• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58  * At this point we do the placement change only for BOOK3S 64. This would
59  * possibly work on other subarchs.
60  */
61 
62 /*
63  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65  *
66  * Defined in such a way that we can optimize away code block at build time
67  * if CONFIG_HUGETLB_PAGE=n.
68  */
pmd_huge(pmd_t pmd)69 int pmd_huge(pmd_t pmd)
70 {
71 	/*
72 	 * leaf pte for huge page, bottom two bits != 00
73 	 */
74 	return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76 
pud_huge(pud_t pud)77 int pud_huge(pud_t pud)
78 {
79 	/*
80 	 * leaf pte for huge page, bottom two bits != 00
81 	 */
82 	return ((pud_val(pud) & 0x3) != 0x0);
83 }
84 
pgd_huge(pgd_t pgd)85 int pgd_huge(pgd_t pgd)
86 {
87 	/*
88 	 * leaf pte for huge page, bottom two bits != 00
89 	 */
90 	return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 
93 #if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_DEBUG_VM)
94 /*
95  * This enables us to catch the wrong page directory format
96  * Moved here so that we can use WARN() in the call.
97  */
hugepd_ok(hugepd_t hpd)98 int hugepd_ok(hugepd_t hpd)
99 {
100 	bool is_hugepd;
101 
102 	/*
103 	 * We should not find this format in page directory, warn otherwise.
104 	 */
105 	is_hugepd = (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0));
106 	WARN(is_hugepd, "Found wrong page directory format\n");
107 	return 0;
108 }
109 #endif
110 
111 #else
pmd_huge(pmd_t pmd)112 int pmd_huge(pmd_t pmd)
113 {
114 	return 0;
115 }
116 
pud_huge(pud_t pud)117 int pud_huge(pud_t pud)
118 {
119 	return 0;
120 }
121 
pgd_huge(pgd_t pgd)122 int pgd_huge(pgd_t pgd)
123 {
124 	return 0;
125 }
126 #endif
127 
huge_pte_offset(struct mm_struct * mm,unsigned long addr)128 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
129 {
130 	/* Only called for hugetlbfs pages, hence can ignore THP */
131 	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
132 }
133 
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned pdshift,unsigned pshift)134 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
135 			   unsigned long address, unsigned pdshift, unsigned pshift)
136 {
137 	struct kmem_cache *cachep;
138 	pte_t *new;
139 
140 #ifdef CONFIG_PPC_FSL_BOOK3E
141 	int i;
142 	int num_hugepd = 1 << (pshift - pdshift);
143 	cachep = hugepte_cache;
144 #else
145 	cachep = PGT_CACHE(pdshift - pshift);
146 #endif
147 
148 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
149 
150 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
151 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
152 
153 	if (! new)
154 		return -ENOMEM;
155 
156 	spin_lock(&mm->page_table_lock);
157 #ifdef CONFIG_PPC_FSL_BOOK3E
158 	/*
159 	 * We have multiple higher-level entries that point to the same
160 	 * actual pte location.  Fill in each as we go and backtrack on error.
161 	 * We need all of these so the DTLB pgtable walk code can find the
162 	 * right higher-level entry without knowing if it's a hugepage or not.
163 	 */
164 	for (i = 0; i < num_hugepd; i++, hpdp++) {
165 		if (unlikely(!hugepd_none(*hpdp)))
166 			break;
167 		else
168 			/* We use the old format for PPC_FSL_BOOK3E */
169 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
170 	}
171 	/* If we bailed from the for loop early, an error occurred, clean up */
172 	if (i < num_hugepd) {
173 		for (i = i - 1 ; i >= 0; i--, hpdp--)
174 			hpdp->pd = 0;
175 		kmem_cache_free(cachep, new);
176 	}
177 #else
178 	if (!hugepd_none(*hpdp))
179 		kmem_cache_free(cachep, new);
180 	else {
181 #ifdef CONFIG_PPC_BOOK3S_64
182 		hpdp->pd = (unsigned long)new |
183 			    (shift_to_mmu_psize(pshift) << 2);
184 #else
185 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
186 #endif
187 	}
188 #endif
189 	spin_unlock(&mm->page_table_lock);
190 	return 0;
191 }
192 
193 /*
194  * These macros define how to determine which level of the page table holds
195  * the hpdp.
