• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54 	unsigned int auto_free:1;	/* free on completion */
55 	enum wb_reason reason;		/* why was writeback initiated? */
56 
57 	struct list_head list;		/* pending work list */
58 	struct wb_completion *done;	/* set if the caller waits */
59 };
60 
61 /*
62  * If one wants to wait for one or more wb_writeback_works, each work's
63  * ->done should be set to a wb_completion defined using the following
64  * macro.  Once all work items are issued with wb_queue_work(), the caller
65  * can wait for the completion of all using wb_wait_for_completion().  Work
66  * items which are waited upon aren't freed automatically on completion.
67  */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
69 	struct wb_completion cmpl = {					\
70 		.cnt		= ATOMIC_INIT(1),			\
71 	}
72 
73 
74 /*
75  * If an inode is constantly having its pages dirtied, but then the
76  * updates stop dirtytime_expire_interval seconds in the past, it's
77  * possible for the worst case time between when an inode has its
78  * timestamps updated and when they finally get written out to be two
79  * dirtytime_expire_intervals.  We set the default to 12 hours (in
80  * seconds), which means most of the time inodes will have their
81  * timestamps written to disk after 12 hours, but in the worst case a
82  * few inodes might not their timestamps updated for 24 hours.
83  */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85 
wb_inode(struct list_head * head)86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 	return list_entry(head, struct inode, i_io_list);
89 }
90 
91 /*
92  * Include the creation of the trace points after defining the
93  * wb_writeback_work structure and inline functions so that the definition
94  * remains local to this file.
95  */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100 
wb_io_lists_populated(struct bdi_writeback * wb)101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 	if (wb_has_dirty_io(wb)) {
104 		return false;
105 	} else {
106 		set_bit(WB_has_dirty_io, &wb->state);
107 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 		atomic_long_add(wb->avg_write_bandwidth,
109 				&wb->bdi->tot_write_bandwidth);
110 		return true;
111 	}
112 }
113 
wb_io_lists_depopulated(struct bdi_writeback * wb)114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 		clear_bit(WB_has_dirty_io, &wb->state);
119 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 					&wb->bdi->tot_write_bandwidth) < 0);
121 	}
122 }
123 
124 /**
125  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126  * @inode: inode to be moved
127  * @wb: target bdi_writeback
128  * @head: one of @wb->b_{dirty|io|more_io}
129  *
130  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131  * Returns %true if @inode is the first occupant of the !dirty_time IO
132  * lists; otherwise, %false.
133  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)134 static bool inode_io_list_move_locked(struct inode *inode,
135 				      struct bdi_writeback *wb,
136 				      struct list_head *head)
137 {
138 	assert_spin_locked(&wb->list_lock);
139 
140 	list_move(&inode->i_io_list, head);
141 
142 	/* dirty_time doesn't count as dirty_io until expiration */
143 	if (head != &wb->b_dirty_time)
144 		return wb_io_lists_populated(wb);
145 
146 	wb_io_lists_depopulated(wb);
147 	return false;
148 }
149 
150 /**
151  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152  * @inode: inode to be removed
153  * @wb: bdi_writeback @inode is being removed from
154  *
155  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156  * clear %WB_has_dirty_io if all are empty afterwards.
157  */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)158 static void inode_io_list_del_locked(struct inode *inode,
159 				     struct bdi_writeback *wb)
160 {
161 	assert_spin_locked(&wb->list_lock);
162 	assert_spin_locked(&inode->i_lock);
163 
164 	inode->i_state &= ~I_SYNC_QUEUED;
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
wb_wakeup(struct bdi_writeback * wb)169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
__inode_attach_wb(struct inode * inode,struct page * page)244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274 
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 	__releases(&inode->i_lock)
286 	__acquires(&wb->list_lock)
287 {
288 	while (true) {
289 		struct bdi_writeback *wb = inode_to_wb(inode);
290 
291 		/*
292 		 * inode_to_wb() association is protected by both
293 		 * @inode->i_lock and @wb->list_lock but list_lock nests
294 		 * outside i_lock.  Drop i_lock and verify that the
295 		 * association hasn't changed after acquiring list_lock.
296 		 */
297 		wb_get(wb);
298 		spin_unlock(&inode->i_lock);
299 		spin_lock(&wb->list_lock);
300 
301 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 		if (likely(wb == inode->i_wb)) {
303 			wb_put(wb);	/* @inode already has ref */
304 			return wb;
305 		}
306 
307 		spin_unlock(&wb->list_lock);
308 		wb_put(wb);
309 		cpu_relax();
310 		spin_lock(&inode->i_lock);
311 	}
312 }
313 
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
inode_to_wb_and_lock_list(struct inode * inode)321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 	__acquires(&wb->list_lock)
323 {
324 	spin_lock(&inode->i_lock);
325 	return locked_inode_to_wb_and_lock_list(inode);
326 }
327 
328 struct inode_switch_wbs_context {
329 	struct inode		*inode;
330 	struct bdi_writeback	*new_wb;
331 
332 	struct rcu_head		rcu_head;
333 	struct work_struct	work;
334 };
335 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 	down_write(&bdi->wb_switch_rwsem);
339 }
340 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	up_write(&bdi->wb_switch_rwsem);
344 }
345 
inode_switch_wbs_work_fn(struct work_struct * work)346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 	struct inode_switch_wbs_context *isw =
349 		container_of(work, struct inode_switch_wbs_context, work);
350 	struct inode *inode = isw->inode;
351 	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 	struct address_space *mapping = inode->i_mapping;
353 	struct bdi_writeback *old_wb = inode->i_wb;
354 	struct bdi_writeback *new_wb = isw->new_wb;
355 	struct radix_tree_iter iter;
356 	bool switched = false;
357 	void **slot;
358 
359 	/*
360 	 * If @inode switches cgwb membership while sync_inodes_sb() is
361 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
362 	 */
363 	down_read(&bdi->wb_switch_rwsem);
364 
365 	/*
366 	 * By the time control reaches here, RCU grace period has passed
367 	 * since I_WB_SWITCH assertion and all wb stat update transactions
368 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 	 * synchronizing against mapping->tree_lock.
370 	 *
371 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
372 	 * gives us exclusion against all wb related operations on @inode
373 	 * including IO list manipulations and stat updates.
374 	 */
375 	if (old_wb < new_wb) {
376 		spin_lock(&old_wb->list_lock);
377 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 	} else {
379 		spin_lock(&new_wb->list_lock);
380 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 	}
382 	spin_lock(&inode->i_lock);
383 	spin_lock_irq(&mapping->tree_lock);
384 
385 	/*
386 	 * Once I_FREEING is visible under i_lock, the eviction path owns
387 	 * the inode and we shouldn't modify ->i_io_list.
388 	 */
389 	if (unlikely(inode->i_state & I_FREEING))
390 		goto skip_switch;
391 
392 	/*
393 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 	 * pages actually under underwriteback.
396 	 */
397 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
398 				   PAGECACHE_TAG_DIRTY) {
399 		struct page *page = radix_tree_deref_slot_protected(slot,
400 							&mapping->tree_lock);
401 		if (likely(page) && PageDirty(page)) {
402 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
404 		}
405 	}
406 
407 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
408 				   PAGECACHE_TAG_WRITEBACK) {
409 		struct page *page = radix_tree_deref_slot_protected(slot,
410 							&mapping->tree_lock);
411 		if (likely(page)) {
412 			WARN_ON_ONCE(!PageWriteback(page));
413 			__dec_wb_stat(old_wb, WB_WRITEBACK);
414 			__inc_wb_stat(new_wb, WB_WRITEBACK);
415 		}
416 	}
417 
418 	wb_get(new_wb);
419 
420 	/*
421 	 * Transfer to @new_wb's IO list if necessary.  The specific list
422 	 * @inode was on is ignored and the inode is put on ->b_dirty which
423 	 * is always correct including from ->b_dirty_time.  The transfer
424 	 * preserves @inode->dirtied_when ordering.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		struct inode *pos;
428 
429 		inode_io_list_del_locked(inode, old_wb);
430 		inode->i_wb = new_wb;
431 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 			if (time_after_eq(inode->dirtied_when,
433 					  pos->dirtied_when))
434 				break;
435 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 	} else {
437 		inode->i_wb = new_wb;
438 	}
439 
440 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 	inode->i_wb_frn_winner = 0;
442 	inode->i_wb_frn_avg_time = 0;
443 	inode->i_wb_frn_history = 0;
444 	switched = true;
445 skip_switch:
446 	/*
447 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 	 */
450 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451 
452 	spin_unlock_irq(&mapping->tree_lock);
453 	spin_unlock(&inode->i_lock);
454 	spin_unlock(&new_wb->list_lock);
455 	spin_unlock(&old_wb->list_lock);
456 
457 	up_read(&bdi->wb_switch_rwsem);
458 
459 	if (switched) {
460 		wb_wakeup(new_wb);
461 		wb_put(old_wb);
462 	}
463 	wb_put(new_wb);
464 
465 	iput(inode);
466 	kfree(isw);
467 
468 	atomic_dec(&isw_nr_in_flight);
469 }
470 
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 				struct inode_switch_wbs_context, rcu_head);
475 
476 	/* needs to grab bh-unsafe locks, bounce to work item */
477 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 	queue_work(isw_wq, &isw->work);
479 }
480 
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
inode_switch_wbs(struct inode * inode,int new_wb_id)489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 	struct backing_dev_info *bdi = inode_to_bdi(inode);
492 	struct cgroup_subsys_state *memcg_css;
493 	struct inode_switch_wbs_context *isw;
494 
495 	/* noop if seems to be already in progress */
496 	if (inode->i_state & I_WB_SWITCH)
497 		return;
498 
499 	/*
500 	 * Avoid starting new switches while sync_inodes_sb() is in
501 	 * progress.  Otherwise, if the down_write protected issue path
502 	 * blocks heavily, we might end up starting a large number of
503 	 * switches which will block on the rwsem.
