1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
get_nr_dentry(void)136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
get_nr_dentry_unused(void)145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
__d_free_external(struct rcu_head * head)260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
dname_external(const struct dentry * dentry)267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname,
282 dentry->d_name.len + 1);
283 spin_unlock(&dentry->d_lock);
284 name->name = name->inline_name;
285 }
286 }
287 EXPORT_SYMBOL(take_dentry_name_snapshot);
288
release_dentry_name_snapshot(struct name_snapshot * name)289 void release_dentry_name_snapshot(struct name_snapshot *name)
290 {
291 if (unlikely(name->name != name->inline_name)) {
292 struct external_name *p;
293 p = container_of(name->name, struct external_name, name[0]);
294 if (unlikely(atomic_dec_and_test(&p->u.count)))
295 kfree_rcu(p, u.head);
296 }
297 }
298 EXPORT_SYMBOL(release_dentry_name_snapshot);
299
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)300 static inline void __d_set_inode_and_type(struct dentry *dentry,
301 struct inode *inode,
302 unsigned type_flags)
303 {
304 unsigned flags;
305
306 dentry->d_inode = inode;
307 flags = READ_ONCE(dentry->d_flags);
308 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309 flags |= type_flags;
310 WRITE_ONCE(dentry->d_flags, flags);
311 }
312
__d_clear_type_and_inode(struct dentry * dentry)313 static inline void __d_clear_type_and_inode(struct dentry *dentry)
314 {
315 unsigned flags = READ_ONCE(dentry->d_flags);
316
317 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 WRITE_ONCE(dentry->d_flags, flags);
319 dentry->d_inode = NULL;
320 }
321
dentry_free(struct dentry * dentry)322 static void dentry_free(struct dentry *dentry)
323 {
324 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
325 if (unlikely(dname_external(dentry))) {
326 struct external_name *p = external_name(dentry);
327 if (likely(atomic_dec_and_test(&p->u.count))) {
328 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329 return;
330 }
331 }
332 /* if dentry was never visible to RCU, immediate free is OK */
333 if (!(dentry->d_flags & DCACHE_RCUACCESS))
334 __d_free(&dentry->d_u.d_rcu);
335 else
336 call_rcu(&dentry->d_u.d_rcu, __d_free);
337 }
338
339 /**
340 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
341 * @dentry: the target dentry
342 * After this call, in-progress rcu-walk path lookup will fail. This
343 * should be called after unhashing, and after changing d_inode (if
344 * the dentry has not already been unhashed).
345 */
dentry_rcuwalk_invalidate(struct dentry * dentry)346 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
347 {
348 lockdep_assert_held(&dentry->d_lock);
349 /* Go through am invalidation barrier */
350 write_seqcount_invalidate(&dentry->d_seq);
351 }
352
353 /*
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined. Dentry has no refcount
356 * and is unhashed.
357 */
dentry_iput(struct dentry * dentry)358 static void dentry_iput(struct dentry * dentry)
359 __releases(dentry->d_lock)
360 __releases(dentry->d_inode->i_lock)
361 {
362 struct inode *inode = dentry->d_inode;
363 if (inode) {
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 spin_unlock(&dentry->d_lock);
367 spin_unlock(&inode->i_lock);
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374 } else {
375 spin_unlock(&dentry->d_lock);
376 }
377 }
378
379 /*
380 * Release the dentry's inode, using the filesystem
381 * d_iput() operation if defined. dentry remains in-use.
382 */
dentry_unlink_inode(struct dentry * dentry)383 static void dentry_unlink_inode(struct dentry * dentry)
384 __releases(dentry->d_lock)
385 __releases(dentry->d_inode->i_lock)
386 {
387 struct inode *inode = dentry->d_inode;
388
389 raw_write_seqcount_begin(&dentry->d_seq);
390 __d_clear_type_and_inode(dentry);
391 hlist_del_init(&dentry->d_u.d_alias);
392 raw_write_seqcount_end(&dentry->d_seq);
393 spin_unlock(&dentry->d_lock);
394 spin_unlock(&inode->i_lock);
395 if (!inode->i_nlink)
396 fsnotify_inoderemove(inode);
397 if (dentry->d_op && dentry->d_op->d_iput)
398 dentry->d_op->d_iput(dentry, inode);
399 else
400 iput(inode);
401 }
402
403 /*
404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405 * is in use - which includes both the "real" per-superblock
406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
407 *
408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409 * on the shrink list (ie not on the superblock LRU list).
410 *
411 * The per-cpu "nr_dentry_unused" counters are updated with
412 * the DCACHE_LRU_LIST bit.
413 *
414 * These helper functions make sure we always follow the
415 * rules. d_lock must be held by the caller.
416 */
417 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)418 static void d_lru_add(struct dentry *dentry)
419 {
420 D_FLAG_VERIFY(dentry, 0);
421 dentry->d_flags |= DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
423 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
424 }
425
d_lru_del(struct dentry * dentry)426 static void d_lru_del(struct dentry *dentry)
427 {
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
431 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433
d_shrink_del(struct dentry * dentry)434 static void d_shrink_del(struct dentry *dentry)
435 {
436 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
437 list_del_init(&dentry->d_lru);
438 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
439 this_cpu_dec(nr_dentry_unused);
440 }
441
d_shrink_add(struct dentry * dentry,struct list_head * list)442 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
443 {
444 D_FLAG_VERIFY(dentry, 0);
445 list_add(&dentry->d_lru, list);
446 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
447 this_cpu_inc(nr_dentry_unused);
448 }
449
450 /*
451 * These can only be called under the global LRU lock, ie during the
452 * callback for freeing the LRU list. "isolate" removes it from the
453 * LRU lists entirely, while shrink_move moves it to the indicated
454 * private list.
455 */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)456 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
457 {
458 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
459 dentry->d_flags &= ~DCACHE_LRU_LIST;
460 this_cpu_dec(nr_dentry_unused);
461 list_lru_isolate(lru, &dentry->d_lru);
462 }
463
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)464 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
465 struct list_head *list)
466 {
467 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
468 dentry->d_flags |= DCACHE_SHRINK_LIST;
469 list_lru_isolate_move(lru, &dentry->d_lru, list);
470 }
471
472 /*
473 * dentry_lru_(add|del)_list) must be called with d_lock held.
474 */
dentry_lru_add(struct dentry * dentry)475 static void dentry_lru_add(struct dentry *dentry)
476 {
477 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
478 d_lru_add(dentry);
479 }
480
481 /**
482 * d_drop - drop a dentry
483 * @dentry: dentry to drop
484 *
485 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
486 * be found through a VFS lookup any more. Note that this is different from
487 * deleting the dentry - d_delete will try to mark the dentry negative if
488 * possible, giving a successful _negative_ lookup, while d_drop will
489 * just make the cache lookup fail.
490 *
491 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
492 * reason (NFS timeouts or autofs deletes).
493 *
494 * __d_drop requires dentry->d_lock.
495 */
__d_drop(struct dentry * dentry)496 void __d_drop(struct dentry *dentry)
497 {
498 if (!d_unhashed(dentry)) {
499 struct hlist_bl_head *b;
500 /*
501 * Hashed dentries are normally on the dentry hashtable,
502 * with the exception of those newly allocated by
503 * d_obtain_alias, which are always IS_ROOT:
504 */
505 if (unlikely(IS_ROOT(dentry)))
506 b = &dentry->d_sb->s_anon;
507 else
508 b = d_hash(dentry->d_parent, dentry->d_name.hash);
509
510 hlist_bl_lock(b);
511 __hlist_bl_del(&dentry->d_hash);
512 dentry->d_hash.pprev = NULL;
513 hlist_bl_unlock(b);
514 dentry_rcuwalk_invalidate(dentry);
515 }
516 }
517 EXPORT_SYMBOL(__d_drop);
518
d_drop(struct dentry * dentry)519 void d_drop(struct dentry *dentry)
520 {
521 spin_lock(&dentry->d_lock);
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
524 }
525 EXPORT_SYMBOL(d_drop);
526
__dentry_kill(struct dentry * dentry)527 static void __dentry_kill(struct dentry *dentry)
528 {
529 struct dentry *parent = NULL;
530 bool can_free = true;
531 if (!IS_ROOT(dentry))
532 parent = dentry->d_parent;
533
534 /*
535 * The dentry is now unrecoverably dead to the world.
536 */
537 lockref_mark_dead(&dentry->d_lockref);
538
539 /*
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
542 */
543 if (dentry->d_flags & DCACHE_OP_PRUNE)
544 dentry->d_op->d_prune(dentry);
545
546 if (dentry->d_flags & DCACHE_LRU_LIST) {
547 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
548 d_lru_del(dentry);
549 }
550 /* if it was on the hash then remove it */
551 __d_drop(dentry);
552 __list_del_entry(&dentry->d_child);
553 /*
554 * Inform d_walk() that we are no longer attached to the
555 * dentry tree
556 */
557 dentry->d_flags |= DCACHE_DENTRY_KILLED;
558 if (parent)
559 spin_unlock(&parent->d_lock);
560 dentry_iput(dentry);
561 /*
562 * dentry_iput drops the locks, at which point nobody (except
563 * transient RCU lookups) can reach this dentry.
564 */
565 BUG_ON(dentry->d_lockref.count > 0);
566 this_cpu_dec(nr_dentry);
567 if (dentry->d_op && dentry->d_op->d_release)
568 dentry->d_op->d_release(dentry);
569
570 spin_lock(&dentry->d_lock);
571 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
572 dentry->d_flags |= DCACHE_MAY_FREE;
573 can_free = false;
574 }
575 spin_unlock(&dentry->d_lock);
576 if (likely(can_free))
577 dentry_free(dentry);
578 }
579
580 /*
581 * Finish off a dentry we've decided to kill.
582 * dentry->d_lock must be held, returns with it unlocked.
583 * If ref is non-zero, then decrement the refcount too.
584 * Returns dentry requiring refcount drop, or NULL if we're done.
585 */
dentry_kill(struct dentry * dentry)586 static struct dentry *dentry_kill(struct dentry *dentry)
587 __releases(dentry->d_lock)
588 {
589 struct inode *inode = dentry->d_inode;
590 struct dentry *parent = NULL;
591
592 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
593 goto failed;
594
595 if (!IS_ROOT(dentry)) {
596 parent = dentry->d_parent;
597 if (unlikely(!spin_trylock(&parent->d_lock))) {
598 if (inode)
599 spin_unlock(&inode->i_lock);
600 goto failed;
601 }
602 }
603
604 __dentry_kill(dentry);
605 return parent;
606
607 failed:
608 spin_unlock(&dentry->d_lock);
609 return dentry; /* try again with same dentry */
610 }
611
lock_parent(struct dentry * dentry)612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614 struct dentry *parent = dentry->d_parent;
615 if (IS_ROOT(dentry))
616 return NULL;
617 if (unlikely(dentry->d_lockref.count < 0))
618 return NULL;
619 if (likely(spin_trylock(&parent->d_lock)))
620 return parent;
621 rcu_read_lock();
622 spin_unlock(&dentry->d_lock);
623 again:
624 parent = ACCESS_ONCE(dentry->d_parent);
625 spin_lock(&parent->d_lock);
626 /*
627 * We can't blindly lock dentry until we are sure
628 * that we won't violate the locking order.
629 * Any changes of dentry->d_parent must have
630 * been done with parent->d_lock held, so
631 * spin_lock() above is enough of a barrier
632 * for checking if it's still our child.
633 */
634 if (unlikely(parent != dentry->d_parent)) {
635 spin_unlock(&parent->d_lock);
636 goto again;
637 }
638 if (parent != dentry) {
639 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
640 if (unlikely(dentry->d_lockref.count < 0)) {
641 spin_unlock(&parent->d_lock);
642 parent = NULL;
643 }
644 } else {
645 parent = NULL;
646 }
647 rcu_read_unlock();
648 return parent;
649 }
650
651 /*
652 * Try to do a lockless dput(), and return whether that was successful.
653 *
654 * If unsuccessful, we return false, having already taken the dentry lock.
655 *
656 * The caller needs to hold the RCU read lock, so that the dentry is
657 * guaranteed to stay around even if the refcount goes down to zero!
658 */
fast_dput(struct dentry * dentry)659 static inline bool fast_dput(struct dentry *dentry)
660 {
661 int ret;
662 unsigned int d_flags;
663
664 /*
665 * If we have a d_op->d_delete() operation, we sould not
666 * let the dentry count go to zero, so use "put_or_lock".
667 */
668 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
669 return lockref_put_or_lock(&dentry->d_lockref);
670
671 /*
672 * .. otherwise, we can try to just decrement the
673 * lockref optimistically.
674 */
675 ret = lockref_put_return(&dentry->d_lockref);
676
677 /*
678 * If the lockref_put_return() failed due to the lock being held
679 * by somebody else, the fast path has failed. We will need to
680 * get the lock, and then check the count again.