196  */
197 #ifdef CONFIG_PPC_FSL_BOOK3E
198 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
199 #define HUGEPD_PUD_SHIFT PUD_SHIFT
200 #else
201 #define HUGEPD_PGD_SHIFT PUD_SHIFT
202 #define HUGEPD_PUD_SHIFT PMD_SHIFT
203 #endif
204 
205 #ifdef CONFIG_PPC_BOOK3S_64
206 /*
207  * At this point we do the placement change only for BOOK3S 64. This would
208  * possibly work on other subarchs.
209  */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)210 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
211 {
212 	pgd_t *pg;
213 	pud_t *pu;
214 	pmd_t *pm;
215 	hugepd_t *hpdp = NULL;
216 	unsigned pshift = __ffs(sz);
217 	unsigned pdshift = PGDIR_SHIFT;
218 
219 	addr &= ~(sz-1);
220 	pg = pgd_offset(mm, addr);
221 
222 	if (pshift == PGDIR_SHIFT)
223 		/* 16GB huge page */
224 		return (pte_t *) pg;
225 	else if (pshift > PUD_SHIFT)
226 		/*
227 		 * We need to use hugepd table
228 		 */
229 		hpdp = (hugepd_t *)pg;
230 	else {
231 		pdshift = PUD_SHIFT;
232 		pu = pud_alloc(mm, pg, addr);
233 		if (pshift == PUD_SHIFT)
234 			return (pte_t *)pu;
235 		else if (pshift > PMD_SHIFT)
236 			hpdp = (hugepd_t *)pu;
237 		else {
238 			pdshift = PMD_SHIFT;
239 			pm = pmd_alloc(mm, pu, addr);
240 			if (pshift == PMD_SHIFT)
241 				/* 16MB hugepage */
242 				return (pte_t *)pm;
243 			else
244 				hpdp = (hugepd_t *)pm;
245 		}
246 	}
247 	if (!hpdp)
248 		return NULL;
249 
250 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
251 
252 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
253 		return NULL;
254 
255 	return hugepte_offset(*hpdp, addr, pdshift);
256 }
257 
258 #else
259 
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)260 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
261 {
262 	pgd_t *pg;
263 	pud_t *pu;
264 	pmd_t *pm;
265 	hugepd_t *hpdp = NULL;
266 	unsigned pshift = __ffs(sz);
267 	unsigned pdshift = PGDIR_SHIFT;
268 
269 	addr &= ~(sz-1);
270 
271 	pg = pgd_offset(mm, addr);
272 
273 	if (pshift >= HUGEPD_PGD_SHIFT) {
274 		hpdp = (hugepd_t *)pg;
275 	} else {
276 		pdshift = PUD_SHIFT;
277 		pu = pud_alloc(mm, pg, addr);
278 		if (pshift >= HUGEPD_PUD_SHIFT) {
279 			hpdp = (hugepd_t *)pu;
280 		} else {
281 			pdshift = PMD_SHIFT;
282 			pm = pmd_alloc(mm, pu, addr);
283 			hpdp = (hugepd_t *)pm;
284 		}
285 	}
286 
287 	if (!hpdp)
288 		return NULL;
289 
290 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
291 
292 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
293 		return NULL;
294 
295 	return hugepte_offset(*hpdp, addr, pdshift);
296 }
297 #endif
298 
299 #ifdef CONFIG_PPC_FSL_BOOK3E
300 /* Build list of addresses of gigantic pages.  This function is used in early
301  * boot before the buddy allocator is setup.
302  */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)303 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
304 {
305 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
306 	int i;
307 
308 	if (addr == 0)
309 		return;
310 
311 	gpage_freearray[idx].nr_gpages = number_of_pages;
312 
313 	for (i = 0; i < number_of_pages; i++) {
314 		gpage_freearray[idx].gpage_list[i] = addr;
315 		addr += page_size;
316 	}
317 }
318 
319 /*
320  * Moves the gigantic page addresses from the temporary list to the
321  * huge_boot_pages list.