504 	 */
505 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 		return;
507 
508 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 	if (!isw)
510 		goto out_unlock;
511 
512 	/* find and pin the new wb */
513 	rcu_read_lock();
514 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 	if (memcg_css && !css_tryget(memcg_css))
516 		memcg_css = NULL;
517 	rcu_read_unlock();
518 	if (!memcg_css)
519 		goto out_free;
520 
521 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522 	css_put(memcg_css);
523 	if (!isw->new_wb)
524 		goto out_free;
525 
526 	/* while holding I_WB_SWITCH, no one else can update the association */
527 	spin_lock(&inode->i_lock);
528 	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
529 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530 	    inode_to_wb(inode) == isw->new_wb) {
531 		spin_unlock(&inode->i_lock);
532 		goto out_free;
533 	}
534 	inode->i_state |= I_WB_SWITCH;
535 	spin_unlock(&inode->i_lock);
536 
537 	ihold(inode);
538 	isw->inode = inode;
539 
540 	/*
541 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
542 	 * the RCU protected stat update paths to grab the mapping's
543 	 * tree_lock so that stat transfer can synchronize against them.
544 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545 	 */
546 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547 
548 	atomic_inc(&isw_nr_in_flight);
549 
550 	goto out_unlock;
551 
552 out_free:
553 	if (isw->new_wb)
554 		wb_put(isw->new_wb);
555 	kfree(isw);
556 out_unlock:
557 	up_read(&bdi->wb_switch_rwsem);
558 }
559 
560 /**
561  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562  * @wbc: writeback_control of interest
563  * @inode: target inode
564  *
565  * @inode is locked and about to be written back under the control of @wbc.
566  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
567  * writeback completion, wbc_detach_inode() should be called.  This is used
568  * to track the cgroup writeback context.
569  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571 				 struct inode *inode)
572 {
573 	if (!inode_cgwb_enabled(inode)) {
574 		spin_unlock(&inode->i_lock);
575 		return;
576 	}
577 
578 	wbc->wb = inode_to_wb(inode);
579 	wbc->inode = inode;
580 
581 	wbc->wb_id = wbc->wb->memcg_css->id;
582 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
583 	wbc->wb_tcand_id = 0;
584 	wbc->wb_bytes = 0;
585 	wbc->wb_lcand_bytes = 0;
586 	wbc->wb_tcand_bytes = 0;
587 
588 	wb_get(wbc->wb);
589 	spin_unlock(&inode->i_lock);
590 
591 	/*
592 	 * A dying wb indicates that either the blkcg associated with the
593 	 * memcg changed or the associated memcg is dying.  In the first
594 	 * case, a replacement wb should already be available and we should
595 	 * refresh the wb immediately.  In the second case, trying to
596 	 * refresh will keep failing.
597 	 */
598 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599 		inode_switch_wbs(inode, wbc->wb_id);
600 }
601 
602 /**
603  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604  * @wbc: writeback_control of the just finished writeback
605  *
606  * To be called after a writeback attempt of an inode finishes and undoes
607  * wbc_attach_and_unlock_inode().  Can be called under any context.
608  *
609  * As concurrent write sharing of an inode is expected to be very rare and
610  * memcg only tracks page ownership on first-use basis severely confining
611  * the usefulness of such sharing, cgroup writeback tracks ownership
612  * per-inode.  While the support for concurrent write sharing of an inode
613  * is deemed unnecessary, an inode being written to by different cgroups at
614  * different points in time is a lot more common, and, more importantly,
615  * charging only by first-use can too readily lead to grossly incorrect
616  * behaviors (single foreign page can lead to gigabytes of writeback to be
617  * incorrectly attributed).
618  *
619  * To resolve this issue, cgroup writeback detects the majority dirtier of
620  * an inode and transfers the ownership to it.  To avoid unnnecessary
621  * oscillation, the detection mechanism keeps track of history and gives
622  * out the switch verdict only if the foreign usage pattern is stable over
623  * a certain amount of time and/or writeback attempts.
624  *
625  * On each writeback attempt, @wbc tries to detect the majority writer
626  * using Boyer-Moore majority vote algorithm.  In addition to the byte
627  * count from the majority voting, it also counts the bytes written for the
628  * current wb and the last round's winner wb (max of last round's current
629  * wb, the winner from two rounds ago, and the last round's majority
630  * candidate).  Keeping track of the historical winner helps the algorithm
631  * to semi-reliably detect the most active writer even when it's not the
632  * absolute majority.
633  *
634  * Once the winner of the round is determined, whether the winner is
635  * foreign or not and how much IO time the round consumed is recorded in
636  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
637  * over a certain threshold, the switch verdict is given.
638  */
wbc_detach_inode(struct writeback_control * wbc)639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641 	struct bdi_writeback *wb = wbc->wb;
642 	struct inode *inode = wbc->inode;
643 	unsigned long avg_time, max_bytes, max_time;
644 	u16 history;
645 	int max_id;
646 
647 	if (!wb)
648 		return;
649 
650 	history = inode->i_wb_frn_history;
651 	avg_time = inode->i_wb_frn_avg_time;
652 
653 	/* pick the winner of this round */
654 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656 		max_id = wbc->wb_id;
657 		max_bytes = wbc->wb_bytes;
658 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659 		max_id = wbc->wb_lcand_id;
660 		max_bytes = wbc->wb_lcand_bytes;
661 	} else {
662 		max_id = wbc->wb_tcand_id;
663 		max_bytes = wbc->wb_tcand_bytes;
664 	}
665 
666 	/*
667 	 * Calculate the amount of IO time the winner consumed and fold it
668 	 * into the running average kept per inode.  If the consumed IO
669 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670 	 * deciding whether to switch or not.  This is to prevent one-off
671 	 * small dirtiers from skewing the verdict.
672 	 */
673 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674 				wb->avg_write_bandwidth);
675 	if (avg_time)
676 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678 	else
679 		avg_time = max_time;	/* immediate catch up on first run */
680 
681 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682 		int slots;
683 
684 		/*
685 		 * The switch verdict is reached if foreign wb's consume
686 		 * more than a certain proportion of IO time in a
687 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
688 		 * history mask where each bit represents one sixteenth of
689 		 * the period.  Determine the number of slots to shift into
690 		 * history from @max_time.
691 		 */
692 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694 		history <<= slots;
695 		if (wbc->wb_id != max_id)
696 			history |= (1U << slots) - 1;
697 
698 		/*
699 		 * Switch if the current wb isn't the consistent winner.
700 		 * If there are multiple closely competing dirtiers, the
701 		 * inode may switch across them repeatedly over time, which
702 		 * is okay.  The main goal is avoiding keeping an inode on
703 		 * the wrong wb for an extended period of time.
704 		 */
705 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
706 			inode_switch_wbs(inode, max_id);
707 	}
708 
709 	/*
710 	 * Multiple instances of this function may race to update the
711 	 * following fields but we don't mind occassional inaccuracies.
712 	 */
713 	inode->i_wb_frn_winner = max_id;
714 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715 	inode->i_wb_frn_history = history;
716 
717 	wb_put(wbc->wb);
718 	wbc->wb = NULL;
719 }
720 
721 /**
722  * wbc_account_io - account IO issued during writeback
723  * @wbc: writeback_control of the writeback in progress
724  * @page: page being written out
725  * @bytes: number of bytes being written out
726  *
727  * @bytes from @page are about to written out during the writeback
728  * controlled by @wbc.  Keep the book for foreign inode detection.  See
729  * wbc_detach_inode().
730  */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732 		    size_t bytes)
733 {
734 	int id;
735 
736 	/*
737 	 * pageout() path doesn't attach @wbc to the inode being written
738 	 * out.  This is intentional as we don't want the function to block
739 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740 	 * regular writeback instead of writing things out itself.
741 	 */
742 	if (!wbc->wb)
743 		return;
744 
745 	rcu_read_lock();
746 	id = mem_cgroup_css_from_page(page)->id;
747 	rcu_read_unlock();
748 
749 	if (id == wbc->wb_id) {
750 		wbc->wb_bytes += bytes;
751 		return;
752 	}
753 
754 	if (id == wbc->wb_lcand_id)
755 		wbc->wb_lcand_bytes += bytes;
756 
757 	/* Boyer-Moore majority vote algorithm */
758 	if (!wbc->wb_tcand_bytes)
759 		wbc->wb_tcand_id = id;
760 	if (id == wbc->wb_tcand_id)
761 		wbc->wb_tcand_bytes += bytes;
762 	else
763 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
764 }
765 EXPORT_SYMBOL_GPL(wbc_account_io);
766 
767 /**
768  * inode_congested - test whether an inode is congested
769  * @inode: inode to test for congestion (may be NULL)
770  * @cong_bits: mask of WB_[a]sync_congested bits to test
771  *
772  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
773  * bits to test and the return value is the mask of set bits.
774  *
775  * If cgroup writeback is enabled for @inode, the congestion state is
776  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
777  * associated with @inode is congested; otherwise, the root wb's congestion
778  * state is used.