681 */
682 if (unlikely(ret < 0)) {
683 spin_lock(&dentry->d_lock);
684 if (dentry->d_lockref.count > 1) {
685 dentry->d_lockref.count--;
686 spin_unlock(&dentry->d_lock);
687 return 1;
688 }
689 return 0;
690 }
691
692 /*
693 * If we weren't the last ref, we're done.
694 */
695 if (ret)
696 return 1;
697
698 /*
699 * Careful, careful. The reference count went down
700 * to zero, but we don't hold the dentry lock, so
701 * somebody else could get it again, and do another
702 * dput(), and we need to not race with that.
703 *
704 * However, there is a very special and common case
705 * where we don't care, because there is nothing to
706 * do: the dentry is still hashed, it does not have
707 * a 'delete' op, and it's referenced and already on
708 * the LRU list.
709 *
710 * NOTE! Since we aren't locked, these values are
711 * not "stable". However, it is sufficient that at
712 * some point after we dropped the reference the
713 * dentry was hashed and the flags had the proper
714 * value. Other dentry users may have re-gotten
715 * a reference to the dentry and change that, but
716 * our work is done - we can leave the dentry
717 * around with a zero refcount.
718 */
719 smp_rmb();
720 d_flags = ACCESS_ONCE(dentry->d_flags);
721 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
722
723 /* Nothing to do? Dropping the reference was all we needed? */
724 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
725 return 1;
726
727 /*
728 * Not the fast normal case? Get the lock. We've already decremented
729 * the refcount, but we'll need to re-check the situation after
730 * getting the lock.
731 */
732 spin_lock(&dentry->d_lock);
733
734 /*
735 * Did somebody else grab a reference to it in the meantime, and
736 * we're no longer the last user after all? Alternatively, somebody
737 * else could have killed it and marked it dead. Either way, we
738 * don't need to do anything else.
739 */
740 if (dentry->d_lockref.count) {
741 spin_unlock(&dentry->d_lock);
742 return 1;
743 }
744
745 /*
746 * Re-get the reference we optimistically dropped. We hold the
747 * lock, and we just tested that it was zero, so we can just
748 * set it to 1.
749 */
750 dentry->d_lockref.count = 1;
751 return 0;
752 }
753
754
755 /*
756 * This is dput
757 *
758 * This is complicated by the fact that we do not want to put
759 * dentries that are no longer on any hash chain on the unused
760 * list: we'd much rather just get rid of them immediately.
761 *
762 * However, that implies that we have to traverse the dentry
763 * tree upwards to the parents which might _also_ now be
764 * scheduled for deletion (it may have been only waiting for
765 * its last child to go away).
766 *
767 * This tail recursion is done by hand as we don't want to depend
768 * on the compiler to always get this right (gcc generally doesn't).
769 * Real recursion would eat up our stack space.
770 */
771
772 /*
773 * dput - release a dentry
774 * @dentry: dentry to release
775 *
776 * Release a dentry. This will drop the usage count and if appropriate
777 * call the dentry unlink method as well as removing it from the queues and
778 * releasing its resources. If the parent dentries were scheduled for release
779 * they too may now get deleted.
780 */
dput(struct dentry * dentry)781 void dput(struct dentry *dentry)
782 {
783 if (unlikely(!dentry))
784 return;
785
786 repeat:
787 might_sleep();
788
789 rcu_read_lock();
790 if (likely(fast_dput(dentry))) {
791 rcu_read_unlock();
792 return;
793 }
794
795 /* Slow case: now with the dentry lock held */
796 rcu_read_unlock();
797
798 /* Unreachable? Get rid of it */
799 if (unlikely(d_unhashed(dentry)))
800 goto kill_it;
801
802 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
803 goto kill_it;
804
805 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
806 if (dentry->d_op->d_delete(dentry))
807 goto kill_it;
808 }
809
810 if (!(dentry->d_flags & DCACHE_REFERENCED))
811 dentry->d_flags |= DCACHE_REFERENCED;
812 dentry_lru_add(dentry);
813
814 dentry->d_lockref.count--;
815 spin_unlock(&dentry->d_lock);
816 return;
817
818 kill_it:
819 dentry = dentry_kill(dentry);
820 if (dentry) {
821 cond_resched();
822 goto repeat;
823 }
824 }
825 EXPORT_SYMBOL(dput);
826
827
828 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)829 static inline void __dget_dlock(struct dentry *dentry)
830 {
831 dentry->d_lockref.count++;
832 }
833
__dget(struct dentry * dentry)834 static inline void __dget(struct dentry *dentry)
835 {
836 lockref_get(&dentry->d_lockref);
837 }
838
dget_parent(struct dentry * dentry)839 struct dentry *dget_parent(struct dentry *dentry)
840 {
841 int gotref;
842 struct dentry *ret;
843
844 /*
845 * Do optimistic parent lookup without any
846 * locking.
847 */
848 rcu_read_lock();
849 ret = ACCESS_ONCE(dentry->d_parent);
850 gotref = lockref_get_not_zero(&ret->d_lockref);
851 rcu_read_unlock();
852 if (likely(gotref)) {
853 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
854 return ret;
855 dput(ret);
856 }
857
858 repeat:
859 /*
860 * Don't need rcu_dereference because we re-check it was correct under
861 * the lock.
862 */
863 rcu_read_lock();
864 ret = dentry->d_parent;
865 spin_lock(&ret->d_lock);
866 if (unlikely(ret != dentry->d_parent)) {
867 spin_unlock(&ret->d_lock);
868 rcu_read_unlock();
869 goto repeat;
870 }
871 rcu_read_unlock();
872 BUG_ON(!ret->d_lockref.count);
873 ret->d_lockref.count++;
874 spin_unlock(&ret->d_lock);
875 return ret;
876 }
877 EXPORT_SYMBOL(dget_parent);
878
879 /**
880 * d_find_alias - grab a hashed alias of inode
881 * @inode: inode in question
882 *
883 * If inode has a hashed alias, or is a directory and has any alias,
884 * acquire the reference to alias and return it. Otherwise return NULL.
885 * Notice that if inode is a directory there can be only one alias and
886 * it can be unhashed only if it has no children, or if it is the root
887 * of a filesystem, or if the directory was renamed and d_revalidate
888 * was the first vfs operation to notice.
889 *
890 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
891 * any other hashed alias over that one.
892 */
__d_find_alias(struct inode * inode)893 static struct dentry *__d_find_alias(struct inode *inode)
894 {
895 struct dentry *alias, *discon_alias;
896
897 again:
898 discon_alias = NULL;
899 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
900 spin_lock(&alias->d_lock);
901 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
902 if (IS_ROOT(alias) &&
903 (alias->d_flags & DCACHE_DISCONNECTED)) {
904 discon_alias = alias;
905 } else {
906 __dget_dlock(alias);
907 spin_unlock(&alias->d_lock);
908 return alias;
909 }
910 }
911 spin_unlock(&alias->d_lock);
912 }
913 if (discon_alias) {
914 alias = discon_alias;
915 spin_lock(&alias->d_lock);
916 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
917 __dget_dlock(alias);
918 spin_unlock(&alias->d_lock);
919 return alias;
920 }
921 spin_unlock(&alias->d_lock);
922 goto again;
923 }
924 return NULL;
925 }
926
d_find_alias(struct inode * inode)927 struct dentry *d_find_alias(struct inode *inode)
928 {
929 struct dentry *de = NULL;
930
931 if (!hlist_empty(&inode->i_dentry)) {
932 spin_lock(&inode->i_lock);
933 de = __d_find_alias(inode);
934 spin_unlock(&inode->i_lock);
935 }
936 return de;
937 }
938 EXPORT_SYMBOL(d_find_alias);
939
940 /*
941 * Try to kill dentries associated with this inode.
942 * WARNING: you must own a reference to inode.
943 */
d_prune_aliases(struct inode * inode)944 void d_prune_aliases(struct inode *inode)
945 {
946 struct dentry *dentry;
947 restart:
948 spin_lock(&inode->i_lock);
949 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
950 spin_lock(&dentry->d_lock);
951 if (!dentry->d_lockref.count) {
952 struct dentry *parent = lock_parent(dentry);
953 if (likely(!dentry->d_lockref.count)) {
954 __dentry_kill(dentry);
955 dput(parent);
956 goto restart;
957 }
958 if (parent)
959 spin_unlock(&parent->d_lock);
960 }
961 spin_unlock(&dentry->d_lock);
962 }
963 spin_unlock(&inode->i_lock);
964 }
965 EXPORT_SYMBOL(d_prune_aliases);
966
shrink_dentry_list(struct list_head * list)967 static void shrink_dentry_list(struct list_head *list)
968 {
969 struct dentry *dentry, *parent;
970
971 while (!list_empty(list)) {
972 struct inode *inode;
973 dentry = list_entry(list->prev, struct dentry, d_lru);
974 spin_lock(&dentry->d_lock);
975 parent = lock_parent(dentry);
976
977 /*
978 * The dispose list is isolated and dentries are not accounted
979 * to the LRU here, so we can simply remove it from the list
980 * here regardless of whether it is referenced or not.
981 */
982 d_shrink_del(dentry);
983
984 /*
985 * We found an inuse dentry which was not removed from
986 * the LRU because of laziness during lookup. Do not free it.
987 */
988 if (dentry->d_lockref.count > 0) {
989 spin_unlock(&dentry->d_lock);
990 if (parent)
991 spin_unlock(&parent->d_lock);
992 continue;
993 }
994
995
996 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
997 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
998 spin_unlock(&dentry->d_lock);
999 if (parent)
1000 spin_unlock(&parent->d_lock);
1001 if (can_free)
1002 dentry_free(dentry);
1003 continue;
1004 }
1005
1006 inode = dentry->d_inode;
1007 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1008 d_shrink_add(dentry, list);
1009 spin_unlock(&dentry->d_lock);
1010 if (parent)
1011 spin_unlock(&parent->d_lock);
1012 continue;
1013 }
1014
1015 __dentry_kill(dentry);
1016
1017 /*
1018 * We need to prune ancestors too. This is necessary to prevent
1019 * quadratic behavior of shrink_dcache_parent(), but is also
1020 * expected to be beneficial in reducing dentry cache
1021 * fragmentation.
1022 */
1023 dentry = parent;
1024 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1025 parent = lock_parent(dentry);
1026 if (dentry->d_lockref.count != 1) {
1027 dentry->d_lockref.count--;
1028 spin_unlock(&dentry->d_lock);
1029 if (parent)
1030 spin_unlock(&parent->d_lock);
1031 break;
1032 }
1033 inode = dentry->d_inode; /* can't be NULL */
1034 if (unlikely(!spin_trylock(&inode->i_lock))) {
1035 spin_unlock(&dentry->d_lock);
1036 if (parent)
1037 spin_unlock(&parent->d_lock);
1038 cpu_relax();
1039 continue;
1040 }
1041 __dentry_kill(dentry);
1042 dentry = parent;
1043 }
1044 }
1045 }
1046
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1047 static enum lru_status dentry_lru_isolate(struct list_head *item,
1048 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1049 {
1050 struct list_head *freeable = arg;
1051 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1052
1053
1054 /*
1055 * we are inverting the lru lock/dentry->d_lock here,
1056 * so use a trylock. If we fail to get the lock, just skip
1057 * it
1058 */
1059 if (!spin_trylock(&dentry->d_lock))
1060 return LRU_SKIP;
1061
1062 /*
1063 * Referenced dentries are still in use. If they have active
1064 * counts, just remove them from the LRU. Otherwise give them
1065 * another pass through the LRU.
1066 */
1067 if (dentry->d_lockref.count) {
1068 d_lru_isolate(lru, dentry);
1069 spin_unlock(&dentry->d_lock);
1070 return LRU_REMOVED;
1071 }
1072
1073 if (dentry->d_flags & DCACHE_REFERENCED) {
1074 dentry->d_flags &= ~DCACHE_REFERENCED;
1075 spin_unlock(&dentry->d_lock);
1076
1077 /*
1078 * The list move itself will be made by the common LRU code. At
1079 * this point, we've dropped the dentry->d_lock but keep the
1080 * lru lock. This is safe to do, since every list movement is
1081 * protected by the lru lock even if both locks are held.
1082 *
1083 * This is guaranteed by the fact that all LRU management
1084 * functions are intermediated by the LRU API calls like
1085 * list_lru_add and list_lru_del. List movement in this file
1086 * only ever occur through this functions or through callbacks
1087 * like this one, that are called from the LRU API.
1088 *
1089 * The only exceptions to this are functions like
1090 * shrink_dentry_list, and code that first checks for the
1091 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1092 * operating only with stack provided lists after they are
1093 * properly isolated from the main list. It is thus, always a
1094 * local access.
1095 */
1096 return LRU_ROTATE;
1097 }
1098
1099 d_lru_shrink_move(lru, dentry, freeable);
1100 spin_unlock(&dentry->d_lock);
1101
1102 return LRU_REMOVED;
1103 }
1104
1105 /**
1106 * prune_dcache_sb - shrink the dcache
1107 * @sb: superblock
1108 * @sc: shrink control, passed to list_lru_shrink_walk()
1109 *
1110 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1111 * is done when we need more memory and called from the superblock shrinker
1112 * function.
