• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
d_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
get_nr_dentry(void)136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
get_nr_dentry_unused(void)145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
__d_free_external(struct rcu_head * head)260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
dname_external(const struct dentry * dentry)267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 	spin_lock(&dentry->d_lock);
275 	if (unlikely(dname_external(dentry))) {
276 		struct external_name *p = external_name(dentry);
277 		atomic_inc(&p->u.count);
278 		spin_unlock(&dentry->d_lock);
279 		name->name = p->name;
280 	} else {
281 		memcpy(name->inline_name, dentry->d_iname,
282 		       dentry->d_name.len + 1);
283 		spin_unlock(&dentry->d_lock);
284 		name->name = name->inline_name;
285 	}
286 }
287 EXPORT_SYMBOL(take_dentry_name_snapshot);
288 
release_dentry_name_snapshot(struct name_snapshot * name)289 void release_dentry_name_snapshot(struct name_snapshot *name)
290 {
291 	if (unlikely(name->name != name->inline_name)) {
292 		struct external_name *p;
293 		p = container_of(name->name, struct external_name, name[0]);
294 		if (unlikely(atomic_dec_and_test(&p->u.count)))
295 			kfree_rcu(p, u.head);
296 	}
297 }
298 EXPORT_SYMBOL(release_dentry_name_snapshot);
299 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)300 static inline void __d_set_inode_and_type(struct dentry *dentry,
301 					  struct inode *inode,
302 					  unsigned type_flags)
303 {
304 	unsigned flags;
305 
306 	dentry->d_inode = inode;
307 	flags = READ_ONCE(dentry->d_flags);
308 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309 	flags |= type_flags;
310 	WRITE_ONCE(dentry->d_flags, flags);
311 }
312 
__d_clear_type_and_inode(struct dentry * dentry)313 static inline void __d_clear_type_and_inode(struct dentry *dentry)
314 {
315 	unsigned flags = READ_ONCE(dentry->d_flags);
316 
317 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 	WRITE_ONCE(dentry->d_flags, flags);
319 	dentry->d_inode = NULL;
320 }
321 
dentry_free(struct dentry * dentry)322 static void dentry_free(struct dentry *dentry)
323 {
324 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
325 	if (unlikely(dname_external(dentry))) {
326 		struct external_name *p = external_name(dentry);
327 		if (likely(atomic_dec_and_test(&p->u.count))) {
328 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329 			return;
330 		}
331 	}
332 	/* if dentry was never visible to RCU, immediate free is OK */
333 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
334 		__d_free(&dentry->d_u.d_rcu);
335 	else
336 		call_rcu(&dentry->d_u.d_rcu, __d_free);
337 }
338 
339 /**
340  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
341  * @dentry: the target dentry
342  * After this call, in-progress rcu-walk path lookup will fail. This
343  * should be called after unhashing, and after changing d_inode (if
344  * the dentry has not already been unhashed).
345  */
dentry_rcuwalk_invalidate(struct dentry * dentry)346 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
347 {
348 	lockdep_assert_held(&dentry->d_lock);
349 	/* Go through am invalidation barrier */
350 	write_seqcount_invalidate(&dentry->d_seq);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined. Dentry has no refcount
356  * and is unhashed.
357  */
dentry_iput(struct dentry * dentry)358 static void dentry_iput(struct dentry * dentry)
359 	__releases(dentry->d_lock)
360 	__releases(dentry->d_inode->i_lock)
361 {
362 	struct inode *inode = dentry->d_inode;
363 	if (inode) {
364 		__d_clear_type_and_inode(dentry);
365 		hlist_del_init(&dentry->d_u.d_alias);
366 		spin_unlock(&dentry->d_lock);
367 		spin_unlock(&inode->i_lock);
368 		if (!inode->i_nlink)
369 			fsnotify_inoderemove(inode);
370 		if (dentry->d_op && dentry->d_op->d_iput)
371 			dentry->d_op->d_iput(dentry, inode);
372 		else
373 			iput(inode);
374 	} else {
375 		spin_unlock(&dentry->d_lock);
376 	}
377 }
378 
379 /*
380  * Release the dentry's inode, using the filesystem
381  * d_iput() operation if defined. dentry remains in-use.
382  */
dentry_unlink_inode(struct dentry * dentry)383 static void dentry_unlink_inode(struct dentry * dentry)
384 	__releases(dentry->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	struct inode *inode = dentry->d_inode;
388 
389 	raw_write_seqcount_begin(&dentry->d_seq);
390 	__d_clear_type_and_inode(dentry);
391 	hlist_del_init(&dentry->d_u.d_alias);
392 	raw_write_seqcount_end(&dentry->d_seq);
393 	spin_unlock(&dentry->d_lock);
394 	spin_unlock(&inode->i_lock);
395 	if (!inode->i_nlink)
396 		fsnotify_inoderemove(inode);
397 	if (dentry->d_op && dentry->d_op->d_iput)
398 		dentry->d_op->d_iput(dentry, inode);
399 	else
400 		iput(inode);
401 }
402 
403 /*
404  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405  * is in use - which includes both the "real" per-superblock
406  * LRU list _and_ the DCACHE_SHRINK_LIST use.
407  *
408  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409  * on the shrink list (ie not on the superblock LRU list).
410  *
411  * The per-cpu "nr_dentry_unused" counters are updated with
412  * the DCACHE_LRU_LIST bit.
413  *
414  * These helper functions make sure we always follow the
415  * rules. d_lock must be held by the caller.
416  */
417 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)418 static void d_lru_add(struct dentry *dentry)
419 {
420 	D_FLAG_VERIFY(dentry, 0);
421 	dentry->d_flags |= DCACHE_LRU_LIST;
422 	this_cpu_inc(nr_dentry_unused);
423 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
424 }
425 
d_lru_del(struct dentry * dentry)426 static void d_lru_del(struct dentry *dentry)
427 {
428 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 	dentry->d_flags &= ~DCACHE_LRU_LIST;
430 	this_cpu_dec(nr_dentry_unused);
431 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433 
d_shrink_del(struct dentry * dentry)434 static void d_shrink_del(struct dentry *dentry)
435 {
436 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
437 	list_del_init(&dentry->d_lru);
438 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
439 	this_cpu_dec(nr_dentry_unused);
440 }
441 
d_shrink_add(struct dentry * dentry,struct list_head * list)442 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
443 {
444 	D_FLAG_VERIFY(dentry, 0);
445 	list_add(&dentry->d_lru, list);
446 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
447 	this_cpu_inc(nr_dentry_unused);
448 }
449 
450 /*
451  * These can only be called under the global LRU lock, ie during the
452  * callback for freeing the LRU list. "isolate" removes it from the
453  * LRU lists entirely, while shrink_move moves it to the indicated
454  * private list.
455  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)456 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
457 {
458 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
459 	dentry->d_flags &= ~DCACHE_LRU_LIST;
460 	this_cpu_dec(nr_dentry_unused);
461 	list_lru_isolate(lru, &dentry->d_lru);
462 }
463 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)464 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
465 			      struct list_head *list)
466 {
467 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
468 	dentry->d_flags |= DCACHE_SHRINK_LIST;
469 	list_lru_isolate_move(lru, &dentry->d_lru, list);
470 }
471 
472 /*
473  * dentry_lru_(add|del)_list) must be called with d_lock held.
474  */
dentry_lru_add(struct dentry * dentry)475 static void dentry_lru_add(struct dentry *dentry)
476 {
477 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
478 		d_lru_add(dentry);
479 }
480 
481 /**
482  * d_drop - drop a dentry
483  * @dentry: dentry to drop
484  *
485  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
486  * be found through a VFS lookup any more. Note that this is different from
487  * deleting the dentry - d_delete will try to mark the dentry negative if
488  * possible, giving a successful _negative_ lookup, while d_drop will
489  * just make the cache lookup fail.
490  *
491  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
492  * reason (NFS timeouts or autofs deletes).
493  *
494  * __d_drop requires dentry->d_lock.
495  */
__d_drop(struct dentry * dentry)496 void __d_drop(struct dentry *dentry)
497 {
498 	if (!d_unhashed(dentry)) {
499 		struct hlist_bl_head *b;
500 		/*
501 		 * Hashed dentries are normally on the dentry hashtable,
502 		 * with the exception of those newly allocated by
503 		 * d_obtain_alias, which are always IS_ROOT:
504 		 */
505 		if (unlikely(IS_ROOT(dentry)))
506 			b = &dentry->d_sb->s_anon;
507 		else
508 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
509 
510 		hlist_bl_lock(b);
511 		__hlist_bl_del(&dentry->d_hash);
512 		dentry->d_hash.pprev = NULL;
513 		hlist_bl_unlock(b);
514 		dentry_rcuwalk_invalidate(dentry);
515 	}
516 }
517 EXPORT_SYMBOL(__d_drop);
518 
d_drop(struct dentry * dentry)519 void d_drop(struct dentry *dentry)
520 {
521 	spin_lock(&dentry->d_lock);
522 	__d_drop(dentry);
523 	spin_unlock(&dentry->d_lock);
524 }
525 EXPORT_SYMBOL(d_drop);
526 
__dentry_kill(struct dentry * dentry)527 static void __dentry_kill(struct dentry *dentry)
528 {
529 	struct dentry *parent = NULL;
530 	bool can_free = true;
531 	if (!IS_ROOT(dentry))
532 		parent = dentry->d_parent;
533 
534 	/*
535 	 * The dentry is now unrecoverably dead to the world.
536 	 */
537 	lockref_mark_dead(&dentry->d_lockref);
538 
539 	/*
540 	 * inform the fs via d_prune that this dentry is about to be
541 	 * unhashed and destroyed.
542 	 */
543 	if (dentry->d_flags & DCACHE_OP_PRUNE)
544 		dentry->d_op->d_prune(dentry);
545 
546 	if (dentry->d_flags & DCACHE_LRU_LIST) {
547 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
548 			d_lru_del(dentry);
549 	}
550 	/* if it was on the hash then remove it */
551 	__d_drop(dentry);
552 	__list_del_entry(&dentry->d_child);
553 	/*
554 	 * Inform d_walk() that we are no longer attached to the
555 	 * dentry tree
556 	 */
557 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
558 	if (parent)
559 		spin_unlock(&parent->d_lock);
560 	dentry_iput(dentry);
561 	/*
562 	 * dentry_iput drops the locks, at which point nobody (except
563 	 * transient RCU lookups) can reach this dentry.
564 	 */
565 	BUG_ON(dentry->d_lockref.count > 0);
566 	this_cpu_dec(nr_dentry);
567 	if (dentry->d_op && dentry->d_op->d_release)
568 		dentry->d_op->d_release(dentry);
569 
570 	spin_lock(&dentry->d_lock);
571 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
572 		dentry->d_flags |= DCACHE_MAY_FREE;
573 		can_free = false;
574 	}
575 	spin_unlock(&dentry->d_lock);
576 	if (likely(can_free))
577 		dentry_free(dentry);
578 }
579 
580 /*
581  * Finish off a dentry we've decided to kill.
582  * dentry->d_lock must be held, returns with it unlocked.
583  * If ref is non-zero, then decrement the refcount too.
584  * Returns dentry requiring refcount drop, or NULL if we're done.
585  */
dentry_kill(struct dentry * dentry)586 static struct dentry *dentry_kill(struct dentry *dentry)
587 	__releases(dentry->d_lock)
588 {
589 	struct inode *inode = dentry->d_inode;
590 	struct dentry *parent = NULL;
591 
592 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
593 		goto failed;
594 
595 	if (!IS_ROOT(dentry)) {
596 		parent = dentry->d_parent;
597 		if (unlikely(!spin_trylock(&parent->d_lock))) {
598 			if (inode)
599 				spin_unlock(&inode->i_lock);
600 			goto failed;
601 		}
602 	}
603 
604 	__dentry_kill(dentry);
605 	return parent;
606 
607 failed:
608 	spin_unlock(&dentry->d_lock);
609 	return dentry; /* try again with same dentry */
610 }
611 
lock_parent(struct dentry * dentry)612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614 	struct dentry *parent = dentry->d_parent;
615 	if (IS_ROOT(dentry))
616 		return NULL;
617 	if (unlikely(dentry->d_lockref.count < 0))
618 		return NULL;
619 	if (likely(spin_trylock(&parent->d_lock)))
620 		return parent;
621 	rcu_read_lock();
622 	spin_unlock(&dentry->d_lock);
623 again:
624 	parent = ACCESS_ONCE(dentry->d_parent);
625 	spin_lock(&parent->d_lock);
626 	/*
627 	 * We can't blindly lock dentry until we are sure
628 	 * that we won't violate the locking order.
629 	 * Any changes of dentry->d_parent must have
630 	 * been done with parent->d_lock held, so
631 	 * spin_lock() above is enough of a barrier
632 	 * for checking if it's still our child.
633 	 */
634 	if (unlikely(parent != dentry->d_parent)) {
635 		spin_unlock(&parent->d_lock);
636 		goto again;
637 	}
638 	if (parent != dentry) {
639 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
640 		if (unlikely(dentry->d_lockref.count < 0)) {
641 			spin_unlock(&parent->d_lock);
642 			parent = NULL;
643 		}
644 	} else {
645 		parent = NULL;
646 	}
647 	rcu_read_unlock();
648 	return parent;
649 }
650 
651 /*
652  * Try to do a lockless dput(), and return whether that was successful.
653  *
654  * If unsuccessful, we return false, having already taken the dentry lock.
655  *
656  * The caller needs to hold the RCU read lock, so that the dentry is
657  * guaranteed to stay around even if the refcount goes down to zero!