779  *
780  * @inode is allowed to be NULL as this function is often called on
781  * mapping->host which is NULL for the swapper space.
782  */
inode_congested(struct inode * inode,int cong_bits)783 int inode_congested(struct inode *inode, int cong_bits)
784 {
785 	/*
786 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
787 	 * Start transaction iff ->i_wb is visible.
788 	 */
789 	if (inode && inode_to_wb_is_valid(inode)) {
790 		struct bdi_writeback *wb;
791 		struct wb_lock_cookie lock_cookie = {};
792 		bool congested;
793 
794 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
795 		congested = wb_congested(wb, cong_bits);
796 		unlocked_inode_to_wb_end(inode, &lock_cookie);
797 		return congested;
798 	}
799 
800 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
801 }
802 EXPORT_SYMBOL_GPL(inode_congested);
803 
804 /**
805  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
806  * @wb: target bdi_writeback to split @nr_pages to
807  * @nr_pages: number of pages to write for the whole bdi
808  *
809  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
810  * relation to the total write bandwidth of all wb's w/ dirty inodes on
811  * @wb->bdi.
812  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)813 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
814 {
815 	unsigned long this_bw = wb->avg_write_bandwidth;
816 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
817 
818 	if (nr_pages == LONG_MAX)
819 		return LONG_MAX;
820 
821 	/*
822 	 * This may be called on clean wb's and proportional distribution
823 	 * may not make sense, just use the original @nr_pages in those
824 	 * cases.  In general, we wanna err on the side of writing more.
825 	 */
826 	if (!tot_bw || this_bw >= tot_bw)
827 		return nr_pages;
828 	else
829 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
830 }
831 
832 /**
833  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
834  * @bdi: target backing_dev_info
835  * @base_work: wb_writeback_work to issue
836  * @skip_if_busy: skip wb's which already have writeback in progress
837  *
838  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
839  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
840  * distributed to the busy wbs according to each wb's proportion in the
841  * total active write bandwidth of @bdi.
842  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)843 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
844 				  struct wb_writeback_work *base_work,
845 				  bool skip_if_busy)
846 {
847 	struct bdi_writeback *last_wb = NULL;
848 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
849 					      struct bdi_writeback, bdi_node);
850 
851 	might_sleep();
852 restart:
853 	rcu_read_lock();
854 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
855 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
856 		struct wb_writeback_work fallback_work;
857 		struct wb_writeback_work *work;
858 		long nr_pages;
859 
860 		if (last_wb) {
861 			wb_put(last_wb);
862 			last_wb = NULL;
863 		}
864 
865 		/* SYNC_ALL writes out I_DIRTY_TIME too */
866 		if (!wb_has_dirty_io(wb) &&
867 		    (base_work->sync_mode == WB_SYNC_NONE ||
868 		     list_empty(&wb->b_dirty_time)))
869 			continue;
870 		if (skip_if_busy && writeback_in_progress(wb))
871 			continue;
872 
873 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
874 
875 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
876 		if (work) {
877 			*work = *base_work;
878 			work->nr_pages = nr_pages;
879 			work->auto_free = 1;
880 			wb_queue_work(wb, work);
881 			continue;
882 		}
883 
884 		/* alloc failed, execute synchronously using on-stack fallback */
885 		work = &fallback_work;
886 		*work = *base_work;
887 		work->nr_pages = nr_pages;
888 		work->auto_free = 0;
889 		work->done = &fallback_work_done;
890 
891 		wb_queue_work(wb, work);
892 
893 		/*
894 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
895 		 * continuing iteration from @wb after dropping and
896 		 * regrabbing rcu read lock.
897 		 */
898 		wb_get(wb);
899 		last_wb = wb;
900 
901 		rcu_read_unlock();
902 		wb_wait_for_completion(bdi, &fallback_work_done);
903 		goto restart;
904 	}
905 	rcu_read_unlock();
906 
907 	if (last_wb)
908 		wb_put(last_wb);
909 }
910 
911 /**
912  * cgroup_writeback_umount - flush inode wb switches for umount
913  *
914  * This function is called when a super_block is about to be destroyed and
915  * flushes in-flight inode wb switches.  An inode wb switch goes through
916  * RCU and then workqueue, so the two need to be flushed in order to ensure
917  * that all previously scheduled switches are finished.  As wb switches are
918  * rare occurrences and synchronize_rcu() can take a while, perform
919  * flushing iff wb switches are in flight.
920  */
cgroup_writeback_umount(void)921 void cgroup_writeback_umount(void)
922 {
923 	if (atomic_read(&isw_nr_in_flight)) {
924 		/*
925 		 * Use rcu_barrier() to wait for all pending callbacks to
926 		 * ensure that all in-flight wb switches are in the workqueue.
927 		 */
928 		rcu_barrier();
929 		flush_workqueue(isw_wq);
930 	}
931 }
932 
cgroup_writeback_init(void)933 static int __init cgroup_writeback_init(void)
934 {
935 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
936 	if (!isw_wq)
937 		return -ENOMEM;
938 	return 0;
939 }
940 fs_initcall(cgroup_writeback_init);
941 
942 #else	/* CONFIG_CGROUP_WRITEBACK */
943 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)944 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)945 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
946 
947 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)948 locked_inode_to_wb_and_lock_list(struct inode *inode)
949 	__releases(&inode->i_lock)
950 	__acquires(&wb->list_lock)
951 {
952 	struct bdi_writeback *wb = inode_to_wb(inode);
953 
954 	spin_unlock(&inode->i_lock);
955 	spin_lock(&wb->list_lock);
956 	return wb;
957 }
958 
inode_to_wb_and_lock_list(struct inode * inode)959 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
960 	__acquires(&wb->list_lock)
961 {
962 	struct bdi_writeback *wb = inode_to_wb(inode);
963 
964 	spin_lock(&wb->list_lock);
965 	return wb;
966 }
967 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)968 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
969 {
970 	return nr_pages;
971 }
972 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)973 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
974 				  struct wb_writeback_work *base_work,
975 				  bool skip_if_busy)
976 {
977 	might_sleep();
978 
979 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
980 		base_work->auto_free = 0;
981 		wb_queue_work(&bdi->wb, base_work);
982 	}
983 }
984 
985 #endif	/* CONFIG_CGROUP_WRITEBACK */
986 
wb_start_writeback(struct bdi_writeback * wb,long nr_pages,bool range_cyclic,enum wb_reason reason)987 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
988 			bool range_cyclic, enum wb_reason reason)
989 {
990 	struct wb_writeback_work *work;
991 
992 	if (!wb_has_dirty_io(wb))
993 		return;
994 
995 	/*
996 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
997 	 * wakeup the thread for old dirty data writeback
998 	 */
999 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
1000 	if (!work) {
1001 		trace_writeback_nowork(wb);
1002 		wb_wakeup(wb);
1003 		return;
1004 	}
1005 
1006 	work->sync_mode	= WB_SYNC_NONE;
1007 	work->nr_pages	= nr_pages;
1008 	work->range_cyclic = range_cyclic;
1009 	work->reason	= reason;
1010 	work->auto_free	= 1;
1011 
1012 	wb_queue_work(wb, work);
1013 }
1014 
1015 /**
1016  * wb_start_background_writeback - start background writeback
1017  * @wb: bdi_writback to write from
1018  *
1019  * Description:
1020  *   This makes sure WB_SYNC_NONE background writeback happens. When
1021  *   this function returns, it is only guaranteed that for given wb
1022  *   some IO is happening if we are over background dirty threshold.
1023  *   Caller need not hold sb s_umount semaphore.
1024  */
wb_start_background_writeback(struct bdi_writeback * wb)1025 void wb_start_background_writeback(struct bdi_writeback *wb)
1026 {
1027 	/*
1028 	 * We just wake up the flusher thread. It will perform background
1029 	 * writeback as soon as there is no other work to do.
1030 	 */
1031 	trace_writeback_wake_background(wb);
1032 	wb_wakeup(wb);
1033 }
1034 
1035 /*
1036  * Remove the inode from the writeback list it is on.
1037  */
inode_io_list_del(struct inode * inode)1038 void inode_io_list_del(struct inode *inode)
1039 {
1040 	struct bdi_writeback *wb;
1041 
1042 	wb = inode_to_wb_and_lock_list(inode);
1043 	spin_lock(&inode->i_lock);
1044 	inode_io_list_del_locked(inode, wb);
1045 	spin_unlock(&inode->i_lock);
1046 	spin_unlock(&wb->list_lock);
1047 }
1048 
1049 /*
1050  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1051  * furthest end of its superblock's dirty-inode list.
1052  *
1053  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1054  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1055  * the case then the inode must have been redirtied while it was being written
1056  * out and we don't reset its dirtied_when.