1113 *
1114 * This function may fail to free any resources if all the dentries are in
1115 * use.
1116 */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1117 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1118 {
1119 LIST_HEAD(dispose);
1120 long freed;
1121
1122 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1123 dentry_lru_isolate, &dispose);
1124 shrink_dentry_list(&dispose);
1125 return freed;
1126 }
1127
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1128 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1129 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1130 {
1131 struct list_head *freeable = arg;
1132 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1133
1134 /*
1135 * we are inverting the lru lock/dentry->d_lock here,
1136 * so use a trylock. If we fail to get the lock, just skip
1137 * it
1138 */
1139 if (!spin_trylock(&dentry->d_lock))
1140 return LRU_SKIP;
1141
1142 d_lru_shrink_move(lru, dentry, freeable);
1143 spin_unlock(&dentry->d_lock);
1144
1145 return LRU_REMOVED;
1146 }
1147
1148
1149 /**
1150 * shrink_dcache_sb - shrink dcache for a superblock
1151 * @sb: superblock
1152 *
1153 * Shrink the dcache for the specified super block. This is used to free
1154 * the dcache before unmounting a file system.
1155 */
shrink_dcache_sb(struct super_block * sb)1156 void shrink_dcache_sb(struct super_block *sb)
1157 {
1158 do {
1159 LIST_HEAD(dispose);
1160
1161 list_lru_walk(&sb->s_dentry_lru,
1162 dentry_lru_isolate_shrink, &dispose, 1024);
1163 shrink_dentry_list(&dispose);
1164 cond_resched();
1165 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1166 }
1167 EXPORT_SYMBOL(shrink_dcache_sb);
1168
1169 /**
1170 * enum d_walk_ret - action to talke during tree walk
1171 * @D_WALK_CONTINUE: contrinue walk
1172 * @D_WALK_QUIT: quit walk
1173 * @D_WALK_NORETRY: quit when retry is needed
1174 * @D_WALK_SKIP: skip this dentry and its children
1175 */
1176 enum d_walk_ret {
1177 D_WALK_CONTINUE,
1178 D_WALK_QUIT,
1179 D_WALK_NORETRY,
1180 D_WALK_SKIP,
1181 };
1182
1183 /**
1184 * d_walk - walk the dentry tree
1185 * @parent: start of walk
1186 * @data: data passed to @enter() and @finish()
1187 * @enter: callback when first entering the dentry
1188 * @finish: callback when successfully finished the walk
1189 *
1190 * The @enter() and @finish() callbacks are called with d_lock held.
1191 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1192 static void d_walk(struct dentry *parent, void *data,
1193 enum d_walk_ret (*enter)(void *, struct dentry *),
1194 void (*finish)(void *))
1195 {
1196 struct dentry *this_parent;
1197 struct list_head *next;
1198 unsigned seq = 0;
1199 enum d_walk_ret ret;
1200 bool retry = true;
1201
1202 again:
1203 read_seqbegin_or_lock(&rename_lock, &seq);
1204 this_parent = parent;
1205 spin_lock(&this_parent->d_lock);
1206
1207 ret = enter(data, this_parent);
1208 switch (ret) {
1209 case D_WALK_CONTINUE:
1210 break;
1211 case D_WALK_QUIT:
1212 case D_WALK_SKIP:
1213 goto out_unlock;
1214 case D_WALK_NORETRY:
1215 retry = false;
1216 break;
1217 }
1218 repeat:
1219 next = this_parent->d_subdirs.next;
1220 resume:
1221 while (next != &this_parent->d_subdirs) {
1222 struct list_head *tmp = next;
1223 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1224 next = tmp->next;
1225
1226 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1227
1228 ret = enter(data, dentry);
1229 switch (ret) {
1230 case D_WALK_CONTINUE:
1231 break;
1232 case D_WALK_QUIT:
1233 spin_unlock(&dentry->d_lock);
1234 goto out_unlock;
1235 case D_WALK_NORETRY:
1236 retry = false;
1237 break;
1238 case D_WALK_SKIP:
1239 spin_unlock(&dentry->d_lock);
1240 continue;
1241 }
1242
1243 if (!list_empty(&dentry->d_subdirs)) {
1244 spin_unlock(&this_parent->d_lock);
1245 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1246 this_parent = dentry;
1247 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1248 goto repeat;
1249 }
1250 spin_unlock(&dentry->d_lock);
1251 }
1252 /*
1253 * All done at this level ... ascend and resume the search.
1254 */
1255 rcu_read_lock();
1256 ascend:
1257 if (this_parent != parent) {
1258 struct dentry *child = this_parent;
1259 this_parent = child->d_parent;
1260
1261 spin_unlock(&child->d_lock);
1262 spin_lock(&this_parent->d_lock);
1263
1264 /* might go back up the wrong parent if we have had a rename. */
1265 if (need_seqretry(&rename_lock, seq))
1266 goto rename_retry;
1267 /* go into the first sibling still alive */
1268 do {
1269 next = child->d_child.next;
1270 if (next == &this_parent->d_subdirs)
1271 goto ascend;
1272 child = list_entry(next, struct dentry, d_child);
1273 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1274 rcu_read_unlock();
1275 goto resume;
1276 }
1277 if (need_seqretry(&rename_lock, seq))
1278 goto rename_retry;
1279 rcu_read_unlock();
1280 if (finish)
1281 finish(data);
1282
1283 out_unlock:
1284 spin_unlock(&this_parent->d_lock);
1285 done_seqretry(&rename_lock, seq);
1286 return;
1287
1288 rename_retry:
1289 spin_unlock(&this_parent->d_lock);
1290 rcu_read_unlock();
1291 BUG_ON(seq & 1);
1292 if (!retry)
1293 return;
1294 seq = 1;
1295 goto again;
1296 }
1297
1298 /*
1299 * Search for at least 1 mount point in the dentry's subdirs.
1300 * We descend to the next level whenever the d_subdirs
1301 * list is non-empty and continue searching.
1302 */
1303
check_mount(void * data,struct dentry * dentry)1304 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1305 {
1306 int *ret = data;
1307 if (d_mountpoint(dentry)) {
1308 *ret = 1;
1309 return D_WALK_QUIT;
1310 }
1311 return D_WALK_CONTINUE;
1312 }
1313
1314 /**
1315 * have_submounts - check for mounts over a dentry
1316 * @parent: dentry to check.
1317 *
1318 * Return true if the parent or its subdirectories contain
1319 * a mount point
1320 */
have_submounts(struct dentry * parent)1321 int have_submounts(struct dentry *parent)
1322 {
1323 int ret = 0;
1324
1325 d_walk(parent, &ret, check_mount, NULL);
1326
1327 return ret;
1328 }
1329 EXPORT_SYMBOL(have_submounts);
1330
1331 /*
1332 * Called by mount code to set a mountpoint and check if the mountpoint is
1333 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1334 * subtree can become unreachable).
1335 *
1336 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1337 * this reason take rename_lock and d_lock on dentry and ancestors.
1338 */
d_set_mounted(struct dentry * dentry)1339 int d_set_mounted(struct dentry *dentry)
1340 {
1341 struct dentry *p;
1342 int ret = -ENOENT;
1343 write_seqlock(&rename_lock);
1344 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1345 /* Need exclusion wrt. d_invalidate() */
1346 spin_lock(&p->d_lock);
1347 if (unlikely(d_unhashed(p))) {
1348 spin_unlock(&p->d_lock);
1349 goto out;
1350 }
1351 spin_unlock(&p->d_lock);
1352 }
1353 spin_lock(&dentry->d_lock);
1354 if (!d_unlinked(dentry)) {
1355 ret = -EBUSY;
1356 if (!d_mountpoint(dentry)) {
1357 dentry->d_flags |= DCACHE_MOUNTED;
1358 ret = 0;
1359 }
1360 }
1361 spin_unlock(&dentry->d_lock);
1362 out:
1363 write_sequnlock(&rename_lock);
1364 return ret;
1365 }
1366
1367 /*
1368 * Search the dentry child list of the specified parent,
1369 * and move any unused dentries to the end of the unused
1370 * list for prune_dcache(). We descend to the next level
1371 * whenever the d_subdirs list is non-empty and continue
1372 * searching.
1373 *
1374 * It returns zero iff there are no unused children,
1375 * otherwise it returns the number of children moved to
1376 * the end of the unused list. This may not be the total
1377 * number of unused children, because select_parent can
1378 * drop the lock and return early due to latency
1379 * constraints.
1380 */
1381
1382 struct select_data {
1383 struct dentry *start;
1384 struct list_head dispose;
1385 int found;
1386 };
1387
select_collect(void * _data,struct dentry * dentry)1388 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1389 {
1390 struct select_data *data = _data;
1391 enum d_walk_ret ret = D_WALK_CONTINUE;
1392
1393 if (data->start == dentry)
1394 goto out;
1395
1396 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1397 data->found++;
1398 } else {
1399 if (dentry->d_flags & DCACHE_LRU_LIST)
1400 d_lru_del(dentry);
1401 if (!dentry->d_lockref.count) {
1402 d_shrink_add(dentry, &data->dispose);
1403 data->found++;
1404 }
1405 }
1406 /*
1407 * We can return to the caller if we have found some (this
1408 * ensures forward progress). We'll be coming back to find
1409 * the rest.
1410 */
1411 if (!list_empty(&data->dispose))
1412 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1413 out:
1414 return ret;
1415 }
1416
1417 /**
1418 * shrink_dcache_parent - prune dcache
1419 * @parent: parent of entries to prune
1420 *
1421 * Prune the dcache to remove unused children of the parent dentry.
1422 */
shrink_dcache_parent(struct dentry * parent)1423 void shrink_dcache_parent(struct dentry *parent)
1424 {
1425 for (;;) {
1426 struct select_data data;
1427
1428 INIT_LIST_HEAD(&data.dispose);
1429 data.start = parent;
1430 data.found = 0;
1431
1432 d_walk(parent, &data, select_collect, NULL);
1433 if (!data.found)
1434 break;
1435
1436 shrink_dentry_list(&data.dispose);
1437 cond_resched();
1438 }
1439 }
1440 EXPORT_SYMBOL(shrink_dcache_parent);
1441
umount_check(void * _data,struct dentry * dentry)1442 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1443 {
1444 /* it has busy descendents; complain about those instead */
1445 if (!list_empty(&dentry->d_subdirs))
1446 return D_WALK_CONTINUE;
1447
1448 /* root with refcount 1 is fine */
1449 if (dentry == _data && dentry->d_lockref.count == 1)
1450 return D_WALK_CONTINUE;
1451
1452 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1453 " still in use (%d) [unmount of %s %s]\n",
1454 dentry,
1455 dentry->d_inode ?
1456 dentry->d_inode->i_ino : 0UL,
1457 dentry,
1458 dentry->d_lockref.count,
1459 dentry->d_sb->s_type->name,
1460 dentry->d_sb->s_id);
1461 WARN_ON(1);
1462 return D_WALK_CONTINUE;
1463 }
1464
do_one_tree(struct dentry * dentry)1465 static void do_one_tree(struct dentry *dentry)
1466 {
1467 shrink_dcache_parent(dentry);
1468 d_walk(dentry, dentry, umount_check, NULL);
1469 d_drop(dentry);
1470 dput(dentry);
1471 }
1472
1473 /*
1474 * destroy the dentries attached to a superblock on unmounting
1475 */
shrink_dcache_for_umount(struct super_block * sb)1476 void shrink_dcache_for_umount(struct super_block *sb)
1477 {
1478 struct dentry *dentry;
1479
1480 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1481
1482 dentry = sb->s_root;
1483 sb->s_root = NULL;
1484 do_one_tree(dentry);
1485
1486 while (!hlist_bl_empty(&sb->s_anon)) {
1487 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1488 do_one_tree(dentry);
1489 }
1490 }
1491
1492 struct detach_data {
1493 struct select_data select;
1494 struct dentry *mountpoint;
1495 };
detach_and_collect(void * _data,struct dentry * dentry)1496 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1497 {
1498 struct detach_data *data = _data;
1499
1500 if (d_mountpoint(dentry)) {
1501 __dget_dlock(dentry);
1502 data->mountpoint = dentry;
1503 return D_WALK_QUIT;
1504 }
1505
1506 return select_collect(&data->select, dentry);
1507 }
1508
check_and_drop(void * _data)1509 static void check_and_drop(void *_data)
1510 {
1511 struct detach_data *data = _data;
1512
1513 if (!data->mountpoint && list_empty(&data->select.dispose))
1514 __d_drop(data->select.start);
1515 }
1516
1517 /**
1518 * d_invalidate - detach submounts, prune dcache, and drop
1519 * @dentry: dentry to invalidate (aka detach, prune and drop)
1520 *
1521 * no dcache lock.