322  */
alloc_bootmem_huge_page(struct hstate * hstate)323 int alloc_bootmem_huge_page(struct hstate *hstate)
324 {
325 	struct huge_bootmem_page *m;
326 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
327 	int nr_gpages = gpage_freearray[idx].nr_gpages;
328 
329 	if (nr_gpages == 0)
330 		return 0;
331 
332 #ifdef CONFIG_HIGHMEM
333 	/*
334 	 * If gpages can be in highmem we can't use the trick of storing the
335 	 * data structure in the page; allocate space for this
336 	 */
337 	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
338 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
339 #else
340 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
341 #endif
342 
343 	list_add(&m->list, &huge_boot_pages);
344 	gpage_freearray[idx].nr_gpages = nr_gpages;
345 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
346 	m->hstate = hstate;
347 
348 	return 1;
349 }
350 /*
351  * Scan the command line hugepagesz= options for gigantic pages; store those in
352  * a list that we use to allocate the memory once all options are parsed.
353  */
354 
355 unsigned long gpage_npages[MMU_PAGE_COUNT];
356 
do_gpage_early_setup(char * param,char * val,const char * unused,void * arg)357 static int __init do_gpage_early_setup(char *param, char *val,
358 				       const char *unused, void *arg)
359 {
360 	static phys_addr_t size;
361 	unsigned long npages;
362 
363 	/*
364 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
365 	 * use the size variable to keep track of whether or not this was done
366 	 * properly and skip over instances where it is incorrect.  Other
367 	 * command-line parsing code will issue warnings, so we don't need to.
368 	 *
369 	 */
370 	if ((strcmp(param, "default_hugepagesz") == 0) ||
371 	    (strcmp(param, "hugepagesz") == 0)) {
372 		size = memparse(val, NULL);
373 	} else if (strcmp(param, "hugepages") == 0) {
374 		if (size != 0) {
375 			if (sscanf(val, "%lu", &npages) <= 0)
376 				npages = 0;
377 			if (npages > MAX_NUMBER_GPAGES) {
378 				pr_warn("MMU: %lu pages requested for page "
379 					"size %llu KB, limiting to "
380 					__stringify(MAX_NUMBER_GPAGES) "\n",
381 					npages, size / 1024);
382 				npages = MAX_NUMBER_GPAGES;
383 			}
384 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
385 			size = 0;
386 		}
387 	}
388 	return 0;
389 }
390 
391 
392 /*
393  * This function allocates physical space for pages that are larger than the
394  * buddy allocator can handle.  We want to allocate these in highmem because
395  * the amount of lowmem is limited.  This means that this function MUST be
396  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
397  * allocate to grab highmem.
398  */
reserve_hugetlb_gpages(void)399 void __init reserve_hugetlb_gpages(void)
400 {
401 	static __initdata char cmdline[COMMAND_LINE_SIZE];
402 	phys_addr_t size, base;
403 	int i;
404 
405 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
406 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
407 			NULL, &do_gpage_early_setup);
408 
409 	/*
410 	 * Walk gpage list in reverse, allocating larger page sizes first.
411 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
412 	 * When we reach the point in the list where pages are no longer
413 	 * considered gpages, we're done.
414 	 */
415 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
416 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
417 			continue;
418 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
419 			break;
420 
421 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
422 		base = memblock_alloc_base(size * gpage_npages[i], size,
423 					   MEMBLOCK_ALLOC_ANYWHERE);
424 		add_gpage(base, size, gpage_npages[i]);
425 	}
426 }
427 
428 #else /* !PPC_FSL_BOOK3E */
429 
430 /* Build list of addresses of gigantic pages.  This function is used in early
431  * boot before the buddy allocator is setup.
432  */
add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)433 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
434 {
435 	if (!addr)
436 		return;
437 	while (number_of_pages > 0) {
438 		gpage_freearray[nr_gpages] = addr;
439 		nr_gpages++;
440 		number_of_pages--;
441 		addr += page_size;
442 	}
443 }
444 
445 /* Moves the gigantic page addresses from the temporary list to the
446  * huge_boot_pages list.
