1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71 #include <linux/sched.h>
72
73 #include <asm/cacheflush.h>
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/io.h>
77
78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
81 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
82 #define PCPU_EMPTY_POP_PAGES_LOW 2
83 #define PCPU_EMPTY_POP_PAGES_HIGH 4
84
85 #ifdef CONFIG_SMP
86 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
87 #ifndef __addr_to_pcpu_ptr
88 #define __addr_to_pcpu_ptr(addr) \
89 (void __percpu *)((unsigned long)(addr) - \
90 (unsigned long)pcpu_base_addr + \
91 (unsigned long)__per_cpu_start)
92 #endif
93 #ifndef __pcpu_ptr_to_addr
94 #define __pcpu_ptr_to_addr(ptr) \
95 (void __force *)((unsigned long)(ptr) + \
96 (unsigned long)pcpu_base_addr - \
97 (unsigned long)__per_cpu_start)
98 #endif
99 #else /* CONFIG_SMP */
100 /* on UP, it's always identity mapped */
101 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
102 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
103 #endif /* CONFIG_SMP */
104
105 struct pcpu_chunk {
106 struct list_head list; /* linked to pcpu_slot lists */
107 int free_size; /* free bytes in the chunk */
108 int contig_hint; /* max contiguous size hint */
109 void *base_addr; /* base address of this chunk */
110
111 int map_used; /* # of map entries used before the sentry */
112 int map_alloc; /* # of map entries allocated */
113 int *map; /* allocation map */
114 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
115
116 void *data; /* chunk data */
117 int first_free; /* no free below this */
118 bool immutable; /* no [de]population allowed */
119 int nr_populated; /* # of populated pages */
120 unsigned long populated[]; /* populated bitmap */
121 };
122
123 static int pcpu_unit_pages __read_mostly;
124 static int pcpu_unit_size __read_mostly;
125 static int pcpu_nr_units __read_mostly;
126 static int pcpu_atom_size __read_mostly;
127 static int pcpu_nr_slots __read_mostly;
128 static size_t pcpu_chunk_struct_size __read_mostly;
129
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __read_mostly;
132 static unsigned int pcpu_high_unit_cpu __read_mostly;
133
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __read_mostly;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137
138 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
140
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __read_mostly;
143 static const unsigned long *pcpu_group_offsets __read_mostly;
144 static const size_t *pcpu_group_sizes __read_mostly;
145
146 /*
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
150 */
151 static struct pcpu_chunk *pcpu_first_chunk;
152
153 /*
154 * Optional reserved chunk. This chunk reserves part of the first
155 * chunk and serves it for reserved allocations. The amount of
156 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
157 * area doesn't exist, the following variables contain NULL and 0
158 * respectively.
159 */
160 static struct pcpu_chunk *pcpu_reserved_chunk;
161 static int pcpu_reserved_chunk_limit;
162
163 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
164 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
165
166 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
167
168 /* chunks which need their map areas extended, protected by pcpu_lock */
169 static LIST_HEAD(pcpu_map_extend_chunks);
170
171 /*
172 * The number of empty populated pages, protected by pcpu_lock. The
173 * reserved chunk doesn't contribute to the count.
174 */
175 static int pcpu_nr_empty_pop_pages;
176
177 /*
178 * Balance work is used to populate or destroy chunks asynchronously. We
179 * try to keep the number of populated free pages between
180 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
181 * empty chunk.
182 */
183 static void pcpu_balance_workfn(struct work_struct *work);
184 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
185 static bool pcpu_async_enabled __read_mostly;
186 static bool pcpu_atomic_alloc_failed;
187
pcpu_schedule_balance_work(void)188 static void pcpu_schedule_balance_work(void)
189 {
190 if (pcpu_async_enabled)
191 schedule_work(&pcpu_balance_work);
192 }
193
pcpu_addr_in_first_chunk(void * addr)194 static bool pcpu_addr_in_first_chunk(void *addr)
195 {
196 void *first_start = pcpu_first_chunk->base_addr;
197
198 return addr >= first_start && addr < first_start + pcpu_unit_size;
199 }
200
pcpu_addr_in_reserved_chunk(void * addr)201 static bool pcpu_addr_in_reserved_chunk(void *addr)
202 {
203 void *first_start = pcpu_first_chunk->base_addr;
204
205 return addr >= first_start &&
206 addr < first_start + pcpu_reserved_chunk_limit;
207 }
208
__pcpu_size_to_slot(int size)209 static int __pcpu_size_to_slot(int size)
210 {
211 int highbit = fls(size); /* size is in bytes */
212 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
213 }
214
pcpu_size_to_slot(int size)215 static int pcpu_size_to_slot(int size)
216 {
217 if (size == pcpu_unit_size)
218 return pcpu_nr_slots - 1;
219 return __pcpu_size_to_slot(size);
220 }
221
pcpu_chunk_slot(const struct pcpu_chunk * chunk)222 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
223 {
224 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
225 return 0;
226
227 return pcpu_size_to_slot(chunk->free_size);
228 }
229
230 /* set the pointer to a chunk in a page struct */
pcpu_set_page_chunk(struct page * page,struct pcpu_chunk * pcpu)231 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
232 {
233 page->index = (unsigned long)pcpu;
234 }
235
236 /* obtain pointer to a chunk from a page struct */
pcpu_get_page_chunk(struct page * page)237 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
238 {
239 return (struct pcpu_chunk *)page->index;
240 }
241
pcpu_page_idx(unsigned int cpu,int page_idx)242 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
243 {
244 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
245 }
246
pcpu_chunk_addr(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)247 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
248 unsigned int cpu, int page_idx)
249 {
250 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
251 (page_idx << PAGE_SHIFT);
252 }
253
pcpu_next_unpop(struct pcpu_chunk * chunk,int * rs,int * re,int end)254 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
255 int *rs, int *re, int end)
256 {
257 *rs = find_next_zero_bit(chunk->populated, end, *rs);
258 *re = find_next_bit(chunk->populated, end, *rs + 1);
259 }
260
pcpu_next_pop(struct pcpu_chunk * chunk,int * rs,int * re,int end)261 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
262 int *rs, int *re, int end)
263 {
264 *rs = find_next_bit(chunk->populated, end, *rs);
265 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
266 }
267
268 /*
269 * (Un)populated page region iterators. Iterate over (un)populated
270 * page regions between @start and @end in @chunk. @rs and @re should
271 * be integer variables and will be set to start and end page index of
272 * the current region.
273 */
274 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
275 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
276 (rs) < (re); \
277 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
278
279 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
280 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
281 (rs) < (re); \
282 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
283
284 /**
285 * pcpu_mem_zalloc - allocate memory
286 * @size: bytes to allocate
287 *
288 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
289 * kzalloc() is used; otherwise, vzalloc() is used. The returned
290 * memory is always zeroed.
291 *
292 * CONTEXT:
293 * Does GFP_KERNEL allocation.
294 *
295 * RETURNS:
296 * Pointer to the allocated area on success, NULL on failure.
297 */
pcpu_mem_zalloc(size_t size)298 static void *pcpu_mem_zalloc(size_t size)
299 {
300 if (WARN_ON_ONCE(!slab_is_available()))
301 return NULL;
302
303 if (size <= PAGE_SIZE)
304 return kzalloc(size, GFP_KERNEL);
305 else
306 return vzalloc(size);
307 }
308
309 /**
310 * pcpu_mem_free - free memory
311 * @ptr: memory to free
312 * @size: size of the area
313 *
314 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
315 */
pcpu_mem_free(void * ptr,size_t size)316 static void pcpu_mem_free(void *ptr, size_t size)
317 {
318 if (size <= PAGE_SIZE)
319 kfree(ptr);
320 else
321 vfree(ptr);
322 }
323
324 /**
325 * pcpu_count_occupied_pages - count the number of pages an area occupies
326 * @chunk: chunk of interest
327 * @i: index of the area in question
328 *
329 * Count the number of pages chunk's @i'th area occupies. When the area's
330 * start and/or end address isn't aligned to page boundary, the straddled
331 * page is included in the count iff the rest of the page is free.
332 */
pcpu_count_occupied_pages(struct pcpu_chunk * chunk,int i)333 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
334 {
335 int off = chunk->map[i] & ~1;
336 int end = chunk->map[i + 1] & ~1;
337
338 if (!PAGE_ALIGNED(off) && i > 0) {
339 int prev = chunk->map[i - 1];
340
341 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
342 off = round_down(off, PAGE_SIZE);
343 }
344
345 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
346 int next = chunk->map[i + 1];
347 int nend = chunk->map[i + 2] & ~1;
348
349 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
350 end = round_up(end, PAGE_SIZE);
351 }
352
353 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
354 }
355
356 /**
357 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
358 * @chunk: chunk of interest
359 * @oslot: the previous slot it was on
360 *
361 * This function is called after an allocation or free changed @chunk.
362 * New slot according to the changed state is determined and @chunk is
363 * moved to the slot. Note that the reserved chunk is never put on
364 * chunk slots.
365 *
366 * CONTEXT:
367 * pcpu_lock.