1522 *
1523 * The final d_drop is done as an atomic operation relative to
1524 * rename_lock ensuring there are no races with d_set_mounted. This
1525 * ensures there are no unhashed dentries on the path to a mountpoint.
1526 */
d_invalidate(struct dentry * dentry)1527 void d_invalidate(struct dentry *dentry)
1528 {
1529 /*
1530 * If it's already been dropped, return OK.
1531 */
1532 spin_lock(&dentry->d_lock);
1533 if (d_unhashed(dentry)) {
1534 spin_unlock(&dentry->d_lock);
1535 return;
1536 }
1537 spin_unlock(&dentry->d_lock);
1538
1539 /* Negative dentries can be dropped without further checks */
1540 if (!dentry->d_inode) {
1541 d_drop(dentry);
1542 return;
1543 }
1544
1545 for (;;) {
1546 struct detach_data data;
1547
1548 data.mountpoint = NULL;
1549 INIT_LIST_HEAD(&data.select.dispose);
1550 data.select.start = dentry;
1551 data.select.found = 0;
1552
1553 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1554
1555 if (!list_empty(&data.select.dispose))
1556 shrink_dentry_list(&data.select.dispose);
1557 else if (!data.mountpoint)
1558 return;
1559
1560 if (data.mountpoint) {
1561 detach_mounts(data.mountpoint);
1562 dput(data.mountpoint);
1563 }
1564 cond_resched();
1565 }
1566 }
1567 EXPORT_SYMBOL(d_invalidate);
1568
1569 /**
1570 * __d_alloc - allocate a dcache entry
1571 * @sb: filesystem it will belong to
1572 * @name: qstr of the name
1573 *
1574 * Allocates a dentry. It returns %NULL if there is insufficient memory
1575 * available. On a success the dentry is returned. The name passed in is
1576 * copied and the copy passed in may be reused after this call.
1577 */
1578
__d_alloc(struct super_block * sb,const struct qstr * name)1579 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1580 {
1581 struct dentry *dentry;
1582 char *dname;
1583
1584 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1585 if (!dentry)
1586 return NULL;
1587
1588 /*
1589 * We guarantee that the inline name is always NUL-terminated.
1590 * This way the memcpy() done by the name switching in rename
1591 * will still always have a NUL at the end, even if we might
1592 * be overwriting an internal NUL character
1593 */
1594 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1595 if (name->len > DNAME_INLINE_LEN-1) {
1596 size_t size = offsetof(struct external_name, name[1]);
1597 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1598 if (!p) {
1599 kmem_cache_free(dentry_cache, dentry);
1600 return NULL;
1601 }
1602 atomic_set(&p->u.count, 1);
1603 dname = p->name;
1604 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1605 kasan_unpoison_shadow(dname,
1606 round_up(name->len + 1, sizeof(unsigned long)));
1607 } else {
1608 dname = dentry->d_iname;
1609 }
1610
1611 dentry->d_name.len = name->len;
1612 dentry->d_name.hash = name->hash;
1613 memcpy(dname, name->name, name->len);
1614 dname[name->len] = 0;
1615
1616 /* Make sure we always see the terminating NUL character */
1617 smp_wmb();
1618 dentry->d_name.name = dname;
1619
1620 dentry->d_lockref.count = 1;
1621 dentry->d_flags = 0;
1622 spin_lock_init(&dentry->d_lock);
1623 seqcount_init(&dentry->d_seq);
1624 dentry->d_inode = NULL;
1625 dentry->d_parent = dentry;
1626 dentry->d_sb = sb;
1627 dentry->d_op = NULL;
1628 dentry->d_fsdata = NULL;
1629 INIT_HLIST_BL_NODE(&dentry->d_hash);
1630 INIT_LIST_HEAD(&dentry->d_lru);
1631 INIT_LIST_HEAD(&dentry->d_subdirs);
1632 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1633 INIT_LIST_HEAD(&dentry->d_child);
1634 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1635
1636 this_cpu_inc(nr_dentry);
1637
1638 return dentry;
1639 }
1640
1641 /**
1642 * d_alloc - allocate a dcache entry
1643 * @parent: parent of entry to allocate
1644 * @name: qstr of the name
1645 *
1646 * Allocates a dentry. It returns %NULL if there is insufficient memory
1647 * available. On a success the dentry is returned. The name passed in is
1648 * copied and the copy passed in may be reused after this call.
1649 */
d_alloc(struct dentry * parent,const struct qstr * name)1650 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1651 {
1652 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1653 if (!dentry)
1654 return NULL;
1655 dentry->d_flags |= DCACHE_RCUACCESS;
1656 spin_lock(&parent->d_lock);
1657 /*
1658 * don't need child lock because it is not subject
1659 * to concurrency here
1660 */
1661 __dget_dlock(parent);
1662 dentry->d_parent = parent;
1663 list_add(&dentry->d_child, &parent->d_subdirs);
1664 spin_unlock(&parent->d_lock);
1665
1666 return dentry;
1667 }
1668 EXPORT_SYMBOL(d_alloc);
1669
1670 /**
1671 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1672 * @sb: the superblock
1673 * @name: qstr of the name
1674 *
1675 * For a filesystem that just pins its dentries in memory and never
1676 * performs lookups at all, return an unhashed IS_ROOT dentry.
1677 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1678 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1679 {
1680 return __d_alloc(sb, name);
1681 }
1682 EXPORT_SYMBOL(d_alloc_pseudo);
1683
d_alloc_name(struct dentry * parent,const char * name)1684 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1685 {
1686 struct qstr q;
1687
1688 q.name = name;
1689 q.len = strlen(name);
1690 q.hash = full_name_hash(q.name, q.len);
1691 return d_alloc(parent, &q);
1692 }
1693 EXPORT_SYMBOL(d_alloc_name);
1694
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1695 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1696 {
1697 WARN_ON_ONCE(dentry->d_op);
1698 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1699 DCACHE_OP_COMPARE |
1700 DCACHE_OP_REVALIDATE |
1701 DCACHE_OP_WEAK_REVALIDATE |
1702 DCACHE_OP_DELETE |
1703 DCACHE_OP_SELECT_INODE |
1704 DCACHE_OP_REAL));
1705 dentry->d_op = op;
1706 if (!op)
1707 return;
1708 if (op->d_hash)
1709 dentry->d_flags |= DCACHE_OP_HASH;
1710 if (op->d_compare)
1711 dentry->d_flags |= DCACHE_OP_COMPARE;
1712 if (op->d_revalidate)
1713 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1714 if (op->d_weak_revalidate)
1715 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1716 if (op->d_delete)
1717 dentry->d_flags |= DCACHE_OP_DELETE;
1718 if (op->d_prune)
1719 dentry->d_flags |= DCACHE_OP_PRUNE;
1720 if (op->d_select_inode)
1721 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1722 if (op->d_real)
1723 dentry->d_flags |= DCACHE_OP_REAL;
1724
1725 }
1726 EXPORT_SYMBOL(d_set_d_op);
1727
1728
1729 /*
1730 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1731 * @dentry - The dentry to mark
1732 *
1733 * Mark a dentry as falling through to the lower layer (as set with
1734 * d_pin_lower()). This flag may be recorded on the medium.
1735 */
d_set_fallthru(struct dentry * dentry)1736 void d_set_fallthru(struct dentry *dentry)
1737 {
1738 spin_lock(&dentry->d_lock);
1739 dentry->d_flags |= DCACHE_FALLTHRU;
1740 spin_unlock(&dentry->d_lock);
1741 }
1742 EXPORT_SYMBOL(d_set_fallthru);
1743
d_flags_for_inode(struct inode * inode)1744 static unsigned d_flags_for_inode(struct inode *inode)
1745 {
1746 unsigned add_flags = DCACHE_REGULAR_TYPE;
1747
1748 if (!inode)
1749 return DCACHE_MISS_TYPE;
1750
1751 if (S_ISDIR(inode->i_mode)) {
1752 add_flags = DCACHE_DIRECTORY_TYPE;
1753 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1754 if (unlikely(!inode->i_op->lookup))
1755 add_flags = DCACHE_AUTODIR_TYPE;
1756 else
1757 inode->i_opflags |= IOP_LOOKUP;
1758 }
1759 goto type_determined;
1760 }
1761
1762 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1763 if (unlikely(inode->i_op->follow_link)) {
1764 add_flags = DCACHE_SYMLINK_TYPE;
1765 goto type_determined;
1766 }
1767 inode->i_opflags |= IOP_NOFOLLOW;
1768 }
1769
1770 if (unlikely(!S_ISREG(inode->i_mode)))
1771 add_flags = DCACHE_SPECIAL_TYPE;
1772
1773 type_determined:
1774 if (unlikely(IS_AUTOMOUNT(inode)))
1775 add_flags |= DCACHE_NEED_AUTOMOUNT;
1776 return add_flags;
1777 }
1778
__d_instantiate(struct dentry * dentry,struct inode * inode)1779 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1780 {
1781 unsigned add_flags = d_flags_for_inode(inode);
1782
1783 spin_lock(&dentry->d_lock);
1784 if (inode)
1785 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1786 raw_write_seqcount_begin(&dentry->d_seq);
1787 __d_set_inode_and_type(dentry, inode, add_flags);
1788 raw_write_seqcount_end(&dentry->d_seq);
1789 spin_unlock(&dentry->d_lock);
1790 fsnotify_d_instantiate(dentry, inode);
1791 }
1792
1793 /**
1794 * d_instantiate - fill in inode information for a dentry
1795 * @entry: dentry to complete
1796 * @inode: inode to attach to this dentry
1797 *
1798 * Fill in inode information in the entry.
1799 *
1800 * This turns negative dentries into productive full members
1801 * of society.
1802 *
1803 * NOTE! This assumes that the inode count has been incremented
1804 * (or otherwise set) by the caller to indicate that it is now
1805 * in use by the dcache.
1806 */
1807
d_instantiate(struct dentry * entry,struct inode * inode)1808 void d_instantiate(struct dentry *entry, struct inode * inode)
1809 {
1810 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1811 if (inode)
1812 spin_lock(&inode->i_lock);
1813 __d_instantiate(entry, inode);
1814 if (inode)
1815 spin_unlock(&inode->i_lock);
1816 security_d_instantiate(entry, inode);
1817 }
1818 EXPORT_SYMBOL(d_instantiate);
1819
1820 /**
1821 * d_instantiate_unique - instantiate a non-aliased dentry
1822 * @entry: dentry to instantiate
1823 * @inode: inode to attach to this dentry
1824 *
1825 * Fill in inode information in the entry. On success, it returns NULL.
1826 * If an unhashed alias of "entry" already exists, then we return the
1827 * aliased dentry instead and drop one reference to inode.
1828 *
1829 * Note that in order to avoid conflicts with rename() etc, the caller
1830 * had better be holding the parent directory semaphore.
1831 *
1832 * This also assumes that the inode count has been incremented
1833 * (or otherwise set) by the caller to indicate that it is now
1834 * in use by the dcache.
1835 */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1836 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1837 struct inode *inode)
1838 {
1839 struct dentry *alias;
1840 int len = entry->d_name.len;
1841 const char *name = entry->d_name.name;
1842 unsigned int hash = entry->d_name.hash;
1843
1844 if (!inode) {
1845 __d_instantiate(entry, NULL);
1846 return NULL;
1847 }
1848
1849 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1850 /*
1851 * Don't need alias->d_lock here, because aliases with
1852 * d_parent == entry->d_parent are not subject to name or
1853 * parent changes, because the parent inode i_mutex is held.
1854 */
1855 if (alias->d_name.hash != hash)
1856 continue;
1857 if (alias->d_parent != entry->d_parent)
1858 continue;
1859 if (alias->d_name.len != len)
1860 continue;
1861 if (dentry_cmp(alias, name, len))
1862 continue;
1863 __dget(alias);
1864 return alias;
1865 }
1866
1867 __d_instantiate(entry, inode);
1868 return NULL;
1869 }
1870
d_instantiate_unique(struct dentry * entry,struct inode * inode)1871 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1872 {
1873 struct dentry *result;
1874
1875 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876
1877 if (inode)
1878 spin_lock(&inode->i_lock);
1879 result = __d_instantiate_unique(entry, inode);
1880 if (inode)
1881 spin_unlock(&inode->i_lock);
1882
1883 if (!result) {
1884 security_d_instantiate(entry, inode);
1885 return NULL;
1886 }
1887
1888 BUG_ON(!d_unhashed(result));
1889 iput(inode);
1890 return result;
1891 }
1892
1893 EXPORT_SYMBOL(d_instantiate_unique);
1894
1895 /*
1896 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1897 * with lockdep-related part of unlock_new_inode() done before
1898 * anything else. Use that instead of open-coding d_instantiate()/
1899 * unlock_new_inode() combinations.