658  */
fast_dput(struct dentry * dentry)659 static inline bool fast_dput(struct dentry *dentry)
660 {
661 	int ret;
662 	unsigned int d_flags;
663 
664 	/*
665 	 * If we have a d_op->d_delete() operation, we sould not
666 	 * let the dentry count go to zero, so use "put_or_lock".
667 	 */
668 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
669 		return lockref_put_or_lock(&dentry->d_lockref);
670 
671 	/*
672 	 * .. otherwise, we can try to just decrement the
673 	 * lockref optimistically.
674 	 */
675 	ret = lockref_put_return(&dentry->d_lockref);
676 
677 	/*
678 	 * If the lockref_put_return() failed due to the lock being held
679 	 * by somebody else, the fast path has failed. We will need to
680 	 * get the lock, and then check the count again.
681 	 */
682 	if (unlikely(ret < 0)) {
683 		spin_lock(&dentry->d_lock);
684 		if (dentry->d_lockref.count > 1) {
685 			dentry->d_lockref.count--;
686 			spin_unlock(&dentry->d_lock);
687 			return 1;
688 		}
689 		return 0;
690 	}
691 
692 	/*
693 	 * If we weren't the last ref, we're done.
694 	 */
695 	if (ret)
696 		return 1;
697 
698 	/*
699 	 * Careful, careful. The reference count went down
700 	 * to zero, but we don't hold the dentry lock, so
701 	 * somebody else could get it again, and do another
702 	 * dput(), and we need to not race with that.
703 	 *
704 	 * However, there is a very special and common case
705 	 * where we don't care, because there is nothing to
706 	 * do: the dentry is still hashed, it does not have
707 	 * a 'delete' op, and it's referenced and already on
708 	 * the LRU list.
709 	 *
710 	 * NOTE! Since we aren't locked, these values are
711 	 * not "stable". However, it is sufficient that at
712 	 * some point after we dropped the reference the
713 	 * dentry was hashed and the flags had the proper
714 	 * value. Other dentry users may have re-gotten
715 	 * a reference to the dentry and change that, but
716 	 * our work is done - we can leave the dentry
717 	 * around with a zero refcount.
718 	 */
719 	smp_rmb();
720 	d_flags = ACCESS_ONCE(dentry->d_flags);
721 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
722 
723 	/* Nothing to do? Dropping the reference was all we needed? */
724 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
725 		return 1;
726 
727 	/*
728 	 * Not the fast normal case? Get the lock. We've already decremented
729 	 * the refcount, but we'll need to re-check the situation after
730 	 * getting the lock.
731 	 */
732 	spin_lock(&dentry->d_lock);
733 
734 	/*
735 	 * Did somebody else grab a reference to it in the meantime, and
736 	 * we're no longer the last user after all? Alternatively, somebody
737 	 * else could have killed it and marked it dead. Either way, we
738 	 * don't need to do anything else.
739 	 */
740 	if (dentry->d_lockref.count) {
741 		spin_unlock(&dentry->d_lock);
742 		return 1;
743 	}
744 
745 	/*
746 	 * Re-get the reference we optimistically dropped. We hold the
747 	 * lock, and we just tested that it was zero, so we can just
748 	 * set it to 1.
749 	 */
750 	dentry->d_lockref.count = 1;
751 	return 0;
752 }
753 
754 
755 /*
756  * This is dput
757  *
758  * This is complicated by the fact that we do not want to put
759  * dentries that are no longer on any hash chain on the unused
760  * list: we'd much rather just get rid of them immediately.
761  *
762  * However, that implies that we have to traverse the dentry
763  * tree upwards to the parents which might _also_ now be
764  * scheduled for deletion (it may have been only waiting for
765  * its last child to go away).
766  *
767  * This tail recursion is done by hand as we don't want to depend
768  * on the compiler to always get this right (gcc generally doesn't).
769  * Real recursion would eat up our stack space.
770  */
771 
772 /*
773  * dput - release a dentry
774  * @dentry: dentry to release
775  *
776  * Release a dentry. This will drop the usage count and if appropriate
777  * call the dentry unlink method as well as removing it from the queues and
778  * releasing its resources. If the parent dentries were scheduled for release
779  * they too may now get deleted.
780  */
dput(struct dentry * dentry)781 void dput(struct dentry *dentry)
782 {
783 	if (unlikely(!dentry))
784 		return;
785 
786 repeat:
787 	might_sleep();
788 
789 	rcu_read_lock();
790 	if (likely(fast_dput(dentry))) {
791 		rcu_read_unlock();
792 		return;
793 	}
794 
795 	/* Slow case: now with the dentry lock held */
796 	rcu_read_unlock();
797 
798 	/* Unreachable? Get rid of it */
799 	if (unlikely(d_unhashed(dentry)))
800 		goto kill_it;
801 
802 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
803 		goto kill_it;
804 
805 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
806 		if (dentry->d_op->d_delete(dentry))
807 			goto kill_it;
808 	}
809 
810 	if (!(dentry->d_flags & DCACHE_REFERENCED))
811 		dentry->d_flags |= DCACHE_REFERENCED;
812 	dentry_lru_add(dentry);
813 
814 	dentry->d_lockref.count--;
815 	spin_unlock(&dentry->d_lock);
816 	return;
817 
818 kill_it:
819 	dentry = dentry_kill(dentry);
820 	if (dentry) {
821 		cond_resched();
822 		goto repeat;
823 	}
824 }
825 EXPORT_SYMBOL(dput);
826 
827 
828 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)829 static inline void __dget_dlock(struct dentry *dentry)
830 {
831 	dentry->d_lockref.count++;
832 }
833 
__dget(struct dentry * dentry)834 static inline void __dget(struct dentry *dentry)
835 {
836 	lockref_get(&dentry->d_lockref);
837 }
838 
dget_parent(struct dentry * dentry)839 struct dentry *dget_parent(struct dentry *dentry)
840 {
841 	int gotref;
842 	struct dentry *ret;
843 
844 	/*
845 	 * Do optimistic parent lookup without any
846 	 * locking.
847 	 */
848 	rcu_read_lock();
849 	ret = ACCESS_ONCE(dentry->d_parent);
850 	gotref = lockref_get_not_zero(&ret->d_lockref);
851 	rcu_read_unlock();
852 	if (likely(gotref)) {
853 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
854 			return ret;
855 		dput(ret);
856 	}
857 
858 repeat:
859 	/*
860 	 * Don't need rcu_dereference because we re-check it was correct under
861 	 * the lock.
862 	 */
863 	rcu_read_lock();
864 	ret = dentry->d_parent;
865 	spin_lock(&ret->d_lock);
866 	if (unlikely(ret != dentry->d_parent)) {
867 		spin_unlock(&ret->d_lock);
868 		rcu_read_unlock();
869 		goto repeat;
870 	}
871 	rcu_read_unlock();
872 	BUG_ON(!ret->d_lockref.count);
873 	ret->d_lockref.count++;
874 	spin_unlock(&ret->d_lock);
875 	return ret;
876 }
877 EXPORT_SYMBOL(dget_parent);
878 
879 /**
880  * d_find_alias - grab a hashed alias of inode
881  * @inode: inode in question
882  *
883  * If inode has a hashed alias, or is a directory and has any alias,
884  * acquire the reference to alias and return it. Otherwise return NULL.
885  * Notice that if inode is a directory there can be only one alias and
886  * it can be unhashed only if it has no children, or if it is the root
887  * of a filesystem, or if the directory was renamed and d_revalidate
888  * was the first vfs operation to notice.
889  *
890  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
891  * any other hashed alias over that one.
892  */
__d_find_alias(struct inode * inode)893 static struct dentry *__d_find_alias(struct inode *inode)
894 {
895 	struct dentry *alias, *discon_alias;
896 
897 again:
898 	discon_alias = NULL;
899 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
900 		spin_lock(&alias->d_lock);
901  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
902 			if (IS_ROOT(alias) &&
903 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
904 				discon_alias = alias;
905 			} else {
906 				__dget_dlock(alias);
907 				spin_unlock(&alias->d_lock);
908 				return alias;
909 			}
910 		}
911 		spin_unlock(&alias->d_lock);
912 	}
913 	if (discon_alias) {
914 		alias = discon_alias;
915 		spin_lock(&alias->d_lock);
916 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
917 			__dget_dlock(alias);
918 			spin_unlock(&alias->d_lock);
919 			return alias;
920 		}
921 		spin_unlock(&alias->d_lock);
922 		goto again;
923 	}
924 	return NULL;
925 }
926 
d_find_alias(struct inode * inode)927 struct dentry *d_find_alias(struct inode *inode)
928 {
929 	struct dentry *de = NULL;
930 
931 	if (!hlist_empty(&inode->i_dentry)) {
932 		spin_lock(&inode->i_lock);
933 		de = __d_find_alias(inode);
934 		spin_unlock(&inode->i_lock);
935 	}
936 	return de;
937 }
938 EXPORT_SYMBOL(d_find_alias);
939 
940 /*
941  *	Try to kill dentries associated with this inode.
942  * WARNING: you must own a reference to inode.
943  */
d_prune_aliases(struct inode * inode)944 void d_prune_aliases(struct inode *inode)
945 {
946 	struct dentry *dentry;
947 restart:
948 	spin_lock(&inode->i_lock);
949 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
950 		spin_lock(&dentry->d_lock);
951 		if (!dentry->d_lockref.count) {
952 			struct dentry *parent = lock_parent(dentry);
953 			if (likely(!dentry->d_lockref.count)) {
954 				__dentry_kill(dentry);
955 				dput(parent);
956 				goto restart;
957 			}
958 			if (parent)
959 				spin_unlock(&parent->d_lock);
960 		}
961 		spin_unlock(&dentry->d_lock);
962 	}
963 	spin_unlock(&inode->i_lock);
964 }
965 EXPORT_SYMBOL(d_prune_aliases);
966 
shrink_dentry_list(struct list_head * list)967 static void shrink_dentry_list(struct list_head *list)
968 {
969 	struct dentry *dentry, *parent;
970 
971 	while (!list_empty(list)) {
972 		struct inode *inode;
973 		dentry = list_entry(list->prev, struct dentry, d_lru);
974 		spin_lock(&dentry->d_lock);
975 		parent = lock_parent(dentry);
976 
977 		/*
978 		 * The dispose list is isolated and dentries are not accounted
979 		 * to the LRU here, so we can simply remove it from the list
980 		 * here regardless of whether it is referenced or not.
981 		 */
982 		d_shrink_del(dentry);
983 
984 		/*
985 		 * We found an inuse dentry which was not removed from
986 		 * the LRU because of laziness during lookup. Do not free it.
987 		 */
988 		if (dentry->d_lockref.count > 0) {
989 			spin_unlock(&dentry->d_lock);
990 			if (parent)
991 				spin_unlock(&parent->d_lock);
992 			continue;
993 		}
994 
995 
996 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
997 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
998 			spin_unlock(&dentry->d_lock);
999 			if (parent)
1000 				spin_unlock(&parent->d_lock);
1001 			if (can_free)
1002 				dentry_free(dentry);
1003 			continue;
1004 		}
1005 
1006 		inode = dentry->d_inode;
1007 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1008 			d_shrink_add(dentry, list);
1009 			spin_unlock(&dentry->d_lock);
1010 			if (parent)
1011 				spin_unlock(&parent->d_lock);
1012 			continue;
1013 		}
1014 
1015 		__dentry_kill(dentry);
1016 
1017 		/*
1018 		 * We need to prune ancestors too. This is necessary to prevent
1019 		 * quadratic behavior of shrink_dcache_parent(), but is also
1020 		 * expected to be beneficial in reducing dentry cache
1021 		 * fragmentation.
1022 		 */
1023 		dentry = parent;
1024 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1025 			parent = lock_parent(dentry);
1026 			if (dentry->d_lockref.count != 1) {
1027 				dentry->d_lockref.count--;
1028 				spin_unlock(&dentry->d_lock);
1029 				if (parent)
1030 					spin_unlock(&parent->d_lock);
1031 				break;
1032 			}
1033 			inode = dentry->d_inode;	/* can't be NULL */
1034 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1035 				spin_unlock(&dentry->d_lock);
1036 				if (parent)
1037 					spin_unlock(&parent->d_lock);
1038 				cpu_relax();
1039 				continue;
1040 			}
1041 			__dentry_kill(dentry);
1042 			dentry = parent;
1043 		}
1044 	}
1045 }
1046 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1047 static enum lru_status dentry_lru_isolate(struct list_head *item,
1048 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1049 {
1050 	struct list_head *freeable = arg;
1051 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1052 
1053 
1054 	/*
1055 	 * we are inverting the lru lock/dentry->d_lock here,
1056 	 * so use a trylock. If we fail to get the lock, just skip
1057 	 * it
1058 	 */
1059 	if (!spin_trylock(&dentry->d_lock))
1060 		return LRU_SKIP;
1061 
1062 	/*
1063 	 * Referenced dentries are still in use. If they have active
1064 	 * counts, just remove them from the LRU. Otherwise give them
1065 	 * another pass through the LRU.
1066 	 */
1067 	if (dentry->d_lockref.count) {
1068 		d_lru_isolate(lru, dentry);
1069 		spin_unlock(&dentry->d_lock);
1070 		return LRU_REMOVED;
1071 	}
1072 
1073 	if (dentry->d_flags & DCACHE_REFERENCED) {
1074 		dentry->d_flags &= ~DCACHE_REFERENCED;
1075 		spin_unlock(&dentry->d_lock);
1076 
1077 		/*
1078 		 * The list move itself will be made by the common LRU code. At
1079 		 * this point, we've dropped the dentry->d_lock but keep the
1080 		 * lru lock. This is safe to do, since every list movement is
1081 		 * protected by the lru lock even if both locks are held.