368 */
pcpu_chunk_relocate(struct pcpu_chunk * chunk,int oslot)369 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
370 {
371 int nslot = pcpu_chunk_slot(chunk);
372
373 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
374 if (oslot < nslot)
375 list_move(&chunk->list, &pcpu_slot[nslot]);
376 else
377 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
378 }
379 }
380
381 /**
382 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
383 * @chunk: chunk of interest
384 * @is_atomic: the allocation context
385 *
386 * Determine whether area map of @chunk needs to be extended. If
387 * @is_atomic, only the amount necessary for a new allocation is
388 * considered; however, async extension is scheduled if the left amount is
389 * low. If !@is_atomic, it aims for more empty space. Combined, this
390 * ensures that the map is likely to have enough available space to
391 * accomodate atomic allocations which can't extend maps directly.
392 *
393 * CONTEXT:
394 * pcpu_lock.
395 *
396 * RETURNS:
397 * New target map allocation length if extension is necessary, 0
398 * otherwise.
399 */
pcpu_need_to_extend(struct pcpu_chunk * chunk,bool is_atomic)400 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
401 {
402 int margin, new_alloc;
403
404 lockdep_assert_held(&pcpu_lock);
405
406 if (is_atomic) {
407 margin = 3;
408
409 if (chunk->map_alloc <
410 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
411 if (list_empty(&chunk->map_extend_list)) {
412 list_add_tail(&chunk->map_extend_list,
413 &pcpu_map_extend_chunks);
414 pcpu_schedule_balance_work();
415 }
416 }
417 } else {
418 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
419 }
420
421 if (chunk->map_alloc >= chunk->map_used + margin)
422 return 0;
423
424 new_alloc = PCPU_DFL_MAP_ALLOC;
425 while (new_alloc < chunk->map_used + margin)
426 new_alloc *= 2;
427
428 return new_alloc;
429 }
430
431 /**
432 * pcpu_extend_area_map - extend area map of a chunk
433 * @chunk: chunk of interest
434 * @new_alloc: new target allocation length of the area map
435 *
436 * Extend area map of @chunk to have @new_alloc entries.
437 *
438 * CONTEXT:
439 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
440 *
441 * RETURNS:
442 * 0 on success, -errno on failure.
443 */
pcpu_extend_area_map(struct pcpu_chunk * chunk,int new_alloc)444 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
445 {
446 int *old = NULL, *new = NULL;
447 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
448 unsigned long flags;
449
450 lockdep_assert_held(&pcpu_alloc_mutex);
451
452 new = pcpu_mem_zalloc(new_size);
453 if (!new)
454 return -ENOMEM;
455
456 /* acquire pcpu_lock and switch to new area map */
457 spin_lock_irqsave(&pcpu_lock, flags);
458
459 if (new_alloc <= chunk->map_alloc)
460 goto out_unlock;
461
462 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
463 old = chunk->map;
464
465 memcpy(new, old, old_size);
466
467 chunk->map_alloc = new_alloc;
468 chunk->map = new;
469 new = NULL;
470
471 out_unlock:
472 spin_unlock_irqrestore(&pcpu_lock, flags);
473
474 /*
475 * pcpu_mem_free() might end up calling vfree() which uses
476 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
477 */
478 pcpu_mem_free(old, old_size);
479 pcpu_mem_free(new, new_size);
480
481 return 0;
482 }
483
484 /**
485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486 * @chunk: chunk the candidate area belongs to
487 * @off: the offset to the start of the candidate area
488 * @this_size: the size of the candidate area
489 * @size: the size of the target allocation
490 * @align: the alignment of the target allocation
491 * @pop_only: only allocate from already populated region
492 *
493 * We're trying to allocate @size bytes aligned at @align. @chunk's area
494 * at @off sized @this_size is a candidate. This function determines
495 * whether the target allocation fits in the candidate area and returns the
496 * number of bytes to pad after @off. If the target area doesn't fit, -1
497 * is returned.
498 *
499 * If @pop_only is %true, this function only considers the already
500 * populated part of the candidate area.
501 */
pcpu_fit_in_area(struct pcpu_chunk * chunk,int off,int this_size,int size,int align,bool pop_only)502 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
503 int size, int align, bool pop_only)
504 {
505 int cand_off = off;
506
507 while (true) {
508 int head = ALIGN(cand_off, align) - off;
509 int page_start, page_end, rs, re;
510
511 if (this_size < head + size)
512 return -1;
513
514 if (!pop_only)
515 return head;
516
517 /*
518 * If the first unpopulated page is beyond the end of the
519 * allocation, the whole allocation is populated;
520 * otherwise, retry from the end of the unpopulated area.
521 */
522 page_start = PFN_DOWN(head + off);
523 page_end = PFN_UP(head + off + size);
524
525 rs = page_start;
526 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
527 if (rs >= page_end)
528 return head;
529 cand_off = re * PAGE_SIZE;
530 }
531 }
532
533 /**
534 * pcpu_alloc_area - allocate area from a pcpu_chunk
535 * @chunk: chunk of interest
536 * @size: wanted size in bytes
537 * @align: wanted align
538 * @pop_only: allocate only from the populated area
539 * @occ_pages_p: out param for the number of pages the area occupies
540 *
541 * Try to allocate @size bytes area aligned at @align from @chunk.
542 * Note that this function only allocates the offset. It doesn't
543 * populate or map the area.
544 *
545 * @chunk->map must have at least two free slots.
546 *
547 * CONTEXT:
548 * pcpu_lock.
549 *
550 * RETURNS:
551 * Allocated offset in @chunk on success, -1 if no matching area is
552 * found.
553 */
pcpu_alloc_area(struct pcpu_chunk * chunk,int size,int align,bool pop_only,int * occ_pages_p)554 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
555 bool pop_only, int *occ_pages_p)
556 {
557 int oslot = pcpu_chunk_slot(chunk);
558 int max_contig = 0;
559 int i, off;
560 bool seen_free = false;
561 int *p;
562
563 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
564 int head, tail;
565 int this_size;
566
567 off = *p;
568 if (off & 1)
569 continue;
570
571 this_size = (p[1] & ~1) - off;
572
573 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 pop_only);
575 if (head < 0) {
576 if (!seen_free) {
577 chunk->first_free = i;
578 seen_free = true;
579 }
580 max_contig = max(this_size, max_contig);
581 continue;
582 }
583
584 /*
585 * If head is small or the previous block is free,
586 * merge'em. Note that 'small' is defined as smaller
587 * than sizeof(int), which is very small but isn't too
588 * uncommon for percpu allocations.
589 */
590 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
591 *p = off += head;
592 if (p[-1] & 1)
593 chunk->free_size -= head;
594 else
595 max_contig = max(*p - p[-1], max_contig);
596 this_size -= head;
597 head = 0;
598 }
599
600 /* if tail is small, just keep it around */
601 tail = this_size - head - size;
602 if (tail < sizeof(int)) {
603 tail = 0;
604 size = this_size - head;
605 }
606
607 /* split if warranted */
608 if (head || tail) {
609 int nr_extra = !!head + !!tail;
610
611 /* insert new subblocks */
612 memmove(p + nr_extra + 1, p + 1,
613 sizeof(chunk->map[0]) * (chunk->map_used - i));
614 chunk->map_used += nr_extra;
615
616 if (head) {
617 if (!seen_free) {
618 chunk->first_free = i;
619 seen_free = true;
620 }
621 *++p = off += head;
622 ++i;
623 max_contig = max(head, max_contig);
624 }
625 if (tail) {
626 p[1] = off + size;
627 max_contig = max(tail, max_contig);
628 }
629 }
630
631 if (!seen_free)
632 chunk->first_free = i + 1;
633
634 /* update hint and mark allocated */
635 if (i + 1 == chunk->map_used)
636 chunk->contig_hint = max_contig; /* fully scanned */
637 else
638 chunk->contig_hint = max(chunk->contig_hint,
639 max_contig);
640
641 chunk->free_size -= size;
642 *p |= 1;
643
644 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
645 pcpu_chunk_relocate(chunk, oslot);
646 return off;
647 }
648
649 chunk->contig_hint = max_contig; /* fully scanned */
650 pcpu_chunk_relocate(chunk, oslot);
651
652 /* tell the upper layer that this chunk has no matching area */
653 return -1;
654 }
655
656 /**
657 * pcpu_free_area - free area to a pcpu_chunk
658 * @chunk: chunk of interest
659 * @freeme: offset of area to free
660 * @occ_pages_p: out param for the number of pages the area occupies
661 *
662 * Free area starting from @freeme to @chunk. Note that this function
663 * only modifies the allocation map. It doesn't depopulate or unmap
664 * the area.
665 *
666 * CONTEXT:
667 * pcpu_lock.