1900 */
d_instantiate_new(struct dentry * entry,struct inode * inode)1901 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1902 {
1903 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1904 BUG_ON(!inode);
1905 lockdep_annotate_inode_mutex_key(inode);
1906 spin_lock(&inode->i_lock);
1907 __d_instantiate(entry, inode);
1908 WARN_ON(!(inode->i_state & I_NEW));
1909 inode->i_state &= ~I_NEW;
1910 smp_mb();
1911 wake_up_bit(&inode->i_state, __I_NEW);
1912 spin_unlock(&inode->i_lock);
1913 security_d_instantiate(entry, inode);
1914 }
1915 EXPORT_SYMBOL(d_instantiate_new);
1916
1917 /**
1918 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1919 * @entry: dentry to complete
1920 * @inode: inode to attach to this dentry
1921 *
1922 * Fill in inode information in the entry. If a directory alias is found, then
1923 * return an error (and drop inode). Together with d_materialise_unique() this
1924 * guarantees that a directory inode may never have more than one alias.
1925 */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1926 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1927 {
1928 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1929
1930 spin_lock(&inode->i_lock);
1931 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1932 spin_unlock(&inode->i_lock);
1933 iput(inode);
1934 return -EBUSY;
1935 }
1936 __d_instantiate(entry, inode);
1937 spin_unlock(&inode->i_lock);
1938 security_d_instantiate(entry, inode);
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL(d_instantiate_no_diralias);
1943
d_make_root(struct inode * root_inode)1944 struct dentry *d_make_root(struct inode *root_inode)
1945 {
1946 struct dentry *res = NULL;
1947
1948 if (root_inode) {
1949 static const struct qstr name = QSTR_INIT("/", 1);
1950
1951 res = __d_alloc(root_inode->i_sb, &name);
1952 if (res) {
1953 res->d_flags |= DCACHE_RCUACCESS;
1954 d_instantiate(res, root_inode);
1955 } else {
1956 iput(root_inode);
1957 }
1958 }
1959 return res;
1960 }
1961 EXPORT_SYMBOL(d_make_root);
1962
__d_find_any_alias(struct inode * inode)1963 static struct dentry * __d_find_any_alias(struct inode *inode)
1964 {
1965 struct dentry *alias;
1966
1967 if (hlist_empty(&inode->i_dentry))
1968 return NULL;
1969 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1970 __dget(alias);
1971 return alias;
1972 }
1973
1974 /**
1975 * d_find_any_alias - find any alias for a given inode
1976 * @inode: inode to find an alias for
1977 *
1978 * If any aliases exist for the given inode, take and return a
1979 * reference for one of them. If no aliases exist, return %NULL.
1980 */
d_find_any_alias(struct inode * inode)1981 struct dentry *d_find_any_alias(struct inode *inode)
1982 {
1983 struct dentry *de;
1984
1985 spin_lock(&inode->i_lock);
1986 de = __d_find_any_alias(inode);
1987 spin_unlock(&inode->i_lock);
1988 return de;
1989 }
1990 EXPORT_SYMBOL(d_find_any_alias);
1991
__d_obtain_alias(struct inode * inode,int disconnected)1992 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1993 {
1994 static const struct qstr anonstring = QSTR_INIT("/", 1);
1995 struct dentry *tmp;
1996 struct dentry *res;
1997 unsigned add_flags;
1998
1999 if (!inode)
2000 return ERR_PTR(-ESTALE);
2001 if (IS_ERR(inode))
2002 return ERR_CAST(inode);
2003
2004 res = d_find_any_alias(inode);
2005 if (res)
2006 goto out_iput;
2007
2008 tmp = __d_alloc(inode->i_sb, &anonstring);
2009 if (!tmp) {
2010 res = ERR_PTR(-ENOMEM);
2011 goto out_iput;
2012 }
2013
2014 spin_lock(&inode->i_lock);
2015 res = __d_find_any_alias(inode);
2016 if (res) {
2017 spin_unlock(&inode->i_lock);
2018 dput(tmp);
2019 goto out_iput;
2020 }
2021
2022 /* attach a disconnected dentry */
2023 add_flags = d_flags_for_inode(inode);
2024
2025 if (disconnected)
2026 add_flags |= DCACHE_DISCONNECTED;
2027
2028 spin_lock(&tmp->d_lock);
2029 __d_set_inode_and_type(tmp, inode, add_flags);
2030 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2031 hlist_bl_lock(&tmp->d_sb->s_anon);
2032 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2033 hlist_bl_unlock(&tmp->d_sb->s_anon);
2034 spin_unlock(&tmp->d_lock);
2035 spin_unlock(&inode->i_lock);
2036 security_d_instantiate(tmp, inode);
2037
2038 return tmp;
2039
2040 out_iput:
2041 if (res && !IS_ERR(res))
2042 security_d_instantiate(res, inode);
2043 iput(inode);
2044 return res;
2045 }
2046
2047 /**
2048 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2049 * @inode: inode to allocate the dentry for
2050 *
2051 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2052 * similar open by handle operations. The returned dentry may be anonymous,
2053 * or may have a full name (if the inode was already in the cache).
2054 *
2055 * When called on a directory inode, we must ensure that the inode only ever
2056 * has one dentry. If a dentry is found, that is returned instead of
2057 * allocating a new one.
2058 *
2059 * On successful return, the reference to the inode has been transferred
2060 * to the dentry. In case of an error the reference on the inode is released.
2061 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2062 * be passed in and the error will be propagated to the return value,
2063 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2064 */
d_obtain_alias(struct inode * inode)2065 struct dentry *d_obtain_alias(struct inode *inode)
2066 {
2067 return __d_obtain_alias(inode, 1);
2068 }
2069 EXPORT_SYMBOL(d_obtain_alias);
2070
2071 /**
2072 * d_obtain_root - find or allocate a dentry for a given inode
2073 * @inode: inode to allocate the dentry for
2074 *
2075 * Obtain an IS_ROOT dentry for the root of a filesystem.
2076 *
2077 * We must ensure that directory inodes only ever have one dentry. If a
2078 * dentry is found, that is returned instead of allocating a new one.
2079 *
2080 * On successful return, the reference to the inode has been transferred
2081 * to the dentry. In case of an error the reference on the inode is
2082 * released. A %NULL or IS_ERR inode may be passed in and will be the
2083 * error will be propagate to the return value, with a %NULL @inode
2084 * replaced by ERR_PTR(-ESTALE).
2085 */
d_obtain_root(struct inode * inode)2086 struct dentry *d_obtain_root(struct inode *inode)
2087 {
2088 return __d_obtain_alias(inode, 0);
2089 }
2090 EXPORT_SYMBOL(d_obtain_root);
2091
2092 /**
2093 * d_add_ci - lookup or allocate new dentry with case-exact name
2094 * @inode: the inode case-insensitive lookup has found
2095 * @dentry: the negative dentry that was passed to the parent's lookup func
2096 * @name: the case-exact name to be associated with the returned dentry
2097 *
2098 * This is to avoid filling the dcache with case-insensitive names to the
2099 * same inode, only the actual correct case is stored in the dcache for
2100 * case-insensitive filesystems.
2101 *
2102 * For a case-insensitive lookup match and if the the case-exact dentry
2103 * already exists in in the dcache, use it and return it.
2104 *
2105 * If no entry exists with the exact case name, allocate new dentry with
2106 * the exact case, and return the spliced entry.
2107 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2108 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2109 struct qstr *name)
2110 {
2111 struct dentry *found;
2112 struct dentry *new;
2113
2114 /*
2115 * First check if a dentry matching the name already exists,
2116 * if not go ahead and create it now.
2117 */
2118 found = d_hash_and_lookup(dentry->d_parent, name);
2119 if (!found) {
2120 new = d_alloc(dentry->d_parent, name);
2121 if (!new) {
2122 found = ERR_PTR(-ENOMEM);
2123 } else {
2124 found = d_splice_alias(inode, new);
2125 if (found) {
2126 dput(new);
2127 return found;
2128 }
2129 return new;
2130 }
2131 }
2132 iput(inode);
2133 return found;
2134 }
2135 EXPORT_SYMBOL(d_add_ci);
2136
2137 /*
2138 * Do the slow-case of the dentry name compare.
2139 *
2140 * Unlike the dentry_cmp() function, we need to atomically
2141 * load the name and length information, so that the
2142 * filesystem can rely on them, and can use the 'name' and
2143 * 'len' information without worrying about walking off the
2144 * end of memory etc.
2145 *
2146 * Thus the read_seqcount_retry() and the "duplicate" info
2147 * in arguments (the low-level filesystem should not look
2148 * at the dentry inode or name contents directly, since
2149 * rename can change them while we're in RCU mode).
2150 */
2151 enum slow_d_compare {
2152 D_COMP_OK,
2153 D_COMP_NOMATCH,
2154 D_COMP_SEQRETRY,
2155 };
2156
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2157 static noinline enum slow_d_compare slow_dentry_cmp(
2158 const struct dentry *parent,
2159 struct dentry *dentry,
2160 unsigned int seq,
2161 const struct qstr *name)
2162 {
2163 int tlen = dentry->d_name.len;
2164 const char *tname = dentry->d_name.name;
2165
2166 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2167 cpu_relax();
2168 return D_COMP_SEQRETRY;
2169 }
2170 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2171 return D_COMP_NOMATCH;
2172 return D_COMP_OK;
2173 }
2174
2175 /**
2176 * __d_lookup_rcu - search for a dentry (racy, store-free)
2177 * @parent: parent dentry
2178 * @name: qstr of name we wish to find
2179 * @seqp: returns d_seq value at the point where the dentry was found
2180 * Returns: dentry, or NULL
2181 *
2182 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2183 * resolution (store-free path walking) design described in
2184 * Documentation/filesystems/path-lookup.txt.
2185 *
2186 * This is not to be used outside core vfs.
2187 *
2188 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2189 * held, and rcu_read_lock held. The returned dentry must not be stored into
2190 * without taking d_lock and checking d_seq sequence count against @seq
2191 * returned here.
2192 *
2193 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2194 * function.
2195 *
2196 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2197 * the returned dentry, so long as its parent's seqlock is checked after the
2198 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2199 * is formed, giving integrity down the path walk.
2200 *
2201 * NOTE! The caller *has* to check the resulting dentry against the sequence
2202 * number we've returned before using any of the resulting dentry state!
2203 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2204 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2205 const struct qstr *name,
2206 unsigned *seqp)
2207 {
2208 u64 hashlen = name->hash_len;
2209 const unsigned char *str = name->name;
2210 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2211 struct hlist_bl_node *node;
2212 struct dentry *dentry;
2213
2214 /*
2215 * Note: There is significant duplication with __d_lookup_rcu which is
2216 * required to prevent single threaded performance regressions
2217 * especially on architectures where smp_rmb (in seqcounts) are costly.
2218 * Keep the two functions in sync.
2219 */
2220
2221 /*
2222 * The hash list is protected using RCU.
2223 *
2224 * Carefully use d_seq when comparing a candidate dentry, to avoid
2225 * races with d_move().
2226 *
2227 * It is possible that concurrent renames can mess up our list
2228 * walk here and result in missing our dentry, resulting in the
2229 * false-negative result. d_lookup() protects against concurrent
2230 * renames using rename_lock seqlock.
2231 *
2232 * See Documentation/filesystems/path-lookup.txt for more details.
2233 */
2234 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2235 unsigned seq;
2236
2237 seqretry:
2238 /*
2239 * The dentry sequence count protects us from concurrent
2240 * renames, and thus protects parent and name fields.
2241 *
2242 * The caller must perform a seqcount check in order
2243 * to do anything useful with the returned dentry.
2244 *
2245 * NOTE! We do a "raw" seqcount_begin here. That means that
2246 * we don't wait for the sequence count to stabilize if it
2247 * is in the middle of a sequence change. If we do the slow
2248 * dentry compare, we will do seqretries until it is stable,
2249 * and if we end up with a successful lookup, we actually
2250 * want to exit RCU lookup anyway.
2251 */
2252 seq = raw_seqcount_begin(&dentry->d_seq);
2253 if (dentry->d_parent != parent)
2254 continue;
2255 if (d_unhashed(dentry))
2256 continue;
2257
2258 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2259 if (dentry->d_name.hash != hashlen_hash(hashlen))
2260 continue;
2261 *seqp = seq;
2262 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2263 case D_COMP_OK:
2264 return dentry;
2265 case D_COMP_NOMATCH:
2266 continue;
2267 default:
2268 goto seqretry;
2269 }
2270 }
2271
2272 if (dentry->d_name.hash_len != hashlen)
2273 continue;
2274 *seqp = seq;
2275 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2276 return dentry;
2277 }
2278 return NULL;
2279 }
2280
2281 /**
2282 * d_lookup - search for a dentry
2283 * @parent: parent dentry
2284 * @name: qstr of name we wish to find
2285 * Returns: dentry, or NULL
2286 *
2287 * d_lookup searches the children of the parent dentry for the name in
2288 * question. If the dentry is found its reference count is incremented and the
2289 * dentry is returned. The caller must use dput to free the entry when it has
2290 * finished using it. %NULL is returned if the dentry does not exist.