1082 		 *
1083 		 * This is guaranteed by the fact that all LRU management
1084 		 * functions are intermediated by the LRU API calls like
1085 		 * list_lru_add and list_lru_del. List movement in this file
1086 		 * only ever occur through this functions or through callbacks
1087 		 * like this one, that are called from the LRU API.
1088 		 *
1089 		 * The only exceptions to this are functions like
1090 		 * shrink_dentry_list, and code that first checks for the
1091 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1092 		 * operating only with stack provided lists after they are
1093 		 * properly isolated from the main list.  It is thus, always a
1094 		 * local access.
1095 		 */
1096 		return LRU_ROTATE;
1097 	}
1098 
1099 	d_lru_shrink_move(lru, dentry, freeable);
1100 	spin_unlock(&dentry->d_lock);
1101 
1102 	return LRU_REMOVED;
1103 }
1104 
1105 /**
1106  * prune_dcache_sb - shrink the dcache
1107  * @sb: superblock
1108  * @sc: shrink control, passed to list_lru_shrink_walk()
1109  *
1110  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1111  * is done when we need more memory and called from the superblock shrinker
1112  * function.
1113  *
1114  * This function may fail to free any resources if all the dentries are in
1115  * use.
1116  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1117 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1118 {
1119 	LIST_HEAD(dispose);
1120 	long freed;
1121 
1122 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1123 				     dentry_lru_isolate, &dispose);
1124 	shrink_dentry_list(&dispose);
1125 	return freed;
1126 }
1127 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1128 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1129 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1130 {
1131 	struct list_head *freeable = arg;
1132 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1133 
1134 	/*
1135 	 * we are inverting the lru lock/dentry->d_lock here,
1136 	 * so use a trylock. If we fail to get the lock, just skip
1137 	 * it
1138 	 */
1139 	if (!spin_trylock(&dentry->d_lock))
1140 		return LRU_SKIP;
1141 
1142 	d_lru_shrink_move(lru, dentry, freeable);
1143 	spin_unlock(&dentry->d_lock);
1144 
1145 	return LRU_REMOVED;
1146 }
1147 
1148 
1149 /**
1150  * shrink_dcache_sb - shrink dcache for a superblock
1151  * @sb: superblock
1152  *
1153  * Shrink the dcache for the specified super block. This is used to free
1154  * the dcache before unmounting a file system.
1155  */
shrink_dcache_sb(struct super_block * sb)1156 void shrink_dcache_sb(struct super_block *sb)
1157 {
1158 	do {
1159 		LIST_HEAD(dispose);
1160 
1161 		list_lru_walk(&sb->s_dentry_lru,
1162 			dentry_lru_isolate_shrink, &dispose, 1024);
1163 		shrink_dentry_list(&dispose);
1164 		cond_resched();
1165 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1166 }
1167 EXPORT_SYMBOL(shrink_dcache_sb);
1168 
1169 /**
1170  * enum d_walk_ret - action to talke during tree walk
1171  * @D_WALK_CONTINUE:	contrinue walk
1172  * @D_WALK_QUIT:	quit walk
1173  * @D_WALK_NORETRY:	quit when retry is needed
1174  * @D_WALK_SKIP:	skip this dentry and its children
1175  */
1176 enum d_walk_ret {
1177 	D_WALK_CONTINUE,
1178 	D_WALK_QUIT,
1179 	D_WALK_NORETRY,
1180 	D_WALK_SKIP,
1181 };
1182 
1183 /**
1184  * d_walk - walk the dentry tree
1185  * @parent:	start of walk
1186  * @data:	data passed to @enter() and @finish()
1187  * @enter:	callback when first entering the dentry
1188  * @finish:	callback when successfully finished the walk
1189  *
1190  * The @enter() and @finish() callbacks are called with d_lock held.
1191  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1192 static void d_walk(struct dentry *parent, void *data,
1193 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1194 		   void (*finish)(void *))
1195 {
1196 	struct dentry *this_parent;
1197 	struct list_head *next;
1198 	unsigned seq = 0;
1199 	enum d_walk_ret ret;
1200 	bool retry = true;
1201 
1202 again:
1203 	read_seqbegin_or_lock(&rename_lock, &seq);
1204 	this_parent = parent;
1205 	spin_lock(&this_parent->d_lock);
1206 
1207 	ret = enter(data, this_parent);
1208 	switch (ret) {
1209 	case D_WALK_CONTINUE:
1210 		break;
1211 	case D_WALK_QUIT:
1212 	case D_WALK_SKIP:
1213 		goto out_unlock;
1214 	case D_WALK_NORETRY:
1215 		retry = false;
1216 		break;
1217 	}
1218 repeat:
1219 	next = this_parent->d_subdirs.next;
1220 resume:
1221 	while (next != &this_parent->d_subdirs) {
1222 		struct list_head *tmp = next;
1223 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1224 		next = tmp->next;
1225 
1226 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1227 
1228 		ret = enter(data, dentry);
1229 		switch (ret) {
1230 		case D_WALK_CONTINUE:
1231 			break;
1232 		case D_WALK_QUIT:
1233 			spin_unlock(&dentry->d_lock);
1234 			goto out_unlock;
1235 		case D_WALK_NORETRY:
1236 			retry = false;
1237 			break;
1238 		case D_WALK_SKIP:
1239 			spin_unlock(&dentry->d_lock);
1240 			continue;
1241 		}
1242 
1243 		if (!list_empty(&dentry->d_subdirs)) {
1244 			spin_unlock(&this_parent->d_lock);
1245 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1246 			this_parent = dentry;
1247 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1248 			goto repeat;
1249 		}
1250 		spin_unlock(&dentry->d_lock);
1251 	}
1252 	/*
1253 	 * All done at this level ... ascend and resume the search.
1254 	 */
1255 	rcu_read_lock();
1256 ascend:
1257 	if (this_parent != parent) {
1258 		struct dentry *child = this_parent;
1259 		this_parent = child->d_parent;
1260 
1261 		spin_unlock(&child->d_lock);
1262 		spin_lock(&this_parent->d_lock);
1263 
1264 		/* might go back up the wrong parent if we have had a rename. */
1265 		if (need_seqretry(&rename_lock, seq))
1266 			goto rename_retry;
1267 		/* go into the first sibling still alive */
1268 		do {
1269 			next = child->d_child.next;
1270 			if (next == &this_parent->d_subdirs)
1271 				goto ascend;
1272 			child = list_entry(next, struct dentry, d_child);
1273 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1274 		rcu_read_unlock();
1275 		goto resume;
1276 	}
1277 	if (need_seqretry(&rename_lock, seq))
1278 		goto rename_retry;
1279 	rcu_read_unlock();
1280 	if (finish)
1281 		finish(data);
1282 
1283 out_unlock:
1284 	spin_unlock(&this_parent->d_lock);
1285 	done_seqretry(&rename_lock, seq);
1286 	return;
1287 
1288 rename_retry:
1289 	spin_unlock(&this_parent->d_lock);
1290 	rcu_read_unlock();
1291 	BUG_ON(seq & 1);
1292 	if (!retry)
1293 		return;
1294 	seq = 1;
1295 	goto again;
1296 }
1297 
1298 /*
1299  * Search for at least 1 mount point in the dentry's subdirs.
1300  * We descend to the next level whenever the d_subdirs
1301  * list is non-empty and continue searching.
1302  */
1303 
check_mount(void * data,struct dentry * dentry)1304 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1305 {
1306 	int *ret = data;
1307 	if (d_mountpoint(dentry)) {
1308 		*ret = 1;
1309 		return D_WALK_QUIT;
1310 	}
1311 	return D_WALK_CONTINUE;
1312 }
1313 
1314 /**
1315  * have_submounts - check for mounts over a dentry
1316  * @parent: dentry to check.
1317  *
1318  * Return true if the parent or its subdirectories contain
1319  * a mount point
1320  */
have_submounts(struct dentry * parent)1321 int have_submounts(struct dentry *parent)
1322 {
1323 	int ret = 0;
1324 
1325 	d_walk(parent, &ret, check_mount, NULL);
1326 
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL(have_submounts);
1330 
1331 /*
1332  * Called by mount code to set a mountpoint and check if the mountpoint is
1333  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1334  * subtree can become unreachable).
1335  *
1336  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1337  * this reason take rename_lock and d_lock on dentry and ancestors.
1338  */
d_set_mounted(struct dentry * dentry)1339 int d_set_mounted(struct dentry *dentry)
1340 {
1341 	struct dentry *p;
1342 	int ret = -ENOENT;
1343 	write_seqlock(&rename_lock);
1344 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1345 		/* Need exclusion wrt. d_invalidate() */
1346 		spin_lock(&p->d_lock);
1347 		if (unlikely(d_unhashed(p))) {
1348 			spin_unlock(&p->d_lock);
1349 			goto out;
1350 		}
1351 		spin_unlock(&p->d_lock);
1352 	}
1353 	spin_lock(&dentry->d_lock);
1354 	if (!d_unlinked(dentry)) {
1355 		ret = -EBUSY;
1356 		if (!d_mountpoint(dentry)) {
1357 			dentry->d_flags |= DCACHE_MOUNTED;
1358 			ret = 0;
1359 		}
1360 	}
1361  	spin_unlock(&dentry->d_lock);
1362 out:
1363 	write_sequnlock(&rename_lock);
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Search the dentry child list of the specified parent,
1369  * and move any unused dentries to the end of the unused
1370  * list for prune_dcache(). We descend to the next level
1371  * whenever the d_subdirs list is non-empty and continue
1372  * searching.
1373  *
1374  * It returns zero iff there are no unused children,
1375  * otherwise  it returns the number of children moved to
1376  * the end of the unused list. This may not be the total
1377  * number of unused children, because select_parent can
1378  * drop the lock and return early due to latency
1379  * constraints.
1380  */
1381 
1382 struct select_data {
1383 	struct dentry *start;
1384 	struct list_head dispose;
1385 	int found;
1386 };
1387 
select_collect(void * _data,struct dentry * dentry)1388 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1389 {
1390 	struct select_data *data = _data;
1391 	enum d_walk_ret ret = D_WALK_CONTINUE;
1392 
1393 	if (data->start == dentry)
1394 		goto out;
1395 
1396 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1397 		data->found++;
1398 	} else {
1399 		if (dentry->d_flags & DCACHE_LRU_LIST)
1400 			d_lru_del(dentry);
1401 		if (!dentry->d_lockref.count) {
1402 			d_shrink_add(dentry, &data->dispose);
1403 			data->found++;
1404 		}
1405 	}
1406 	/*
1407 	 * We can return to the caller if we have found some (this
1408 	 * ensures forward progress). We'll be coming back to find
1409 	 * the rest.
1410 	 */
1411 	if (!list_empty(&data->dispose))
1412 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1413 out:
1414 	return ret;
1415 }
1416 
1417 /**
1418  * shrink_dcache_parent - prune dcache
1419  * @parent: parent of entries to prune
1420  *
1421  * Prune the dcache to remove unused children of the parent dentry.
1422  */
shrink_dcache_parent(struct dentry * parent)1423 void shrink_dcache_parent(struct dentry *parent)
1424 {
1425 	for (;;) {
1426 		struct select_data data;
1427 
1428 		INIT_LIST_HEAD(&data.dispose);
1429 		data.start = parent;
1430 		data.found = 0;
1431 
1432 		d_walk(parent, &data, select_collect, NULL);
1433 		if (!data.found)
1434 			break;
1435 
1436 		shrink_dentry_list(&data.dispose);
1437 		cond_resched();
1438 	}
1439 }
1440 EXPORT_SYMBOL(shrink_dcache_parent);
1441 
umount_check(void * _data,struct dentry * dentry)1442 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1443 {
1444 	/* it has busy descendents; complain about those instead */
1445 	if (!list_empty(&dentry->d_subdirs))
1446 		return D_WALK_CONTINUE;
1447 
1448 	/* root with refcount 1 is fine */
1449 	if (dentry == _data && dentry->d_lockref.count == 1)
1450 		return D_WALK_CONTINUE;
1451 
1452 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1453 			" still in use (%d) [unmount of %s %s]\n",
1454 		       dentry,
1455 		       dentry->d_inode ?
1456 		       dentry->d_inode->i_ino : 0UL,
1457 		       dentry,
1458 		       dentry->d_lockref.count,
1459 		       dentry->d_sb->s_type->name,
1460 		       dentry->d_sb->s_id);
1461 	WARN_ON(1);
1462 	return D_WALK_CONTINUE;
1463 }
1464 
do_one_tree(struct dentry * dentry)1465 static void do_one_tree(struct dentry *dentry)
1466 {
1467 	shrink_dcache_parent(dentry);
1468 	d_walk(dentry, dentry, umount_check, NULL);
1469 	d_drop(dentry);
1470 	dput(dentry);
1471 }
1472 
1473 /*
1474  * destroy the dentries attached to a superblock on unmounting
1475  */
shrink_dcache_for_umount(struct super_block * sb)1476 void shrink_dcache_for_umount(struct super_block *sb)
1477 {
1478 	struct dentry *dentry;
1479 
1480 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1481 
1482 	dentry = sb->s_root;
1483 	sb->s_root = NULL;
1484 	do_one_tree(dentry);
1485 
1486 	while (!hlist_bl_empty(&sb->s_anon)) {
1487 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1488 		do_one_tree(dentry);
1489 	}
1490 }
1491 
1492 struct detach_data {
1493 	struct select_data select;
1494 	struct dentry *mountpoint;
1495 };
detach_and_collect(void * _data,struct dentry * dentry)1496 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1497 {
1498 	struct detach_data *data = _data;
1499 
1500 	if (d_mountpoint(dentry)) {
1501 		__dget_dlock(dentry);
1502 		data->mountpoint = dentry;
1503 		return D_WALK_QUIT;
1504 	}
1505 
1506 	return select_collect(&data->select, dentry);
1507 }
1508 
check_and_drop(void * _data)1509 static void check_and_drop(void *_data)
1510 {
1511 	struct detach_data *data = _data;
1512 
1513 	if (!data->mountpoint && list_empty(&data->select.dispose))
1514 		__d_drop(data->select.start);
1515 }
1516 
1517 /**
1518  * d_invalidate - detach submounts, prune dcache, and drop
1519  * @dentry: dentry to invalidate (aka detach, prune and drop)
1520  *
1521  * no dcache lock.