668 */
pcpu_free_area(struct pcpu_chunk * chunk,int freeme,int * occ_pages_p)669 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
670 int *occ_pages_p)
671 {
672 int oslot = pcpu_chunk_slot(chunk);
673 int off = 0;
674 unsigned i, j;
675 int to_free = 0;
676 int *p;
677
678 freeme |= 1; /* we are searching for <given offset, in use> pair */
679
680 i = 0;
681 j = chunk->map_used;
682 while (i != j) {
683 unsigned k = (i + j) / 2;
684 off = chunk->map[k];
685 if (off < freeme)
686 i = k + 1;
687 else if (off > freeme)
688 j = k;
689 else
690 i = j = k;
691 }
692 BUG_ON(off != freeme);
693
694 if (i < chunk->first_free)
695 chunk->first_free = i;
696
697 p = chunk->map + i;
698 *p = off &= ~1;
699 chunk->free_size += (p[1] & ~1) - off;
700
701 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
702
703 /* merge with next? */
704 if (!(p[1] & 1))
705 to_free++;
706 /* merge with previous? */
707 if (i > 0 && !(p[-1] & 1)) {
708 to_free++;
709 i--;
710 p--;
711 }
712 if (to_free) {
713 chunk->map_used -= to_free;
714 memmove(p + 1, p + 1 + to_free,
715 (chunk->map_used - i) * sizeof(chunk->map[0]));
716 }
717
718 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
719 pcpu_chunk_relocate(chunk, oslot);
720 }
721
pcpu_alloc_chunk(void)722 static struct pcpu_chunk *pcpu_alloc_chunk(void)
723 {
724 struct pcpu_chunk *chunk;
725
726 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 if (!chunk)
728 return NULL;
729
730 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
731 sizeof(chunk->map[0]));
732 if (!chunk->map) {
733 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
734 return NULL;
735 }
736
737 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
738 chunk->map[0] = 0;
739 chunk->map[1] = pcpu_unit_size | 1;
740 chunk->map_used = 1;
741
742 INIT_LIST_HEAD(&chunk->list);
743 INIT_LIST_HEAD(&chunk->map_extend_list);
744 chunk->free_size = pcpu_unit_size;
745 chunk->contig_hint = pcpu_unit_size;
746
747 return chunk;
748 }
749
pcpu_free_chunk(struct pcpu_chunk * chunk)750 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
751 {
752 if (!chunk)
753 return;
754 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
755 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
756 }
757
758 /**
759 * pcpu_chunk_populated - post-population bookkeeping
760 * @chunk: pcpu_chunk which got populated
761 * @page_start: the start page
762 * @page_end: the end page
763 *
764 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
765 * the bookkeeping information accordingly. Must be called after each
766 * successful population.
767 */
pcpu_chunk_populated(struct pcpu_chunk * chunk,int page_start,int page_end)768 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
769 int page_start, int page_end)
770 {
771 int nr = page_end - page_start;
772
773 lockdep_assert_held(&pcpu_lock);
774
775 bitmap_set(chunk->populated, page_start, nr);
776 chunk->nr_populated += nr;
777 pcpu_nr_empty_pop_pages += nr;
778 }
779
780 /**
781 * pcpu_chunk_depopulated - post-depopulation bookkeeping
782 * @chunk: pcpu_chunk which got depopulated
783 * @page_start: the start page
784 * @page_end: the end page
785 *
786 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787 * Update the bookkeeping information accordingly. Must be called after
788 * each successful depopulation.
789 */
pcpu_chunk_depopulated(struct pcpu_chunk * chunk,int page_start,int page_end)790 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
791 int page_start, int page_end)
792 {
793 int nr = page_end - page_start;
794
795 lockdep_assert_held(&pcpu_lock);
796
797 bitmap_clear(chunk->populated, page_start, nr);
798 chunk->nr_populated -= nr;
799 pcpu_nr_empty_pop_pages -= nr;
800 }
801
802 /*
803 * Chunk management implementation.
804 *
805 * To allow different implementations, chunk alloc/free and
806 * [de]population are implemented in a separate file which is pulled
807 * into this file and compiled together. The following functions
808 * should be implemented.
809 *
810 * pcpu_populate_chunk - populate the specified range of a chunk
811 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
812 * pcpu_create_chunk - create a new chunk
813 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
814 * pcpu_addr_to_page - translate address to physical address
815 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
816 */
817 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
818 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
819 static struct pcpu_chunk *pcpu_create_chunk(void);
820 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
821 static struct page *pcpu_addr_to_page(void *addr);
822 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
823
824 #ifdef CONFIG_NEED_PER_CPU_KM
825 #include "percpu-km.c"
826 #else
827 #include "percpu-vm.c"
828 #endif
829
830 /**
831 * pcpu_chunk_addr_search - determine chunk containing specified address
832 * @addr: address for which the chunk needs to be determined.
833 *
834 * RETURNS:
835 * The address of the found chunk.
836 */
pcpu_chunk_addr_search(void * addr)837 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
838 {
839 /* is it in the first chunk? */
840 if (pcpu_addr_in_first_chunk(addr)) {
841 /* is it in the reserved area? */
842 if (pcpu_addr_in_reserved_chunk(addr))
843 return pcpu_reserved_chunk;
844 return pcpu_first_chunk;
845 }
846
847 /*
848 * The address is relative to unit0 which might be unused and
849 * thus unmapped. Offset the address to the unit space of the
850 * current processor before looking it up in the vmalloc
851 * space. Note that any possible cpu id can be used here, so
852 * there's no need to worry about preemption or cpu hotplug.
853 */
854 addr += pcpu_unit_offsets[raw_smp_processor_id()];
855 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
856 }
857
858 /**
859 * pcpu_alloc - the percpu allocator
860 * @size: size of area to allocate in bytes
861 * @align: alignment of area (max PAGE_SIZE)
862 * @reserved: allocate from the reserved chunk if available
863 * @gfp: allocation flags
864 *
865 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
866 * contain %GFP_KERNEL, the allocation is atomic.
867 *
868 * RETURNS:
869 * Percpu pointer to the allocated area on success, NULL on failure.
870 */
pcpu_alloc(size_t size,size_t align,bool reserved,gfp_t gfp)871 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
872 gfp_t gfp)
873 {
874 static int warn_limit = 10;
875 struct pcpu_chunk *chunk;
876 const char *err;
877 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
878 int occ_pages = 0;
879 int slot, off, new_alloc, cpu, ret;
880 unsigned long flags;
881 void __percpu *ptr;
882
883 /*
884 * We want the lowest bit of offset available for in-use/free
885 * indicator, so force >= 16bit alignment and make size even.
886 */
887 if (unlikely(align < 2))
888 align = 2;
889
890 size = ALIGN(size, 2);
891
892 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
893 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
894 size, align);
895 return NULL;
896 }
897
898 if (!is_atomic)
899 mutex_lock(&pcpu_alloc_mutex);
900
901 spin_lock_irqsave(&pcpu_lock, flags);
902
903 /* serve reserved allocations from the reserved chunk if available */
904 if (reserved && pcpu_reserved_chunk) {
905 chunk = pcpu_reserved_chunk;
906
907 if (size > chunk->contig_hint) {
908 err = "alloc from reserved chunk failed";
909 goto fail_unlock;
910 }
911
912 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
913 spin_unlock_irqrestore(&pcpu_lock, flags);
914 if (is_atomic ||
915 pcpu_extend_area_map(chunk, new_alloc) < 0) {
916 err = "failed to extend area map of reserved chunk";
917 goto fail;
918 }
919 spin_lock_irqsave(&pcpu_lock, flags);
920 }
921
922 off = pcpu_alloc_area(chunk, size, align, is_atomic,
923 &occ_pages);
924 if (off >= 0)
925 goto area_found;
926
927 err = "alloc from reserved chunk failed";
928 goto fail_unlock;
929 }
930
931 restart:
932 /* search through normal chunks */
933 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
934 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
935 if (size > chunk->contig_hint)
936 continue;
937
938 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
939 if (new_alloc) {
940 if (is_atomic)
941 continue;
942 spin_unlock_irqrestore(&pcpu_lock, flags);
943 if (pcpu_extend_area_map(chunk,
944 new_alloc) < 0) {
945 err = "failed to extend area map";
946 goto fail;
947 }
948 spin_lock_irqsave(&pcpu_lock, flags);
949 /*
950 * pcpu_lock has been dropped, need to
951 * restart cpu_slot list walking.
952 */
953 goto restart;
954 }
955
956 off = pcpu_alloc_area(chunk, size, align, is_atomic,
957 &occ_pages);
958 if (off >= 0)
959 goto area_found;
960 }
961 }
962
963 spin_unlock_irqrestore(&pcpu_lock, flags);
964
965 /*
966 * No space left. Create a new chunk. We don't want multiple
967 * tasks to create chunks simultaneously. Serialize and create iff
968 * there's still no empty chunk after grabbing the mutex.