447  */
alloc_bootmem_huge_page(struct hstate * hstate)448 int alloc_bootmem_huge_page(struct hstate *hstate)
449 {
450 	struct huge_bootmem_page *m;
451 	if (nr_gpages == 0)
452 		return 0;
453 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
454 	gpage_freearray[nr_gpages] = 0;
455 	list_add(&m->list, &huge_boot_pages);
456 	m->hstate = hstate;
457 	return 1;
458 }
459 #endif
460 
461 #ifdef CONFIG_PPC_FSL_BOOK3E
462 #define HUGEPD_FREELIST_SIZE \
463 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
464 
465 struct hugepd_freelist {
466 	struct rcu_head	rcu;
467 	unsigned int index;
468 	void *ptes[0];
469 };
470 
471 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
472 
hugepd_free_rcu_callback(struct rcu_head * head)473 static void hugepd_free_rcu_callback(struct rcu_head *head)
474 {
475 	struct hugepd_freelist *batch =
476 		container_of(head, struct hugepd_freelist, rcu);
477 	unsigned int i;
478 
479 	for (i = 0; i < batch->index; i++)
480 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
481 
482 	free_page((unsigned long)batch);
483 }
484 
hugepd_free(struct mmu_gather * tlb,void * hugepte)485 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
486 {
487 	struct hugepd_freelist **batchp;
488 
489 	batchp = &get_cpu_var(hugepd_freelist_cur);
490 
491 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
492 	    cpumask_equal(mm_cpumask(tlb->mm),
493 			  cpumask_of(smp_processor_id()))) {
494 		kmem_cache_free(hugepte_cache, hugepte);
495 		put_cpu_var(hugepd_freelist_cur);
496 		return;
497 	}
498 
499 	if (*batchp == NULL) {
500 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
501 		(*batchp)->index = 0;
502 	}
503 
504 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
505 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
506 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
507 		*batchp = NULL;
508 	}
509 	put_cpu_var(hugepd_freelist_cur);
510 }
511 #endif
512 
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)513 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
514 			      unsigned long start, unsigned long end,
515 			      unsigned long floor, unsigned long ceiling)
516 {
517 	pte_t *hugepte = hugepd_page(*hpdp);
518 	int i;
519 
520 	unsigned long pdmask = ~((1UL << pdshift) - 1);
521 	unsigned int num_hugepd = 1;
522 
523 #ifdef CONFIG_PPC_FSL_BOOK3E
524 	/* Note: On fsl the hpdp may be the first of several */
525 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
526 #else
527 	unsigned int shift = hugepd_shift(*hpdp);
528 #endif
529 
530 	start &= pdmask;
531 	if (start < floor)
532 		return;
533 	if (ceiling) {
534 		ceiling &= pdmask;
535 		if (! ceiling)
536 			return;
537 	}
538 	if (end - 1 > ceiling - 1)
539 		return;
540 
541 	for (i = 0; i < num_hugepd; i++, hpdp++)
542 		hpdp->pd = 0;
543 
544 #ifdef CONFIG_PPC_FSL_BOOK3E
545 	hugepd_free(tlb, hugepte);
546 #else
547 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
548 #endif
549 }
550 
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)551 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
552 				   unsigned long addr, unsigned long end,
553 				   unsigned long floor, unsigned long ceiling)
554 {
555 	pmd_t *pmd;
556 	unsigned long next;
557 	unsigned long start;
558 
559 	start = addr;
560 	do {
561 		pmd = pmd_offset(pud, addr);
562 		next = pmd_addr_end(addr, end);
563 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
564 			/*
565 			 * if it is not hugepd pointer, we should already find
566 			 * it cleared.
567 			 */
568 			WARN_ON(!pmd_none_or_clear_bad(pmd));
569 			continue;
570 		}
571 #ifdef CONFIG_PPC_FSL_BOOK3E
572 		/*
573 		 * Increment next by the size of the huge mapping since
574 		 * there may be more than one entry at this level for a
575 		 * single hugepage, but all of them point to
576 		 * the same kmem cache that holds the hugepte.