1522  *
1523  * The final d_drop is done as an atomic operation relative to
1524  * rename_lock ensuring there are no races with d_set_mounted.  This
1525  * ensures there are no unhashed dentries on the path to a mountpoint.
1526  */
d_invalidate(struct dentry * dentry)1527 void d_invalidate(struct dentry *dentry)
1528 {
1529 	/*
1530 	 * If it's already been dropped, return OK.
1531 	 */
1532 	spin_lock(&dentry->d_lock);
1533 	if (d_unhashed(dentry)) {
1534 		spin_unlock(&dentry->d_lock);
1535 		return;
1536 	}
1537 	spin_unlock(&dentry->d_lock);
1538 
1539 	/* Negative dentries can be dropped without further checks */
1540 	if (!dentry->d_inode) {
1541 		d_drop(dentry);
1542 		return;
1543 	}
1544 
1545 	for (;;) {
1546 		struct detach_data data;
1547 
1548 		data.mountpoint = NULL;
1549 		INIT_LIST_HEAD(&data.select.dispose);
1550 		data.select.start = dentry;
1551 		data.select.found = 0;
1552 
1553 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1554 
1555 		if (!list_empty(&data.select.dispose))
1556 			shrink_dentry_list(&data.select.dispose);
1557 		else if (!data.mountpoint)
1558 			return;
1559 
1560 		if (data.mountpoint) {
1561 			detach_mounts(data.mountpoint);
1562 			dput(data.mountpoint);
1563 		}
1564 		cond_resched();
1565 	}
1566 }
1567 EXPORT_SYMBOL(d_invalidate);
1568 
1569 /**
1570  * __d_alloc	-	allocate a dcache entry
1571  * @sb: filesystem it will belong to
1572  * @name: qstr of the name
1573  *
1574  * Allocates a dentry. It returns %NULL if there is insufficient memory
1575  * available. On a success the dentry is returned. The name passed in is
1576  * copied and the copy passed in may be reused after this call.
1577  */
1578 
__d_alloc(struct super_block * sb,const struct qstr * name)1579 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1580 {
1581 	struct dentry *dentry;
1582 	char *dname;
1583 
1584 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1585 	if (!dentry)
1586 		return NULL;
1587 
1588 	/*
1589 	 * We guarantee that the inline name is always NUL-terminated.
1590 	 * This way the memcpy() done by the name switching in rename
1591 	 * will still always have a NUL at the end, even if we might
1592 	 * be overwriting an internal NUL character
1593 	 */
1594 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1595 	if (name->len > DNAME_INLINE_LEN-1) {
1596 		size_t size = offsetof(struct external_name, name[1]);
1597 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1598 		if (!p) {
1599 			kmem_cache_free(dentry_cache, dentry);
1600 			return NULL;
1601 		}
1602 		atomic_set(&p->u.count, 1);
1603 		dname = p->name;
1604 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1605 			kasan_unpoison_shadow(dname,
1606 				round_up(name->len + 1,	sizeof(unsigned long)));
1607 	} else  {
1608 		dname = dentry->d_iname;
1609 	}
1610 
1611 	dentry->d_name.len = name->len;
1612 	dentry->d_name.hash = name->hash;
1613 	memcpy(dname, name->name, name->len);
1614 	dname[name->len] = 0;
1615 
1616 	/* Make sure we always see the terminating NUL character */
1617 	smp_wmb();
1618 	dentry->d_name.name = dname;
1619 
1620 	dentry->d_lockref.count = 1;
1621 	dentry->d_flags = 0;
1622 	spin_lock_init(&dentry->d_lock);
1623 	seqcount_init(&dentry->d_seq);
1624 	dentry->d_inode = NULL;
1625 	dentry->d_parent = dentry;
1626 	dentry->d_sb = sb;
1627 	dentry->d_op = NULL;
1628 	dentry->d_fsdata = NULL;
1629 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1630 	INIT_LIST_HEAD(&dentry->d_lru);
1631 	INIT_LIST_HEAD(&dentry->d_subdirs);
1632 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1633 	INIT_LIST_HEAD(&dentry->d_child);
1634 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1635 
1636 	this_cpu_inc(nr_dentry);
1637 
1638 	return dentry;
1639 }
1640 
1641 /**
1642  * d_alloc	-	allocate a dcache entry
1643  * @parent: parent of entry to allocate
1644  * @name: qstr of the name
1645  *
1646  * Allocates a dentry. It returns %NULL if there is insufficient memory
1647  * available. On a success the dentry is returned. The name passed in is
1648  * copied and the copy passed in may be reused after this call.
1649  */
d_alloc(struct dentry * parent,const struct qstr * name)1650 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1651 {
1652 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1653 	if (!dentry)
1654 		return NULL;
1655 	dentry->d_flags |= DCACHE_RCUACCESS;
1656 	spin_lock(&parent->d_lock);
1657 	/*
1658 	 * don't need child lock because it is not subject
1659 	 * to concurrency here
1660 	 */
1661 	__dget_dlock(parent);
1662 	dentry->d_parent = parent;
1663 	list_add(&dentry->d_child, &parent->d_subdirs);
1664 	spin_unlock(&parent->d_lock);
1665 
1666 	return dentry;
1667 }
1668 EXPORT_SYMBOL(d_alloc);
1669 
1670 /**
1671  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1672  * @sb: the superblock
1673  * @name: qstr of the name
1674  *
1675  * For a filesystem that just pins its dentries in memory and never
1676  * performs lookups at all, return an unhashed IS_ROOT dentry.
1677  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1678 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1679 {
1680 	return __d_alloc(sb, name);
1681 }
1682 EXPORT_SYMBOL(d_alloc_pseudo);
1683 
d_alloc_name(struct dentry * parent,const char * name)1684 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1685 {
1686 	struct qstr q;
1687 
1688 	q.name = name;
1689 	q.len = strlen(name);
1690 	q.hash = full_name_hash(q.name, q.len);
1691 	return d_alloc(parent, &q);
1692 }
1693 EXPORT_SYMBOL(d_alloc_name);
1694 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1695 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1696 {
1697 	WARN_ON_ONCE(dentry->d_op);
1698 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1699 				DCACHE_OP_COMPARE	|
1700 				DCACHE_OP_REVALIDATE	|
1701 				DCACHE_OP_WEAK_REVALIDATE	|
1702 				DCACHE_OP_DELETE	|
1703 				DCACHE_OP_SELECT_INODE	|
1704 				DCACHE_OP_REAL));
1705 	dentry->d_op = op;
1706 	if (!op)
1707 		return;
1708 	if (op->d_hash)
1709 		dentry->d_flags |= DCACHE_OP_HASH;
1710 	if (op->d_compare)
1711 		dentry->d_flags |= DCACHE_OP_COMPARE;
1712 	if (op->d_revalidate)
1713 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1714 	if (op->d_weak_revalidate)
1715 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1716 	if (op->d_delete)
1717 		dentry->d_flags |= DCACHE_OP_DELETE;
1718 	if (op->d_prune)
1719 		dentry->d_flags |= DCACHE_OP_PRUNE;
1720 	if (op->d_select_inode)
1721 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1722 	if (op->d_real)
1723 		dentry->d_flags |= DCACHE_OP_REAL;
1724 
1725 }
1726 EXPORT_SYMBOL(d_set_d_op);
1727 
1728 
1729 /*
1730  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1731  * @dentry - The dentry to mark
1732  *
1733  * Mark a dentry as falling through to the lower layer (as set with
1734  * d_pin_lower()).  This flag may be recorded on the medium.
1735  */
d_set_fallthru(struct dentry * dentry)1736 void d_set_fallthru(struct dentry *dentry)
1737 {
1738 	spin_lock(&dentry->d_lock);
1739 	dentry->d_flags |= DCACHE_FALLTHRU;
1740 	spin_unlock(&dentry->d_lock);
1741 }
1742 EXPORT_SYMBOL(d_set_fallthru);
1743 
d_flags_for_inode(struct inode * inode)1744 static unsigned d_flags_for_inode(struct inode *inode)
1745 {
1746 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1747 
1748 	if (!inode)
1749 		return DCACHE_MISS_TYPE;
1750 
1751 	if (S_ISDIR(inode->i_mode)) {
1752 		add_flags = DCACHE_DIRECTORY_TYPE;
1753 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1754 			if (unlikely(!inode->i_op->lookup))
1755 				add_flags = DCACHE_AUTODIR_TYPE;
1756 			else
1757 				inode->i_opflags |= IOP_LOOKUP;
1758 		}
1759 		goto type_determined;
1760 	}
1761 
1762 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1763 		if (unlikely(inode->i_op->follow_link)) {
1764 			add_flags = DCACHE_SYMLINK_TYPE;
1765 			goto type_determined;
1766 		}
1767 		inode->i_opflags |= IOP_NOFOLLOW;
1768 	}
1769 
1770 	if (unlikely(!S_ISREG(inode->i_mode)))
1771 		add_flags = DCACHE_SPECIAL_TYPE;
1772 
1773 type_determined:
1774 	if (unlikely(IS_AUTOMOUNT(inode)))
1775 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1776 	return add_flags;
1777 }
1778 
__d_instantiate(struct dentry * dentry,struct inode * inode)1779 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1780 {
1781 	unsigned add_flags = d_flags_for_inode(inode);
1782 
1783 	spin_lock(&dentry->d_lock);
1784 	if (inode)
1785 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1786 	raw_write_seqcount_begin(&dentry->d_seq);
1787 	__d_set_inode_and_type(dentry, inode, add_flags);
1788 	raw_write_seqcount_end(&dentry->d_seq);
1789 	spin_unlock(&dentry->d_lock);
1790 	fsnotify_d_instantiate(dentry, inode);
1791 }
1792 
1793 /**
1794  * d_instantiate - fill in inode information for a dentry
1795  * @entry: dentry to complete
1796  * @inode: inode to attach to this dentry
1797  *
1798  * Fill in inode information in the entry.
1799  *
1800  * This turns negative dentries into productive full members
1801  * of society.
1802  *
1803  * NOTE! This assumes that the inode count has been incremented
1804  * (or otherwise set) by the caller to indicate that it is now
1805  * in use by the dcache.
1806  */
1807 
d_instantiate(struct dentry * entry,struct inode * inode)1808 void d_instantiate(struct dentry *entry, struct inode * inode)
1809 {
1810 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1811 	if (inode)
1812 		spin_lock(&inode->i_lock);
1813 	__d_instantiate(entry, inode);
1814 	if (inode)
1815 		spin_unlock(&inode->i_lock);
1816 	security_d_instantiate(entry, inode);
1817 }
1818 EXPORT_SYMBOL(d_instantiate);
1819 
1820 /**
1821  * d_instantiate_unique - instantiate a non-aliased dentry
1822  * @entry: dentry to instantiate
1823  * @inode: inode to attach to this dentry
1824  *
1825  * Fill in inode information in the entry. On success, it returns NULL.
1826  * If an unhashed alias of "entry" already exists, then we return the
1827  * aliased dentry instead and drop one reference to inode.
1828  *
1829  * Note that in order to avoid conflicts with rename() etc, the caller
1830  * had better be holding the parent directory semaphore.
1831  *
1832  * This also assumes that the inode count has been incremented
1833  * (or otherwise set) by the caller to indicate that it is now
1834  * in use by the dcache.
1835  */
__d_instantiate_unique(struct dentry * entry,struct inode * inode)1836 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1837 					     struct inode *inode)
1838 {
1839 	struct dentry *alias;
1840 	int len = entry->d_name.len;
1841 	const char *name = entry->d_name.name;
1842 	unsigned int hash = entry->d_name.hash;
1843 
1844 	if (!inode) {
1845 		__d_instantiate(entry, NULL);
1846 		return NULL;
1847 	}
1848 
1849 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1850 		/*
1851 		 * Don't need alias->d_lock here, because aliases with
1852 		 * d_parent == entry->d_parent are not subject to name or
1853 		 * parent changes, because the parent inode i_mutex is held.
1854 		 */
1855 		if (alias->d_name.hash != hash)
1856 			continue;
1857 		if (alias->d_parent != entry->d_parent)
1858 			continue;
1859 		if (alias->d_name.len != len)
1860 			continue;
1861 		if (dentry_cmp(alias, name, len))
1862 			continue;
1863 		__dget(alias);
1864 		return alias;
1865 	}
1866 
1867 	__d_instantiate(entry, inode);
1868 	return NULL;
1869 }
1870 
d_instantiate_unique(struct dentry * entry,struct inode * inode)1871 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1872 {
1873 	struct dentry *result;
1874 
1875 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876 
1877 	if (inode)
1878 		spin_lock(&inode->i_lock);
1879 	result = __d_instantiate_unique(entry, inode);
1880 	if (inode)
1881 		spin_unlock(&inode->i_lock);
1882 
1883 	if (!result) {
1884 		security_d_instantiate(entry, inode);
1885 		return NULL;
1886 	}
1887 
1888 	BUG_ON(!d_unhashed(result));
1889 	iput(inode);
1890 	return result;
1891 }
1892 
1893 EXPORT_SYMBOL(d_instantiate_unique);
1894 
1895 /*
1896  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1897  * with lockdep-related part of unlock_new_inode() done before
1898  * anything else.  Use that instead of open-coding d_instantiate()/
1899  * unlock_new_inode() combinations.