969 */
970 if (is_atomic)
971 goto fail;
972
973 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
974 chunk = pcpu_create_chunk();
975 if (!chunk) {
976 err = "failed to allocate new chunk";
977 goto fail;
978 }
979
980 spin_lock_irqsave(&pcpu_lock, flags);
981 pcpu_chunk_relocate(chunk, -1);
982 } else {
983 spin_lock_irqsave(&pcpu_lock, flags);
984 }
985
986 goto restart;
987
988 area_found:
989 spin_unlock_irqrestore(&pcpu_lock, flags);
990
991 /* populate if not all pages are already there */
992 if (!is_atomic) {
993 int page_start, page_end, rs, re;
994
995 page_start = PFN_DOWN(off);
996 page_end = PFN_UP(off + size);
997
998 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
999 WARN_ON(chunk->immutable);
1000
1001 ret = pcpu_populate_chunk(chunk, rs, re);
1002
1003 spin_lock_irqsave(&pcpu_lock, flags);
1004 if (ret) {
1005 pcpu_free_area(chunk, off, &occ_pages);
1006 err = "failed to populate";
1007 goto fail_unlock;
1008 }
1009 pcpu_chunk_populated(chunk, rs, re);
1010 spin_unlock_irqrestore(&pcpu_lock, flags);
1011 }
1012
1013 mutex_unlock(&pcpu_alloc_mutex);
1014 }
1015
1016 if (chunk != pcpu_reserved_chunk) {
1017 spin_lock_irqsave(&pcpu_lock, flags);
1018 pcpu_nr_empty_pop_pages -= occ_pages;
1019 spin_unlock_irqrestore(&pcpu_lock, flags);
1020 }
1021
1022 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1023 pcpu_schedule_balance_work();
1024
1025 /* clear the areas and return address relative to base address */
1026 for_each_possible_cpu(cpu)
1027 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1028
1029 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1030 kmemleak_alloc_percpu(ptr, size, gfp);
1031 return ptr;
1032
1033 fail_unlock:
1034 spin_unlock_irqrestore(&pcpu_lock, flags);
1035 fail:
1036 if (!is_atomic && warn_limit) {
1037 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1038 size, align, is_atomic, err);
1039 dump_stack();
1040 if (!--warn_limit)
1041 pr_info("PERCPU: limit reached, disable warning\n");
1042 }
1043 if (is_atomic) {
1044 /* see the flag handling in pcpu_blance_workfn() */
1045 pcpu_atomic_alloc_failed = true;
1046 pcpu_schedule_balance_work();
1047 } else {
1048 mutex_unlock(&pcpu_alloc_mutex);
1049 }
1050 return NULL;
1051 }
1052
1053 /**
1054 * __alloc_percpu_gfp - allocate dynamic percpu area
1055 * @size: size of area to allocate in bytes
1056 * @align: alignment of area (max PAGE_SIZE)
1057 * @gfp: allocation flags
1058 *
1059 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1060 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1061 * be called from any context but is a lot more likely to fail.
1062 *
1063 * RETURNS:
1064 * Percpu pointer to the allocated area on success, NULL on failure.
1065 */
__alloc_percpu_gfp(size_t size,size_t align,gfp_t gfp)1066 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1067 {
1068 return pcpu_alloc(size, align, false, gfp);
1069 }
1070 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1071
1072 /**
1073 * __alloc_percpu - allocate dynamic percpu area
1074 * @size: size of area to allocate in bytes
1075 * @align: alignment of area (max PAGE_SIZE)
1076 *
1077 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1078 */
__alloc_percpu(size_t size,size_t align)1079 void __percpu *__alloc_percpu(size_t size, size_t align)
1080 {
1081 return pcpu_alloc(size, align, false, GFP_KERNEL);
1082 }
1083 EXPORT_SYMBOL_GPL(__alloc_percpu);
1084
1085 /**
1086 * __alloc_reserved_percpu - allocate reserved percpu area
1087 * @size: size of area to allocate in bytes
1088 * @align: alignment of area (max PAGE_SIZE)
1089 *
1090 * Allocate zero-filled percpu area of @size bytes aligned at @align
1091 * from reserved percpu area if arch has set it up; otherwise,
1092 * allocation is served from the same dynamic area. Might sleep.
1093 * Might trigger writeouts.
1094 *
1095 * CONTEXT:
1096 * Does GFP_KERNEL allocation.
1097 *
1098 * RETURNS:
1099 * Percpu pointer to the allocated area on success, NULL on failure.
1100 */
__alloc_reserved_percpu(size_t size,size_t align)1101 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1102 {
1103 return pcpu_alloc(size, align, true, GFP_KERNEL);
1104 }
1105
1106 /**
1107 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1108 * @work: unused
1109 *
1110 * Reclaim all fully free chunks except for the first one.
1111 */
pcpu_balance_workfn(struct work_struct * work)1112 static void pcpu_balance_workfn(struct work_struct *work)
1113 {
1114 LIST_HEAD(to_free);
1115 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1116 struct pcpu_chunk *chunk, *next;
1117 int slot, nr_to_pop, ret;
1118
1119 /*
1120 * There's no reason to keep around multiple unused chunks and VM
1121 * areas can be scarce. Destroy all free chunks except for one.
1122 */
1123 mutex_lock(&pcpu_alloc_mutex);
1124 spin_lock_irq(&pcpu_lock);
1125
1126 list_for_each_entry_safe(chunk, next, free_head, list) {
1127 WARN_ON(chunk->immutable);
1128
1129 /* spare the first one */
1130 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1131 continue;
1132
1133 list_del_init(&chunk->map_extend_list);
1134 list_move(&chunk->list, &to_free);
1135 }
1136
1137 spin_unlock_irq(&pcpu_lock);
1138
1139 list_for_each_entry_safe(chunk, next, &to_free, list) {
1140 int rs, re;
1141
1142 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1143 pcpu_depopulate_chunk(chunk, rs, re);
1144 spin_lock_irq(&pcpu_lock);
1145 pcpu_chunk_depopulated(chunk, rs, re);
1146 spin_unlock_irq(&pcpu_lock);
1147 }
1148 pcpu_destroy_chunk(chunk);
1149 }
1150
1151 /* service chunks which requested async area map extension */
1152 do {
1153 int new_alloc = 0;
1154
1155 spin_lock_irq(&pcpu_lock);
1156
1157 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1158 struct pcpu_chunk, map_extend_list);
1159 if (chunk) {
1160 list_del_init(&chunk->map_extend_list);
1161 new_alloc = pcpu_need_to_extend(chunk, false);
1162 }
1163
1164 spin_unlock_irq(&pcpu_lock);
1165
1166 if (new_alloc)
1167 pcpu_extend_area_map(chunk, new_alloc);
1168 } while (chunk);
1169
1170 /*
1171 * Ensure there are certain number of free populated pages for
1172 * atomic allocs. Fill up from the most packed so that atomic
1173 * allocs don't increase fragmentation. If atomic allocation
1174 * failed previously, always populate the maximum amount. This
1175 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1176 * failing indefinitely; however, large atomic allocs are not
1177 * something we support properly and can be highly unreliable and
1178 * inefficient.
1179 */
1180 retry_pop:
1181 if (pcpu_atomic_alloc_failed) {
1182 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1183 /* best effort anyway, don't worry about synchronization */
1184 pcpu_atomic_alloc_failed = false;
1185 } else {
1186 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1187 pcpu_nr_empty_pop_pages,
1188 0, PCPU_EMPTY_POP_PAGES_HIGH);
1189 }
1190
1191 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1192 int nr_unpop = 0, rs, re;
1193
1194 if (!nr_to_pop)
1195 break;
1196
1197 spin_lock_irq(&pcpu_lock);
1198 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1199 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1200 if (nr_unpop)
1201 break;
1202 }
1203 spin_unlock_irq(&pcpu_lock);
1204
1205 if (!nr_unpop)
1206 continue;
1207
1208 /* @chunk can't go away while pcpu_alloc_mutex is held */
1209 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1210 int nr = min(re - rs, nr_to_pop);
1211
1212 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1213 if (!ret) {
1214 nr_to_pop -= nr;
1215 spin_lock_irq(&pcpu_lock);
1216 pcpu_chunk_populated(chunk, rs, rs + nr);
1217 spin_unlock_irq(&pcpu_lock);
1218 } else {
1219 nr_to_pop = 0;
1220 }
1221
1222 if (!nr_to_pop)
1223 break;
1224 }
1225 }
1226
1227 if (nr_to_pop) {
1228 /* ran out of chunks to populate, create a new one and retry */
1229 chunk = pcpu_create_chunk();
1230 if (chunk) {
1231 spin_lock_irq(&pcpu_lock);
1232 pcpu_chunk_relocate(chunk, -1);
1233 spin_unlock_irq(&pcpu_lock);
1234 goto retry_pop;
1235 }
1236 }
1237
1238 mutex_unlock(&pcpu_alloc_mutex);
1239 }
1240
1241 /**
1242 * free_percpu - free percpu area
1243 * @ptr: pointer to area to free
1244 *
1245 * Free percpu area @ptr.
1246 *
1247 * CONTEXT:
1248 * Can be called from atomic context.