577 		 */
578 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
579 #endif
580 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
581 				  addr, next, floor, ceiling);
582 	} while (addr = next, addr != end);
583 
584 	start &= PUD_MASK;
585 	if (start < floor)
586 		return;
587 	if (ceiling) {
588 		ceiling &= PUD_MASK;
589 		if (!ceiling)
590 			return;
591 	}
592 	if (end - 1 > ceiling - 1)
593 		return;
594 
595 	pmd = pmd_offset(pud, start);
596 	pud_clear(pud);
597 	pmd_free_tlb(tlb, pmd, start);
598 	mm_dec_nr_pmds(tlb->mm);
599 }
600 
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)601 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
602 				   unsigned long addr, unsigned long end,
603 				   unsigned long floor, unsigned long ceiling)
604 {
605 	pud_t *pud;
606 	unsigned long next;
607 	unsigned long start;
608 
609 	start = addr;
610 	do {
611 		pud = pud_offset(pgd, addr);
612 		next = pud_addr_end(addr, end);
613 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
614 			if (pud_none_or_clear_bad(pud))
615 				continue;
616 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
617 					       ceiling);
618 		} else {
619 #ifdef CONFIG_PPC_FSL_BOOK3E
620 			/*
621 			 * Increment next by the size of the huge mapping since
622 			 * there may be more than one entry at this level for a
623 			 * single hugepage, but all of them point to
624 			 * the same kmem cache that holds the hugepte.
625 			 */
626 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
627 #endif
628 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
629 					  addr, next, floor, ceiling);
630 		}
631 	} while (addr = next, addr != end);
632 
633 	start &= PGDIR_MASK;
634 	if (start < floor)
635 		return;
636 	if (ceiling) {
637 		ceiling &= PGDIR_MASK;
638 		if (!ceiling)
639 			return;
640 	}
641 	if (end - 1 > ceiling - 1)
642 		return;
643 
644 	pud = pud_offset(pgd, start);
645 	pgd_clear(pgd);
646 	pud_free_tlb(tlb, pud, start);
647 }
648 
649 /*
650  * This function frees user-level page tables of a process.
651  */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)652 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
653 			    unsigned long addr, unsigned long end,
654 			    unsigned long floor, unsigned long ceiling)
655 {
656 	pgd_t *pgd;
657 	unsigned long next;
658 
659 	/*
660 	 * Because there are a number of different possible pagetable
661 	 * layouts for hugepage ranges, we limit knowledge of how
662 	 * things should be laid out to the allocation path
663 	 * (huge_pte_alloc(), above).  Everything else works out the
664 	 * structure as it goes from information in the hugepd
665 	 * pointers.  That means that we can't here use the
666 	 * optimization used in the normal page free_pgd_range(), of
667 	 * checking whether we're actually covering a large enough
668 	 * range to have to do anything at the top level of the walk
669 	 * instead of at the bottom.
670 	 *
671 	 * To make sense of this, you should probably go read the big
672 	 * block comment at the top of the normal free_pgd_range(),
673 	 * too.
674 	 */
675 
676 	do {
677 		next = pgd_addr_end(addr, end);
678 		pgd = pgd_offset(tlb->mm, addr);
679 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
680 			if (pgd_none_or_clear_bad(pgd))
681 				continue;
682 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
683 		} else {
684 #ifdef CONFIG_PPC_FSL_BOOK3E
685 			/*
686 			 * Increment next by the size of the huge mapping since
687 			 * there may be more than one entry at the pgd level
688 			 * for a single hugepage, but all of them point to the
689 			 * same kmem cache that holds the hugepte.
690 			 */
691 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
692 #endif
693 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
694 					  addr, next, floor, ceiling);
695 		}
696 	} while (addr = next, addr != end);
697 }
698 
699 /*
700  * We are holding mmap_sem, so a parallel huge page collapse cannot run.
701  * To prevent hugepage split, disable irq.