1900  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1901 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1902 {
1903 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1904 	BUG_ON(!inode);
1905 	lockdep_annotate_inode_mutex_key(inode);
1906 	spin_lock(&inode->i_lock);
1907 	__d_instantiate(entry, inode);
1908 	WARN_ON(!(inode->i_state & I_NEW));
1909 	inode->i_state &= ~I_NEW;
1910 	smp_mb();
1911 	wake_up_bit(&inode->i_state, __I_NEW);
1912 	spin_unlock(&inode->i_lock);
1913 	security_d_instantiate(entry, inode);
1914 }
1915 EXPORT_SYMBOL(d_instantiate_new);
1916 
1917 /**
1918  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1919  * @entry: dentry to complete
1920  * @inode: inode to attach to this dentry
1921  *
1922  * Fill in inode information in the entry.  If a directory alias is found, then
1923  * return an error (and drop inode).  Together with d_materialise_unique() this
1924  * guarantees that a directory inode may never have more than one alias.
1925  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1926 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1927 {
1928 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1929 
1930 	spin_lock(&inode->i_lock);
1931 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1932 		spin_unlock(&inode->i_lock);
1933 		iput(inode);
1934 		return -EBUSY;
1935 	}
1936 	__d_instantiate(entry, inode);
1937 	spin_unlock(&inode->i_lock);
1938 	security_d_instantiate(entry, inode);
1939 
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL(d_instantiate_no_diralias);
1943 
d_make_root(struct inode * root_inode)1944 struct dentry *d_make_root(struct inode *root_inode)
1945 {
1946 	struct dentry *res = NULL;
1947 
1948 	if (root_inode) {
1949 		static const struct qstr name = QSTR_INIT("/", 1);
1950 
1951 		res = __d_alloc(root_inode->i_sb, &name);
1952 		if (res) {
1953 			res->d_flags |= DCACHE_RCUACCESS;
1954 			d_instantiate(res, root_inode);
1955 		} else {
1956 			iput(root_inode);
1957 		}
1958 	}
1959 	return res;
1960 }
1961 EXPORT_SYMBOL(d_make_root);
1962 
__d_find_any_alias(struct inode * inode)1963 static struct dentry * __d_find_any_alias(struct inode *inode)
1964 {
1965 	struct dentry *alias;
1966 
1967 	if (hlist_empty(&inode->i_dentry))
1968 		return NULL;
1969 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1970 	__dget(alias);
1971 	return alias;
1972 }
1973 
1974 /**
1975  * d_find_any_alias - find any alias for a given inode
1976  * @inode: inode to find an alias for
1977  *
1978  * If any aliases exist for the given inode, take and return a
1979  * reference for one of them.  If no aliases exist, return %NULL.
1980  */
d_find_any_alias(struct inode * inode)1981 struct dentry *d_find_any_alias(struct inode *inode)
1982 {
1983 	struct dentry *de;
1984 
1985 	spin_lock(&inode->i_lock);
1986 	de = __d_find_any_alias(inode);
1987 	spin_unlock(&inode->i_lock);
1988 	return de;
1989 }
1990 EXPORT_SYMBOL(d_find_any_alias);
1991 
__d_obtain_alias(struct inode * inode,int disconnected)1992 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1993 {
1994 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1995 	struct dentry *tmp;
1996 	struct dentry *res;
1997 	unsigned add_flags;
1998 
1999 	if (!inode)
2000 		return ERR_PTR(-ESTALE);
2001 	if (IS_ERR(inode))
2002 		return ERR_CAST(inode);
2003 
2004 	res = d_find_any_alias(inode);
2005 	if (res)
2006 		goto out_iput;
2007 
2008 	tmp = __d_alloc(inode->i_sb, &anonstring);
2009 	if (!tmp) {
2010 		res = ERR_PTR(-ENOMEM);
2011 		goto out_iput;
2012 	}
2013 
2014 	spin_lock(&inode->i_lock);
2015 	res = __d_find_any_alias(inode);
2016 	if (res) {
2017 		spin_unlock(&inode->i_lock);
2018 		dput(tmp);
2019 		goto out_iput;
2020 	}
2021 
2022 	/* attach a disconnected dentry */
2023 	add_flags = d_flags_for_inode(inode);
2024 
2025 	if (disconnected)
2026 		add_flags |= DCACHE_DISCONNECTED;
2027 
2028 	spin_lock(&tmp->d_lock);
2029 	__d_set_inode_and_type(tmp, inode, add_flags);
2030 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2031 	hlist_bl_lock(&tmp->d_sb->s_anon);
2032 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2033 	hlist_bl_unlock(&tmp->d_sb->s_anon);
2034 	spin_unlock(&tmp->d_lock);
2035 	spin_unlock(&inode->i_lock);
2036 	security_d_instantiate(tmp, inode);
2037 
2038 	return tmp;
2039 
2040  out_iput:
2041 	if (res && !IS_ERR(res))
2042 		security_d_instantiate(res, inode);
2043 	iput(inode);
2044 	return res;
2045 }
2046 
2047 /**
2048  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2049  * @inode: inode to allocate the dentry for
2050  *
2051  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2052  * similar open by handle operations.  The returned dentry may be anonymous,
2053  * or may have a full name (if the inode was already in the cache).
2054  *
2055  * When called on a directory inode, we must ensure that the inode only ever
2056  * has one dentry.  If a dentry is found, that is returned instead of
2057  * allocating a new one.
2058  *
2059  * On successful return, the reference to the inode has been transferred
2060  * to the dentry.  In case of an error the reference on the inode is released.
2061  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2062  * be passed in and the error will be propagated to the return value,
2063  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2064  */
d_obtain_alias(struct inode * inode)2065 struct dentry *d_obtain_alias(struct inode *inode)
2066 {
2067 	return __d_obtain_alias(inode, 1);
2068 }
2069 EXPORT_SYMBOL(d_obtain_alias);
2070 
2071 /**
2072  * d_obtain_root - find or allocate a dentry for a given inode
2073  * @inode: inode to allocate the dentry for
2074  *
2075  * Obtain an IS_ROOT dentry for the root of a filesystem.
2076  *
2077  * We must ensure that directory inodes only ever have one dentry.  If a
2078  * dentry is found, that is returned instead of allocating a new one.
2079  *
2080  * On successful return, the reference to the inode has been transferred
2081  * to the dentry.  In case of an error the reference on the inode is
2082  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2083  * error will be propagate to the return value, with a %NULL @inode
2084  * replaced by ERR_PTR(-ESTALE).
2085  */
d_obtain_root(struct inode * inode)2086 struct dentry *d_obtain_root(struct inode *inode)
2087 {
2088 	return __d_obtain_alias(inode, 0);
2089 }
2090 EXPORT_SYMBOL(d_obtain_root);
2091 
2092 /**
2093  * d_add_ci - lookup or allocate new dentry with case-exact name
2094  * @inode:  the inode case-insensitive lookup has found
2095  * @dentry: the negative dentry that was passed to the parent's lookup func
2096  * @name:   the case-exact name to be associated with the returned dentry
2097  *
2098  * This is to avoid filling the dcache with case-insensitive names to the
2099  * same inode, only the actual correct case is stored in the dcache for
2100  * case-insensitive filesystems.
2101  *
2102  * For a case-insensitive lookup match and if the the case-exact dentry
2103  * already exists in in the dcache, use it and return it.
2104  *
2105  * If no entry exists with the exact case name, allocate new dentry with
2106  * the exact case, and return the spliced entry.
2107  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2108 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2109 			struct qstr *name)
2110 {
2111 	struct dentry *found;
2112 	struct dentry *new;
2113 
2114 	/*
2115 	 * First check if a dentry matching the name already exists,
2116 	 * if not go ahead and create it now.
2117 	 */
2118 	found = d_hash_and_lookup(dentry->d_parent, name);
2119 	if (!found) {
2120 		new = d_alloc(dentry->d_parent, name);
2121 		if (!new) {
2122 			found = ERR_PTR(-ENOMEM);
2123 		} else {
2124 			found = d_splice_alias(inode, new);
2125 			if (found) {
2126 				dput(new);
2127 				return found;
2128 			}
2129 			return new;
2130 		}
2131 	}
2132 	iput(inode);
2133 	return found;
2134 }
2135 EXPORT_SYMBOL(d_add_ci);
2136 
2137 /*
2138  * Do the slow-case of the dentry name compare.
2139  *
2140  * Unlike the dentry_cmp() function, we need to atomically
2141  * load the name and length information, so that the
2142  * filesystem can rely on them, and can use the 'name' and
2143  * 'len' information without worrying about walking off the
2144  * end of memory etc.
2145  *
2146  * Thus the read_seqcount_retry() and the "duplicate" info
2147  * in arguments (the low-level filesystem should not look
2148  * at the dentry inode or name contents directly, since
2149  * rename can change them while we're in RCU mode).
2150  */
2151 enum slow_d_compare {
2152 	D_COMP_OK,
2153 	D_COMP_NOMATCH,
2154 	D_COMP_SEQRETRY,
2155 };
2156 
slow_dentry_cmp(const struct dentry * parent,struct dentry * dentry,unsigned int seq,const struct qstr * name)2157 static noinline enum slow_d_compare slow_dentry_cmp(
2158 		const struct dentry *parent,
2159 		struct dentry *dentry,
2160 		unsigned int seq,
2161 		const struct qstr *name)
2162 {
2163 	int tlen = dentry->d_name.len;
2164 	const char *tname = dentry->d_name.name;
2165 
2166 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2167 		cpu_relax();
2168 		return D_COMP_SEQRETRY;
2169 	}
2170 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2171 		return D_COMP_NOMATCH;
2172 	return D_COMP_OK;
2173 }
2174 
2175 /**
2176  * __d_lookup_rcu - search for a dentry (racy, store-free)
2177  * @parent: parent dentry
2178  * @name: qstr of name we wish to find
2179  * @seqp: returns d_seq value at the point where the dentry was found
2180  * Returns: dentry, or NULL
2181  *
2182  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2183  * resolution (store-free path walking) design described in
2184  * Documentation/filesystems/path-lookup.txt.
2185  *
2186  * This is not to be used outside core vfs.
2187  *
2188  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2189  * held, and rcu_read_lock held. The returned dentry must not be stored into
2190  * without taking d_lock and checking d_seq sequence count against @seq
2191  * returned here.
2192  *
2193  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2194  * function.
2195  *
2196  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2197  * the returned dentry, so long as its parent's seqlock is checked after the
2198  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2199  * is formed, giving integrity down the path walk.
2200  *
2201  * NOTE! The caller *has* to check the resulting dentry against the sequence
2202  * number we've returned before using any of the resulting dentry state!
2203  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2204 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2205 				const struct qstr *name,
2206 				unsigned *seqp)
2207 {
2208 	u64 hashlen = name->hash_len;
2209 	const unsigned char *str = name->name;
2210 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2211 	struct hlist_bl_node *node;
2212 	struct dentry *dentry;
2213 
2214 	/*
2215 	 * Note: There is significant duplication with __d_lookup_rcu which is
2216 	 * required to prevent single threaded performance regressions
2217 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2218 	 * Keep the two functions in sync.
2219 	 */
2220 
2221 	/*
2222 	 * The hash list is protected using RCU.
2223 	 *
2224 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2225 	 * races with d_move().
2226 	 *
2227 	 * It is possible that concurrent renames can mess up our list
2228 	 * walk here and result in missing our dentry, resulting in the
2229 	 * false-negative result. d_lookup() protects against concurrent
2230 	 * renames using rename_lock seqlock.
2231 	 *
2232 	 * See Documentation/filesystems/path-lookup.txt for more details.
2233 	 */
2234 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2235 		unsigned seq;
2236 
2237 seqretry:
2238 		/*
2239 		 * The dentry sequence count protects us from concurrent
2240 		 * renames, and thus protects parent and name fields.
2241 		 *
2242 		 * The caller must perform a seqcount check in order
2243 		 * to do anything useful with the returned dentry.
2244 		 *
2245 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2246 		 * we don't wait for the sequence count to stabilize if it
2247 		 * is in the middle of a sequence change. If we do the slow
2248 		 * dentry compare, we will do seqretries until it is stable,
2249 		 * and if we end up with a successful lookup, we actually
2250 		 * want to exit RCU lookup anyway.
2251 		 */
2252 		seq = raw_seqcount_begin(&dentry->d_seq);
2253 		if (dentry->d_parent != parent)
2254 			continue;
2255 		if (d_unhashed(dentry))
2256 			continue;
2257 
2258 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2259 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2260 				continue;
2261 			*seqp = seq;
2262 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2263 			case D_COMP_OK:
2264 				return dentry;
2265 			case D_COMP_NOMATCH:
2266 				continue;
2267 			default:
2268 				goto seqretry;
2269 			}
2270 		}
2271 
2272 		if (dentry->d_name.hash_len != hashlen)
2273 			continue;
2274 		*seqp = seq;
2275 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2276 			return dentry;
2277 	}
2278 	return NULL;
2279 }
2280 
2281 /**
2282  * d_lookup - search for a dentry
2283  * @parent: parent dentry
2284  * @name: qstr of name we wish to find
2285  * Returns: dentry, or NULL
2286  *
2287  * d_lookup searches the children of the parent dentry for the name in
2288  * question. If the dentry is found its reference count is incremented and the
2289  * dentry is returned. The caller must use dput to free the entry when it has
2290  * finished using it. %NULL is returned if the dentry does not exist.
