1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
31
32 unsigned int HPAGE_SHIFT;
33
34 /*
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
40 */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53
54 #define hugepd_none(hpd) ((hpd).pd == 0)
55
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62 /*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 *
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
68 */
pmd_huge(pmd_t pmd)69 int pmd_huge(pmd_t pmd)
70 {
71 /*
72 * leaf pte for huge page, bottom two bits != 00
73 */
74 return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76
pud_huge(pud_t pud)77 int pud_huge(pud_t pud)
78 {
79 /*
80 * leaf pte for huge page, bottom two bits != 00
81 */
82 return ((pud_val(pud) & 0x3) != 0x0);
83 }
84
pgd_huge(pgd_t pgd)85 int pgd_huge(pgd_t pgd)
86 {
87 /*
88 * leaf pte for huge page, bottom two bits != 00
89 */
90 return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92
93 #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_DEBUG_VM)
94 /*
95 * This enables us to catch the wrong page directory format
96 * Moved here so that we can use WARN() in the call.
97 */
hugepd_ok(hugepd_t hpd)98 int hugepd_ok(hugepd_t hpd)
99 {
100 bool is_hugepd;
101
102 /*
103 * We should not find this format in page directory, warn otherwise.
104 */
105 is_hugepd = (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0));
106 WARN(is_hugepd, "Found wrong page directory format\n");
107 return 0;
108 }
109 #endif
110
111 #else
pmd_huge(pmd_t pmd)112 int pmd_huge(pmd_t pmd)
113 {
114 return 0;
115 }
116
pud_huge(pud_t pud)117 int pud_huge(pud_t pud)
118 {
119 return 0;
120 }
121
pgd_huge(pgd_t pgd)122 int pgd_huge(pgd_t pgd)
123 {
124 return 0;
125 }
126 #endif
127
huge_pte_offset(struct mm_struct * mm,unsigned long addr)128 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
129 {
130 /* Only called for hugetlbfs pages, hence can ignore THP */
131 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
132 }
133
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned pdshift,unsigned pshift)134 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
135 unsigned long address, unsigned pdshift, unsigned pshift)
136 {
137 struct kmem_cache *cachep;
138 pte_t *new;
139
140 #ifdef CONFIG_PPC_FSL_BOOK3E
141 int i;
142 int num_hugepd = 1 << (pshift - pdshift);
143 cachep = hugepte_cache;
144 #else
145 cachep = PGT_CACHE(pdshift - pshift);
146 #endif
147
148 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
149
150 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
151 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
152
153 if (! new)
154 return -ENOMEM;
155
156 spin_lock(&mm->page_table_lock);
157 #ifdef CONFIG_PPC_FSL_BOOK3E
158 /*
159 * We have multiple higher-level entries that point to the same
160 * actual pte location. Fill in each as we go and backtrack on error.
161 * We need all of these so the DTLB pgtable walk code can find the
162 * right higher-level entry without knowing if it's a hugepage or not.
163 */
164 for (i = 0; i < num_hugepd; i++, hpdp++) {
165 if (unlikely(!hugepd_none(*hpdp)))
166 break;
167 else
168 /* We use the old format for PPC_FSL_BOOK3E */
169 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
170 }
171 /* If we bailed from the for loop early, an error occurred, clean up */
172 if (i < num_hugepd) {
173 for (i = i - 1 ; i >= 0; i--, hpdp--)
174 hpdp->pd = 0;
175 kmem_cache_free(cachep, new);
176 }
177 #else
178 if (!hugepd_none(*hpdp))
179 kmem_cache_free(cachep, new);
180 else {
181 #ifdef CONFIG_PPC_BOOK3S_64
182 hpdp->pd = (unsigned long)new |
183 (shift_to_mmu_psize(pshift) << 2);
184 #else
185 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
186 #endif
187 }
188 #endif
189 spin_unlock(&mm->page_table_lock);
190 return 0;
191 }
192
193 /*
194 * These macros define how to determine which level of the page table holds
195 * the hpdp.