702  */
703 struct page *
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)704 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
705 {
706 	bool is_thp;
707 	pte_t *ptep, pte;
708 	unsigned shift;
709 	unsigned long mask, flags;
710 	struct page *page = ERR_PTR(-EINVAL);
711 
712 	local_irq_save(flags);
713 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
714 	if (!ptep)
715 		goto no_page;
716 	pte = READ_ONCE(*ptep);
717 	/*
718 	 * Verify it is a huge page else bail.
719 	 * Transparent hugepages are handled by generic code. We can skip them
720 	 * here.
721 	 */
722 	if (!shift || is_thp)
723 		goto no_page;
724 
725 	if (!pte_present(pte)) {
726 		page = NULL;
727 		goto no_page;
728 	}
729 	mask = (1UL << shift) - 1;
730 	page = pte_page(pte);
731 	if (page)
732 		page += (address & mask) / PAGE_SIZE;
733 
734 no_page:
735 	local_irq_restore(flags);
736 	return page;
737 }
738 
739 struct page *
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int write)740 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
741 		pmd_t *pmd, int write)
742 {
743 	BUG();
744 	return NULL;
745 }
746 
747 struct page *
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int write)748 follow_huge_pud(struct mm_struct *mm, unsigned long address,
749 		pud_t *pud, int write)
750 {
751 	BUG();
752 	return NULL;
753 }
754 
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)755 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
756 				      unsigned long sz)
757 {
758 	unsigned long __boundary = (addr + sz) & ~(sz-1);
759 	return (__boundary - 1 < end - 1) ? __boundary : end;
760 }
761 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned pdshift,unsigned long end,int write,struct page ** pages,int * nr)762 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
763 		unsigned long end, int write, struct page **pages, int *nr)
764 {
765 	pte_t *ptep;
766 	unsigned long sz = 1UL << hugepd_shift(hugepd);
767 	unsigned long next;
768 
769 	ptep = hugepte_offset(hugepd, addr, pdshift);
770 	do {
771 		next = hugepte_addr_end(addr, end, sz);
772 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
773 			return 0;
774 	} while (ptep++, addr = next, addr != end);
775 
776 	return 1;
777 }
778 
779 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)780 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
781 					unsigned long len, unsigned long pgoff,
782 					unsigned long flags)
783 {
784 	struct hstate *hstate = hstate_file(file);
785 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
786 
787 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
788 }
789 #endif
790 
vma_mmu_pagesize(struct vm_area_struct * vma)791 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 {
793 #ifdef CONFIG_PPC_MM_SLICES
794 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
795 
796 	return 1UL << mmu_psize_to_shift(psize);
797 #else
798 	if (!is_vm_hugetlb_page(vma))
799 		return PAGE_SIZE;
800 
801 	return huge_page_size(hstate_vma(vma));
802 #endif
803 }
804 
is_power_of_4(unsigned long x)805 static inline bool is_power_of_4(unsigned long x)
806 {
807 	if (is_power_of_2(x))
808 		return (__ilog2(x) % 2) ? false : true;
809 	return false;
810 }
811 
add_huge_page_size(unsigned long long size)812 static int __init add_huge_page_size(unsigned long long size)
813 {
814 	int shift = __ffs(size);
815 	int mmu_psize;
816 
817 	/* Check that it is a page size supported by the hardware and
818 	 * that it fits within pagetable and slice limits. */
819 #ifdef CONFIG_PPC_FSL_BOOK3E
820 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
821 		return -EINVAL;
822 #else
823 	if (!is_power_of_2(size)
824 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
825 		return -EINVAL;
826 #endif
827 
828 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
829 		return -EINVAL;
830 
831 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
832 
833 	/* Return if huge page size has already been setup */
834 	if (size_to_hstate(size))
835 		return 0;
836 
837 	hugetlb_add_hstate(shift - PAGE_SHIFT);
838 
839 	return 0;
840 }
841 
hugepage_setup_sz(char * str)842 static int __init hugepage_setup_sz(char *str)
843 {
844 	unsigned long long size;
845 
846 	size = memparse(str, &str);
847 
848 	if (add_huge_page_size(size) != 0)
849 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
850 
851 	return 1;
852 }
853 __setup("hugepagesz=", hugepage_setup_sz);
854 
855 #ifdef CONFIG_PPC_FSL_BOOK3E