2291 */
d_lookup(const struct dentry * parent,const struct qstr * name)2292 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2293 {
2294 struct dentry *dentry;
2295 unsigned seq;
2296
2297 do {
2298 seq = read_seqbegin(&rename_lock);
2299 dentry = __d_lookup(parent, name);
2300 if (dentry)
2301 break;
2302 } while (read_seqretry(&rename_lock, seq));
2303 return dentry;
2304 }
2305 EXPORT_SYMBOL(d_lookup);
2306
2307 /**
2308 * __d_lookup - search for a dentry (racy)
2309 * @parent: parent dentry
2310 * @name: qstr of name we wish to find
2311 * Returns: dentry, or NULL
2312 *
2313 * __d_lookup is like d_lookup, however it may (rarely) return a
2314 * false-negative result due to unrelated rename activity.
2315 *
2316 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2317 * however it must be used carefully, eg. with a following d_lookup in
2318 * the case of failure.
2319 *
2320 * __d_lookup callers must be commented.
2321 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2322 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2323 {
2324 unsigned int len = name->len;
2325 unsigned int hash = name->hash;
2326 const unsigned char *str = name->name;
2327 struct hlist_bl_head *b = d_hash(parent, hash);
2328 struct hlist_bl_node *node;
2329 struct dentry *found = NULL;
2330 struct dentry *dentry;
2331
2332 /*
2333 * Note: There is significant duplication with __d_lookup_rcu which is
2334 * required to prevent single threaded performance regressions
2335 * especially on architectures where smp_rmb (in seqcounts) are costly.
2336 * Keep the two functions in sync.
2337 */
2338
2339 /*
2340 * The hash list is protected using RCU.
2341 *
2342 * Take d_lock when comparing a candidate dentry, to avoid races
2343 * with d_move().
2344 *
2345 * It is possible that concurrent renames can mess up our list
2346 * walk here and result in missing our dentry, resulting in the
2347 * false-negative result. d_lookup() protects against concurrent
2348 * renames using rename_lock seqlock.
2349 *
2350 * See Documentation/filesystems/path-lookup.txt for more details.
2351 */
2352 rcu_read_lock();
2353
2354 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2355
2356 if (dentry->d_name.hash != hash)
2357 continue;
2358
2359 spin_lock(&dentry->d_lock);
2360 if (dentry->d_parent != parent)
2361 goto next;
2362 if (d_unhashed(dentry))
2363 goto next;
2364
2365 /*
2366 * It is safe to compare names since d_move() cannot
2367 * change the qstr (protected by d_lock).
2368 */
2369 if (parent->d_flags & DCACHE_OP_COMPARE) {
2370 int tlen = dentry->d_name.len;
2371 const char *tname = dentry->d_name.name;
2372 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2373 goto next;
2374 } else {
2375 if (dentry->d_name.len != len)
2376 goto next;
2377 if (dentry_cmp(dentry, str, len))
2378 goto next;
2379 }
2380
2381 dentry->d_lockref.count++;
2382 found = dentry;
2383 spin_unlock(&dentry->d_lock);
2384 break;
2385 next:
2386 spin_unlock(&dentry->d_lock);
2387 }
2388 rcu_read_unlock();
2389
2390 return found;
2391 }
2392
2393 /**
2394 * d_hash_and_lookup - hash the qstr then search for a dentry
2395 * @dir: Directory to search in
2396 * @name: qstr of name we wish to find
2397 *
2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2399 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401 {
2402 /*
2403 * Check for a fs-specific hash function. Note that we must
2404 * calculate the standard hash first, as the d_op->d_hash()
2405 * routine may choose to leave the hash value unchanged.
2406 */
2407 name->hash = full_name_hash(name->name, name->len);
2408 if (dir->d_flags & DCACHE_OP_HASH) {
2409 int err = dir->d_op->d_hash(dir, name);
2410 if (unlikely(err < 0))
2411 return ERR_PTR(err);
2412 }
2413 return d_lookup(dir, name);
2414 }
2415 EXPORT_SYMBOL(d_hash_and_lookup);
2416
2417 /*
2418 * When a file is deleted, we have two options:
2419 * - turn this dentry into a negative dentry
2420 * - unhash this dentry and free it.
2421 *
2422 * Usually, we want to just turn this into
2423 * a negative dentry, but if anybody else is
2424 * currently using the dentry or the inode
2425 * we can't do that and we fall back on removing
2426 * it from the hash queues and waiting for
2427 * it to be deleted later when it has no users
2428 */
2429
2430 /**
2431 * d_delete - delete a dentry
2432 * @dentry: The dentry to delete
2433 *
2434 * Turn the dentry into a negative dentry if possible, otherwise
2435 * remove it from the hash queues so it can be deleted later
2436 */
2437
d_delete(struct dentry * dentry)2438 void d_delete(struct dentry * dentry)
2439 {
2440 struct inode *inode;
2441 int isdir = 0;
2442 /*
2443 * Are we the only user?
2444 */
2445 again:
2446 spin_lock(&dentry->d_lock);
2447 inode = dentry->d_inode;
2448 isdir = S_ISDIR(inode->i_mode);
2449 if (dentry->d_lockref.count == 1) {
2450 if (!spin_trylock(&inode->i_lock)) {
2451 spin_unlock(&dentry->d_lock);
2452 cpu_relax();
2453 goto again;
2454 }
2455 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2456 dentry_unlink_inode(dentry);
2457 fsnotify_nameremove(dentry, isdir);
2458 return;
2459 }
2460
2461 if (!d_unhashed(dentry))
2462 __d_drop(dentry);
2463
2464 spin_unlock(&dentry->d_lock);
2465
2466 fsnotify_nameremove(dentry, isdir);
2467 }
2468 EXPORT_SYMBOL(d_delete);
2469
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2470 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2471 {
2472 BUG_ON(!d_unhashed(entry));
2473 hlist_bl_lock(b);
2474 hlist_bl_add_head_rcu(&entry->d_hash, b);
2475 hlist_bl_unlock(b);
2476 }
2477
_d_rehash(struct dentry * entry)2478 static void _d_rehash(struct dentry * entry)
2479 {
2480 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2481 }
2482
2483 /**
2484 * d_rehash - add an entry back to the hash
2485 * @entry: dentry to add to the hash
2486 *
2487 * Adds a dentry to the hash according to its name.
2488 */
2489
d_rehash(struct dentry * entry)2490 void d_rehash(struct dentry * entry)
2491 {
2492 spin_lock(&entry->d_lock);
2493 _d_rehash(entry);
2494 spin_unlock(&entry->d_lock);
2495 }
2496 EXPORT_SYMBOL(d_rehash);
2497
2498 /**
2499 * dentry_update_name_case - update case insensitive dentry with a new name
2500 * @dentry: dentry to be updated
2501 * @name: new name
2502 *
2503 * Update a case insensitive dentry with new case of name.
2504 *
2505 * dentry must have been returned by d_lookup with name @name. Old and new
2506 * name lengths must match (ie. no d_compare which allows mismatched name
2507 * lengths).
2508 *
2509 * Parent inode i_mutex must be held over d_lookup and into this call (to
2510 * keep renames and concurrent inserts, and readdir(2) away).
2511 */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2512 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2513 {
2514 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2515 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2516
2517 spin_lock(&dentry->d_lock);
2518 write_seqcount_begin(&dentry->d_seq);
2519 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2520 write_seqcount_end(&dentry->d_seq);
2521 spin_unlock(&dentry->d_lock);
2522 }
2523 EXPORT_SYMBOL(dentry_update_name_case);
2524
swap_names(struct dentry * dentry,struct dentry * target)2525 static void swap_names(struct dentry *dentry, struct dentry *target)
2526 {
2527 if (unlikely(dname_external(target))) {
2528 if (unlikely(dname_external(dentry))) {
2529 /*
2530 * Both external: swap the pointers
2531 */
2532 swap(target->d_name.name, dentry->d_name.name);
2533 } else {
2534 /*
2535 * dentry:internal, target:external. Steal target's
2536 * storage and make target internal.
2537 */
2538 memcpy(target->d_iname, dentry->d_name.name,
2539 dentry->d_name.len + 1);
2540 dentry->d_name.name = target->d_name.name;
2541 target->d_name.name = target->d_iname;
2542 }
2543 } else {
2544 if (unlikely(dname_external(dentry))) {
2545 /*
2546 * dentry:external, target:internal. Give dentry's
2547 * storage to target and make dentry internal
2548 */
2549 memcpy(dentry->d_iname, target->d_name.name,
2550 target->d_name.len + 1);
2551 target->d_name.name = dentry->d_name.name;
2552 dentry->d_name.name = dentry->d_iname;
2553 } else {
2554 /*
2555 * Both are internal.
2556 */
2557 unsigned int i;
2558 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2559 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2560 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2561 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2562 swap(((long *) &dentry->d_iname)[i],
2563 ((long *) &target->d_iname)[i]);
2564 }
2565 }
2566 }
2567 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2568 }
2569
copy_name(struct dentry * dentry,struct dentry * target)2570 static void copy_name(struct dentry *dentry, struct dentry *target)
2571 {
2572 struct external_name *old_name = NULL;
2573 if (unlikely(dname_external(dentry)))
2574 old_name = external_name(dentry);
2575 if (unlikely(dname_external(target))) {
2576 atomic_inc(&external_name(target)->u.count);
2577 dentry->d_name = target->d_name;
2578 } else {
2579 memcpy(dentry->d_iname, target->d_name.name,
2580 target->d_name.len + 1);
2581 dentry->d_name.name = dentry->d_iname;
2582 dentry->d_name.hash_len = target->d_name.hash_len;
2583 }
2584 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2585 kfree_rcu(old_name, u.head);
2586 }
2587
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2588 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2589 {
2590 /*
2591 * XXXX: do we really need to take target->d_lock?
2592 */
2593 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2594 spin_lock(&target->d_parent->d_lock);
2595 else {
2596 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2597 spin_lock(&dentry->d_parent->d_lock);
2598 spin_lock_nested(&target->d_parent->d_lock,
2599 DENTRY_D_LOCK_NESTED);
2600 } else {
2601 spin_lock(&target->d_parent->d_lock);
2602 spin_lock_nested(&dentry->d_parent->d_lock,
2603 DENTRY_D_LOCK_NESTED);
2604 }
2605 }
2606 if (target < dentry) {
2607 spin_lock_nested(&target->d_lock, 2);
2608 spin_lock_nested(&dentry->d_lock, 3);
2609 } else {
2610 spin_lock_nested(&dentry->d_lock, 2);
2611 spin_lock_nested(&target->d_lock, 3);
2612 }
2613 }
2614
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2615 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2616 {
2617 if (target->d_parent != dentry->d_parent)
2618 spin_unlock(&dentry->d_parent->d_lock);
2619 if (target->d_parent != target)
2620 spin_unlock(&target->d_parent->d_lock);
2621 spin_unlock(&target->d_lock);
2622 spin_unlock(&dentry->d_lock);
2623 }
2624
2625 /*
2626 * When switching names, the actual string doesn't strictly have to
2627 * be preserved in the target - because we're dropping the target
2628 * anyway. As such, we can just do a simple memcpy() to copy over
2629 * the new name before we switch, unless we are going to rehash
2630 * it. Note that if we *do* unhash the target, we are not allowed
2631 * to rehash it without giving it a new name/hash key - whether
2632 * we swap or overwrite the names here, resulting name won't match
2633 * the reality in filesystem; it's only there for d_path() purposes.
2634 * Note that all of this is happening under rename_lock, so the
2635 * any hash lookup seeing it in the middle of manipulations will
2636 * be discarded anyway. So we do not care what happens to the hash
2637 * key in that case.
2638 */
2639 /*
2640 * __d_move - move a dentry
2641 * @dentry: entry to move
2642 * @target: new dentry
2643 * @exchange: exchange the two dentries
2644 *
2645 * Update the dcache to reflect the move of a file name. Negative
2646 * dcache entries should not be moved in this way. Caller must hold
2647 * rename_lock, the i_mutex of the source and target directories,
2648 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2649 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2650 static void __d_move(struct dentry *dentry, struct dentry *target,
2651 bool exchange)
2652 {
2653 if (!dentry->d_inode)
2654 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2655
2656 BUG_ON(d_ancestor(dentry, target));
2657 BUG_ON(d_ancestor(target, dentry));
2658
2659 dentry_lock_for_move(dentry, target);
2660
2661 write_seqcount_begin(&dentry->d_seq);
2662 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2663
2664 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2665
2666 /*
2667 * Move the dentry to the target hash queue. Don't bother checking
2668 * for the same hash queue because of how unlikely it is.
2669 */
2670 __d_drop(dentry);
2671 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2672
2673 /*
2674 * Unhash the target (d_delete() is not usable here). If exchanging
2675 * the two dentries, then rehash onto the other's hash queue.