196 */
197 #ifdef CONFIG_PPC_FSL_BOOK3E
198 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
199 #define HUGEPD_PUD_SHIFT PUD_SHIFT
200 #else
201 #define HUGEPD_PGD_SHIFT PUD_SHIFT
202 #define HUGEPD_PUD_SHIFT PMD_SHIFT
203 #endif
204
205 #ifdef CONFIG_PPC_BOOK3S_64
206 /*
207 * At this point we do the placement change only for BOOK3S 64. This would
208 * possibly work on other subarchs.
209 */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)210 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
211 {
212 pgd_t *pg;
213 pud_t *pu;
214 pmd_t *pm;
215 hugepd_t *hpdp = NULL;
216 unsigned pshift = __ffs(sz);
217 unsigned pdshift = PGDIR_SHIFT;
218
219 addr &= ~(sz-1);
220 pg = pgd_offset(mm, addr);
221
222 if (pshift == PGDIR_SHIFT)
223 /* 16GB huge page */
224 return (pte_t *) pg;
225 else if (pshift > PUD_SHIFT)
226 /*
227 * We need to use hugepd table
228 */
229 hpdp = (hugepd_t *)pg;
230 else {
231 pdshift = PUD_SHIFT;
232 pu = pud_alloc(mm, pg, addr);
233 if (pshift == PUD_SHIFT)
234 return (pte_t *)pu;
235 else if (pshift > PMD_SHIFT)
236 hpdp = (hugepd_t *)pu;
237 else {
238 pdshift = PMD_SHIFT;
239 pm = pmd_alloc(mm, pu, addr);
240 if (pshift == PMD_SHIFT)
241 /* 16MB hugepage */
242 return (pte_t *)pm;
243 else
244 hpdp = (hugepd_t *)pm;
245 }
246 }
247 if (!hpdp)
248 return NULL;
249
250 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
251
252 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
253 return NULL;
254
255 return hugepte_offset(*hpdp, addr, pdshift);
256 }
257
258 #else
259
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)260 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
261 {
262 pgd_t *pg;
263 pud_t *pu;
264 pmd_t *pm;
265 hugepd_t *hpdp = NULL;
266 unsigned pshift = __ffs(sz);
267 unsigned pdshift = PGDIR_SHIFT;
268
269 addr &= ~(sz-1);
270
271 pg = pgd_offset(mm, addr);
272
273 if (pshift >= HUGEPD_PGD_SHIFT) {
274 hpdp = (hugepd_t *)pg;
275 } else {
276 pdshift = PUD_SHIFT;
277 pu = pud_alloc(mm, pg, addr);
278 if (pshift >= HUGEPD_PUD_SHIFT) {
279 hpdp = (hugepd_t *)pu;
280 } else {
281 pdshift = PMD_SHIFT;
282 pm = pmd_alloc(mm, pu, addr);
283 hpdp = (hugepd_t *)pm;
284 }
285 }
286
287 if (!hpdp)
288 return NULL;
289
290 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
291
292 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
293 return NULL;
294
295 return hugepte_offset(*hpdp, addr, pdshift);
296 }
297 #endif
298
299 #ifdef CONFIG_PPC_FSL_BOOK3E
300 /* Build list of addresses of gigantic pages. This function is used in early
301 * boot before the buddy allocator is setup.
302 */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)303 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
304 {
305 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
306 int i;
307
308 if (addr == 0)
309 return;
310
311 gpage_freearray[idx].nr_gpages = number_of_pages;
312
313 for (i = 0; i < number_of_pages; i++) {
314 gpage_freearray[idx].gpage_list[i] = addr;
315 addr += page_size;
316 }
317 }
318
319 /*
320 * Moves the gigantic page addresses from the temporary list to the
321 * huge_boot_pages list.