856 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)857 static int __init hugetlbpage_init(void)
858 {
859 	int psize;
860 
861 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
862 		unsigned shift;
863 
864 		if (!mmu_psize_defs[psize].shift)
865 			continue;
866 
867 		shift = mmu_psize_to_shift(psize);
868 
869 		/* Don't treat normal page sizes as huge... */
870 		if (shift != PAGE_SHIFT)
871 			if (add_huge_page_size(1ULL << shift) < 0)
872 				continue;
873 	}
874 
875 	/*
876 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
877 	 * size information encoded in them, so align them to allow this
878 	 */
879 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
880 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
881 	if (hugepte_cache == NULL)
882 		panic("%s: Unable to create kmem cache for hugeptes\n",
883 		      __func__);
884 
885 	/* Default hpage size = 4M */
886 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
887 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
888 	else
889 		panic("%s: Unable to set default huge page size\n", __func__);
890 
891 
892 	return 0;
893 }
894 #else
hugetlbpage_init(void)895 static int __init hugetlbpage_init(void)
896 {
897 	int psize;
898 
899 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
900 		return -ENODEV;
901 
902 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
903 		unsigned shift;
904 		unsigned pdshift;
905 
906 		if (!mmu_psize_defs[psize].shift)
907 			continue;
908 
909 		shift = mmu_psize_to_shift(psize);
910 
911 		if (add_huge_page_size(1ULL << shift) < 0)
912 			continue;
913 
914 		if (shift < PMD_SHIFT)
915 			pdshift = PMD_SHIFT;
916 		else if (shift < PUD_SHIFT)
917 			pdshift = PUD_SHIFT;
918 		else
919 			pdshift = PGDIR_SHIFT;
920 		/*
921 		 * if we have pdshift and shift value same, we don't
922 		 * use pgt cache for hugepd.
923 		 */
924 		if (pdshift != shift) {
925 			pgtable_cache_add(pdshift - shift, NULL);
926 			if (!PGT_CACHE(pdshift - shift))
927 				panic("hugetlbpage_init(): could not create "
928 				      "pgtable cache for %d bit pagesize\n", shift);
929 		}
930 	}
931 
932 	/* Set default large page size. Currently, we pick 16M or 1M
933 	 * depending on what is available
934 	 */
935 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
936 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
937 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
938 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
939 
940 	return 0;
941 }
942 #endif
943 arch_initcall(hugetlbpage_init);
944 
flush_dcache_icache_hugepage(struct page * page)945 void flush_dcache_icache_hugepage(struct page *page)
946 {
947 	int i;
948 	void *start;
949 
950 	BUG_ON(!PageCompound(page));
951 
952 	for (i = 0; i < (1UL << compound_order(page)); i++) {
953 		if (!PageHighMem(page)) {
954 			__flush_dcache_icache(page_address(page+i));
955 		} else {
956 			start = kmap_atomic(page+i);
957 			__flush_dcache_icache(start);
958 			kunmap_atomic(start);
959 		}
960 	}
961 }
962 
963 #endif /* CONFIG_HUGETLB_PAGE */
964 
965 /*
966  * We have 4 cases for pgds and pmds:
967  * (1) invalid (all zeroes)
968  * (2) pointer to next table, as normal; bottom 6 bits == 0
969  * (3) leaf pte for huge page, bottom two bits != 00
970  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
971  *
972  * So long as we atomically load page table pointers we are safe against teardown,
973  * we can follow the address down to the the page and take a ref on it.
974  * This function need to be called with interrupts disabled. We use this variant
975  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
976  */
977 
__find_linux_pte_or_hugepte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * shift)978 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
979 				   bool *is_thp, unsigned *shift)
980 {
981 	pgd_t pgd, *pgdp;
982 	pud_t pud, *pudp;
983 	pmd_t pmd, *pmdp;
984 	pte_t *ret_pte;
985 	hugepd_t *hpdp = NULL;
986 	unsigned pdshift = PGDIR_SHIFT;
987 
988 	if (shift)
989 		*shift = 0;
990 
991 	if (is_thp)
992 		*is_thp = false;
993 
994 	pgdp = pgdir + pgd_index(ea);
995 	pgd  = READ_ONCE(*pgdp);
996 	/*
997 	 * Always operate on the local stack value. This make sure the
998 	 * value don't get updated by a parallel THP split/collapse,
999 	 * page fault or a page unmap. The return pte_t * is still not
1000 	 * stable. So should be checked there for above conditions.