2676 */
2677 __d_drop(target);
2678 if (exchange) {
2679 __d_rehash(target,
2680 d_hash(dentry->d_parent, dentry->d_name.hash));
2681 }
2682
2683 /* Switch the names.. */
2684 if (exchange)
2685 swap_names(dentry, target);
2686 else
2687 copy_name(dentry, target);
2688
2689 /* ... and switch them in the tree */
2690 if (IS_ROOT(dentry)) {
2691 /* splicing a tree */
2692 dentry->d_flags |= DCACHE_RCUACCESS;
2693 dentry->d_parent = target->d_parent;
2694 target->d_parent = target;
2695 list_del_init(&target->d_child);
2696 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2697 } else {
2698 /* swapping two dentries */
2699 swap(dentry->d_parent, target->d_parent);
2700 list_move(&target->d_child, &target->d_parent->d_subdirs);
2701 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2702 if (exchange)
2703 fsnotify_d_move(target);
2704 fsnotify_d_move(dentry);
2705 }
2706
2707 write_seqcount_end(&target->d_seq);
2708 write_seqcount_end(&dentry->d_seq);
2709
2710 dentry_unlock_for_move(dentry, target);
2711 }
2712
2713 /*
2714 * d_move - move a dentry
2715 * @dentry: entry to move
2716 * @target: new dentry
2717 *
2718 * Update the dcache to reflect the move of a file name. Negative
2719 * dcache entries should not be moved in this way. See the locking
2720 * requirements for __d_move.
2721 */
d_move(struct dentry * dentry,struct dentry * target)2722 void d_move(struct dentry *dentry, struct dentry *target)
2723 {
2724 write_seqlock(&rename_lock);
2725 __d_move(dentry, target, false);
2726 write_sequnlock(&rename_lock);
2727 }
2728 EXPORT_SYMBOL(d_move);
2729
2730 /*
2731 * d_exchange - exchange two dentries
2732 * @dentry1: first dentry
2733 * @dentry2: second dentry
2734 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2735 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2736 {
2737 write_seqlock(&rename_lock);
2738
2739 WARN_ON(!dentry1->d_inode);
2740 WARN_ON(!dentry2->d_inode);
2741 WARN_ON(IS_ROOT(dentry1));
2742 WARN_ON(IS_ROOT(dentry2));
2743
2744 __d_move(dentry1, dentry2, true);
2745
2746 write_sequnlock(&rename_lock);
2747 }
2748
2749 /**
2750 * d_ancestor - search for an ancestor
2751 * @p1: ancestor dentry
2752 * @p2: child dentry
2753 *
2754 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2755 * an ancestor of p2, else NULL.
2756 */
d_ancestor(struct dentry * p1,struct dentry * p2)2757 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2758 {
2759 struct dentry *p;
2760
2761 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2762 if (p->d_parent == p1)
2763 return p;
2764 }
2765 return NULL;
2766 }
2767
2768 /*
2769 * This helper attempts to cope with remotely renamed directories
2770 *
2771 * It assumes that the caller is already holding
2772 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2773 *
2774 * Note: If ever the locking in lock_rename() changes, then please
2775 * remember to update this too...
2776 */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2777 static int __d_unalias(struct inode *inode,
2778 struct dentry *dentry, struct dentry *alias)
2779 {
2780 struct mutex *m1 = NULL, *m2 = NULL;
2781 int ret = -ESTALE;
2782
2783 /* If alias and dentry share a parent, then no extra locks required */
2784 if (alias->d_parent == dentry->d_parent)
2785 goto out_unalias;
2786
2787 /* See lock_rename() */
2788 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2789 goto out_err;
2790 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2791 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2792 goto out_err;
2793 m2 = &alias->d_parent->d_inode->i_mutex;
2794 out_unalias:
2795 __d_move(alias, dentry, false);
2796 ret = 0;
2797 out_err:
2798 if (m2)
2799 mutex_unlock(m2);
2800 if (m1)
2801 mutex_unlock(m1);
2802 return ret;
2803 }
2804
2805 /**
2806 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2807 * @inode: the inode which may have a disconnected dentry
2808 * @dentry: a negative dentry which we want to point to the inode.
2809 *
2810 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2811 * place of the given dentry and return it, else simply d_add the inode
2812 * to the dentry and return NULL.
2813 *
2814 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2815 * we should error out: directories can't have multiple aliases.
2816 *
2817 * This is needed in the lookup routine of any filesystem that is exportable
2818 * (via knfsd) so that we can build dcache paths to directories effectively.
2819 *
2820 * If a dentry was found and moved, then it is returned. Otherwise NULL
2821 * is returned. This matches the expected return value of ->lookup.
2822 *
2823 * Cluster filesystems may call this function with a negative, hashed dentry.
2824 * In that case, we know that the inode will be a regular file, and also this
2825 * will only occur during atomic_open. So we need to check for the dentry
2826 * being already hashed only in the final case.
2827 */
d_splice_alias(struct inode * inode,struct dentry * dentry)2828 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2829 {
2830 if (IS_ERR(inode))
2831 return ERR_CAST(inode);
2832
2833 BUG_ON(!d_unhashed(dentry));
2834
2835 if (!inode) {
2836 __d_instantiate(dentry, NULL);
2837 goto out;
2838 }
2839 spin_lock(&inode->i_lock);
2840 if (S_ISDIR(inode->i_mode)) {
2841 struct dentry *new = __d_find_any_alias(inode);
2842 if (unlikely(new)) {
2843 /* The reference to new ensures it remains an alias */
2844 spin_unlock(&inode->i_lock);
2845 write_seqlock(&rename_lock);
2846 if (unlikely(d_ancestor(new, dentry))) {
2847 write_sequnlock(&rename_lock);
2848 dput(new);
2849 new = ERR_PTR(-ELOOP);
2850 pr_warn_ratelimited(
2851 "VFS: Lookup of '%s' in %s %s"
2852 " would have caused loop\n",
2853 dentry->d_name.name,
2854 inode->i_sb->s_type->name,
2855 inode->i_sb->s_id);
2856 } else if (!IS_ROOT(new)) {
2857 int err = __d_unalias(inode, dentry, new);
2858 write_sequnlock(&rename_lock);
2859 if (err) {
2860 dput(new);
2861 new = ERR_PTR(err);
2862 }
2863 } else {
2864 __d_move(new, dentry, false);
2865 write_sequnlock(&rename_lock);
2866 security_d_instantiate(new, inode);
2867 }
2868 iput(inode);
2869 return new;
2870 }
2871 }
2872 /* already taking inode->i_lock, so d_add() by hand */
2873 __d_instantiate(dentry, inode);
2874 spin_unlock(&inode->i_lock);
2875 out:
2876 security_d_instantiate(dentry, inode);
2877 d_rehash(dentry);
2878 return NULL;
2879 }
2880 EXPORT_SYMBOL(d_splice_alias);
2881
prepend(char ** buffer,int * buflen,const char * str,int namelen)2882 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2883 {
2884 *buflen -= namelen;
2885 if (*buflen < 0)
2886 return -ENAMETOOLONG;
2887 *buffer -= namelen;
2888 memcpy(*buffer, str, namelen);
2889 return 0;
2890 }
2891
2892 /**
2893 * prepend_name - prepend a pathname in front of current buffer pointer
2894 * @buffer: buffer pointer
2895 * @buflen: allocated length of the buffer
2896 * @name: name string and length qstr structure
2897 *
2898 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2899 * make sure that either the old or the new name pointer and length are
2900 * fetched. However, there may be mismatch between length and pointer.
2901 * The length cannot be trusted, we need to copy it byte-by-byte until
2902 * the length is reached or a null byte is found. It also prepends "/" at
2903 * the beginning of the name. The sequence number check at the caller will
2904 * retry it again when a d_move() does happen. So any garbage in the buffer
2905 * due to mismatched pointer and length will be discarded.
2906 *
2907 * Data dependency barrier is needed to make sure that we see that terminating
2908 * NUL. Alpha strikes again, film at 11...
2909 */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2910 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2911 {
2912 const char *dname = ACCESS_ONCE(name->name);
2913 u32 dlen = ACCESS_ONCE(name->len);
2914 char *p;
2915
2916 smp_read_barrier_depends();
2917
2918 *buflen -= dlen + 1;
2919 if (*buflen < 0)
2920 return -ENAMETOOLONG;
2921 p = *buffer -= dlen + 1;
2922 *p++ = '/';
2923 while (dlen--) {
2924 char c = *dname++;
2925 if (!c)
2926 break;
2927 *p++ = c;
2928 }
2929 return 0;
2930 }
2931
2932 /**
2933 * prepend_path - Prepend path string to a buffer
2934 * @path: the dentry/vfsmount to report
2935 * @root: root vfsmnt/dentry
2936 * @buffer: pointer to the end of the buffer
2937 * @buflen: pointer to buffer length
2938 *
2939 * The function will first try to write out the pathname without taking any
2940 * lock other than the RCU read lock to make sure that dentries won't go away.
2941 * It only checks the sequence number of the global rename_lock as any change
2942 * in the dentry's d_seq will be preceded by changes in the rename_lock
2943 * sequence number. If the sequence number had been changed, it will restart
2944 * the whole pathname back-tracing sequence again by taking the rename_lock.
2945 * In this case, there is no need to take the RCU read lock as the recursive
2946 * parent pointer references will keep the dentry chain alive as long as no
2947 * rename operation is performed.
2948 */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2949 static int prepend_path(const struct path *path,
2950 const struct path *root,
2951 char **buffer, int *buflen)
2952 {
2953 struct dentry *dentry;
2954 struct vfsmount *vfsmnt;
2955 struct mount *mnt;
2956 int error = 0;
2957 unsigned seq, m_seq = 0;
2958 char *bptr;
2959 int blen;
2960
2961 rcu_read_lock();
2962 restart_mnt:
2963 read_seqbegin_or_lock(&mount_lock, &m_seq);
2964 seq = 0;
2965 rcu_read_lock();
2966 restart:
2967 bptr = *buffer;
2968 blen = *buflen;
2969 error = 0;
2970 dentry = path->dentry;
2971 vfsmnt = path->mnt;
2972 mnt = real_mount(vfsmnt);
2973 read_seqbegin_or_lock(&rename_lock, &seq);
2974 while (dentry != root->dentry || vfsmnt != root->mnt) {
2975 struct dentry * parent;
2976
2977 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2978 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2979 /* Escaped? */
2980 if (dentry != vfsmnt->mnt_root) {
2981 bptr = *buffer;
2982 blen = *buflen;
2983 error = 3;
2984 break;
2985 }
2986 /* Global root? */
2987 if (mnt != parent) {
2988 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2989 mnt = parent;
2990 vfsmnt = &mnt->mnt;
2991 continue;
2992 }
2993 if (!error)
2994 error = is_mounted(vfsmnt) ? 1 : 2;
2995 break;
2996 }
2997 parent = dentry->d_parent;
2998 prefetch(parent);
2999 error = prepend_name(&bptr, &blen, &dentry->d_name);
3000 if (error)
3001 break;
3002
3003 dentry = parent;
3004 }
3005 if (!(seq & 1))
3006 rcu_read_unlock();
3007 if (need_seqretry(&rename_lock, seq)) {
3008 seq = 1;
3009 goto restart;
3010 }
3011 done_seqretry(&rename_lock, seq);
3012
3013 if (!(m_seq & 1))
3014 rcu_read_unlock();
3015 if (need_seqretry(&mount_lock, m_seq)) {
3016 m_seq = 1;
3017 goto restart_mnt;
3018 }
3019 done_seqretry(&mount_lock, m_seq);
3020
3021 if (error >= 0 && bptr == *buffer) {
3022 if (--blen < 0)
3023 error = -ENAMETOOLONG;
3024 else
3025 *--bptr = '/';
3026 }
3027 *buffer = bptr;
3028 *buflen = blen;
3029 return error;
3030 }
3031
3032 /**
3033 * __d_path - return the path of a dentry
3034 * @path: the dentry/vfsmount to report
3035 * @root: root vfsmnt/dentry
3036 * @buf: buffer to return value in
3037 * @buflen: buffer length
3038 *
3039 * Convert a dentry into an ASCII path name.
3040 *
3041 * Returns a pointer into the buffer or an error code if the
3042 * path was too long.
3043 *
3044 * "buflen" should be positive.
3045 *
3046 * If the path is not reachable from the supplied root, return %NULL.
3047 */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3048 char *__d_path(const struct path *path,
3049 const struct path *root,
3050 char *buf, int buflen)
3051 {
3052 char *res = buf + buflen;
3053 int error;
3054
3055 prepend(&res, &buflen, "\0", 1);
3056 error = prepend_path(path, root, &res, &buflen);
3057
3058 if (error < 0)
3059 return ERR_PTR(error);
3060 if (error > 0)
3061 return NULL;
3062 return res;
3063 }
3064
d_absolute_path(const struct path * path,char * buf,int buflen)3065 char *d_absolute_path(const struct path *path,
3066 char *buf, int buflen)
3067 {
3068 struct path root = {};
3069 char *res = buf + buflen;
3070 int error;
3071
3072 prepend(&res, &buflen, "\0", 1);
3073 error = prepend_path(path, &root, &res, &buflen);
3074
3075 if (error > 1)
3076 error = -EINVAL;
3077 if (error < 0)
3078 return ERR_PTR(error);
3079 return res;
3080 }
3081 EXPORT_SYMBOL(d_absolute_path);
3082
3083 /*
3084 * same as __d_path but appends "(deleted)" for unlinked files.