322 */
alloc_bootmem_huge_page(struct hstate * hstate)323 int alloc_bootmem_huge_page(struct hstate *hstate)
324 {
325 struct huge_bootmem_page *m;
326 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
327 int nr_gpages = gpage_freearray[idx].nr_gpages;
328
329 if (nr_gpages == 0)
330 return 0;
331
332 #ifdef CONFIG_HIGHMEM
333 /*
334 * If gpages can be in highmem we can't use the trick of storing the
335 * data structure in the page; allocate space for this
336 */
337 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
338 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
339 #else
340 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
341 #endif
342
343 list_add(&m->list, &huge_boot_pages);
344 gpage_freearray[idx].nr_gpages = nr_gpages;
345 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
346 m->hstate = hstate;
347
348 return 1;
349 }
350 /*
351 * Scan the command line hugepagesz= options for gigantic pages; store those in
352 * a list that we use to allocate the memory once all options are parsed.
353 */
354
355 unsigned long gpage_npages[MMU_PAGE_COUNT];
356
do_gpage_early_setup(char * param,char * val,const char * unused,void * arg)357 static int __init do_gpage_early_setup(char *param, char *val,
358 const char *unused, void *arg)
359 {
360 static phys_addr_t size;
361 unsigned long npages;
362
363 /*
364 * The hugepagesz and hugepages cmdline options are interleaved. We
365 * use the size variable to keep track of whether or not this was done
366 * properly and skip over instances where it is incorrect. Other
367 * command-line parsing code will issue warnings, so we don't need to.
368 *
369 */
370 if ((strcmp(param, "default_hugepagesz") == 0) ||
371 (strcmp(param, "hugepagesz") == 0)) {
372 size = memparse(val, NULL);
373 } else if (strcmp(param, "hugepages") == 0) {
374 if (size != 0) {
375 if (sscanf(val, "%lu", &npages) <= 0)
376 npages = 0;
377 if (npages > MAX_NUMBER_GPAGES) {
378 pr_warn("MMU: %lu pages requested for page "
379 "size %llu KB, limiting to "
380 __stringify(MAX_NUMBER_GPAGES) "\n",
381 npages, size / 1024);
382 npages = MAX_NUMBER_GPAGES;
383 }
384 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
385 size = 0;
386 }
387 }
388 return 0;
389 }
390
391
392 /*
393 * This function allocates physical space for pages that are larger than the
394 * buddy allocator can handle. We want to allocate these in highmem because
395 * the amount of lowmem is limited. This means that this function MUST be
396 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
397 * allocate to grab highmem.
398 */
reserve_hugetlb_gpages(void)399 void __init reserve_hugetlb_gpages(void)
400 {
401 static __initdata char cmdline[COMMAND_LINE_SIZE];
402 phys_addr_t size, base;
403 int i;
404
405 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
406 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
407 NULL, &do_gpage_early_setup);
408
409 /*
410 * Walk gpage list in reverse, allocating larger page sizes first.
411 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
412 * When we reach the point in the list where pages are no longer
413 * considered gpages, we're done.
414 */
415 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
416 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
417 continue;
418 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
419 break;
420
421 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
422 base = memblock_alloc_base(size * gpage_npages[i], size,
423 MEMBLOCK_ALLOC_ANYWHERE);
424 add_gpage(base, size, gpage_npages[i]);
425 }
426 }
427
428 #else /* !PPC_FSL_BOOK3E */
429
430 /* Build list of addresses of gigantic pages. This function is used in early
431 * boot before the buddy allocator is setup.
432 */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)433 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
434 {
435 if (!addr)
436 return;
437 while (number_of_pages > 0) {
438 gpage_freearray[nr_gpages] = addr;
439 nr_gpages++;
440 number_of_pages--;
441 addr += page_size;
442 }
443 }
444
445 /* Moves the gigantic page addresses from the temporary list to the
446 * huge_boot_pages list.