1057  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1058 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1059 {
1060 	assert_spin_locked(&inode->i_lock);
1061 
1062 	if (!list_empty(&wb->b_dirty)) {
1063 		struct inode *tail;
1064 
1065 		tail = wb_inode(wb->b_dirty.next);
1066 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1067 			inode->dirtied_when = jiffies;
1068 	}
1069 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1070 	inode->i_state &= ~I_SYNC_QUEUED;
1071 }
1072 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1073 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1074 {
1075 	spin_lock(&inode->i_lock);
1076 	redirty_tail_locked(inode, wb);
1077 	spin_unlock(&inode->i_lock);
1078 }
1079 
1080 /*
1081  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1082  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1083 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1084 {
1085 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1086 }
1087 
inode_sync_complete(struct inode * inode)1088 static void inode_sync_complete(struct inode *inode)
1089 {
1090 	inode->i_state &= ~I_SYNC;
1091 	/* If inode is clean an unused, put it into LRU now... */
1092 	inode_add_lru(inode);
1093 	/* Waiters must see I_SYNC cleared before being woken up */
1094 	smp_mb();
1095 	wake_up_bit(&inode->i_state, __I_SYNC);
1096 }
1097 
inode_dirtied_after(struct inode * inode,unsigned long t)1098 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1099 {
1100 	bool ret = time_after(inode->dirtied_when, t);
1101 #ifndef CONFIG_64BIT
1102 	/*
1103 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1104 	 * It _appears_ to be in the future, but is actually in distant past.
1105 	 * This test is necessary to prevent such wrapped-around relative times
1106 	 * from permanently stopping the whole bdi writeback.
1107 	 */
1108 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1109 #endif
1110 	return ret;
1111 }
1112 
1113 #define EXPIRE_DIRTY_ATIME 0x0001
1114 
1115 /*
1116  * Move expired (dirtied before dirtied_before) dirty inodes from
1117  * @delaying_queue to @dispatch_queue.
1118  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,unsigned long dirtied_before)1119 static int move_expired_inodes(struct list_head *delaying_queue,
1120 			       struct list_head *dispatch_queue,
1121 			       int flags, unsigned long dirtied_before)
1122 {
1123 	LIST_HEAD(tmp);
1124 	struct list_head *pos, *node;
1125 	struct super_block *sb = NULL;
1126 	struct inode *inode;
1127 	int do_sb_sort = 0;
1128 	int moved = 0;
1129 
1130 	while (!list_empty(delaying_queue)) {
1131 		inode = wb_inode(delaying_queue->prev);
1132 		if (inode_dirtied_after(inode, dirtied_before))
1133 			break;
1134 		list_move(&inode->i_io_list, &tmp);
1135 		moved++;
1136 		spin_lock(&inode->i_lock);
1137 		if (flags & EXPIRE_DIRTY_ATIME)
1138 			inode->i_state |= I_DIRTY_TIME_EXPIRED;
1139 		inode->i_state |= I_SYNC_QUEUED;
1140 		spin_unlock(&inode->i_lock);
1141 		if (sb_is_blkdev_sb(inode->i_sb))
1142 			continue;
1143 		if (sb && sb != inode->i_sb)
1144 			do_sb_sort = 1;
1145 		sb = inode->i_sb;
1146 	}
1147 
1148 	/* just one sb in list, splice to dispatch_queue and we're done */
1149 	if (!do_sb_sort) {
1150 		list_splice(&tmp, dispatch_queue);
1151 		goto out;
1152 	}
1153 
1154 	/* Move inodes from one superblock together */
1155 	while (!list_empty(&tmp)) {
1156 		sb = wb_inode(tmp.prev)->i_sb;
1157 		list_for_each_prev_safe(pos, node, &tmp) {
1158 			inode = wb_inode(pos);
1159 			if (inode->i_sb == sb)
1160 				list_move(&inode->i_io_list, dispatch_queue);
1161 		}
1162 	}
1163 out:
1164 	return moved;
1165 }
1166 
1167 /*
1168  * Queue all expired dirty inodes for io, eldest first.
1169  * Before
1170  *         newly dirtied     b_dirty    b_io    b_more_io
1171  *         =============>    gf         edc     BA
1172  * After
1173  *         newly dirtied     b_dirty    b_io    b_more_io
1174  *         =============>    g          fBAedc
1175  *                                           |
1176  *                                           +--> dequeue for IO
1177  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1178 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1179 		     unsigned long dirtied_before)
1180 {
1181 	int moved;
1182 	unsigned long time_expire_jif = dirtied_before;
1183 
1184 	assert_spin_locked(&wb->list_lock);
1185 	list_splice_init(&wb->b_more_io, &wb->b_io);
1186 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before);
1187 	if (!work->for_sync)
1188 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1189 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1190 				     EXPIRE_DIRTY_ATIME, time_expire_jif);
1191 	if (moved)
1192 		wb_io_lists_populated(wb);
1193 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1194 }
1195 
write_inode(struct inode * inode,struct writeback_control * wbc)1196 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1197 {
1198 	int ret;
1199 
1200 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1201 		trace_writeback_write_inode_start(inode, wbc);
1202 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1203 		trace_writeback_write_inode(inode, wbc);
1204 		return ret;
1205 	}
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Wait for writeback on an inode to complete. Called with i_lock held.
1211  * Caller must make sure inode cannot go away when we drop i_lock.
1212  */
__inode_wait_for_writeback(struct inode * inode)1213 static void __inode_wait_for_writeback(struct inode *inode)
1214 	__releases(inode->i_lock)
1215 	__acquires(inode->i_lock)
1216 {
1217 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1218 	wait_queue_head_t *wqh;
1219 
1220 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1221 	while (inode->i_state & I_SYNC) {
1222 		spin_unlock(&inode->i_lock);
1223 		__wait_on_bit(wqh, &wq, bit_wait,
1224 			      TASK_UNINTERRUPTIBLE);
1225 		spin_lock(&inode->i_lock);
1226 	}
1227 }
1228 
1229 /*
1230  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1231  */
inode_wait_for_writeback(struct inode * inode)1232 void inode_wait_for_writeback(struct inode *inode)
1233 {
1234 	spin_lock(&inode->i_lock);
1235 	__inode_wait_for_writeback(inode);
1236 	spin_unlock(&inode->i_lock);
1237 }
1238 
1239 /*
1240  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1241  * held and drops it. It is aimed for callers not holding any inode reference
1242  * so once i_lock is dropped, inode can go away.
1243  */
inode_sleep_on_writeback(struct inode * inode)1244 static void inode_sleep_on_writeback(struct inode *inode)
1245 	__releases(inode->i_lock)
1246 {
1247 	DEFINE_WAIT(wait);
1248 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1249 	int sleep;
1250 
1251 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1252 	sleep = inode->i_state & I_SYNC;
1253 	spin_unlock(&inode->i_lock);
1254 	if (sleep)
1255 		schedule();
1256 	finish_wait(wqh, &wait);
1257 }
1258 
1259 /*
1260  * Find proper writeback list for the inode depending on its current state and
1261  * possibly also change of its state while we were doing writeback.  Here we
1262  * handle things such as livelock prevention or fairness of writeback among
1263  * inodes. This function can be called only by flusher thread - noone else
1264  * processes all inodes in writeback lists and requeueing inodes behind flusher
1265  * thread's back can have unexpected consequences.
1266  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1267 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1268 			  struct writeback_control *wbc)
1269 {
1270 	if (inode->i_state & I_FREEING)
1271 		return;
1272 
1273 	/*
1274 	 * Sync livelock prevention. Each inode is tagged and synced in one
1275 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1276 	 * the dirty time to prevent enqueue and sync it again.
1277 	 */
1278 	if ((inode->i_state & I_DIRTY) &&
1279 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1280 		inode->dirtied_when = jiffies;
1281 
1282 	if (wbc->pages_skipped) {
1283 		/*
1284 		 * writeback is not making progress due to locked
1285 		 * buffers. Skip this inode for now.
1286 		 */
1287 		redirty_tail_locked(inode, wb);
1288 		return;
1289 	}
1290 
1291 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1292 		/*
1293 		 * We didn't write back all the pages.  nfs_writepages()
1294 		 * sometimes bales out without doing anything.
1295 		 */
1296 		if (wbc->nr_to_write <= 0) {
1297 			/* Slice used up. Queue for next turn. */
1298 			requeue_io(inode, wb);
1299 		} else {
1300 			/*
1301 			 * Writeback blocked by something other than
1302 			 * congestion. Delay the inode for some time to
1303 			 * avoid spinning on the CPU (100% iowait)
1304 			 * retrying writeback of the dirty page/inode
1305 			 * that cannot be performed immediately.
1306 			 */
1307 			redirty_tail_locked(inode, wb);
1308 		}
1309 	} else if (inode->i_state & I_DIRTY) {
1310 		/*
1311 		 * Filesystems can dirty the inode during writeback operations,
1312 		 * such as delayed allocation during submission or metadata
1313 		 * updates after data IO completion.
1314 		 */
1315 		redirty_tail_locked(inode, wb);
1316 	} else if (inode->i_state & I_DIRTY_TIME) {
1317 		inode->dirtied_when = jiffies;
1318 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1319 		inode->i_state &= ~I_SYNC_QUEUED;
1320 	} else {
1321 		/* The inode is clean. Remove from writeback lists. */
1322 		inode_io_list_del_locked(inode, wb);
1323 	}
1324 }
1325 
1326 /*
1327  * Write out an inode and its dirty pages. Do not update the writeback list
1328  * linkage. That is left to the caller. The caller is also responsible for
1329  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1330  */
1331 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1332 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1333 {
1334 	struct address_space *mapping = inode->i_mapping;
1335 	long nr_to_write = wbc->nr_to_write;
1336 	unsigned dirty;
1337 	int ret;
1338 
1339 	WARN_ON(!(inode->i_state & I_SYNC));
1340 
1341 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1342 
1343 	ret = do_writepages(mapping, wbc);
1344 
1345 	/*
1346 	 * Make sure to wait on the data before writing out the metadata.