2291  */
d_lookup(const struct dentry * parent,const struct qstr * name)2292 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2293 {
2294 	struct dentry *dentry;
2295 	unsigned seq;
2296 
2297 	do {
2298 		seq = read_seqbegin(&rename_lock);
2299 		dentry = __d_lookup(parent, name);
2300 		if (dentry)
2301 			break;
2302 	} while (read_seqretry(&rename_lock, seq));
2303 	return dentry;
2304 }
2305 EXPORT_SYMBOL(d_lookup);
2306 
2307 /**
2308  * __d_lookup - search for a dentry (racy)
2309  * @parent: parent dentry
2310  * @name: qstr of name we wish to find
2311  * Returns: dentry, or NULL
2312  *
2313  * __d_lookup is like d_lookup, however it may (rarely) return a
2314  * false-negative result due to unrelated rename activity.
2315  *
2316  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2317  * however it must be used carefully, eg. with a following d_lookup in
2318  * the case of failure.
2319  *
2320  * __d_lookup callers must be commented.
2321  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2322 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2323 {
2324 	unsigned int len = name->len;
2325 	unsigned int hash = name->hash;
2326 	const unsigned char *str = name->name;
2327 	struct hlist_bl_head *b = d_hash(parent, hash);
2328 	struct hlist_bl_node *node;
2329 	struct dentry *found = NULL;
2330 	struct dentry *dentry;
2331 
2332 	/*
2333 	 * Note: There is significant duplication with __d_lookup_rcu which is
2334 	 * required to prevent single threaded performance regressions
2335 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2336 	 * Keep the two functions in sync.
2337 	 */
2338 
2339 	/*
2340 	 * The hash list is protected using RCU.
2341 	 *
2342 	 * Take d_lock when comparing a candidate dentry, to avoid races
2343 	 * with d_move().
2344 	 *
2345 	 * It is possible that concurrent renames can mess up our list
2346 	 * walk here and result in missing our dentry, resulting in the
2347 	 * false-negative result. d_lookup() protects against concurrent
2348 	 * renames using rename_lock seqlock.
2349 	 *
2350 	 * See Documentation/filesystems/path-lookup.txt for more details.
2351 	 */
2352 	rcu_read_lock();
2353 
2354 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2355 
2356 		if (dentry->d_name.hash != hash)
2357 			continue;
2358 
2359 		spin_lock(&dentry->d_lock);
2360 		if (dentry->d_parent != parent)
2361 			goto next;
2362 		if (d_unhashed(dentry))
2363 			goto next;
2364 
2365 		/*
2366 		 * It is safe to compare names since d_move() cannot
2367 		 * change the qstr (protected by d_lock).
2368 		 */
2369 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2370 			int tlen = dentry->d_name.len;
2371 			const char *tname = dentry->d_name.name;
2372 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2373 				goto next;
2374 		} else {
2375 			if (dentry->d_name.len != len)
2376 				goto next;
2377 			if (dentry_cmp(dentry, str, len))
2378 				goto next;
2379 		}
2380 
2381 		dentry->d_lockref.count++;
2382 		found = dentry;
2383 		spin_unlock(&dentry->d_lock);
2384 		break;
2385 next:
2386 		spin_unlock(&dentry->d_lock);
2387  	}
2388  	rcu_read_unlock();
2389 
2390  	return found;
2391 }
2392 
2393 /**
2394  * d_hash_and_lookup - hash the qstr then search for a dentry
2395  * @dir: Directory to search in
2396  * @name: qstr of name we wish to find
2397  *
2398  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2399  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401 {
2402 	/*
2403 	 * Check for a fs-specific hash function. Note that we must
2404 	 * calculate the standard hash first, as the d_op->d_hash()
2405 	 * routine may choose to leave the hash value unchanged.
2406 	 */
2407 	name->hash = full_name_hash(name->name, name->len);
2408 	if (dir->d_flags & DCACHE_OP_HASH) {
2409 		int err = dir->d_op->d_hash(dir, name);
2410 		if (unlikely(err < 0))
2411 			return ERR_PTR(err);
2412 	}
2413 	return d_lookup(dir, name);
2414 }
2415 EXPORT_SYMBOL(d_hash_and_lookup);
2416 
2417 /*
2418  * When a file is deleted, we have two options:
2419  * - turn this dentry into a negative dentry
2420  * - unhash this dentry and free it.
2421  *
2422  * Usually, we want to just turn this into
2423  * a negative dentry, but if anybody else is
2424  * currently using the dentry or the inode
2425  * we can't do that and we fall back on removing
2426  * it from the hash queues and waiting for
2427  * it to be deleted later when it has no users
2428  */
2429 
2430 /**
2431  * d_delete - delete a dentry
2432  * @dentry: The dentry to delete
2433  *
2434  * Turn the dentry into a negative dentry if possible, otherwise
2435  * remove it from the hash queues so it can be deleted later
2436  */
2437 
d_delete(struct dentry * dentry)2438 void d_delete(struct dentry * dentry)
2439 {
2440 	struct inode *inode;
2441 	int isdir = 0;
2442 	/*
2443 	 * Are we the only user?
2444 	 */
2445 again:
2446 	spin_lock(&dentry->d_lock);
2447 	inode = dentry->d_inode;
2448 	isdir = S_ISDIR(inode->i_mode);
2449 	if (dentry->d_lockref.count == 1) {
2450 		if (!spin_trylock(&inode->i_lock)) {
2451 			spin_unlock(&dentry->d_lock);
2452 			cpu_relax();
2453 			goto again;
2454 		}
2455 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2456 		dentry_unlink_inode(dentry);
2457 		fsnotify_nameremove(dentry, isdir);
2458 		return;
2459 	}
2460 
2461 	if (!d_unhashed(dentry))
2462 		__d_drop(dentry);
2463 
2464 	spin_unlock(&dentry->d_lock);
2465 
2466 	fsnotify_nameremove(dentry, isdir);
2467 }
2468 EXPORT_SYMBOL(d_delete);
2469 
__d_rehash(struct dentry * entry,struct hlist_bl_head * b)2470 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2471 {
2472 	BUG_ON(!d_unhashed(entry));
2473 	hlist_bl_lock(b);
2474 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2475 	hlist_bl_unlock(b);
2476 }
2477 
_d_rehash(struct dentry * entry)2478 static void _d_rehash(struct dentry * entry)
2479 {
2480 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2481 }
2482 
2483 /**
2484  * d_rehash	- add an entry back to the hash
2485  * @entry: dentry to add to the hash
2486  *
2487  * Adds a dentry to the hash according to its name.
2488  */
2489 
d_rehash(struct dentry * entry)2490 void d_rehash(struct dentry * entry)
2491 {
2492 	spin_lock(&entry->d_lock);
2493 	_d_rehash(entry);
2494 	spin_unlock(&entry->d_lock);
2495 }
2496 EXPORT_SYMBOL(d_rehash);
2497 
2498 /**
2499  * dentry_update_name_case - update case insensitive dentry with a new name
2500  * @dentry: dentry to be updated
2501  * @name: new name
2502  *
2503  * Update a case insensitive dentry with new case of name.
2504  *
2505  * dentry must have been returned by d_lookup with name @name. Old and new
2506  * name lengths must match (ie. no d_compare which allows mismatched name
2507  * lengths).
2508  *
2509  * Parent inode i_mutex must be held over d_lookup and into this call (to
2510  * keep renames and concurrent inserts, and readdir(2) away).
2511  */
dentry_update_name_case(struct dentry * dentry,struct qstr * name)2512 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2513 {
2514 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2515 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2516 
2517 	spin_lock(&dentry->d_lock);
2518 	write_seqcount_begin(&dentry->d_seq);
2519 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2520 	write_seqcount_end(&dentry->d_seq);
2521 	spin_unlock(&dentry->d_lock);
2522 }
2523 EXPORT_SYMBOL(dentry_update_name_case);
2524 
swap_names(struct dentry * dentry,struct dentry * target)2525 static void swap_names(struct dentry *dentry, struct dentry *target)
2526 {
2527 	if (unlikely(dname_external(target))) {
2528 		if (unlikely(dname_external(dentry))) {
2529 			/*
2530 			 * Both external: swap the pointers
2531 			 */
2532 			swap(target->d_name.name, dentry->d_name.name);
2533 		} else {
2534 			/*
2535 			 * dentry:internal, target:external.  Steal target's
2536 			 * storage and make target internal.
2537 			 */
2538 			memcpy(target->d_iname, dentry->d_name.name,
2539 					dentry->d_name.len + 1);
2540 			dentry->d_name.name = target->d_name.name;
2541 			target->d_name.name = target->d_iname;
2542 		}
2543 	} else {
2544 		if (unlikely(dname_external(dentry))) {
2545 			/*
2546 			 * dentry:external, target:internal.  Give dentry's
2547 			 * storage to target and make dentry internal
2548 			 */
2549 			memcpy(dentry->d_iname, target->d_name.name,
2550 					target->d_name.len + 1);
2551 			target->d_name.name = dentry->d_name.name;
2552 			dentry->d_name.name = dentry->d_iname;
2553 		} else {
2554 			/*
2555 			 * Both are internal.
2556 			 */
2557 			unsigned int i;
2558 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2559 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2560 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2561 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2562 				swap(((long *) &dentry->d_iname)[i],
2563 				     ((long *) &target->d_iname)[i]);
2564 			}
2565 		}
2566 	}
2567 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2568 }
2569 
copy_name(struct dentry * dentry,struct dentry * target)2570 static void copy_name(struct dentry *dentry, struct dentry *target)
2571 {
2572 	struct external_name *old_name = NULL;
2573 	if (unlikely(dname_external(dentry)))
2574 		old_name = external_name(dentry);
2575 	if (unlikely(dname_external(target))) {
2576 		atomic_inc(&external_name(target)->u.count);
2577 		dentry->d_name = target->d_name;
2578 	} else {
2579 		memcpy(dentry->d_iname, target->d_name.name,
2580 				target->d_name.len + 1);
2581 		dentry->d_name.name = dentry->d_iname;
2582 		dentry->d_name.hash_len = target->d_name.hash_len;
2583 	}
2584 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2585 		kfree_rcu(old_name, u.head);
2586 }
2587 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2588 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2589 {
2590 	/*
2591 	 * XXXX: do we really need to take target->d_lock?
2592 	 */
2593 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2594 		spin_lock(&target->d_parent->d_lock);
2595 	else {
2596 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2597 			spin_lock(&dentry->d_parent->d_lock);
2598 			spin_lock_nested(&target->d_parent->d_lock,
2599 						DENTRY_D_LOCK_NESTED);
2600 		} else {
2601 			spin_lock(&target->d_parent->d_lock);
2602 			spin_lock_nested(&dentry->d_parent->d_lock,
2603 						DENTRY_D_LOCK_NESTED);
2604 		}
2605 	}
2606 	if (target < dentry) {
2607 		spin_lock_nested(&target->d_lock, 2);
2608 		spin_lock_nested(&dentry->d_lock, 3);
2609 	} else {
2610 		spin_lock_nested(&dentry->d_lock, 2);
2611 		spin_lock_nested(&target->d_lock, 3);
2612 	}
2613 }
2614 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2615 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2616 {
2617 	if (target->d_parent != dentry->d_parent)
2618 		spin_unlock(&dentry->d_parent->d_lock);
2619 	if (target->d_parent != target)
2620 		spin_unlock(&target->d_parent->d_lock);
2621 	spin_unlock(&target->d_lock);
2622 	spin_unlock(&dentry->d_lock);
2623 }
2624 
2625 /*
2626  * When switching names, the actual string doesn't strictly have to
2627  * be preserved in the target - because we're dropping the target
2628  * anyway. As such, we can just do a simple memcpy() to copy over
2629  * the new name before we switch, unless we are going to rehash
2630  * it.  Note that if we *do* unhash the target, we are not allowed
2631  * to rehash it without giving it a new name/hash key - whether
2632  * we swap or overwrite the names here, resulting name won't match
2633  * the reality in filesystem; it's only there for d_path() purposes.
2634  * Note that all of this is happening under rename_lock, so the
2635  * any hash lookup seeing it in the middle of manipulations will
2636  * be discarded anyway.  So we do not care what happens to the hash
2637  * key in that case.
2638  */
2639 /*
2640  * __d_move - move a dentry
2641  * @dentry: entry to move
2642  * @target: new dentry
2643  * @exchange: exchange the two dentries
2644  *
2645  * Update the dcache to reflect the move of a file name. Negative
2646  * dcache entries should not be moved in this way. Caller must hold
2647  * rename_lock, the i_mutex of the source and target directories,
2648  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2649  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2650 static void __d_move(struct dentry *dentry, struct dentry *target,
2651 		     bool exchange)
2652 {
2653 	if (!dentry->d_inode)
2654 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2655 
2656 	BUG_ON(d_ancestor(dentry, target));
2657 	BUG_ON(d_ancestor(target, dentry));
2658 
2659 	dentry_lock_for_move(dentry, target);
2660 
2661 	write_seqcount_begin(&dentry->d_seq);
2662 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2663 
2664 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2665 
2666 	/*
2667 	 * Move the dentry to the target hash queue. Don't bother checking
2668 	 * for the same hash queue because of how unlikely it is.