1249 */
free_percpu(void __percpu * ptr)1250 void free_percpu(void __percpu *ptr)
1251 {
1252 void *addr;
1253 struct pcpu_chunk *chunk;
1254 unsigned long flags;
1255 int off, occ_pages;
1256
1257 if (!ptr)
1258 return;
1259
1260 kmemleak_free_percpu(ptr);
1261
1262 addr = __pcpu_ptr_to_addr(ptr);
1263
1264 spin_lock_irqsave(&pcpu_lock, flags);
1265
1266 chunk = pcpu_chunk_addr_search(addr);
1267 off = addr - chunk->base_addr;
1268
1269 pcpu_free_area(chunk, off, &occ_pages);
1270
1271 if (chunk != pcpu_reserved_chunk)
1272 pcpu_nr_empty_pop_pages += occ_pages;
1273
1274 /* if there are more than one fully free chunks, wake up grim reaper */
1275 if (chunk->free_size == pcpu_unit_size) {
1276 struct pcpu_chunk *pos;
1277
1278 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1279 if (pos != chunk) {
1280 pcpu_schedule_balance_work();
1281 break;
1282 }
1283 }
1284
1285 spin_unlock_irqrestore(&pcpu_lock, flags);
1286 }
1287 EXPORT_SYMBOL_GPL(free_percpu);
1288
1289 /**
1290 * is_kernel_percpu_address - test whether address is from static percpu area
1291 * @addr: address to test
1292 *
1293 * Test whether @addr belongs to in-kernel static percpu area. Module
1294 * static percpu areas are not considered. For those, use
1295 * is_module_percpu_address().
1296 *
1297 * RETURNS:
1298 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1299 */
is_kernel_percpu_address(unsigned long addr)1300 bool is_kernel_percpu_address(unsigned long addr)
1301 {
1302 #ifdef CONFIG_SMP
1303 const size_t static_size = __per_cpu_end - __per_cpu_start;
1304 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1305 unsigned int cpu;
1306
1307 for_each_possible_cpu(cpu) {
1308 void *start = per_cpu_ptr(base, cpu);
1309
1310 if ((void *)addr >= start && (void *)addr < start + static_size)
1311 return true;
1312 }
1313 #endif
1314 /* on UP, can't distinguish from other static vars, always false */
1315 return false;
1316 }
1317
1318 /**
1319 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1320 * @addr: the address to be converted to physical address
1321 *
1322 * Given @addr which is dereferenceable address obtained via one of
1323 * percpu access macros, this function translates it into its physical
1324 * address. The caller is responsible for ensuring @addr stays valid
1325 * until this function finishes.
1326 *
1327 * percpu allocator has special setup for the first chunk, which currently
1328 * supports either embedding in linear address space or vmalloc mapping,
1329 * and, from the second one, the backing allocator (currently either vm or
1330 * km) provides translation.
1331 *
1332 * The addr can be translated simply without checking if it falls into the
1333 * first chunk. But the current code reflects better how percpu allocator
1334 * actually works, and the verification can discover both bugs in percpu
1335 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1336 * code.
1337 *
1338 * RETURNS:
1339 * The physical address for @addr.
1340 */
per_cpu_ptr_to_phys(void * addr)1341 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1342 {
1343 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1344 bool in_first_chunk = false;
1345 unsigned long first_low, first_high;
1346 unsigned int cpu;
1347
1348 /*
1349 * The following test on unit_low/high isn't strictly
1350 * necessary but will speed up lookups of addresses which
1351 * aren't in the first chunk.
1352 */
1353 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1354 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1355 pcpu_unit_pages);
1356 if ((unsigned long)addr >= first_low &&
1357 (unsigned long)addr < first_high) {
1358 for_each_possible_cpu(cpu) {
1359 void *start = per_cpu_ptr(base, cpu);
1360
1361 if (addr >= start && addr < start + pcpu_unit_size) {
1362 in_first_chunk = true;
1363 break;
1364 }
1365 }
1366 }
1367
1368 if (in_first_chunk) {
1369 if (!is_vmalloc_addr(addr))
1370 return __pa(addr);
1371 else
1372 return page_to_phys(vmalloc_to_page(addr)) +
1373 offset_in_page(addr);
1374 } else
1375 return page_to_phys(pcpu_addr_to_page(addr)) +
1376 offset_in_page(addr);
1377 }
1378
1379 /**
1380 * pcpu_alloc_alloc_info - allocate percpu allocation info
1381 * @nr_groups: the number of groups
1382 * @nr_units: the number of units
1383 *
1384 * Allocate ai which is large enough for @nr_groups groups containing
1385 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1386 * cpu_map array which is long enough for @nr_units and filled with
1387 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1388 * pointer of other groups.
1389 *
1390 * RETURNS:
1391 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1392 * failure.
1393 */
pcpu_alloc_alloc_info(int nr_groups,int nr_units)1394 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1395 int nr_units)
1396 {
1397 struct pcpu_alloc_info *ai;
1398 size_t base_size, ai_size;
1399 void *ptr;
1400 int unit;
1401
1402 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1403 __alignof__(ai->groups[0].cpu_map[0]));
1404 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1405
1406 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1407 if (!ptr)
1408 return NULL;
1409 ai = ptr;
1410 ptr += base_size;
1411
1412 ai->groups[0].cpu_map = ptr;
1413
1414 for (unit = 0; unit < nr_units; unit++)
1415 ai->groups[0].cpu_map[unit] = NR_CPUS;
1416
1417 ai->nr_groups = nr_groups;
1418 ai->__ai_size = PFN_ALIGN(ai_size);
1419
1420 return ai;
1421 }
1422
1423 /**
1424 * pcpu_free_alloc_info - free percpu allocation info
1425 * @ai: pcpu_alloc_info to free
1426 *
1427 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1428 */
pcpu_free_alloc_info(struct pcpu_alloc_info * ai)1429 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1430 {
1431 memblock_free_early(__pa(ai), ai->__ai_size);
1432 }
1433
1434 /**
1435 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1436 * @lvl: loglevel
1437 * @ai: allocation info to dump
1438 *
1439 * Print out information about @ai using loglevel @lvl.
1440 */
pcpu_dump_alloc_info(const char * lvl,const struct pcpu_alloc_info * ai)1441 static void pcpu_dump_alloc_info(const char *lvl,
1442 const struct pcpu_alloc_info *ai)
1443 {
1444 int group_width = 1, cpu_width = 1, width;
1445 char empty_str[] = "--------";
1446 int alloc = 0, alloc_end = 0;
1447 int group, v;
1448 int upa, apl; /* units per alloc, allocs per line */
1449
1450 v = ai->nr_groups;
1451 while (v /= 10)
1452 group_width++;
1453
1454 v = num_possible_cpus();
1455 while (v /= 10)
1456 cpu_width++;
1457 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1458
1459 upa = ai->alloc_size / ai->unit_size;
1460 width = upa * (cpu_width + 1) + group_width + 3;
1461 apl = rounddown_pow_of_two(max(60 / width, 1));
1462
1463 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1464 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1465 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1466
1467 for (group = 0; group < ai->nr_groups; group++) {
1468 const struct pcpu_group_info *gi = &ai->groups[group];
1469 int unit = 0, unit_end = 0;
1470
1471 BUG_ON(gi->nr_units % upa);
1472 for (alloc_end += gi->nr_units / upa;
1473 alloc < alloc_end; alloc++) {
1474 if (!(alloc % apl)) {
1475 printk(KERN_CONT "\n");
1476 printk("%spcpu-alloc: ", lvl);
1477 }
1478 printk(KERN_CONT "[%0*d] ", group_width, group);
1479
1480 for (unit_end += upa; unit < unit_end; unit++)
1481 if (gi->cpu_map[unit] != NR_CPUS)
1482 printk(KERN_CONT "%0*d ", cpu_width,
1483 gi->cpu_map[unit]);
1484 else
1485 printk(KERN_CONT "%s ", empty_str);
1486 }
1487 }
1488 printk(KERN_CONT "\n");
1489 }
1490
1491 /**
1492 * pcpu_setup_first_chunk - initialize the first percpu chunk
1493 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1494 * @base_addr: mapped address
1495 *
1496 * Initialize the first percpu chunk which contains the kernel static
1497 * perpcu area. This function is to be called from arch percpu area
1498 * setup path.
1499 *
1500 * @ai contains all information necessary to initialize the first
1501 * chunk and prime the dynamic percpu allocator.
1502 *
1503 * @ai->static_size is the size of static percpu area.
1504 *
1505 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1506 * reserve after the static area in the first chunk. This reserves
1507 * the first chunk such that it's available only through reserved
1508 * percpu allocation. This is primarily used to serve module percpu
1509 * static areas on architectures where the addressing model has
1510 * limited offset range for symbol relocations to guarantee module
1511 * percpu symbols fall inside the relocatable range.
1512 *
1513 * @ai->dyn_size determines the number of bytes available for dynamic
1514 * allocation in the first chunk. The area between @ai->static_size +
1515 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1516 *
1517 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1518 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1519 * @ai->dyn_size.
1520 *
1521 * @ai->atom_size is the allocation atom size and used as alignment
1522 * for vm areas.
1523 *
1524 * @ai->alloc_size is the allocation size and always multiple of
1525 * @ai->atom_size. This is larger than @ai->atom_size if
1526 * @ai->unit_size is larger than @ai->atom_size.