447 */
alloc_bootmem_huge_page(struct hstate * hstate)448 int alloc_bootmem_huge_page(struct hstate *hstate)
449 {
450 struct huge_bootmem_page *m;
451 if (nr_gpages == 0)
452 return 0;
453 m = phys_to_virt(gpage_freearray[--nr_gpages]);
454 gpage_freearray[nr_gpages] = 0;
455 list_add(&m->list, &huge_boot_pages);
456 m->hstate = hstate;
457 return 1;
458 }
459 #endif
460
461 #ifdef CONFIG_PPC_FSL_BOOK3E
462 #define HUGEPD_FREELIST_SIZE \
463 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
464
465 struct hugepd_freelist {
466 struct rcu_head rcu;
467 unsigned int index;
468 void *ptes[0];
469 };
470
471 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
472
hugepd_free_rcu_callback(struct rcu_head * head)473 static void hugepd_free_rcu_callback(struct rcu_head *head)
474 {
475 struct hugepd_freelist *batch =
476 container_of(head, struct hugepd_freelist, rcu);
477 unsigned int i;
478
479 for (i = 0; i < batch->index; i++)
480 kmem_cache_free(hugepte_cache, batch->ptes[i]);
481
482 free_page((unsigned long)batch);
483 }
484
hugepd_free(struct mmu_gather * tlb,void * hugepte)485 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
486 {
487 struct hugepd_freelist **batchp;
488
489 batchp = &get_cpu_var(hugepd_freelist_cur);
490
491 if (atomic_read(&tlb->mm->mm_users) < 2 ||
492 cpumask_equal(mm_cpumask(tlb->mm),
493 cpumask_of(smp_processor_id()))) {
494 kmem_cache_free(hugepte_cache, hugepte);
495 put_cpu_var(hugepd_freelist_cur);
496 return;
497 }
498
499 if (*batchp == NULL) {
500 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
501 (*batchp)->index = 0;
502 }
503
504 (*batchp)->ptes[(*batchp)->index++] = hugepte;
505 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
506 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
507 *batchp = NULL;
508 }
509 put_cpu_var(hugepd_freelist_cur);
510 }
511 #endif
512
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)513 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
514 unsigned long start, unsigned long end,
515 unsigned long floor, unsigned long ceiling)
516 {
517 pte_t *hugepte = hugepd_page(*hpdp);
518 int i;
519
520 unsigned long pdmask = ~((1UL << pdshift) - 1);
521 unsigned int num_hugepd = 1;
522
523 #ifdef CONFIG_PPC_FSL_BOOK3E
524 /* Note: On fsl the hpdp may be the first of several */
525 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
526 #else
527 unsigned int shift = hugepd_shift(*hpdp);
528 #endif
529
530 start &= pdmask;
531 if (start < floor)
532 return;
533 if (ceiling) {
534 ceiling &= pdmask;
535 if (! ceiling)
536 return;
537 }
538 if (end - 1 > ceiling - 1)
539 return;
540
541 for (i = 0; i < num_hugepd; i++, hpdp++)
542 hpdp->pd = 0;
543
544 #ifdef CONFIG_PPC_FSL_BOOK3E
545 hugepd_free(tlb, hugepte);
546 #else
547 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
548 #endif
549 }
550
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)551 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
552 unsigned long addr, unsigned long end,
553 unsigned long floor, unsigned long ceiling)
554 {
555 pmd_t *pmd;
556 unsigned long next;
557 unsigned long start;
558
559 start = addr;
560 do {
561 pmd = pmd_offset(pud, addr);
562 next = pmd_addr_end(addr, end);
563 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
564 /*
565 * if it is not hugepd pointer, we should already find
566 * it cleared.
567 */
568 WARN_ON(!pmd_none_or_clear_bad(pmd));
569 continue;
570 }
571 #ifdef CONFIG_PPC_FSL_BOOK3E
572 /*
573 * Increment next by the size of the huge mapping since
574 * there may be more than one entry at this level for a
575 * single hugepage, but all of them point to
576 * the same kmem cache that holds the hugepte.