3085 */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3086 static int path_with_deleted(const struct path *path,
3087 const struct path *root,
3088 char **buf, int *buflen)
3089 {
3090 prepend(buf, buflen, "\0", 1);
3091 if (d_unlinked(path->dentry)) {
3092 int error = prepend(buf, buflen, " (deleted)", 10);
3093 if (error)
3094 return error;
3095 }
3096
3097 return prepend_path(path, root, buf, buflen);
3098 }
3099
prepend_unreachable(char ** buffer,int * buflen)3100 static int prepend_unreachable(char **buffer, int *buflen)
3101 {
3102 return prepend(buffer, buflen, "(unreachable)", 13);
3103 }
3104
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3105 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3106 {
3107 unsigned seq;
3108
3109 do {
3110 seq = read_seqcount_begin(&fs->seq);
3111 *root = fs->root;
3112 } while (read_seqcount_retry(&fs->seq, seq));
3113 }
3114
3115 /**
3116 * d_path - return the path of a dentry
3117 * @path: path to report
3118 * @buf: buffer to return value in
3119 * @buflen: buffer length
3120 *
3121 * Convert a dentry into an ASCII path name. If the entry has been deleted
3122 * the string " (deleted)" is appended. Note that this is ambiguous.
3123 *
3124 * Returns a pointer into the buffer or an error code if the path was
3125 * too long. Note: Callers should use the returned pointer, not the passed
3126 * in buffer, to use the name! The implementation often starts at an offset
3127 * into the buffer, and may leave 0 bytes at the start.
3128 *
3129 * "buflen" should be positive.
3130 */
d_path(const struct path * path,char * buf,int buflen)3131 char *d_path(const struct path *path, char *buf, int buflen)
3132 {
3133 char *res = buf + buflen;
3134 struct path root;
3135 int error;
3136
3137 /*
3138 * We have various synthetic filesystems that never get mounted. On
3139 * these filesystems dentries are never used for lookup purposes, and
3140 * thus don't need to be hashed. They also don't need a name until a
3141 * user wants to identify the object in /proc/pid/fd/. The little hack
3142 * below allows us to generate a name for these objects on demand:
3143 *
3144 * Some pseudo inodes are mountable. When they are mounted
3145 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3146 * and instead have d_path return the mounted path.
3147 */
3148 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3149 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3150 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3151
3152 rcu_read_lock();
3153 get_fs_root_rcu(current->fs, &root);
3154 error = path_with_deleted(path, &root, &res, &buflen);
3155 rcu_read_unlock();
3156
3157 if (error < 0)
3158 res = ERR_PTR(error);
3159 return res;
3160 }
3161 EXPORT_SYMBOL(d_path);
3162
3163 /*
3164 * Helper function for dentry_operations.d_dname() members
3165 */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3166 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3167 const char *fmt, ...)
3168 {
3169 va_list args;
3170 char temp[64];
3171 int sz;
3172
3173 va_start(args, fmt);
3174 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3175 va_end(args);
3176
3177 if (sz > sizeof(temp) || sz > buflen)
3178 return ERR_PTR(-ENAMETOOLONG);
3179
3180 buffer += buflen - sz;
3181 return memcpy(buffer, temp, sz);
3182 }
3183
simple_dname(struct dentry * dentry,char * buffer,int buflen)3184 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3185 {
3186 char *end = buffer + buflen;
3187 /* these dentries are never renamed, so d_lock is not needed */
3188 if (prepend(&end, &buflen, " (deleted)", 11) ||
3189 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3190 prepend(&end, &buflen, "/", 1))
3191 end = ERR_PTR(-ENAMETOOLONG);
3192 return end;
3193 }
3194 EXPORT_SYMBOL(simple_dname);
3195
3196 /*
3197 * Write full pathname from the root of the filesystem into the buffer.
3198 */
__dentry_path(struct dentry * d,char * buf,int buflen)3199 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3200 {
3201 struct dentry *dentry;
3202 char *end, *retval;
3203 int len, seq = 0;
3204 int error = 0;
3205
3206 if (buflen < 2)
3207 goto Elong;
3208
3209 rcu_read_lock();
3210 restart:
3211 dentry = d;
3212 end = buf + buflen;
3213 len = buflen;
3214 prepend(&end, &len, "\0", 1);
3215 /* Get '/' right */
3216 retval = end-1;
3217 *retval = '/';
3218 read_seqbegin_or_lock(&rename_lock, &seq);
3219 while (!IS_ROOT(dentry)) {
3220 struct dentry *parent = dentry->d_parent;
3221
3222 prefetch(parent);
3223 error = prepend_name(&end, &len, &dentry->d_name);
3224 if (error)
3225 break;
3226
3227 retval = end;
3228 dentry = parent;
3229 }
3230 if (!(seq & 1))
3231 rcu_read_unlock();
3232 if (need_seqretry(&rename_lock, seq)) {
3233 seq = 1;
3234 goto restart;
3235 }
3236 done_seqretry(&rename_lock, seq);
3237 if (error)
3238 goto Elong;
3239 return retval;
3240 Elong:
3241 return ERR_PTR(-ENAMETOOLONG);
3242 }
3243
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3244 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3245 {
3246 return __dentry_path(dentry, buf, buflen);
3247 }
3248 EXPORT_SYMBOL(dentry_path_raw);
3249
dentry_path(struct dentry * dentry,char * buf,int buflen)3250 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3251 {
3252 char *p = NULL;
3253 char *retval;
3254
3255 if (d_unlinked(dentry)) {
3256 p = buf + buflen;
3257 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3258 goto Elong;
3259 buflen++;
3260 }
3261 retval = __dentry_path(dentry, buf, buflen);
3262 if (!IS_ERR(retval) && p)
3263 *p = '/'; /* restore '/' overriden with '\0' */
3264 return retval;
3265 Elong:
3266 return ERR_PTR(-ENAMETOOLONG);
3267 }
3268
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3269 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3270 struct path *pwd)
3271 {
3272 unsigned seq;
3273
3274 do {
3275 seq = read_seqcount_begin(&fs->seq);
3276 *root = fs->root;
3277 *pwd = fs->pwd;
3278 } while (read_seqcount_retry(&fs->seq, seq));
3279 }
3280
3281 /*
3282 * NOTE! The user-level library version returns a
3283 * character pointer. The kernel system call just
3284 * returns the length of the buffer filled (which
3285 * includes the ending '\0' character), or a negative
3286 * error value. So libc would do something like
3287 *
3288 * char *getcwd(char * buf, size_t size)
3289 * {
3290 * int retval;
3291 *
3292 * retval = sys_getcwd(buf, size);
3293 * if (retval >= 0)
3294 * return buf;
3295 * errno = -retval;
3296 * return NULL;
3297 * }
3298 */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3299 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3300 {
3301 int error;
3302 struct path pwd, root;
3303 char *page = __getname();
3304
3305 if (!page)
3306 return -ENOMEM;
3307
3308 rcu_read_lock();
3309 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3310
3311 error = -ENOENT;
3312 if (!d_unlinked(pwd.dentry)) {
3313 unsigned long len;
3314 char *cwd = page + PATH_MAX;
3315 int buflen = PATH_MAX;
3316
3317 prepend(&cwd, &buflen, "\0", 1);
3318 error = prepend_path(&pwd, &root, &cwd, &buflen);
3319 rcu_read_unlock();
3320
3321 if (error < 0)
3322 goto out;
3323
3324 /* Unreachable from current root */
3325 if (error > 0) {
3326 error = prepend_unreachable(&cwd, &buflen);
3327 if (error)
3328 goto out;
3329 }
3330
3331 error = -ERANGE;
3332 len = PATH_MAX + page - cwd;
3333 if (len <= size) {
3334 error = len;
3335 if (copy_to_user(buf, cwd, len))
3336 error = -EFAULT;
3337 }
3338 } else {
3339 rcu_read_unlock();
3340 }
3341
3342 out:
3343 __putname(page);
3344 return error;
3345 }
3346
3347 /*
3348 * Test whether new_dentry is a subdirectory of old_dentry.
3349 *
3350 * Trivially implemented using the dcache structure
3351 */
3352
3353 /**
3354 * is_subdir - is new dentry a subdirectory of old_dentry
3355 * @new_dentry: new dentry
3356 * @old_dentry: old dentry
3357 *
3358 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3359 * Returns 0 otherwise.
3360 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3361 */
3362
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3363 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3364 {
3365 int result;
3366 unsigned seq;
3367
3368 if (new_dentry == old_dentry)
3369 return 1;
3370
3371 do {
3372 /* for restarting inner loop in case of seq retry */
3373 seq = read_seqbegin(&rename_lock);
3374 /*
3375 * Need rcu_readlock to protect against the d_parent trashing
3376 * due to d_move
3377 */
3378 rcu_read_lock();
3379 if (d_ancestor(old_dentry, new_dentry))
3380 result = 1;
3381 else
3382 result = 0;
3383 rcu_read_unlock();
3384 } while (read_seqretry(&rename_lock, seq));
3385
3386 return result;
3387 }
3388
d_genocide_kill(void * data,struct dentry * dentry)3389 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3390 {
3391 struct dentry *root = data;
3392 if (dentry != root) {
3393 if (d_unhashed(dentry) || !dentry->d_inode)
3394 return D_WALK_SKIP;
3395
3396 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3397 dentry->d_flags |= DCACHE_GENOCIDE;
3398 dentry->d_lockref.count--;
3399 }
3400 }
3401 return D_WALK_CONTINUE;
3402 }
3403
d_genocide(struct dentry * parent)3404 void d_genocide(struct dentry *parent)
3405 {
3406 d_walk(parent, parent, d_genocide_kill, NULL);
3407 }
3408
d_tmpfile(struct dentry * dentry,struct inode * inode)3409 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3410 {
3411 inode_dec_link_count(inode);
3412 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3413 !hlist_unhashed(&dentry->d_u.d_alias) ||
3414 !d_unlinked(dentry));
3415 spin_lock(&dentry->d_parent->d_lock);
3416 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3417 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3418 (unsigned long long)inode->i_ino);
3419 spin_unlock(&dentry->d_lock);
3420 spin_unlock(&dentry->d_parent->d_lock);
3421 d_instantiate(dentry, inode);
3422 }
3423 EXPORT_SYMBOL(d_tmpfile);
3424
3425 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3426 static int __init set_dhash_entries(char *str)
3427 {
3428 if (!str)
3429 return 0;
3430 dhash_entries = simple_strtoul(str, &str, 0);
3431 return 1;
3432 }
3433 __setup("dhash_entries=", set_dhash_entries);
3434
dcache_init_early(void)3435 static void __init dcache_init_early(void)
3436 {
3437 unsigned int loop;
3438
3439 /* If hashes are distributed across NUMA nodes, defer
3440 * hash allocation until vmalloc space is available.
3441 */
3442 if (hashdist)
3443 return;
3444
3445 dentry_hashtable =
3446 alloc_large_system_hash("Dentry cache",
3447 sizeof(struct hlist_bl_head),
3448 dhash_entries,
3449 13,
3450 HASH_EARLY,
3451 &d_hash_shift,
3452 &d_hash_mask,
3453 0,
3454 0);
3455
3456 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3457 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3458 }
3459
dcache_init(void)3460 static void __init dcache_init(void)
3461 {
3462 unsigned int loop;
3463
3464 /*
3465 * A constructor could be added for stable state like the lists,
3466 * but it is probably not worth it because of the cache nature
3467 * of the dcache.
3468 */
3469 dentry_cache = KMEM_CACHE(dentry,
3470 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3471
3472 /* Hash may have been set up in dcache_init_early */
3473 if (!hashdist)
3474 return;
3475
3476 dentry_hashtable =
3477 alloc_large_system_hash("Dentry cache",
3478 sizeof(struct hlist_bl_head),
3479 dhash_entries,
3480 13,
3481 0,
3482 &d_hash_shift,
3483 &d_hash_mask,
3484 0,
3485 0);
3486
3487 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3488 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3489 }
3490
3491 /* SLAB cache for __getname() consumers */
3492 struct kmem_cache *names_cachep __read_mostly;
3493 EXPORT_SYMBOL(names_cachep);
3494
3495 EXPORT_SYMBOL(d_genocide);
3496
vfs_caches_init_early(void)3497 void __init vfs_caches_init_early(void)
3498 {
3499 dcache_init_early();
3500 inode_init_early();
3501 }
3502
vfs_caches_init(void)3503 void __init vfs_caches_init(void)
3504 {
3505 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3506 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3507
3508 dcache_init();
3509 inode_init();
3510 files_init();
3511 files_maxfiles_init();
3512 mnt_init();
3513 bdev_cache_init();
3514 chrdev_init();
3515 }
3516