1527 *
1528 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1529 * percpu areas. Units which should be colocated are put into the
1530 * same group. Dynamic VM areas will be allocated according to these
1531 * groupings. If @ai->nr_groups is zero, a single group containing
1532 * all units is assumed.
1533 *
1534 * The caller should have mapped the first chunk at @base_addr and
1535 * copied static data to each unit.
1536 *
1537 * If the first chunk ends up with both reserved and dynamic areas, it
1538 * is served by two chunks - one to serve the core static and reserved
1539 * areas and the other for the dynamic area. They share the same vm
1540 * and page map but uses different area allocation map to stay away
1541 * from each other. The latter chunk is circulated in the chunk slots
1542 * and available for dynamic allocation like any other chunks.
1543 *
1544 * RETURNS:
1545 * 0 on success, -errno on failure.
1546 */
pcpu_setup_first_chunk(const struct pcpu_alloc_info * ai,void * base_addr)1547 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1548 void *base_addr)
1549 {
1550 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1551 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1552 size_t dyn_size = ai->dyn_size;
1553 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1554 struct pcpu_chunk *schunk, *dchunk = NULL;
1555 unsigned long *group_offsets;
1556 size_t *group_sizes;
1557 unsigned long *unit_off;
1558 unsigned int cpu;
1559 int *unit_map;
1560 int group, unit, i;
1561
1562 #define PCPU_SETUP_BUG_ON(cond) do { \
1563 if (unlikely(cond)) { \
1564 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1565 pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \
1566 cpumask_pr_args(cpu_possible_mask)); \
1567 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1568 BUG(); \
1569 } \
1570 } while (0)
1571
1572 /* sanity checks */
1573 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1574 #ifdef CONFIG_SMP
1575 PCPU_SETUP_BUG_ON(!ai->static_size);
1576 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1577 #endif
1578 PCPU_SETUP_BUG_ON(!base_addr);
1579 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1580 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1581 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1582 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1583 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1584 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1585
1586 /* process group information and build config tables accordingly */
1587 group_offsets = memblock_virt_alloc(ai->nr_groups *
1588 sizeof(group_offsets[0]), 0);
1589 group_sizes = memblock_virt_alloc(ai->nr_groups *
1590 sizeof(group_sizes[0]), 0);
1591 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1592 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1593
1594 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1595 unit_map[cpu] = UINT_MAX;
1596
1597 pcpu_low_unit_cpu = NR_CPUS;
1598 pcpu_high_unit_cpu = NR_CPUS;
1599
1600 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1601 const struct pcpu_group_info *gi = &ai->groups[group];
1602
1603 group_offsets[group] = gi->base_offset;
1604 group_sizes[group] = gi->nr_units * ai->unit_size;
1605
1606 for (i = 0; i < gi->nr_units; i++) {
1607 cpu = gi->cpu_map[i];
1608 if (cpu == NR_CPUS)
1609 continue;
1610
1611 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1612 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1613 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1614
1615 unit_map[cpu] = unit + i;
1616 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1617
1618 /* determine low/high unit_cpu */
1619 if (pcpu_low_unit_cpu == NR_CPUS ||
1620 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1621 pcpu_low_unit_cpu = cpu;
1622 if (pcpu_high_unit_cpu == NR_CPUS ||
1623 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1624 pcpu_high_unit_cpu = cpu;
1625 }
1626 }
1627 pcpu_nr_units = unit;
1628
1629 for_each_possible_cpu(cpu)
1630 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1631
1632 /* we're done parsing the input, undefine BUG macro and dump config */
1633 #undef PCPU_SETUP_BUG_ON
1634 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1635
1636 pcpu_nr_groups = ai->nr_groups;
1637 pcpu_group_offsets = group_offsets;
1638 pcpu_group_sizes = group_sizes;
1639 pcpu_unit_map = unit_map;
1640 pcpu_unit_offsets = unit_off;
1641
1642 /* determine basic parameters */
1643 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1644 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1645 pcpu_atom_size = ai->atom_size;
1646 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1647 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1648
1649 /*
1650 * Allocate chunk slots. The additional last slot is for
1651 * empty chunks.
1652 */
1653 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1654 pcpu_slot = memblock_virt_alloc(
1655 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1656 for (i = 0; i < pcpu_nr_slots; i++)
1657 INIT_LIST_HEAD(&pcpu_slot[i]);
1658
1659 /*
1660 * Initialize static chunk. If reserved_size is zero, the
1661 * static chunk covers static area + dynamic allocation area
1662 * in the first chunk. If reserved_size is not zero, it
1663 * covers static area + reserved area (mostly used for module
1664 * static percpu allocation).
1665 */
1666 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1667 INIT_LIST_HEAD(&schunk->list);
1668 INIT_LIST_HEAD(&schunk->map_extend_list);
1669 schunk->base_addr = base_addr;
1670 schunk->map = smap;
1671 schunk->map_alloc = ARRAY_SIZE(smap);
1672 schunk->immutable = true;
1673 bitmap_fill(schunk->populated, pcpu_unit_pages);
1674 schunk->nr_populated = pcpu_unit_pages;
1675
1676 if (ai->reserved_size) {
1677 schunk->free_size = ai->reserved_size;
1678 pcpu_reserved_chunk = schunk;
1679 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1680 } else {
1681 schunk->free_size = dyn_size;
1682 dyn_size = 0; /* dynamic area covered */
1683 }
1684 schunk->contig_hint = schunk->free_size;
1685
1686 schunk->map[0] = 1;
1687 schunk->map[1] = ai->static_size;
1688 schunk->map_used = 1;
1689 if (schunk->free_size)
1690 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1691 schunk->map[schunk->map_used] |= 1;
1692
1693 /* init dynamic chunk if necessary */
1694 if (dyn_size) {
1695 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1696 INIT_LIST_HEAD(&dchunk->list);
1697 INIT_LIST_HEAD(&dchunk->map_extend_list);
1698 dchunk->base_addr = base_addr;
1699 dchunk->map = dmap;
1700 dchunk->map_alloc = ARRAY_SIZE(dmap);
1701 dchunk->immutable = true;
1702 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1703 dchunk->nr_populated = pcpu_unit_pages;
1704
1705 dchunk->contig_hint = dchunk->free_size = dyn_size;
1706 dchunk->map[0] = 1;
1707 dchunk->map[1] = pcpu_reserved_chunk_limit;
1708 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1709 dchunk->map_used = 2;
1710 }
1711
1712 /* link the first chunk in */
1713 pcpu_first_chunk = dchunk ?: schunk;
1714 pcpu_nr_empty_pop_pages +=
1715 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1716 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1717
1718 /* we're done */
1719 pcpu_base_addr = base_addr;
1720 return 0;
1721 }
1722
1723 #ifdef CONFIG_SMP
1724
1725 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1726 [PCPU_FC_AUTO] = "auto",
1727 [PCPU_FC_EMBED] = "embed",
1728 [PCPU_FC_PAGE] = "page",
1729 };
1730
1731 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1732
percpu_alloc_setup(char * str)1733 static int __init percpu_alloc_setup(char *str)
1734 {
1735 if (!str)
1736 return -EINVAL;
1737
1738 if (0)
1739 /* nada */;
1740 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1741 else if (!strcmp(str, "embed"))
1742 pcpu_chosen_fc = PCPU_FC_EMBED;
1743 #endif
1744 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1745 else if (!strcmp(str, "page"))
1746 pcpu_chosen_fc = PCPU_FC_PAGE;
1747 #endif
1748 else
1749 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1750
1751 return 0;
1752 }
1753 early_param("percpu_alloc", percpu_alloc_setup);
1754
1755 /*
1756 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1757 * Build it if needed by the arch config or the generic setup is going
1758 * to be used.
1759 */
1760 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1761 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1762 #define BUILD_EMBED_FIRST_CHUNK
1763 #endif
1764
1765 /* build pcpu_page_first_chunk() iff needed by the arch config */
1766 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1767 #define BUILD_PAGE_FIRST_CHUNK
1768 #endif
1769
1770 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1771 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1772 /**
1773 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1774 * @reserved_size: the size of reserved percpu area in bytes
1775 * @dyn_size: minimum free size for dynamic allocation in bytes
1776 * @atom_size: allocation atom size
1777 * @cpu_distance_fn: callback to determine distance between cpus, optional
1778 *
1779 * This function determines grouping of units, their mappings to cpus
1780 * and other parameters considering needed percpu size, allocation
1781 * atom size and distances between CPUs.
1782 *
1783 * Groups are always multiples of atom size and CPUs which are of
1784 * LOCAL_DISTANCE both ways are grouped together and share space for
1785 * units in the same group. The returned configuration is guaranteed
1786 * to have CPUs on different nodes on different groups and >=75% usage
1787 * of allocated virtual address space.
1788 *
1789 * RETURNS:
1790 * On success, pointer to the new allocation_info is returned. On
1791 * failure, ERR_PTR value is returned.