577 */
578 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
579 #endif
580 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
581 addr, next, floor, ceiling);
582 } while (addr = next, addr != end);
583
584 start &= PUD_MASK;
585 if (start < floor)
586 return;
587 if (ceiling) {
588 ceiling &= PUD_MASK;
589 if (!ceiling)
590 return;
591 }
592 if (end - 1 > ceiling - 1)
593 return;
594
595 pmd = pmd_offset(pud, start);
596 pud_clear(pud);
597 pmd_free_tlb(tlb, pmd, start);
598 mm_dec_nr_pmds(tlb->mm);
599 }
600
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)601 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
602 unsigned long addr, unsigned long end,
603 unsigned long floor, unsigned long ceiling)
604 {
605 pud_t *pud;
606 unsigned long next;
607 unsigned long start;
608
609 start = addr;
610 do {
611 pud = pud_offset(pgd, addr);
612 next = pud_addr_end(addr, end);
613 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
614 if (pud_none_or_clear_bad(pud))
615 continue;
616 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
617 ceiling);
618 } else {
619 #ifdef CONFIG_PPC_FSL_BOOK3E
620 /*
621 * Increment next by the size of the huge mapping since
622 * there may be more than one entry at this level for a
623 * single hugepage, but all of them point to
624 * the same kmem cache that holds the hugepte.
625 */
626 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
627 #endif
628 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
629 addr, next, floor, ceiling);
630 }
631 } while (addr = next, addr != end);
632
633 start &= PGDIR_MASK;
634 if (start < floor)
635 return;
636 if (ceiling) {
637 ceiling &= PGDIR_MASK;
638 if (!ceiling)
639 return;
640 }
641 if (end - 1 > ceiling - 1)
642 return;
643
644 pud = pud_offset(pgd, start);
645 pgd_clear(pgd);
646 pud_free_tlb(tlb, pud, start);
647 }
648
649 /*
650 * This function frees user-level page tables of a process.
651 */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)652 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
653 unsigned long addr, unsigned long end,
654 unsigned long floor, unsigned long ceiling)
655 {
656 pgd_t *pgd;
657 unsigned long next;
658
659 /*
660 * Because there are a number of different possible pagetable
661 * layouts for hugepage ranges, we limit knowledge of how
662 * things should be laid out to the allocation path
663 * (huge_pte_alloc(), above). Everything else works out the
664 * structure as it goes from information in the hugepd
665 * pointers. That means that we can't here use the
666 * optimization used in the normal page free_pgd_range(), of
667 * checking whether we're actually covering a large enough
668 * range to have to do anything at the top level of the walk
669 * instead of at the bottom.
670 *
671 * To make sense of this, you should probably go read the big
672 * block comment at the top of the normal free_pgd_range(),
673 * too.
674 */
675
676 do {
677 next = pgd_addr_end(addr, end);
678 pgd = pgd_offset(tlb->mm, addr);
679 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
680 if (pgd_none_or_clear_bad(pgd))
681 continue;
682 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
683 } else {
684 #ifdef CONFIG_PPC_FSL_BOOK3E
685 /*
686 * Increment next by the size of the huge mapping since
687 * there may be more than one entry at the pgd level
688 * for a single hugepage, but all of them point to the
689 * same kmem cache that holds the hugepte.
690 */
691 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
692 #endif
693 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
694 addr, next, floor, ceiling);
695 }
696 } while (addr = next, addr != end);
697 }
698
699 /*
700 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
701 * To prevent hugepage split, disable irq.
702 */
703 struct page *
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)704 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
705 {
706 bool is_thp;
707 pte_t *ptep, pte;
708 unsigned shift;
709 unsigned long mask, flags;
710 struct page *page = ERR_PTR(-EINVAL);
711
712 local_irq_save(flags);
713 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
714 if (!ptep)
715 goto no_page;
716 pte = READ_ONCE(*ptep);
717 /*
718 * Verify it is a huge page else bail.
719 * Transparent hugepages are handled by generic code. We can skip them
720 * here.