1347 	 * This is important for filesystems that modify metadata on data
1348 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1349 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1350 	 * inode metadata is written back correctly.
1351 	 */
1352 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1353 		int err = filemap_fdatawait(mapping);
1354 		if (ret == 0)
1355 			ret = err;
1356 	}
1357 
1358 	/*
1359 	 * Some filesystems may redirty the inode during the writeback
1360 	 * due to delalloc, clear dirty metadata flags right before
1361 	 * write_inode()
1362 	 */
1363 	spin_lock(&inode->i_lock);
1364 
1365 	dirty = inode->i_state & I_DIRTY;
1366 	if (inode->i_state & I_DIRTY_TIME) {
1367 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1368 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1369 		    unlikely(time_after(jiffies,
1370 					(inode->dirtied_time_when +
1371 					 dirtytime_expire_interval * HZ)))) {
1372 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1373 			trace_writeback_lazytime(inode);
1374 		}
1375 	} else
1376 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1377 	inode->i_state &= ~dirty;
1378 
1379 	/*
1380 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1381 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1382 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1383 	 * inode.
1384 	 *
1385 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1386 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1387 	 * necessary.  This guarantees that either __mark_inode_dirty()
1388 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1389 	 */
1390 	smp_mb();
1391 
1392 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1393 		inode->i_state |= I_DIRTY_PAGES;
1394 
1395 	spin_unlock(&inode->i_lock);
1396 
1397 	if (dirty & I_DIRTY_TIME)
1398 		mark_inode_dirty_sync(inode);
1399 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1400 	if (dirty & ~I_DIRTY_PAGES) {
1401 		int err = write_inode(inode, wbc);
1402 		if (ret == 0)
1403 			ret = err;
1404 	}
1405 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Write out an inode's dirty pages. Either the caller has an active reference
1411  * on the inode or the inode has I_WILL_FREE set.
1412  *
1413  * This function is designed to be called for writing back one inode which
1414  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1415  * and does more profound writeback list handling in writeback_sb_inodes().
1416  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1417 static int writeback_single_inode(struct inode *inode,
1418 				  struct writeback_control *wbc)
1419 {
1420 	struct bdi_writeback *wb;
1421 	int ret = 0;
1422 
1423 	spin_lock(&inode->i_lock);
1424 	if (!atomic_read(&inode->i_count))
1425 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1426 	else
1427 		WARN_ON(inode->i_state & I_WILL_FREE);
1428 
1429 	if (inode->i_state & I_SYNC) {
1430 		if (wbc->sync_mode != WB_SYNC_ALL)
1431 			goto out;
1432 		/*
1433 		 * It's a data-integrity sync. We must wait. Since callers hold
1434 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1435 		 * away under us.
1436 		 */
1437 		__inode_wait_for_writeback(inode);
1438 	}
1439 	WARN_ON(inode->i_state & I_SYNC);
1440 	/*
1441 	 * Skip inode if it is clean and we have no outstanding writeback in
1442 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1443 	 * function since flusher thread may be doing for example sync in
1444 	 * parallel and if we move the inode, it could get skipped. So here we
1445 	 * make sure inode is on some writeback list and leave it there unless
1446 	 * we have completely cleaned the inode.
1447 	 */
1448 	if (!(inode->i_state & I_DIRTY_ALL) &&
1449 	    (wbc->sync_mode != WB_SYNC_ALL ||
1450 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1451 		goto out;
1452 	inode->i_state |= I_SYNC;
1453 	wbc_attach_and_unlock_inode(wbc, inode);
1454 
1455 	ret = __writeback_single_inode(inode, wbc);
1456 
1457 	wbc_detach_inode(wbc);
1458 
1459 	wb = inode_to_wb_and_lock_list(inode);
1460 	spin_lock(&inode->i_lock);
1461 	/*
1462 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1463 	 * touch it. See comment above for explanation.
1464 	 */
1465 	if (!(inode->i_state & I_DIRTY_ALL))
1466 		inode_io_list_del_locked(inode, wb);
1467 	spin_unlock(&wb->list_lock);
1468 	inode_sync_complete(inode);
1469 out:
1470 	spin_unlock(&inode->i_lock);
1471 	return ret;
1472 }
1473 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1474 static long writeback_chunk_size(struct bdi_writeback *wb,
1475 				 struct wb_writeback_work *work)
1476 {
1477 	long pages;
1478 
1479 	/*
1480 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1481 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1482 	 * here avoids calling into writeback_inodes_wb() more than once.
1483 	 *
1484 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1485 	 *
1486 	 *      wb_writeback()
1487 	 *          writeback_sb_inodes()       <== called only once
1488 	 *              write_cache_pages()     <== called once for each inode
1489 	 *                   (quickly) tag currently dirty pages
1490 	 *                   (maybe slowly) sync all tagged pages
1491 	 */
1492 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1493 		pages = LONG_MAX;
1494 	else {
1495 		pages = min(wb->avg_write_bandwidth / 2,
1496 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1497 		pages = min(pages, work->nr_pages);
1498 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1499 				   MIN_WRITEBACK_PAGES);
1500 	}
1501 
1502 	return pages;
1503 }
1504 
1505 /*
1506  * Write a portion of b_io inodes which belong to @sb.
1507  *
1508  * Return the number of pages and/or inodes written.
1509  *
1510  * NOTE! This is called with wb->list_lock held, and will
1511  * unlock and relock that for each inode it ends up doing
1512  * IO for.
1513  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1514 static long writeback_sb_inodes(struct super_block *sb,
1515 				struct bdi_writeback *wb,
1516 				struct wb_writeback_work *work)
1517 {
1518 	struct writeback_control wbc = {
1519 		.sync_mode		= work->sync_mode,
1520 		.tagged_writepages	= work->tagged_writepages,
1521 		.for_kupdate		= work->for_kupdate,
1522 		.for_background		= work->for_background,
1523 		.for_sync		= work->for_sync,
1524 		.range_cyclic		= work->range_cyclic,
1525 		.range_start		= 0,
1526 		.range_end		= LLONG_MAX,
1527 	};
1528 	unsigned long start_time = jiffies;
1529 	long write_chunk;
1530 	long wrote = 0;  /* count both pages and inodes */
1531 
1532 	while (!list_empty(&wb->b_io)) {
1533 		struct inode *inode = wb_inode(wb->b_io.prev);
1534 		struct bdi_writeback *tmp_wb;
1535 
1536 		if (inode->i_sb != sb) {
1537 			if (work->sb) {
1538 				/*
1539 				 * We only want to write back data for this
1540 				 * superblock, move all inodes not belonging
1541 				 * to it back onto the dirty list.
1542 				 */
1543 				redirty_tail(inode, wb);
1544 				continue;
1545 			}
1546 
1547 			/*
1548 			 * The inode belongs to a different superblock.
1549 			 * Bounce back to the caller to unpin this and
1550 			 * pin the next superblock.
1551 			 */
1552 			break;
1553 		}
1554 
1555 		/*
1556 		 * Don't bother with new inodes or inodes being freed, first
1557 		 * kind does not need periodic writeout yet, and for the latter
1558 		 * kind writeout is handled by the freer.
1559 		 */
1560 		spin_lock(&inode->i_lock);
1561 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1562 			redirty_tail_locked(inode, wb);
1563 			spin_unlock(&inode->i_lock);
1564 			continue;
1565 		}
1566 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1567 			/*
1568 			 * If this inode is locked for writeback and we are not
1569 			 * doing writeback-for-data-integrity, move it to
1570 			 * b_more_io so that writeback can proceed with the
1571 			 * other inodes on s_io.
1572 			 *
1573 			 * We'll have another go at writing back this inode
1574 			 * when we completed a full scan of b_io.
1575 			 */
1576 			spin_unlock(&inode->i_lock);
1577 			requeue_io(inode, wb);
1578 			trace_writeback_sb_inodes_requeue(inode);
1579 			continue;
1580 		}
1581 		spin_unlock(&wb->list_lock);
1582 
1583 		/*
1584 		 * We already requeued the inode if it had I_SYNC set and we
1585 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1586 		 * WB_SYNC_ALL case.
1587 		 */
1588 		if (inode->i_state & I_SYNC) {
1589 			/* Wait for I_SYNC. This function drops i_lock... */
1590 			inode_sleep_on_writeback(inode);
1591 			/* Inode may be gone, start again */
1592 			spin_lock(&wb->list_lock);
1593 			continue;
1594 		}
1595 		inode->i_state |= I_SYNC;
1596 		wbc_attach_and_unlock_inode(&wbc, inode);
1597 
1598 		write_chunk = writeback_chunk_size(wb, work);
1599 		wbc.nr_to_write = write_chunk;
1600 		wbc.pages_skipped = 0;
1601 
1602 		/*
1603 		 * We use I_SYNC to pin the inode in memory. While it is set
1604 		 * evict_inode() will wait so the inode cannot be freed.
1605 		 */
1606 		__writeback_single_inode(inode, &wbc);
1607 
1608 		wbc_detach_inode(&wbc);
1609 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1610 		wrote += write_chunk - wbc.nr_to_write;
1611 
1612 		if (need_resched()) {
1613 			/*
1614 			 * We're trying to balance between building up a nice
1615 			 * long list of IOs to improve our merge rate, and
1616 			 * getting those IOs out quickly for anyone throttling
1617 			 * in balance_dirty_pages().  cond_resched() doesn't
1618 			 * unplug, so get our IOs out the door before we
1619 			 * give up the CPU.