1792 */
pcpu_build_alloc_info(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn)1793 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1794 size_t reserved_size, size_t dyn_size,
1795 size_t atom_size,
1796 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1797 {
1798 static int group_map[NR_CPUS] __initdata;
1799 static int group_cnt[NR_CPUS] __initdata;
1800 const size_t static_size = __per_cpu_end - __per_cpu_start;
1801 int nr_groups = 1, nr_units = 0;
1802 size_t size_sum, min_unit_size, alloc_size;
1803 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1804 int last_allocs, group, unit;
1805 unsigned int cpu, tcpu;
1806 struct pcpu_alloc_info *ai;
1807 unsigned int *cpu_map;
1808
1809 /* this function may be called multiple times */
1810 memset(group_map, 0, sizeof(group_map));
1811 memset(group_cnt, 0, sizeof(group_cnt));
1812
1813 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1814 size_sum = PFN_ALIGN(static_size + reserved_size +
1815 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1816 dyn_size = size_sum - static_size - reserved_size;
1817
1818 /*
1819 * Determine min_unit_size, alloc_size and max_upa such that
1820 * alloc_size is multiple of atom_size and is the smallest
1821 * which can accommodate 4k aligned segments which are equal to
1822 * or larger than min_unit_size.
1823 */
1824 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1825
1826 alloc_size = roundup(min_unit_size, atom_size);
1827 upa = alloc_size / min_unit_size;
1828 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1829 upa--;
1830 max_upa = upa;
1831
1832 /* group cpus according to their proximity */
1833 for_each_possible_cpu(cpu) {
1834 group = 0;
1835 next_group:
1836 for_each_possible_cpu(tcpu) {
1837 if (cpu == tcpu)
1838 break;
1839 if (group_map[tcpu] == group && cpu_distance_fn &&
1840 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1841 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1842 group++;
1843 nr_groups = max(nr_groups, group + 1);
1844 goto next_group;
1845 }
1846 }
1847 group_map[cpu] = group;
1848 group_cnt[group]++;
1849 }
1850
1851 /*
1852 * Expand unit size until address space usage goes over 75%
1853 * and then as much as possible without using more address
1854 * space.
1855 */
1856 last_allocs = INT_MAX;
1857 for (upa = max_upa; upa; upa--) {
1858 int allocs = 0, wasted = 0;
1859
1860 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1861 continue;
1862
1863 for (group = 0; group < nr_groups; group++) {
1864 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1865 allocs += this_allocs;
1866 wasted += this_allocs * upa - group_cnt[group];
1867 }
1868
1869 /*
1870 * Don't accept if wastage is over 1/3. The
1871 * greater-than comparison ensures upa==1 always
1872 * passes the following check.
1873 */
1874 if (wasted > num_possible_cpus() / 3)
1875 continue;
1876
1877 /* and then don't consume more memory */
1878 if (allocs > last_allocs)
1879 break;
1880 last_allocs = allocs;
1881 best_upa = upa;
1882 }
1883 upa = best_upa;
1884
1885 /* allocate and fill alloc_info */
1886 for (group = 0; group < nr_groups; group++)
1887 nr_units += roundup(group_cnt[group], upa);
1888
1889 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1890 if (!ai)
1891 return ERR_PTR(-ENOMEM);
1892 cpu_map = ai->groups[0].cpu_map;
1893
1894 for (group = 0; group < nr_groups; group++) {
1895 ai->groups[group].cpu_map = cpu_map;
1896 cpu_map += roundup(group_cnt[group], upa);
1897 }
1898
1899 ai->static_size = static_size;
1900 ai->reserved_size = reserved_size;
1901 ai->dyn_size = dyn_size;
1902 ai->unit_size = alloc_size / upa;
1903 ai->atom_size = atom_size;
1904 ai->alloc_size = alloc_size;
1905
1906 for (group = 0, unit = 0; group_cnt[group]; group++) {
1907 struct pcpu_group_info *gi = &ai->groups[group];
1908
1909 /*
1910 * Initialize base_offset as if all groups are located
1911 * back-to-back. The caller should update this to
1912 * reflect actual allocation.
1913 */
1914 gi->base_offset = unit * ai->unit_size;
1915
1916 for_each_possible_cpu(cpu)
1917 if (group_map[cpu] == group)
1918 gi->cpu_map[gi->nr_units++] = cpu;
1919 gi->nr_units = roundup(gi->nr_units, upa);
1920 unit += gi->nr_units;
1921 }
1922 BUG_ON(unit != nr_units);
1923
1924 return ai;
1925 }
1926 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1927
1928 #if defined(BUILD_EMBED_FIRST_CHUNK)
1929 /**
1930 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1931 * @reserved_size: the size of reserved percpu area in bytes
1932 * @dyn_size: minimum free size for dynamic allocation in bytes
1933 * @atom_size: allocation atom size
1934 * @cpu_distance_fn: callback to determine distance between cpus, optional
1935 * @alloc_fn: function to allocate percpu page
1936 * @free_fn: function to free percpu page
1937 *
1938 * This is a helper to ease setting up embedded first percpu chunk and
1939 * can be called where pcpu_setup_first_chunk() is expected.
1940 *
1941 * If this function is used to setup the first chunk, it is allocated
1942 * by calling @alloc_fn and used as-is without being mapped into
1943 * vmalloc area. Allocations are always whole multiples of @atom_size
1944 * aligned to @atom_size.
1945 *
1946 * This enables the first chunk to piggy back on the linear physical
1947 * mapping which often uses larger page size. Please note that this
1948 * can result in very sparse cpu->unit mapping on NUMA machines thus
1949 * requiring large vmalloc address space. Don't use this allocator if
1950 * vmalloc space is not orders of magnitude larger than distances
1951 * between node memory addresses (ie. 32bit NUMA machines).
1952 *
1953 * @dyn_size specifies the minimum dynamic area size.
1954 *
1955 * If the needed size is smaller than the minimum or specified unit
1956 * size, the leftover is returned using @free_fn.
1957 *
1958 * RETURNS:
1959 * 0 on success, -errno on failure.
1960 */
pcpu_embed_first_chunk(size_t reserved_size,size_t dyn_size,size_t atom_size,pcpu_fc_cpu_distance_fn_t cpu_distance_fn,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn)1961 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1962 size_t atom_size,
1963 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1964 pcpu_fc_alloc_fn_t alloc_fn,
1965 pcpu_fc_free_fn_t free_fn)
1966 {
1967 void *base = (void *)ULONG_MAX;
1968 void **areas = NULL;
1969 struct pcpu_alloc_info *ai;
1970 size_t size_sum, areas_size, max_distance;
1971 int group, i, rc;
1972
1973 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1974 cpu_distance_fn);
1975 if (IS_ERR(ai))
1976 return PTR_ERR(ai);
1977
1978 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1979 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1980
1981 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1982 if (!areas) {
1983 rc = -ENOMEM;
1984 goto out_free;
1985 }
1986
1987 /* allocate, copy and determine base address */
1988 for (group = 0; group < ai->nr_groups; group++) {
1989 struct pcpu_group_info *gi = &ai->groups[group];
1990 unsigned int cpu = NR_CPUS;
1991 void *ptr;
1992
1993 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1994 cpu = gi->cpu_map[i];
1995 BUG_ON(cpu == NR_CPUS);
1996
1997 /* allocate space for the whole group */
1998 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1999 if (!ptr) {
2000 rc = -ENOMEM;
2001 goto out_free_areas;
2002 }
2003 /* kmemleak tracks the percpu allocations separately */
2004 kmemleak_free(ptr);
2005 areas[group] = ptr;
2006
2007 base = min(ptr, base);
2008 }
2009
2010 /*
2011 * Copy data and free unused parts. This should happen after all
2012 * allocations are complete; otherwise, we may end up with
2013 * overlapping groups.
2014 */
2015 for (group = 0; group < ai->nr_groups; group++) {
2016 struct pcpu_group_info *gi = &ai->groups[group];
2017 void *ptr = areas[group];
2018
2019 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2020 if (gi->cpu_map[i] == NR_CPUS) {
2021 /* unused unit, free whole */
2022 free_fn(ptr, ai->unit_size);
2023 continue;
2024 }
2025 /* copy and return the unused part */
2026 memcpy(ptr, __per_cpu_load, ai->static_size);
2027 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2028 }
2029 }
2030
2031 /* base address is now known, determine group base offsets */
2032 max_distance = 0;
2033 for (group = 0; group < ai->nr_groups; group++) {
2034 ai->groups[group].base_offset = areas[group] - base;
2035 max_distance = max_t(size_t, max_distance,
2036 ai->groups[group].base_offset);
2037 }
2038 max_distance += ai->unit_size;
2039
2040 /* warn if maximum distance is further than 75% of vmalloc space */
2041 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2042 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2043 "space 0x%lx\n", max_distance,
2044 VMALLOC_TOTAL);
2045 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2046 /* and fail if we have fallback */
2047 rc = -EINVAL;
2048 goto out_free;
2049 #endif
2050 }
2051
2052 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2053 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2054 ai->dyn_size, ai->unit_size);
2055
2056 rc = pcpu_setup_first_chunk(ai, base);
2057 goto out_free;
2058
2059 out_free_areas:
2060 for (group = 0; group < ai->nr_groups; group++)
2061 if (areas[group])
2062 free_fn(areas[group],
2063 ai->groups[group].nr_units * ai->unit_size);
2064 out_free:
2065 pcpu_free_alloc_info(ai);
2066 if (areas)
2067 memblock_free_early(__pa(areas), areas_size);
2068 return rc;
2069 }
2070 #endif /* BUILD_EMBED_FIRST_CHUNK */
2071
2072 #ifdef BUILD_PAGE_FIRST_CHUNK
2073 /**
2074 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2075 * @reserved_size: the size of reserved percpu area in bytes
2076 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2077 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2078 * @populate_pte_fn: function to populate pte
2079 *
2080 * This is a helper to ease setting up page-remapped first percpu
2081 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2082 *
2083 * This is the basic allocator. Static percpu area is allocated
2084 * page-by-page into vmalloc area.