721 */
722 if (!shift || is_thp)
723 goto no_page;
724
725 if (!pte_present(pte)) {
726 page = NULL;
727 goto no_page;
728 }
729 mask = (1UL << shift) - 1;
730 page = pte_page(pte);
731 if (page)
732 page += (address & mask) / PAGE_SIZE;
733
734 no_page:
735 local_irq_restore(flags);
736 return page;
737 }
738
739 struct page *
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int write)740 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
741 pmd_t *pmd, int write)
742 {
743 BUG();
744 return NULL;
745 }
746
747 struct page *
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int write)748 follow_huge_pud(struct mm_struct *mm, unsigned long address,
749 pud_t *pud, int write)
750 {
751 BUG();
752 return NULL;
753 }
754
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)755 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
756 unsigned long sz)
757 {
758 unsigned long __boundary = (addr + sz) & ~(sz-1);
759 return (__boundary - 1 < end - 1) ? __boundary : end;
760 }
761
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned pdshift,unsigned long end,int write,struct page ** pages,int * nr)762 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
763 unsigned long end, int write, struct page **pages, int *nr)
764 {
765 pte_t *ptep;
766 unsigned long sz = 1UL << hugepd_shift(hugepd);
767 unsigned long next;
768
769 ptep = hugepte_offset(hugepd, addr, pdshift);
770 do {
771 next = hugepte_addr_end(addr, end, sz);
772 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
773 return 0;
774 } while (ptep++, addr = next, addr != end);
775
776 return 1;
777 }
778
779 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)780 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
781 unsigned long len, unsigned long pgoff,
782 unsigned long flags)
783 {
784 struct hstate *hstate = hstate_file(file);
785 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
786
787 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
788 }
789 #endif
790
vma_mmu_pagesize(struct vm_area_struct * vma)791 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 {
793 #ifdef CONFIG_PPC_MM_SLICES
794 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
795
796 return 1UL << mmu_psize_to_shift(psize);
797 #else
798 if (!is_vm_hugetlb_page(vma))
799 return PAGE_SIZE;
800
801 return huge_page_size(hstate_vma(vma));
802 #endif
803 }
804
is_power_of_4(unsigned long x)805 static inline bool is_power_of_4(unsigned long x)
806 {
807 if (is_power_of_2(x))
808 return (__ilog2(x) % 2) ? false : true;
809 return false;
810 }
811
add_huge_page_size(unsigned long long size)812 static int __init add_huge_page_size(unsigned long long size)
813 {
814 int shift = __ffs(size);
815 int mmu_psize;
816
817 /* Check that it is a page size supported by the hardware and
818 * that it fits within pagetable and slice limits. */
819 #ifdef CONFIG_PPC_FSL_BOOK3E
820 if ((size < PAGE_SIZE) || !is_power_of_4(size))
821 return -EINVAL;
822 #else
823 if (!is_power_of_2(size)
824 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
825 return -EINVAL;
826 #endif
827
828 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
829 return -EINVAL;
830
831 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
832
833 /* Return if huge page size has already been setup */
834 if (size_to_hstate(size))
835 return 0;
836
837 hugetlb_add_hstate(shift - PAGE_SHIFT);
838
839 return 0;
840 }
841
hugepage_setup_sz(char * str)842 static int __init hugepage_setup_sz(char *str)
843 {
844 unsigned long long size;
845
846 size = memparse(str, &str);
847
848 if (add_huge_page_size(size) != 0)
849 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
850
851 return 1;
852 }
853 __setup("hugepagesz=", hugepage_setup_sz);
854
855 #ifdef CONFIG_PPC_FSL_BOOK3E
856 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)857 static int __init hugetlbpage_init(void)
858 {
859 int psize;
860
861 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
862 unsigned shift;
863
