			kmemleak_free(ptr);
2132 			pages[j++] = virt_to_page(ptr);
2133 		}
2134 
2135 	/* allocate vm area, map the pages and copy static data */
2136 	vm.flags = VM_ALLOC;
2137 	vm.size = num_possible_cpus() * ai->unit_size;
2138 	vm_area_register_early(&vm, PAGE_SIZE);
2139 
2140 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2141 		unsigned long unit_addr =
2142 			(unsigned long)vm.addr + unit * ai->unit_size;
2143 
2144 		for (i = 0; i < unit_pages; i++)
2145 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2146 
2147 		/* pte already populated, the following shouldn't fail */
2148 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2149 				      unit_pages);
2150 		if (rc < 0)
2151 			panic("failed to map percpu area, err=%d\n", rc);
2152 
2153 		/*
2154 		 * FIXME: Archs with virtual cache should flush local
2155 		 * cache for the linear mapping here - something
2156 		 * equivalent to flush_cache_vmap() on the local cpu.
2157 		 * flush_cache_vmap() can't be used as most supporting
2158 		 * data structures are not set up yet.
2159 		 */
2160 
2161 		/* copy static data */
2162 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2163 	}
2164 
2165 	/* we're ready, commit */
2166 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2167 		unit_pages, psize_str, vm.addr, ai->static_size,
2168 		ai->reserved_size, ai->dyn_size);
2169 
2170 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2171 	goto out_free_ar;
2172 
2173 enomem:
2174 	while (--j >= 0)
2175 		free_fn(page_address(pages[j]), PAGE_SIZE);
2176 	rc = -ENOMEM;
2177 out_free_ar:
2178 	memblock_free_early(__pa(pages), pages_size);
2179 	pcpu_free_alloc_info(ai);
2180 	return rc;
2181 }
2182 #endif /* BUILD_PAGE_FIRST_CHUNK */
2183 
2184 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2185 /*
2186  * Generic SMP percpu area setup.
2187  *
2188  * The embedding helper is used because its behavior closely resembles
2189  * the original non-dynamic generic percpu area setup.  This is
2190  * important because many archs have addressing restrictions and might
2191  * fail if the percpu area is located far away from the previous
2192  * location.  As an added bonus, in non-NUMA cases, embedding is
2193  * generally a good idea TLB-wise because percpu area can piggy back
2194  * on the physical linear memory mapping which uses large page
2195  * mappings on applicable archs.
2196  */
2197 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2198 EXPORT_SYMBOL(__per_cpu_offset);
2199 
pcpu_dfl_fc_alloc(unsigned int cpu,size_t size,size_t align)2200 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2201 				       size_t align)
2202 {
2203 	return  memblock_virt_alloc_from_nopanic(
2204 			size, align, __pa(MAX_DMA_ADDRESS));
2205 }
2206 
pcpu_dfl_fc_free(void * ptr,size_t size)2207 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2208 {
2209 	memblock_free_early(__pa(ptr), size);
2210 }
2211 
setup_per_cpu_areas(void)2212 void __init setup_per_cpu_areas(void)
2213 {
2214 	unsigned long delta;
2215 	unsigned int cpu;
2216 	int rc;
2217 
2218 	/*
2219 	 * Always reserve area for module percpu variables.  That's
2220 	 * what the legacy allocator did.
2221 	 */
2222 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2223 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2224 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2225 	if (rc < 0)
2226 		panic("Failed to initialize percpu areas.");
2227 
2228 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2229 	for_each_possible_cpu(cpu)
2230 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2231 }
2232 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2233 
2234 #else	/* CONFIG_SMP */
2235 
2236 /*
2237  * UP percpu area setup.
2238  *
2239  * UP always uses km-based percpu allocator with identity mapping.
2240  * Static percpu variables are indistinguishable from the usual static
2241  * variables and don't require any special preparation.
2242  */
setup_per_cpu_areas(void)2243 void __init setup_per_cpu_areas(void)
2244 {
2245 	const size_t unit_size =
2246 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2247 					 PERCPU_DYNAMIC_RESERVE));
2248 	struct pcpu_alloc_info *ai;
2249 	void *fc;
2250 
2251 	ai = pcpu_alloc_alloc_info(1, 1);
2252 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2253 					      PAGE_SIZE,
2254 					      __pa(MAX_DMA_ADDRESS));
2255 	if (!ai || !fc)
2256 		panic("Failed to allocate memory for percpu areas.");
2257 	/* kmemleak tracks the percpu allocations separately */
2258 	kmemleak_free(fc);
2259 
2260 	ai->dyn_size = unit_size;
2261 	ai->unit_size = unit_size;
2262 	ai->atom_size = unit_size;
2263 	ai->alloc_size = unit_size;
2264 	ai->groups[0].nr_units = 1;
2265 	ai->groups[0].cpu_map[0] = 0;
2266 
2267 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2268 		panic("Failed to initialize percpu areas.");
2269 }
2270 
2271 #endif	/* CONFIG_SMP */
2272 
2273 /*
2274  * First and reserved chunks are initialized with temporary allocation
2275  * map in initdata so that they can be used before slab is online.
2276  * This function is called after slab is brought up and replaces those
2277  * with properly allocated maps.
2278  */
percpu_init_late(void)2279 void __init percpu_init_late(void)
2280 {
2281 	struct pcpu_chunk *target_chunks[] =
2282 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2283 	struct pcpu_chunk *chunk;
2284 	unsigned long flags;
2285 	int i;
2286 
2287 	for (i = 0; (chunk = target_chunks[i]); i++) {
2288 		int *map;
2289 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2290 
2291 		BUILD_BUG_ON(size > PAGE_SIZE);
2292 
2293 		map = pcpu_mem_zalloc(size);
2294 		BUG_ON(!map);
2295 
2296 		spin_lock_irqsave(&pcpu_lock, flags);
2297 		memcpy(map, chunk->map, size);
2298 		chunk->map = map;
2299 		spin_unlock_irqrestore(&pcpu_lock, flags);
2300 	}
2301 }
2302 
2303 /*
2304  * Percpu allocator is initialized early during boot when neither slab or
2305  * workqueue is available.  Plug async management until everything is up
2306  * and running.
2307  */
percpu_enable_async(void)2308 static int __init percpu_enable_async(void)
2309 {
2310 	pcpu_async_enabled = true;
2311 	return 0;
2312 }
2313 subsys_initcall(percpu_enable_async);
2314