2085 *
2086 * RETURNS:
2087 * 0 on success, -errno on failure.
2088 */
pcpu_page_first_chunk(size_t reserved_size,pcpu_fc_alloc_fn_t alloc_fn,pcpu_fc_free_fn_t free_fn,pcpu_fc_populate_pte_fn_t populate_pte_fn)2089 int __init pcpu_page_first_chunk(size_t reserved_size,
2090 pcpu_fc_alloc_fn_t alloc_fn,
2091 pcpu_fc_free_fn_t free_fn,
2092 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2093 {
2094 static struct vm_struct vm;
2095 struct pcpu_alloc_info *ai;
2096 char psize_str[16];
2097 int unit_pages;
2098 size_t pages_size;
2099 struct page **pages;
2100 int unit, i, j, rc;
2101
2102 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2103
2104 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2105 if (IS_ERR(ai))
2106 return PTR_ERR(ai);
2107 BUG_ON(ai->nr_groups != 1);
2108 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2109
2110 unit_pages = ai->unit_size >> PAGE_SHIFT;
2111
2112 /* unaligned allocations can't be freed, round up to page size */
2113 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2114 sizeof(pages[0]));
2115 pages = memblock_virt_alloc(pages_size, 0);
2116
2117 /* allocate pages */
2118 j = 0;
2119 for (unit = 0; unit < num_possible_cpus(); unit++)
2120 for (i = 0; i < unit_pages; i++) {
2121 unsigned int cpu = ai->groups[0].cpu_map[unit];
2122 void *ptr;
2123
2124 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2125 if (!ptr) {
2126 pr_warning("PERCPU: failed to allocate %s page "
2127 "for cpu%u\n", psize_str, cpu);
2128 goto enomem;
2129 }
2130 /* kmemleak tracks the percpu allocations separately */
2131 kmemleak_free(ptr);
2132 pages[j++] = virt_to_page(ptr);
2133 }
2134
2135 /* allocate vm area, map the pages and copy static data */
2136 vm.flags = VM_ALLOC;
2137 vm.size = num_possible_cpus() * ai->unit_size;
2138 vm_area_register_early(&vm, PAGE_SIZE);
2139
2140 for (unit = 0; unit < num_possible_cpus(); unit++) {
2141 unsigned long unit_addr =
2142 (unsigned long)vm.addr + unit * ai->unit_size;
2143
2144 for (i = 0; i < unit_pages; i++)
2145 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2146
2147 /* pte already populated, the following shouldn't fail */
2148 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2149 unit_pages);
2150 if (rc < 0)
2151 panic("failed to map percpu area, err=%d\n", rc);
2152
2153 /*
2154 * FIXME: Archs with virtual cache should flush local
2155 * cache for the linear mapping here - something
2156 * equivalent to flush_cache_vmap() on the local cpu.
2157 * flush_cache_vmap() can't be used as most supporting
2158 * data structures are not set up yet.
2159 */
2160
2161 /* copy static data */
2162 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2163 }
2164
2165 /* we're ready, commit */
2166 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2167 unit_pages, psize_str, vm.addr, ai->static_size,
2168 ai->reserved_size, ai->dyn_size);
2169
2170 rc = pcpu_setup_first_chunk(ai, vm.addr);
2171 goto out_free_ar;
2172
2173 enomem:
2174 while (--j >= 0)
2175 free_fn(page_address(pages[j]), PAGE_SIZE);
2176 rc = -ENOMEM;
2177 out_free_ar:
2178 memblock_free_early(__pa(pages), pages_size);
2179 pcpu_free_alloc_info(ai);
2180 return rc;
2181 }
2182 #endif /* BUILD_PAGE_FIRST_CHUNK */
2183
2184 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2185 /*
2186 * Generic SMP percpu area setup.
2187 *
2188 * The embedding helper is used because its behavior closely resembles
2189 * the original non-dynamic generic percpu area setup. This is
2190 * important because many archs have addressing restrictions and might
2191 * fail if the percpu area is located far away from the previous
2192 * location. As an added bonus, in non-NUMA cases, embedding is
2193 * generally a good idea TLB-wise because percpu area can piggy back
2194 * on the physical linear memory mapping which uses large page
2195 * mappings on applicable archs.
2196 */
2197 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2198 EXPORT_SYMBOL(__per_cpu_offset);
2199
pcpu_dfl_fc_alloc(unsigned int cpu,size_t size,size_t align)2200 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2201 size_t align)
2202 {
2203 return memblock_virt_alloc_from_nopanic(
2204 size, align, __pa(MAX_DMA_ADDRESS));
2205 }
2206
pcpu_dfl_fc_free(void * ptr,size_t size)2207 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2208 {
2209 memblock_free_early(__pa(ptr), size);
2210 }
2211
setup_per_cpu_areas(void)2212 void __init setup_per_cpu_areas(void)
2213 {
2214 unsigned long delta;
2215 unsigned int cpu;
2216 int rc;
2217
2218 /*
2219 * Always reserve area for module percpu variables. That's
2220 * what the legacy allocator did.
2221 */
2222 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2223 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2224 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2225 if (rc < 0)
2226 panic("Failed to initialize percpu areas.");
2227
2228 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2229 for_each_possible_cpu(cpu)
2230 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2231 }
2232 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2233
2234 #else /* CONFIG_SMP */
2235
2236 /*
2237 * UP percpu area setup.
2238 *
2239 * UP always uses km-based percpu allocator with identity mapping.
2240 * Static percpu variables are indistinguishable from the usual static
2241 * variables and don't require any special preparation.
2242 */
setup_per_cpu_areas(void)2243 void __init setup_per_cpu_areas(void)
2244 {
2245 const size_t unit_size =
2246 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2247 PERCPU_DYNAMIC_RESERVE));
2248 struct pcpu_alloc_info *ai;
2249 void *fc;
2250
2251 ai = pcpu_alloc_alloc_info(1, 1);
2252 fc = memblock_virt_alloc_from_nopanic(unit_size,
2253 PAGE_SIZE,
2254 __pa(MAX_DMA_ADDRESS));
2255 if (!ai || !fc)
2256 panic("Failed to allocate memory for percpu areas.");
2257 /* kmemleak tracks the percpu allocations separately */
2258 kmemleak_free(fc);
2259
2260 ai->dyn_size = unit_size;
2261 ai->unit_size = unit_size;
2262 ai->atom_size = unit_size;
2263 ai->alloc_size = unit_size;
2264 ai->groups[0].nr_units = 1;
2265 ai->groups[0].cpu_map[0] = 0;
2266
2267 if (pcpu_setup_first_chunk(ai, fc) < 0)
2268 panic("Failed to initialize percpu areas.");
2269 }
2270
2271 #endif /* CONFIG_SMP */
2272
2273 /*
2274 * First and reserved chunks are initialized with temporary allocation
2275 * map in initdata so that they can be used before slab is online.
2276 * This function is called after slab is brought up and replaces those
2277 * with properly allocated maps.
2278 */
percpu_init_late(void)2279 void __init percpu_init_late(void)
2280 {
2281 struct pcpu_chunk *target_chunks[] =
2282 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2283 struct pcpu_chunk *chunk;
2284 unsigned long flags;
2285 int i;
2286
2287 for (i = 0; (chunk = target_chunks[i]); i++) {
2288 int *map;
2289 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2290
2291 BUILD_BUG_ON(size > PAGE_SIZE);
2292
2293 map = pcpu_mem_zalloc(size);
2294 BUG_ON(!map);
2295
2296 spin_lock_irqsave(&pcpu_lock, flags);
2297 memcpy(map, chunk->map, size);
2298 chunk->map = map;
2299 spin_unlock_irqrestore(&pcpu_lock, flags);
2300 }
2301 }
2302
2303 /*
2304 * Percpu allocator is initialized early during boot when neither slab or
2305 * workqueue is available. Plug async management until everything is up
2306 * and running.
2307 */
percpu_enable_async(void)2308 static int __init percpu_enable_async(void)
2309 {
2310 pcpu_async_enabled = true;
2311 return 0;
2312 }
2313 subsys_initcall(percpu_enable_async);
2314