864 if (!mmu_psize_defs[psize].shift)
865 continue;
866
867 shift = mmu_psize_to_shift(psize);
868
869 /* Don't treat normal page sizes as huge... */
870 if (shift != PAGE_SHIFT)
871 if (add_huge_page_size(1ULL << shift) < 0)
872 continue;
873 }
874
875 /*
876 * Create a kmem cache for hugeptes. The bottom bits in the pte have
877 * size information encoded in them, so align them to allow this
878 */
879 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
880 HUGEPD_SHIFT_MASK + 1, 0, NULL);
881 if (hugepte_cache == NULL)
882 panic("%s: Unable to create kmem cache for hugeptes\n",
883 __func__);
884
885 /* Default hpage size = 4M */
886 if (mmu_psize_defs[MMU_PAGE_4M].shift)
887 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
888 else
889 panic("%s: Unable to set default huge page size\n", __func__);
890
891
892 return 0;
893 }
894 #else
hugetlbpage_init(void)895 static int __init hugetlbpage_init(void)
896 {
897 int psize;
898
899 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
900 return -ENODEV;
901
902 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
903 unsigned shift;
904 unsigned pdshift;
905
906 if (!mmu_psize_defs[psize].shift)
907 continue;
908
909 shift = mmu_psize_to_shift(psize);
910
911 if (add_huge_page_size(1ULL << shift) < 0)
912 continue;
913
914 if (shift < PMD_SHIFT)
915 pdshift = PMD_SHIFT;
916 else if (shift < PUD_SHIFT)
917 pdshift = PUD_SHIFT;
918 else
919 pdshift = PGDIR_SHIFT;
920 /*
921 * if we have pdshift and shift value same, we don't
922 * use pgt cache for hugepd.
923 */
924 if (pdshift != shift) {
925 pgtable_cache_add(pdshift - shift, NULL);
926 if (!PGT_CACHE(pdshift - shift))
927 panic("hugetlbpage_init(): could not create "
928 "pgtable cache for %d bit pagesize\n", shift);
929 }
930 }
931
932 /* Set default large page size. Currently, we pick 16M or 1M
933 * depending on what is available
934 */
935 if (mmu_psize_defs[MMU_PAGE_16M].shift)
936 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
937 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
938 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
939
940 return 0;
941 }
942 #endif
943 arch_initcall(hugetlbpage_init);
944
flush_dcache_icache_hugepage(struct page * page)945 void flush_dcache_icache_hugepage(struct page *page)
946 {
947 int i;
948 void *start;
949
950 BUG_ON(!PageCompound(page));
951
952 for (i = 0; i < (1UL << compound_order(page)); i++) {
953 if (!PageHighMem(page)) {
954 __flush_dcache_icache(page_address(page+i));
955 } else {
956 start = kmap_atomic(page+i);
957 __flush_dcache_icache(start);
958 kunmap_atomic(start);
959 }
960 }
961 }
962
963 #endif /* CONFIG_HUGETLB_PAGE */
964
965 /*
966 * We have 4 cases for pgds and pmds:
967 * (1) invalid (all zeroes)
968 * (2) pointer to next table, as normal; bottom 6 bits == 0
969 * (3) leaf pte for huge page, bottom two bits != 00
970 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
971 *
972 * So long as we atomically load page table pointers we are safe against teardown,
973 * we can follow the address down to the the page and take a ref on it.
974 * This function need to be called with interrupts disabled. We use this variant
975 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
976 */
977
__find_linux_pte_or_hugepte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * shift)978 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
979 bool *is_thp, unsigned *shift)
980 {
981 pgd_t pgd, *pgdp;
982 pud_t pud, *pudp;
983 pmd_t pmd, *pmdp;
984 pte_t *ret_pte;
985 hugepd_t *hpdp = NULL;
986 unsigned pdshift = PGDIR_SHIFT;
987
988 if (shift)
989 *shift = 0;
990
991 if (is_thp)
992 *is_thp = false;
993
994 pgdp = pgdir + pgd_index(ea);
995 pgd = READ_ONCE(*pgdp);
996 /*
997 * Always operate on the local stack value. This make sure the
998 * value don't get updated by a parallel THP split/collapse,
999 * page fault or a page unmap. The return pte_t * is still not
1000 * stable. So should be checked there for above conditions.