2669 	 */
2670 	__d_drop(dentry);
2671 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2672 
2673 	/*
2674 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2675 	 * the two dentries, then rehash onto the other's hash queue.
2676 	 */
2677 	__d_drop(target);
2678 	if (exchange) {
2679 		__d_rehash(target,
2680 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2681 	}
2682 
2683 	/* Switch the names.. */
2684 	if (exchange)
2685 		swap_names(dentry, target);
2686 	else
2687 		copy_name(dentry, target);
2688 
2689 	/* ... and switch them in the tree */
2690 	if (IS_ROOT(dentry)) {
2691 		/* splicing a tree */
2692 		dentry->d_flags |= DCACHE_RCUACCESS;
2693 		dentry->d_parent = target->d_parent;
2694 		target->d_parent = target;
2695 		list_del_init(&target->d_child);
2696 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2697 	} else {
2698 		/* swapping two dentries */
2699 		swap(dentry->d_parent, target->d_parent);
2700 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2701 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2702 		if (exchange)
2703 			fsnotify_d_move(target);
2704 		fsnotify_d_move(dentry);
2705 	}
2706 
2707 	write_seqcount_end(&target->d_seq);
2708 	write_seqcount_end(&dentry->d_seq);
2709 
2710 	dentry_unlock_for_move(dentry, target);
2711 }
2712 
2713 /*
2714  * d_move - move a dentry
2715  * @dentry: entry to move
2716  * @target: new dentry
2717  *
2718  * Update the dcache to reflect the move of a file name. Negative
2719  * dcache entries should not be moved in this way. See the locking
2720  * requirements for __d_move.
2721  */
d_move(struct dentry * dentry,struct dentry * target)2722 void d_move(struct dentry *dentry, struct dentry *target)
2723 {
2724 	write_seqlock(&rename_lock);
2725 	__d_move(dentry, target, false);
2726 	write_sequnlock(&rename_lock);
2727 }
2728 EXPORT_SYMBOL(d_move);
2729 
2730 /*
2731  * d_exchange - exchange two dentries
2732  * @dentry1: first dentry
2733  * @dentry2: second dentry
2734  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2735 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2736 {
2737 	write_seqlock(&rename_lock);
2738 
2739 	WARN_ON(!dentry1->d_inode);
2740 	WARN_ON(!dentry2->d_inode);
2741 	WARN_ON(IS_ROOT(dentry1));
2742 	WARN_ON(IS_ROOT(dentry2));
2743 
2744 	__d_move(dentry1, dentry2, true);
2745 
2746 	write_sequnlock(&rename_lock);
2747 }
2748 
2749 /**
2750  * d_ancestor - search for an ancestor
2751  * @p1: ancestor dentry
2752  * @p2: child dentry
2753  *
2754  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2755  * an ancestor of p2, else NULL.
2756  */
d_ancestor(struct dentry * p1,struct dentry * p2)2757 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2758 {
2759 	struct dentry *p;
2760 
2761 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2762 		if (p->d_parent == p1)
2763 			return p;
2764 	}
2765 	return NULL;
2766 }
2767 
2768 /*
2769  * This helper attempts to cope with remotely renamed directories
2770  *
2771  * It assumes that the caller is already holding
2772  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2773  *
2774  * Note: If ever the locking in lock_rename() changes, then please
2775  * remember to update this too...
2776  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2777 static int __d_unalias(struct inode *inode,
2778 		struct dentry *dentry, struct dentry *alias)
2779 {
2780 	struct mutex *m1 = NULL, *m2 = NULL;
2781 	int ret = -ESTALE;
2782 
2783 	/* If alias and dentry share a parent, then no extra locks required */
2784 	if (alias->d_parent == dentry->d_parent)
2785 		goto out_unalias;
2786 
2787 	/* See lock_rename() */
2788 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2789 		goto out_err;
2790 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2791 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2792 		goto out_err;
2793 	m2 = &alias->d_parent->d_inode->i_mutex;
2794 out_unalias:
2795 	__d_move(alias, dentry, false);
2796 	ret = 0;
2797 out_err:
2798 	if (m2)
2799 		mutex_unlock(m2);
2800 	if (m1)
2801 		mutex_unlock(m1);
2802 	return ret;
2803 }
2804 
2805 /**
2806  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2807  * @inode:  the inode which may have a disconnected dentry
2808  * @dentry: a negative dentry which we want to point to the inode.
2809  *
2810  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2811  * place of the given dentry and return it, else simply d_add the inode
2812  * to the dentry and return NULL.
2813  *
2814  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2815  * we should error out: directories can't have multiple aliases.
2816  *
2817  * This is needed in the lookup routine of any filesystem that is exportable
2818  * (via knfsd) so that we can build dcache paths to directories effectively.
2819  *
2820  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2821  * is returned.  This matches the expected return value of ->lookup.
2822  *
2823  * Cluster filesystems may call this function with a negative, hashed dentry.
2824  * In that case, we know that the inode will be a regular file, and also this
2825  * will only occur during atomic_open. So we need to check for the dentry
2826  * being already hashed only in the final case.
2827  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2828 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2829 {
2830 	if (IS_ERR(inode))
2831 		return ERR_CAST(inode);
2832 
2833 	BUG_ON(!d_unhashed(dentry));
2834 
2835 	if (!inode) {
2836 		__d_instantiate(dentry, NULL);
2837 		goto out;
2838 	}
2839 	spin_lock(&inode->i_lock);
2840 	if (S_ISDIR(inode->i_mode)) {
2841 		struct dentry *new = __d_find_any_alias(inode);
2842 		if (unlikely(new)) {
2843 			/* The reference to new ensures it remains an alias */
2844 			spin_unlock(&inode->i_lock);
2845 			write_seqlock(&rename_lock);
2846 			if (unlikely(d_ancestor(new, dentry))) {
2847 				write_sequnlock(&rename_lock);
2848 				dput(new);
2849 				new = ERR_PTR(-ELOOP);
2850 				pr_warn_ratelimited(
2851 					"VFS: Lookup of '%s' in %s %s"
2852 					" would have caused loop\n",
2853 					dentry->d_name.name,
2854 					inode->i_sb->s_type->name,
2855 					inode->i_sb->s_id);
2856 			} else if (!IS_ROOT(new)) {
2857 				int err = __d_unalias(inode, dentry, new);
2858 				write_sequnlock(&rename_lock);
2859 				if (err) {
2860 					dput(new);
2861 					new = ERR_PTR(err);
2862 				}
2863 			} else {
2864 				__d_move(new, dentry, false);
2865 				write_sequnlock(&rename_lock);
2866 				security_d_instantiate(new, inode);
2867 			}
2868 			iput(inode);
2869 			return new;
2870 		}
2871 	}
2872 	/* already taking inode->i_lock, so d_add() by hand */
2873 	__d_instantiate(dentry, inode);
2874 	spin_unlock(&inode->i_lock);
2875 out:
2876 	security_d_instantiate(dentry, inode);
2877 	d_rehash(dentry);
2878 	return NULL;
2879 }
2880 EXPORT_SYMBOL(d_splice_alias);
2881 
prepend(char ** buffer,int * buflen,const char * str,int namelen)2882 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2883 {
2884 	*buflen -= namelen;
2885 	if (*buflen < 0)
2886 		return -ENAMETOOLONG;
2887 	*buffer -= namelen;
2888 	memcpy(*buffer, str, namelen);
2889 	return 0;
2890 }
2891 
2892 /**
2893  * prepend_name - prepend a pathname in front of current buffer pointer
2894  * @buffer: buffer pointer
2895  * @buflen: allocated length of the buffer
2896  * @name:   name string and length qstr structure
2897  *
2898  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2899  * make sure that either the old or the new name pointer and length are
2900  * fetched. However, there may be mismatch between length and pointer.
2901  * The length cannot be trusted, we need to copy it byte-by-byte until
2902  * the length is reached or a null byte is found. It also prepends "/" at
2903  * the beginning of the name. The sequence number check at the caller will
2904  * retry it again when a d_move() does happen. So any garbage in the buffer
2905  * due to mismatched pointer and length will be discarded.
2906  *
2907  * Data dependency barrier is needed to make sure that we see that terminating
2908  * NUL.  Alpha strikes again, film at 11...
2909  */
prepend_name(char ** buffer,int * buflen,struct qstr * name)2910 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2911 {
2912 	const char *dname = ACCESS_ONCE(name->name);
2913 	u32 dlen = ACCESS_ONCE(name->len);
2914 	char *p;
2915 
2916 	smp_read_barrier_depends();
2917 
2918 	*buflen -= dlen + 1;
2919 	if (*buflen < 0)
2920 		return -ENAMETOOLONG;
2921 	p = *buffer -= dlen + 1;
2922 	*p++ = '/';
2923 	while (dlen--) {
2924 		char c = *dname++;
2925 		if (!c)
2926 			break;
2927 		*p++ = c;
2928 	}
2929 	return 0;
2930 }
2931 
2932 /**
2933  * prepend_path - Prepend path string to a buffer
2934  * @path: the dentry/vfsmount to report
2935  * @root: root vfsmnt/dentry
2936  * @buffer: pointer to the end of the buffer
2937  * @buflen: pointer to buffer length
2938  *
2939  * The function will first try to write out the pathname without taking any
2940  * lock other than the RCU read lock to make sure that dentries won't go away.
2941  * It only checks the sequence number of the global rename_lock as any change
2942  * in the dentry's d_seq will be preceded by changes in the rename_lock
2943  * sequence number. If the sequence number had been changed, it will restart
2944  * the whole pathname back-tracing sequence again by taking the rename_lock.
2945  * In this case, there is no need to take the RCU read lock as the recursive
2946  * parent pointer references will keep the dentry chain alive as long as no
2947  * rename operation is performed.
2948  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)2949 static int prepend_path(const struct path *path,
2950 			const struct path *root,
2951 			char **buffer, int *buflen)
2952 {
2953 	struct dentry *dentry;
2954 	struct vfsmount *vfsmnt;
2955 	struct mount *mnt;
2956 	int error = 0;
2957 	unsigned seq, m_seq = 0;
2958 	char *bptr;
2959 	int blen;
2960 
2961 	rcu_read_lock();
2962 restart_mnt:
2963 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2964 	seq = 0;
2965 	rcu_read_lock();
2966 restart:
2967 	bptr = *buffer;
2968 	blen = *buflen;
2969 	error = 0;
2970 	dentry = path->dentry;
2971 	vfsmnt = path->mnt;
2972 	mnt = real_mount(vfsmnt);
2973 	read_seqbegin_or_lock(&rename_lock, &seq);
2974 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2975 		struct dentry * parent;
2976 
2977 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2978 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2979 			/* Escaped? */
2980 			if (dentry != vfsmnt->mnt_root) {
2981 				bptr = *buffer;
2982 				blen = *buflen;
2983 				error = 3;
2984 				break;
2985 			}
2986 			/* Global root? */
2987 			if (mnt != parent) {
2988 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2989 				mnt = parent;
2990 				vfsmnt = &mnt->mnt;
2991 				continue;
2992 			}
2993 			if (!error)
2994 				error = is_mounted(vfsmnt) ? 1 : 2;
2995 			break;
2996 		}
2997 		parent = dentry->d_parent;
2998 		prefetch(parent);
2999 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3000 		if (error)
3001 			break;
3002 
3003 		dentry = parent;
3004 	}
3005 	if (!(seq & 1))
3006 		rcu_read_unlock();
3007 	if (need_seqretry(&rename_lock, seq)) {
3008 		seq = 1;
3009 		goto restart;
3010 	}
3011 	done_seqretry(&rename_lock, seq);
3012 
3013 	if (!(m_seq & 1))
3014 		rcu_read_unlock();
3015 	if (need_seqretry(&mount_lock, m_seq)) {
3016 		m_seq = 1;
3017 		goto restart_mnt;
3018 	}
3019 	done_seqretry(&mount_lock, m_seq);
3020 
3021 	if (error >= 0 && bptr == *buffer) {
3022 		if (--blen < 0)
3023 			error = -ENAMETOOLONG;
3024 		else
3025 			*--bptr = '/';
3026 	}
3027 	*buffer = bptr;
3028 	*buflen = blen;
3029 	return error;
3030 }
3031 
3032 /**
3033  * __d_path - return the path of a dentry
3034  * @path: the dentry/vfsmount to report
3035  * @root: root vfsmnt/dentry
3036  * @buf: buffer to return value in
3037  * @buflen: buffer length
3038  *
3039  * Convert a dentry into an ASCII path name.
3040  *
3041  * Returns a pointer into the buffer or an error code if the
3042  * path was too long.
3043  *
3044  * "buflen" should be positive.
3045  *
3046  * If the path is not reachable from the supplied root, return %NULL.
3047  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3048 char *__d_path(const struct path *path,
3049 	       const struct path *root,
3050 	       char *buf, int buflen)
3051 {
3052 	char *res = buf + buflen;
3053 	int error;
3054 
3055 	prepend(&res, &buflen, "\0", 1);
3056 	error = prepend_path(path, root, &res, &buflen);
3057 
3058 	if (error < 0)
3059 		return ERR_PTR(error);
3060 	if (error > 0)
3061 		return NULL;
3062 	return res;
3063 }
3064 
d_absolute_path(const struct path * path,char * buf,int buflen)3065 char *d_absolute_path(const struct path *path,
3066 	       char *buf, int buflen)
3067 {
3068 	struct path root = {};
3069 	char *res = buf + buflen;
3070 	int error;
3071 
3072 	prepend(&res, &buflen, "\0", 1);
3073 	error = prepend_path(path, &root, &res, &buflen);
3074 
3075 	if (error > 1)
3076 		error = -EINVAL;
3077 	if (error < 0)
3078 		return ERR_PTR(error);
3079 	return res;
3080 }
3081 EXPORT_SYMBOL(d_absolute_path);
3082 
3083 /*
3084  * same as __d_path but appends "(deleted)" for unlinked files.