1620 			 */
1621 			blk_flush_plug(current);
1622 			cond_resched();
1623 		}
1624 
1625 		/*
1626 		 * Requeue @inode if still dirty.  Be careful as @inode may
1627 		 * have been switched to another wb in the meantime.
1628 		 */
1629 		tmp_wb = inode_to_wb_and_lock_list(inode);
1630 		spin_lock(&inode->i_lock);
1631 		if (!(inode->i_state & I_DIRTY_ALL))
1632 			wrote++;
1633 		requeue_inode(inode, tmp_wb, &wbc);
1634 		inode_sync_complete(inode);
1635 		spin_unlock(&inode->i_lock);
1636 
1637 		if (unlikely(tmp_wb != wb)) {
1638 			spin_unlock(&tmp_wb->list_lock);
1639 			spin_lock(&wb->list_lock);
1640 		}
1641 
1642 		/*
1643 		 * bail out to wb_writeback() often enough to check
1644 		 * background threshold and other termination conditions.
1645 		 */
1646 		if (wrote) {
1647 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1648 				break;
1649 			if (work->nr_pages <= 0)
1650 				break;
1651 		}
1652 	}
1653 	return wrote;
1654 }
1655 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1656 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1657 				  struct wb_writeback_work *work)
1658 {
1659 	unsigned long start_time = jiffies;
1660 	long wrote = 0;
1661 
1662 	while (!list_empty(&wb->b_io)) {
1663 		struct inode *inode = wb_inode(wb->b_io.prev);
1664 		struct super_block *sb = inode->i_sb;
1665 
1666 		if (!trylock_super(sb)) {
1667 			/*
1668 			 * trylock_super() may fail consistently due to
1669 			 * s_umount being grabbed by someone else. Don't use
1670 			 * requeue_io() to avoid busy retrying the inode/sb.
1671 			 */
1672 			redirty_tail(inode, wb);
1673 			continue;
1674 		}
1675 		wrote += writeback_sb_inodes(sb, wb, work);
1676 		up_read(&sb->s_umount);
1677 
1678 		/* refer to the same tests at the end of writeback_sb_inodes */
1679 		if (wrote) {
1680 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1681 				break;
1682 			if (work->nr_pages <= 0)
1683 				break;
1684 		}
1685 	}
1686 	/* Leave any unwritten inodes on b_io */
1687 	return wrote;
1688 }
1689 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1690 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1691 				enum wb_reason reason)
1692 {
1693 	struct wb_writeback_work work = {
1694 		.nr_pages	= nr_pages,
1695 		.sync_mode	= WB_SYNC_NONE,
1696 		.range_cyclic	= 1,
1697 		.reason		= reason,
1698 	};
1699 	struct blk_plug plug;
1700 
1701 	blk_start_plug(&plug);
1702 	spin_lock(&wb->list_lock);
1703 	if (list_empty(&wb->b_io))
1704 		queue_io(wb, &work, jiffies);
1705 	__writeback_inodes_wb(wb, &work);
1706 	spin_unlock(&wb->list_lock);
1707 	blk_finish_plug(&plug);
1708 
1709 	return nr_pages - work.nr_pages;
1710 }
1711 
1712 /*
1713  * Explicit flushing or periodic writeback of "old" data.
1714  *
1715  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1716  * dirtying-time in the inode's address_space.  So this periodic writeback code
1717  * just walks the superblock inode list, writing back any inodes which are
1718  * older than a specific point in time.
1719  *
1720  * Try to run once per dirty_writeback_interval.  But if a writeback event
1721  * takes longer than a dirty_writeback_interval interval, then leave a
1722  * one-second gap.
1723  *
1724  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1725  * all dirty pages if they are all attached to "old" mappings.
1726  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1727 static long wb_writeback(struct bdi_writeback *wb,
1728 			 struct wb_writeback_work *work)
1729 {
1730 	unsigned long wb_start = jiffies;
1731 	long nr_pages = work->nr_pages;
1732 	unsigned long dirtied_before = jiffies;
1733 	struct inode *inode;
1734 	long progress;
1735 	struct blk_plug plug;
1736 
1737 	blk_start_plug(&plug);
1738 	spin_lock(&wb->list_lock);
1739 	for (;;) {
1740 		/*
1741 		 * Stop writeback when nr_pages has been consumed
1742 		 */
1743 		if (work->nr_pages <= 0)
1744 			break;
1745 
1746 		/*
1747 		 * Background writeout and kupdate-style writeback may
1748 		 * run forever. Stop them if there is other work to do
1749 		 * so that e.g. sync can proceed. They'll be restarted
1750 		 * after the other works are all done.
1751 		 */
1752 		if ((work->for_background || work->for_kupdate) &&
1753 		    !list_empty(&wb->work_list))
1754 			break;
1755 
1756 		/*
1757 		 * For background writeout, stop when we are below the
1758 		 * background dirty threshold
1759 		 */
1760 		if (work->for_background && !wb_over_bg_thresh(wb))
1761 			break;
1762 
1763 		/*
1764 		 * Kupdate and background works are special and we want to
1765 		 * include all inodes that need writing. Livelock avoidance is
1766 		 * handled by these works yielding to any other work so we are
1767 		 * safe.
1768 		 */
1769 		if (work->for_kupdate) {
1770 			dirtied_before = jiffies -
1771 				msecs_to_jiffies(dirty_expire_interval * 10);
1772 		} else if (work->for_background)
1773 			dirtied_before = jiffies;
1774 
1775 		trace_writeback_start(wb, work);
1776 		if (list_empty(&wb->b_io))
1777 			queue_io(wb, work, dirtied_before);
1778 		if (work->sb)
1779 			progress = writeback_sb_inodes(work->sb, wb, work);
1780 		else
1781 			progress = __writeback_inodes_wb(wb, work);
1782 		trace_writeback_written(wb, work);
1783 
1784 		wb_update_bandwidth(wb, wb_start);
1785 
1786 		/*
1787 		 * Did we write something? Try for more
1788 		 *
1789 		 * Dirty inodes are moved to b_io for writeback in batches.
1790 		 * The completion of the current batch does not necessarily
1791 		 * mean the overall work is done. So we keep looping as long
1792 		 * as made some progress on cleaning pages or inodes.
1793 		 */
1794 		if (progress)
1795 			continue;
1796 		/*
1797 		 * No more inodes for IO, bail
1798 		 */
1799 		if (list_empty(&wb->b_more_io))
1800 			break;
1801 		/*
1802 		 * Nothing written. Wait for some inode to
1803 		 * become available for writeback. Otherwise
1804 		 * we'll just busyloop.
1805 		 */
1806 		if (!list_empty(&wb->b_more_io))  {
1807 			trace_writeback_wait(wb, work);
1808 			inode = wb_inode(wb->b_more_io.prev);
1809 			spin_lock(&inode->i_lock);
1810 			spin_unlock(&wb->list_lock);
1811 			/* This function drops i_lock... */
1812 			inode_sleep_on_writeback(inode);
1813 			spin_lock(&wb->list_lock);
1814 		}
1815 	}
1816 	spin_unlock(&wb->list_lock);
1817 	blk_finish_plug(&plug);
1818 
1819 	return nr_pages - work->nr_pages;
1820 }
1821 
1822 /*
1823  * Return the next wb_writeback_work struct that hasn't been processed yet.
1824  */
get_next_work_item(struct bdi_writeback * wb)1825 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1826 {
1827 	struct wb_writeback_work *work = NULL;
1828 
1829 	spin_lock_bh(&wb->work_lock);
1830 	if (!list_empty(&wb->work_list)) {
1831 		work = list_entry(wb->work_list.next,
1832 				  struct wb_writeback_work, list);
1833 		list_del_init(&work->list);
1834 	}
1835 	spin_unlock_bh(&wb->work_lock);
1836 	return work;
1837 }
1838 
1839 /*
1840  * Add in the number of potentially dirty inodes, because each inode
1841  * write can dirty pagecache in the underlying blockdev.