1001 */
1002 if (pgd_none(pgd))
1003 return NULL;
1004 else if (pgd_huge(pgd)) {
1005 ret_pte = (pte_t *) pgdp;
1006 goto out;
1007 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
1008 hpdp = (hugepd_t *)&pgd;
1009 else {
1010 /*
1011 * Even if we end up with an unmap, the pgtable will not
1012 * be freed, because we do an rcu free and here we are
1013 * irq disabled
1014 */
1015 pdshift = PUD_SHIFT;
1016 pudp = pud_offset(&pgd, ea);
1017 pud = READ_ONCE(*pudp);
1018
1019 if (pud_none(pud))
1020 return NULL;
1021 else if (pud_huge(pud)) {
1022 ret_pte = (pte_t *) pudp;
1023 goto out;
1024 } else if (is_hugepd(__hugepd(pud_val(pud))))
1025 hpdp = (hugepd_t *)&pud;
1026 else {
1027 pdshift = PMD_SHIFT;
1028 pmdp = pmd_offset(&pud, ea);
1029 pmd = READ_ONCE(*pmdp);
1030 /*
1031 * A hugepage collapse is captured by pmd_none, because
1032 * it mark the pmd none and do a hpte invalidate.
1033 *
1034 * We don't worry about pmd_trans_splitting here, The
1035 * caller if it needs to handle the splitting case
1036 * should check for that.
1037 */
1038 if (pmd_none(pmd))
1039 return NULL;
1040
1041 if (pmd_trans_huge(pmd)) {
1042 if (is_thp)
1043 *is_thp = true;
1044 ret_pte = (pte_t *) pmdp;
1045 goto out;
1046 }
1047
1048 if (pmd_huge(pmd)) {
1049 ret_pte = (pte_t *) pmdp;
1050 goto out;
1051 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1052 hpdp = (hugepd_t *)&pmd;
1053 else
1054 return pte_offset_kernel(&pmd, ea);
1055 }
1056 }
1057 if (!hpdp)
1058 return NULL;
1059
1060 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1061 pdshift = hugepd_shift(*hpdp);
1062 out:
1063 if (shift)
1064 *shift = pdshift;
1065 return ret_pte;
1066 }
1067 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1068
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1069 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1070 unsigned long end, int write, struct page **pages, int *nr)
1071 {
1072 unsigned long mask;
1073 unsigned long pte_end;
1074 struct page *head, *page, *tail;
1075 pte_t pte;
1076 int refs;
1077
1078 pte_end = (addr + sz) & ~(sz-1);
1079 if (pte_end < end)
1080 end = pte_end;
1081
1082 pte = READ_ONCE(*ptep);
1083 mask = _PAGE_PRESENT | _PAGE_USER;
1084 if (write)
1085 mask |= _PAGE_RW;
1086
1087 if ((pte_val(pte) & mask) != mask)
1088 return 0;
1089
1090 /* hugepages are never "special" */
1091 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1092
1093 refs = 0;
1094 head = pte_page(pte);
1095
1096 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1097 tail = page;
1098 do {
1099 VM_BUG_ON(compound_head(page) != head);
1100 pages[*nr] = page;
1101 (*nr)++;
1102 page++;
1103 refs++;
1104 } while (addr += PAGE_SIZE, addr != end);
1105
1106 if (!page_cache_add_speculative(head, refs)) {
1107 *nr -= refs;
1108 return 0;
1109 }
1110
1111 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1112 /* Could be optimized better */
1113 *nr -= refs;
1114 while (refs--)
1115 put_page(head);
1116 return 0;
1117 }
1118
1119 /*
1120 * Any tail page need their mapcount reference taken before we
1121 * return.
1122 */
1123 while (refs--) {
1124 if (PageTail(tail))
1125 get_huge_page_tail(tail);
1126 tail++;
1127 }
1128
1129 return 1;
1130 }
1131