3085  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3086 static int path_with_deleted(const struct path *path,
3087 			     const struct path *root,
3088 			     char **buf, int *buflen)
3089 {
3090 	prepend(buf, buflen, "\0", 1);
3091 	if (d_unlinked(path->dentry)) {
3092 		int error = prepend(buf, buflen, " (deleted)", 10);
3093 		if (error)
3094 			return error;
3095 	}
3096 
3097 	return prepend_path(path, root, buf, buflen);
3098 }
3099 
prepend_unreachable(char ** buffer,int * buflen)3100 static int prepend_unreachable(char **buffer, int *buflen)
3101 {
3102 	return prepend(buffer, buflen, "(unreachable)", 13);
3103 }
3104 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3105 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3106 {
3107 	unsigned seq;
3108 
3109 	do {
3110 		seq = read_seqcount_begin(&fs->seq);
3111 		*root = fs->root;
3112 	} while (read_seqcount_retry(&fs->seq, seq));
3113 }
3114 
3115 /**
3116  * d_path - return the path of a dentry
3117  * @path: path to report
3118  * @buf: buffer to return value in
3119  * @buflen: buffer length
3120  *
3121  * Convert a dentry into an ASCII path name. If the entry has been deleted
3122  * the string " (deleted)" is appended. Note that this is ambiguous.
3123  *
3124  * Returns a pointer into the buffer or an error code if the path was
3125  * too long. Note: Callers should use the returned pointer, not the passed
3126  * in buffer, to use the name! The implementation often starts at an offset
3127  * into the buffer, and may leave 0 bytes at the start.
3128  *
3129  * "buflen" should be positive.
3130  */
d_path(const struct path * path,char * buf,int buflen)3131 char *d_path(const struct path *path, char *buf, int buflen)
3132 {
3133 	char *res = buf + buflen;
3134 	struct path root;
3135 	int error;
3136 
3137 	/*
3138 	 * We have various synthetic filesystems that never get mounted.  On
3139 	 * these filesystems dentries are never used for lookup purposes, and
3140 	 * thus don't need to be hashed.  They also don't need a name until a
3141 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3142 	 * below allows us to generate a name for these objects on demand:
3143 	 *
3144 	 * Some pseudo inodes are mountable.  When they are mounted
3145 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3146 	 * and instead have d_path return the mounted path.
3147 	 */
3148 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3149 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3150 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3151 
3152 	rcu_read_lock();
3153 	get_fs_root_rcu(current->fs, &root);
3154 	error = path_with_deleted(path, &root, &res, &buflen);
3155 	rcu_read_unlock();
3156 
3157 	if (error < 0)
3158 		res = ERR_PTR(error);
3159 	return res;
3160 }
3161 EXPORT_SYMBOL(d_path);
3162 
3163 /*
3164  * Helper function for dentry_operations.d_dname() members
3165  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3166 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3167 			const char *fmt, ...)
3168 {
3169 	va_list args;
3170 	char temp[64];
3171 	int sz;
3172 
3173 	va_start(args, fmt);
3174 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3175 	va_end(args);
3176 
3177 	if (sz > sizeof(temp) || sz > buflen)
3178 		return ERR_PTR(-ENAMETOOLONG);
3179 
3180 	buffer += buflen - sz;
3181 	return memcpy(buffer, temp, sz);
3182 }
3183 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3184 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3185 {
3186 	char *end = buffer + buflen;
3187 	/* these dentries are never renamed, so d_lock is not needed */
3188 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3189 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3190 	    prepend(&end, &buflen, "/", 1))
3191 		end = ERR_PTR(-ENAMETOOLONG);
3192 	return end;
3193 }
3194 EXPORT_SYMBOL(simple_dname);
3195 
3196 /*
3197  * Write full pathname from the root of the filesystem into the buffer.
3198  */
__dentry_path(struct dentry * d,char * buf,int buflen)3199 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3200 {
3201 	struct dentry *dentry;
3202 	char *end, *retval;
3203 	int len, seq = 0;
3204 	int error = 0;
3205 
3206 	if (buflen < 2)
3207 		goto Elong;
3208 
3209 	rcu_read_lock();
3210 restart:
3211 	dentry = d;
3212 	end = buf + buflen;
3213 	len = buflen;
3214 	prepend(&end, &len, "\0", 1);
3215 	/* Get '/' right */
3216 	retval = end-1;
3217 	*retval = '/';
3218 	read_seqbegin_or_lock(&rename_lock, &seq);
3219 	while (!IS_ROOT(dentry)) {
3220 		struct dentry *parent = dentry->d_parent;
3221 
3222 		prefetch(parent);
3223 		error = prepend_name(&end, &len, &dentry->d_name);
3224 		if (error)
3225 			break;
3226 
3227 		retval = end;
3228 		dentry = parent;
3229 	}
3230 	if (!(seq & 1))
3231 		rcu_read_unlock();
3232 	if (need_seqretry(&rename_lock, seq)) {
3233 		seq = 1;
3234 		goto restart;
3235 	}
3236 	done_seqretry(&rename_lock, seq);
3237 	if (error)
3238 		goto Elong;
3239 	return retval;
3240 Elong:
3241 	return ERR_PTR(-ENAMETOOLONG);
3242 }
3243 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3244 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3245 {
3246 	return __dentry_path(dentry, buf, buflen);
3247 }
3248 EXPORT_SYMBOL(dentry_path_raw);
3249 
dentry_path(struct dentry * dentry,char * buf,int buflen)3250 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3251 {
3252 	char *p = NULL;
3253 	char *retval;
3254 
3255 	if (d_unlinked(dentry)) {
3256 		p = buf + buflen;
3257 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3258 			goto Elong;
3259 		buflen++;
3260 	}
3261 	retval = __dentry_path(dentry, buf, buflen);
3262 	if (!IS_ERR(retval) && p)
3263 		*p = '/';	/* restore '/' overriden with '\0' */
3264 	return retval;
3265 Elong:
3266 	return ERR_PTR(-ENAMETOOLONG);
3267 }
3268 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3269 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3270 				    struct path *pwd)
3271 {
3272 	unsigned seq;
3273 
3274 	do {
3275 		seq = read_seqcount_begin(&fs->seq);
3276 		*root = fs->root;
3277 		*pwd = fs->pwd;
3278 	} while (read_seqcount_retry(&fs->seq, seq));
3279 }
3280 
3281 /*
3282  * NOTE! The user-level library version returns a
3283  * character pointer. The kernel system call just
3284  * returns the length of the buffer filled (which
3285  * includes the ending '\0' character), or a negative
3286  * error value. So libc would do something like
3287  *
3288  *	char *getcwd(char * buf, size_t size)
3289  *	{
3290  *		int retval;
3291  *
3292  *		retval = sys_getcwd(buf, size);
3293  *		if (retval >= 0)
3294  *			return buf;
3295  *		errno = -retval;
3296  *		return NULL;
3297  *	}
3298  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3299 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3300 {
3301 	int error;
3302 	struct path pwd, root;
3303 	char *page = __getname();
3304 
3305 	if (!page)
3306 		return -ENOMEM;
3307 
3308 	rcu_read_lock();
3309 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3310 
3311 	error = -ENOENT;
3312 	if (!d_unlinked(pwd.dentry)) {
3313 		unsigned long len;
3314 		char *cwd = page + PATH_MAX;
3315 		int buflen = PATH_MAX;
3316 
3317 		prepend(&cwd, &buflen, "\0", 1);
3318 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3319 		rcu_read_unlock();
3320 
3321 		if (error < 0)
3322 			goto out;
3323 
3324 		/* Unreachable from current root */
3325 		if (error > 0) {
3326 			error = prepend_unreachable(&cwd, &buflen);
3327 			if (error)
3328 				goto out;
3329 		}
3330 
3331 		error = -ERANGE;
3332 		len = PATH_MAX + page - cwd;
3333 		if (len <= size) {
3334 			error = len;
3335 			if (copy_to_user(buf, cwd, len))
3336 				error = -EFAULT;
3337 		}
3338 	} else {
3339 		rcu_read_unlock();
3340 	}
3341 
3342 out:
3343 	__putname(page);
3344 	return error;
3345 }
3346 
3347 /*
3348  * Test whether new_dentry is a subdirectory of old_dentry.
3349  *
3350  * Trivially implemented using the dcache structure
3351  */
3352 
3353 /**
3354  * is_subdir - is new dentry a subdirectory of old_dentry
3355  * @new_dentry: new dentry
3356  * @old_dentry: old dentry
3357  *
3358  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3359  * Returns 0 otherwise.
3360  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3361  */
3362 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3363 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3364 {
3365 	int result;
3366 	unsigned seq;
3367 
3368 	if (new_dentry == old_dentry)
3369 		return 1;
3370 
3371 	do {
3372 		/* for restarting inner loop in case of seq retry */
3373 		seq = read_seqbegin(&rename_lock);
3374 		/*
3375 		 * Need rcu_readlock to protect against the d_parent trashing
3376 		 * due to d_move
3377 		 */
3378 		rcu_read_lock();
3379 		if (d_ancestor(old_dentry, new_dentry))
3380 			result = 1;
3381 		else
3382 			result = 0;
3383 		rcu_read_unlock();
3384 	} while (read_seqretry(&rename_lock, seq));
3385 
3386 	return result;
3387 }
3388 
d_genocide_kill(void * data,struct dentry * dentry)3389 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3390 {
3391 	struct dentry *root = data;
3392 	if (dentry != root) {
3393 		if (d_unhashed(dentry) || !dentry->d_inode)
3394 			return D_WALK_SKIP;
3395 
3396 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3397 			dentry->d_flags |= DCACHE_GENOCIDE;
3398 			dentry->d_lockref.count--;
3399 		}
3400 	}
3401 	return D_WALK_CONTINUE;
3402 }
3403 
d_genocide(struct dentry * parent)3404 void d_genocide(struct dentry *parent)
3405 {
3406 	d_walk(parent, parent, d_genocide_kill, NULL);
3407 }
3408 
d_tmpfile(struct dentry * dentry,struct inode * inode)3409 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3410 {
3411 	inode_dec_link_count(inode);
3412 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3413 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3414 		!d_unlinked(dentry));
3415 	spin_lock(&dentry->d_parent->d_lock);
3416 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3417 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3418 				(unsigned long long)inode->i_ino);
3419 	spin_unlock(&dentry->d_lock);
3420 	spin_unlock(&dentry->d_parent->d_lock);
3421 	d_instantiate(dentry, inode);
3422 }
3423 EXPORT_SYMBOL(d_tmpfile);
3424 
3425 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3426 static int __init set_dhash_entries(char *str)
3427 {
3428 	if (!str)
3429 		return 0;
3430 	dhash_entries = simple_strtoul(str, &str, 0);
3431 	return 1;
3432 }
3433 __setup("dhash_entries=", set_dhash_entries);
3434 
dcache_init_early(void)3435 static void __init dcache_init_early(void)
3436 {
3437 	unsigned int loop;
3438 
3439 	/* If hashes are distributed across NUMA nodes, defer
3440 	 * hash allocation until vmalloc space is available.
3441 	 */
3442 	if (hashdist)
3443 		return;
3444 
3445 	dentry_hashtable =
3446 		alloc_large_system_hash("Dentry cache",
3447 					sizeof(struct hlist_bl_head),
3448 					dhash_entries,
3449 					13,
3450 					HASH_EARLY,
3451 					&d_hash_shift,
3452 					&d_hash_mask,
3453 					0,
3454 					0);
3455 
3456 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3457 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3458 }
3459 
dcache_init(void)3460 static void __init dcache_init(void)
3461 {
3462 	unsigned int loop;
3463 
3464 	/*
3465 	 * A constructor could be added for stable state like the lists,
3466 	 * but it is probably not worth it because of the cache nature
3467 	 * of the dcache.
3468 	 */
3469 	dentry_cache = KMEM_CACHE(dentry,
3470 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3471 
3472 	/* Hash may have been set up in dcache_init_early */
3473 	if (!hashdist)
3474 		return;
3475 
3476 	dentry_hashtable =
3477 		alloc_large_system_hash("Dentry cache",
3478 					sizeof(struct hlist_bl_head),
3479 					dhash_entries,
3480 					13,
3481 					0,
3482 					&d_hash_shift,
3483 					&d_hash_mask,
3484 					0,
3485 					0);
3486 
3487 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3488 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3489 }
3490 
3491 /* SLAB cache for __getname() consumers */
3492 struct kmem_cache *names_cachep __read_mostly;
3493 EXPORT_SYMBOL(names_cachep);
3494 
3495 EXPORT_SYMBOL(d_genocide);
3496 
vfs_caches_init_early(void)3497 void __init vfs_caches_init_early(void)
3498 {
3499 	dcache_init_early();
3500 	inode_init_early();
3501 }
3502 
vfs_caches_init(void)3503 void __init vfs_caches_init(void)
3504 {
3505 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3506 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3507 
3508 	dcache_init();
3509 	inode_init();
3510 	files_init();
3511 	files_maxfiles_init();
3512 	mnt_init();
3513 	bdev_cache_init();
3514 	chrdev_init();
3515 }
3516