1842  */
get_nr_dirty_pages(void)1843 static unsigned long get_nr_dirty_pages(void)
1844 {
1845 	return global_page_state(NR_FILE_DIRTY) +
1846 		global_page_state(NR_UNSTABLE_NFS) +
1847 		get_nr_dirty_inodes();
1848 }
1849 
wb_check_background_flush(struct bdi_writeback * wb)1850 static long wb_check_background_flush(struct bdi_writeback *wb)
1851 {
1852 	if (wb_over_bg_thresh(wb)) {
1853 
1854 		struct wb_writeback_work work = {
1855 			.nr_pages	= LONG_MAX,
1856 			.sync_mode	= WB_SYNC_NONE,
1857 			.for_background	= 1,
1858 			.range_cyclic	= 1,
1859 			.reason		= WB_REASON_BACKGROUND,
1860 		};
1861 
1862 		return wb_writeback(wb, &work);
1863 	}
1864 
1865 	return 0;
1866 }
1867 
wb_check_old_data_flush(struct bdi_writeback * wb)1868 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1869 {
1870 	unsigned long expired;
1871 	long nr_pages;
1872 
1873 	/*
1874 	 * When set to zero, disable periodic writeback
1875 	 */
1876 	if (!dirty_writeback_interval)
1877 		return 0;
1878 
1879 	expired = wb->last_old_flush +
1880 			msecs_to_jiffies(dirty_writeback_interval * 10);
1881 	if (time_before(jiffies, expired))
1882 		return 0;
1883 
1884 	wb->last_old_flush = jiffies;
1885 	nr_pages = get_nr_dirty_pages();
1886 
1887 	if (nr_pages) {
1888 		struct wb_writeback_work work = {
1889 			.nr_pages	= nr_pages,
1890 			.sync_mode	= WB_SYNC_NONE,
1891 			.for_kupdate	= 1,
1892 			.range_cyclic	= 1,
1893 			.reason		= WB_REASON_PERIODIC,
1894 		};
1895 
1896 		return wb_writeback(wb, &work);
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 /*
1903  * Retrieve work items and do the writeback they describe
1904  */
wb_do_writeback(struct bdi_writeback * wb)1905 static long wb_do_writeback(struct bdi_writeback *wb)
1906 {
1907 	struct wb_writeback_work *work;
1908 	long wrote = 0;
1909 
1910 	set_bit(WB_writeback_running, &wb->state);
1911 	while ((work = get_next_work_item(wb)) != NULL) {
1912 		trace_writeback_exec(wb, work);
1913 		wrote += wb_writeback(wb, work);
1914 		finish_writeback_work(wb, work);
1915 	}
1916 
1917 	/*
1918 	 * Check for periodic writeback, kupdated() style
1919 	 */
1920 	wrote += wb_check_old_data_flush(wb);
1921 	wrote += wb_check_background_flush(wb);
1922 	clear_bit(WB_writeback_running, &wb->state);
1923 
1924 	return wrote;
1925 }
1926 
1927 /*
1928  * Handle writeback of dirty data for the device backed by this bdi. Also
1929  * reschedules periodically and does kupdated style flushing.
1930  */
wb_workfn(struct work_struct * work)1931 void wb_workfn(struct work_struct *work)
1932 {
1933 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934 						struct bdi_writeback, dwork);
1935 	long pages_written;
1936 
1937 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1938 	current->flags |= PF_SWAPWRITE;
1939 
1940 	if (likely(!current_is_workqueue_rescuer() ||
1941 		   !test_bit(WB_registered, &wb->state))) {
1942 		/*
1943 		 * The normal path.  Keep writing back @wb until its
1944 		 * work_list is empty.  Note that this path is also taken
1945 		 * if @wb is shutting down even when we're running off the
1946 		 * rescuer as work_list needs to be drained.
1947 		 */
1948 		do {
1949 			pages_written = wb_do_writeback(wb);
1950 			trace_writeback_pages_written(pages_written);
1951 		} while (!list_empty(&wb->work_list));
1952 	} else {
1953 		/*
1954 		 * bdi_wq can't get enough workers and we're running off
1955 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1956 		 * enough for efficient IO.
1957 		 */
1958 		pages_written = writeback_inodes_wb(wb, 1024,
1959 						    WB_REASON_FORKER_THREAD);
1960 		trace_writeback_pages_written(pages_written);
1961 	}
1962 
1963 	if (!list_empty(&wb->work_list))
1964 		wb_wakeup(wb);
1965 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966 		wb_wakeup_delayed(wb);
1967 
1968 	current->flags &= ~PF_SWAPWRITE;
1969 }
1970 
1971 /*
1972  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1973  * the whole world.
1974  */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)1975 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1976 {
1977 	struct backing_dev_info *bdi;
1978 
1979 	if (!nr_pages)
1980 		nr_pages = get_nr_dirty_pages();
1981 
1982 	rcu_read_lock();
1983 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1984 		struct bdi_writeback *wb;
1985 
1986 		if (!bdi_has_dirty_io(bdi))
1987 			continue;
1988 
1989 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1990 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1991 					   false, reason);
1992 	}
1993 	rcu_read_unlock();
1994 }
1995 
1996 /*
1997  * Wake up bdi's periodically to make sure dirtytime inodes gets
1998  * written back periodically.  We deliberately do *not* check the
1999  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2000  * kernel to be constantly waking up once there are any dirtytime
2001  * inodes on the system.  So instead we define a separate delayed work
2002  * function which gets called much more rarely.  (By default, only
2003  * once every 12 hours.)
2004  *
2005  * If there is any other write activity going on in the file system,
2006  * this function won't be necessary.  But if the only thing that has
2007  * happened on the file system is a dirtytime inode caused by an atime
2008  * update, we need this infrastructure below to make sure that inode
2009  * eventually gets pushed out to disk.
2010  */
2011 static void wakeup_dirtytime_writeback(struct work_struct *w);
2012 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2013 
wakeup_dirtytime_writeback(struct work_struct * w)2014 static void wakeup_dirtytime_writeback(struct work_struct *w)
2015 {
2016 	struct backing_dev_info *bdi;
2017 
2018 	rcu_read_lock();
2019 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2020 		struct bdi_writeback *wb;
2021 
2022 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2023 			if (!list_empty(&wb->b_dirty_time))
2024 				wb_wakeup(wb);
2025 	}
2026 	rcu_read_unlock();
2027 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2028 }
2029 
start_dirtytime_writeback(void)2030 static int __init start_dirtytime_writeback(void)
2031 {
2032 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2033 	return 0;
2034 }
2035 __initcall(start_dirtytime_writeback);
2036 
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2037 int dirtytime_interval_handler(struct ctl_table *table, int write,
2038 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2039 {
2040 	int ret;
2041 
2042 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2043 	if (ret == 0 && write)
2044 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2045 	return ret;
2046 }
2047 
2048 /**
2049  *	__mark_inode_dirty -	internal function
2050  *	@inode: inode to mark
2051  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2052  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2053  *  	mark_inode_dirty_sync.
2054  *
2055  * Put the inode on the super block's dirty list.
2056  *
2057  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2058  * dirty list only if it is hashed or if it refers to a blockdev.
2059  * If it was not hashed, it will never be added to the dirty list
2060  * even if it is later hashed, as it will have been marked dirty already.
2061  *
2062  * In short, make sure you hash any inodes _before_ you start marking
2063  * them dirty.
2064  *
2065  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2066  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2067  * the kernel-internal blockdev inode represents the dirtying time of the
2068  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2069  * page->mapping->host, so the page-dirtying time is recorded in the internal
2070  * blockdev inode.
2071  */
__mark_inode_dirty(struct inode * inode,int flags)2072 void __mark_inode_dirty(struct inode *inode, int flags)
2073 {
2074 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2075 	struct super_block *sb = inode->i_sb;
2076 	int dirtytime;
2077 
2078 	trace_writeback_mark_inode_dirty(inode, flags);
2079 
2080 	/*
2081 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2082 	 * dirty the inode itself
2083 	 */
2084 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2085 		trace_writeback_dirty_inode_start(inode, flags);
2086 
2087 		if (sb->s_op->dirty_inode)
2088 			sb->s_op->dirty_inode(inode, flags);
2089 
2090 		trace_writeback_dirty_inode(inode, flags);
2091 	}
2092 	if (flags & I_DIRTY_INODE)
2093 		flags &= ~I_DIRTY_TIME;
2094 	dirtytime = flags & I_DIRTY_TIME;
2095 
2096 	/*
2097 	 * Paired with smp_mb() in __writeback_single_inode() for the
2098 	 * following lockless i_state test.  See there for details.
2099 	 */
2100 	smp_mb();
2101 
2102 	if (((inode->i_state & flags) == flags) ||
2103 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2104 		return;
2105 
2106 	spin_lock(&inode->i_lock);
2107 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2108 		goto out_unlock_inode;
2109 	if ((inode->i_state & flags) != flags) {
2110 		const int was_dirty = inode->i_state & I_DIRTY;
2111 
2112 		inode_attach_wb(inode, NULL);
2113 
2114 		if (flags & I_DIRTY_INODE)
2115 			inode->i_state &= ~I_DIRTY_TIME;
2116 		inode->i_state |= flags;
2117 
2118 		/*
2119 		 * If the inode is queued for writeback by flush worker, just
2120 		 * update its dirty state. Once the flush worker is done with
2121 		 * the inode it will place it on the appropriate superblock
2122 		 * list, based upon its state.
2123 		 */
2124 		if (inode->i_state & I_SYNC_QUEUED)
2125 			goto out_unlock_inode;
2126 
2127 		/*
2128 		 * Only add valid (hashed) inodes to the superblock's
2129 		 * dirty list.  Add blockdev inodes as well.
2130 		 */
2131 		if (!S_ISBLK(inode->i_mode)) {
2132 			if (inode_unhashed(inode))
2133 				goto out_unlock_inode;
2134 		}
2135 		if (inode->i_state & I_FREEING)
2136 			goto out_unlock_inode;
2137 
2138 		/*
2139 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2140 		 * reposition it (that would break b_dirty time-ordering).
2141 		 */
2142 		if (!was_dirty) {
2143 			struct bdi_writeback *wb;
2144 			struct list_head *dirty_list;
2145 			bool wakeup_bdi = false;
2146 
2147 			wb = locked_inode_to_wb_and_lock_list(inode);
2148 
2149 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2150 			     !test_bit(WB_registered, &wb->state),
2151 			     "bdi-%s not registered\n", wb->bdi->name);
2152 
2153 			inode->dirtied_when = jiffies;
2154 			if (dirtytime)
2155 				inode->dirtied_time_when = jiffies;
2156 
2157 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2158 				dirty_list = &wb->b_dirty;
2159 			else
2160 				dirty_list = &wb->b_dirty_time;
2161 
2162 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2163 							       dirty_list);
2164 
2165 			spin_unlock(&wb->list_lock);
2166 			trace_writeback_dirty_inode_enqueue(inode);
2167 
2168 			/*
2169 			 * If this is the first dirty inode for this bdi,
2170 			 * we have to wake-up the corresponding bdi thread
2171 			 * to make sure background write-back happens
2172 			 * later.
2173 			 */
2174 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2175 				wb_wakeup_delayed(wb);
2176 			return;
2177 		}
2178 	}
2179 out_unlock_inode:
2180 	spin_unlock(&inode->i_lock);
2181 
2182 #undef I_DIRTY_INODE
2183 }
2184 EXPORT_SYMBOL(__mark_inode_dirty);
2185 
2186 /*
2187  * The @s_sync_lock is used to serialise concurrent sync operations
2188  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2189  * Concurrent callers will block on the s_sync_lock rather than doing contending
2190  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2191  * has been issued up to the time this function is enter is guaranteed to be
2192  * completed by the time we have gained the lock and waited for all IO that is
2193  * in progress regardless of the order callers are granted the lock.
2194  */
wait_sb_inodes(struct super_block * sb)2195 static void wait_sb_inodes(struct super_block *sb)
2196 {
2197 	struct inode *inode, *old_inode = NULL;
2198 
2199 	/*
2200 	 * We need to be protected against the filesystem going from
2201 	 * r/o to r/w or vice versa.
2202 	 */
2203 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2204 
2205 	mutex_lock(&sb->s_sync_lock);
2206 	spin_lock(&sb->s_inode_list_lock);
2207 
2208 	/*
2209 	 * Data integrity sync. Must wait for all pages under writeback,
2210 	 * because there may have been pages dirtied before our sync
2211 	 * call, but which had writeout started before we write it out.
2212 	 * In which case, the inode may not be on the dirty list, but
2213 	 * we still have to wait for that writeout.
2214 	 */
2215 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2216 		struct address_space *mapping = inode->i_mapping;
2217 
2218 		spin_lock(&inode->i_lock);
2219 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2220 		    (mapping->nrpages == 0)) {
2221 			spin_unlock(&inode->i_lock);
2222 			continue;
2223 		}
2224 		__iget(inode);
2225 		spin_unlock(&inode->i_lock);
2226 		spin_unlock(&sb->s_inode_list_lock);
2227 
2228 		/*
2229 		 * We hold a reference to 'inode' so it couldn't have been
2230 		 * removed from s_inodes list while we dropped the
2231 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2232 		 * be holding the last reference and we cannot iput it under
2233 		 * s_inode_list_lock. So we keep the reference and iput it
2234 		 * later.
2235 		 */
2236 		iput(old_inode);
2237 		old_inode = inode;
2238 
2239 		/*
2240 		 * We keep the error status of individual mapping so that
2241 		 * applications can catch the writeback error using fsync(2).
2242 		 * See filemap_fdatawait_keep_errors() for details.
2243 		 */
2244 		filemap_fdatawait_keep_errors(mapping);
2245 
2246 		cond_resched();
2247 
2248 		spin_lock(&sb->s_inode_list_lock);
2249 	}
2250 	spin_unlock(&sb->s_inode_list_lock);
2251 	iput(old_inode);
2252 	mutex_unlock(&sb->s_sync_lock);
2253 }
2254 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2255 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2256 				     enum wb_reason reason, bool skip_if_busy)
2257 {
2258 	DEFINE_WB_COMPLETION_ONSTACK(done);
2259 	struct wb_writeback_work work = {
2260 		.sb			= sb,
2261 		.sync_mode		= WB_SYNC_NONE,
2262 		.tagged_writepages	= 1,
2263 		.done			= &done,
2264 		.nr_pages		= nr,
2265 		.reason			= reason,
2266 	};
2267 	struct backing_dev_info *bdi = sb->s_bdi;
2268 
2269 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2270 		return;
2271 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2272 
2273 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2274 	wb_wait_for_completion(bdi, &done);
2275 }
2276 
2277 /**
2278  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2279  * @sb: the superblock
2280  * @nr: the number of pages to write
2281  * @reason: reason why some writeback work initiated
2282  *
2283  * Start writeback on some inodes on this super_block. No guarantees are made
2284  * on how many (if any) will be written, and this function does not wait
2285  * for IO completion of submitted IO.
2286  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2287 void writeback_inodes_sb_nr(struct super_block *sb,
2288 			    unsigned long nr,
2289 			    enum wb_reason reason)
2290 {
2291 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2292 }
2293 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2294 
2295 /**
2296  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2297  * @sb: the superblock
2298  * @reason: reason why some writeback work was initiated
2299  *
2300  * Start writeback on some inodes on this super_block. No guarantees are made
2301  * on how many (if any) will be written, and this function does not wait
2302  * for IO completion of submitted IO.
2303  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2304 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2305 {
2306 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2307 }
2308 EXPORT_SYMBOL(writeback_inodes_sb);
2309 
2310 /**
2311  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2312  * @sb: the superblock
2313  * @nr: the number of pages to write
2314  * @reason: the reason of writeback
2315  *
2316  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2317  * Returns 1 if writeback was started, 0 if not.
2318  */
try_to_writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2319 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2320 				   enum wb_reason reason)
2321 {
2322 	if (!down_read_trylock(&sb->s_umount))
2323 		return false;
2324 
2325 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2326 	up_read(&sb->s_umount);
2327 	return true;
2328 }
2329 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2330 
2331 /**
2332  * try_to_writeback_inodes_sb - try to start writeback if none underway
2333  * @sb: the superblock
2334  * @reason: reason why some writeback work was initiated
2335  *
2336  * Implement by try_to_writeback_inodes_sb_nr()
2337  * Returns 1 if writeback was started, 0 if not.
2338  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2339 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2340 {
2341 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2342 }
2343 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2344 
2345 /**
2346  * sync_inodes_sb	-	sync sb inode pages
2347  * @sb: the superblock
2348  *
2349  * This function writes and waits on any dirty inode belonging to this
2350  * super_block.
2351  */
sync_inodes_sb(struct super_block * sb)2352 void sync_inodes_sb(struct super_block *sb)
2353 {
2354 	DEFINE_WB_COMPLETION_ONSTACK(done);
2355 	struct wb_writeback_work work = {
2356 		.sb		= sb,
2357 		.sync_mode	= WB_SYNC_ALL,
2358 		.nr_pages	= LONG_MAX,
2359 		.range_cyclic	= 0,
2360 		.done		= &done,
2361 		.reason		= WB_REASON_SYNC,
2362 		.for_sync	= 1,
2363 	};
2364 	struct backing_dev_info *bdi = sb->s_bdi;
2365 
2366 	/*
2367 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2368 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2369 	 * bdi_has_dirty() need to be written out too.
2370 	 */
2371 	if (bdi == &noop_backing_dev_info)
2372 		return;
2373 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374 
2375 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2376 	bdi_down_write_wb_switch_rwsem(bdi);
2377 	bdi_split_work_to_wbs(bdi, &work, false);
2378 	wb_wait_for_completion(bdi, &done);
2379 	bdi_up_write_wb_switch_rwsem(bdi);
2380 
2381 	wait_sb_inodes(sb);
2382 }
2383 EXPORT_SYMBOL(sync_inodes_sb);
2384 
2385 /**
2386  * write_inode_now	-	write an inode to disk
2387  * @inode: inode to write to disk
2388  * @sync: whether the write should be synchronous or not
2389  *
2390  * This function commits an inode to disk immediately if it is dirty. This is
2391  * primarily needed by knfsd.
2392  *
2393  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2394  */
write_inode_now(struct inode * inode,int sync)2395 int write_inode_now(struct inode *inode, int sync)
2396 {
2397 	struct writeback_control wbc = {
2398 		.nr_to_write = LONG_MAX,
2399 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2400 		.range_start = 0,
2401 		.range_end = LLONG_MAX,
2402 	};
2403 
2404 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2405 		wbc.nr_to_write = 0;
2406 
2407 	might_sleep();
2408 	return writeback_single_inode(inode, &wbc);
2409 }
2410 EXPORT_SYMBOL(write_inode_now);
2411 
2412 /**
2413  * sync_inode - write an inode and its pages to disk.
2414  * @inode: the inode to sync
2415  * @wbc: controls the writeback mode
2416  *
2417  * sync_inode() will write an inode and its pages to disk.  It will also
2418  * correctly update the inode on its superblock's dirty inode lists and will
2419  * update inode->i_state.
2420  *
2421  * The caller must have a ref on the inode.
2422  */
sync_inode(struct inode * inode,struct writeback_control * wbc)2423 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2424 {
2425 	return writeback_single_inode(inode, wbc);
2426 }
2427 EXPORT_SYMBOL(sync_inode);
2428 
2429 /**
2430  * sync_inode_metadata - write an inode to disk
2431  * @inode: the inode to sync
2432  * @wait: wait for I/O to complete.
2433  *
2434  * Write an inode to disk and adjust its dirty state after completion.
2435  *
2436  * Note: only writes the actual inode, no associated data or other metadata.
2437  */
sync_inode_metadata(struct inode * inode,int wait)2438 int sync_inode_metadata(struct inode *inode, int wait)
2439 {
2440 	struct writeback_control wbc = {
2441 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2442 		.nr_to_write = 0, /* metadata-only */
2443 	};
2444 
2445 	return sync_inode(inode, &wbc);
2446 }
2447 EXPORT_SYMBOL(sync_inode_metadata);
2448