1001 	 */
1002 	if (pgd_none(pgd))
1003 		return NULL;
1004 	else if (pgd_huge(pgd)) {
1005 		ret_pte = (pte_t *) pgdp;
1006 		goto out;
1007 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
1008 		hpdp = (hugepd_t *)&pgd;
1009 	else {
1010 		/*
1011 		 * Even if we end up with an unmap, the pgtable will not
1012 		 * be freed, because we do an rcu free and here we are
1013 		 * irq disabled
1014 		 */
1015 		pdshift = PUD_SHIFT;
1016 		pudp = pud_offset(&pgd, ea);
1017 		pud  = READ_ONCE(*pudp);
1018 
1019 		if (pud_none(pud))
1020 			return NULL;
1021 		else if (pud_huge(pud)) {
1022 			ret_pte = (pte_t *) pudp;
1023 			goto out;
1024 		} else if (is_hugepd(__hugepd(pud_val(pud))))
1025 			hpdp = (hugepd_t *)&pud;
1026 		else {
1027 			pdshift = PMD_SHIFT;
1028 			pmdp = pmd_offset(&pud, ea);
1029 			pmd  = READ_ONCE(*pmdp);
1030 			/*
1031 			 * A hugepage collapse is captured by pmd_none, because
1032 			 * it mark the pmd none and do a hpte invalidate.
1033 			 *
1034 			 * We don't worry about pmd_trans_splitting here, The
1035 			 * caller if it needs to handle the splitting case
1036 			 * should check for that.
1037 			 */
1038 			if (pmd_none(pmd))
1039 				return NULL;
1040 
1041 			if (pmd_trans_huge(pmd)) {
1042 				if (is_thp)
1043 					*is_thp = true;
1044 				ret_pte = (pte_t *) pmdp;
1045 				goto out;
1046 			}
1047 
1048 			if (pmd_huge(pmd)) {
1049 				ret_pte = (pte_t *) pmdp;
1050 				goto out;
1051 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
1052 				hpdp = (hugepd_t *)&pmd;
1053 			else
1054 				return pte_offset_kernel(&pmd, ea);
1055 		}
1056 	}
1057 	if (!hpdp)
1058 		return NULL;
1059 
1060 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1061 	pdshift = hugepd_shift(*hpdp);
1062 out:
1063 	if (shift)
1064 		*shift = pdshift;
1065 	return ret_pte;
1066 }
1067 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1068 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1069 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1070 		unsigned long end, int write, struct page **pages, int *nr)
1071 {
1072 	unsigned long mask;
1073 	unsigned long pte_end;
1074 	struct page *head, *page, *tail;
1075 	pte_t pte;
1076 	int refs;
1077 
1078 	pte_end = (addr + sz) & ~(sz-1);
1079 	if (pte_end < end)
1080 		end = pte_end;
1081 
1082 	pte = READ_ONCE(*ptep);
1083 	mask = _PAGE_PRESENT | _PAGE_USER;
1084 	if (write)
1085 		mask |= _PAGE_RW;
1086 
1087 	if ((pte_val(pte) & mask) != mask)
1088 		return 0;
1089 
1090 	/* hugepages are never "special" */
1091 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1092 
1093 	refs = 0;
1094 	head = pte_page(pte);
1095 
1096 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1097 	tail = page;
1098 	do {
1099 		VM_BUG_ON(compound_head(page) != head);
1100 		pages[*nr] = page;
1101 		(*nr)++;
1102 		page++;
1103 		refs++;
1104 	} while (addr += PAGE_SIZE, addr != end);
1105 
1106 	if (!page_cache_add_speculative(head, refs)) {
1107 		*nr -= refs;
1108 		return 0;
1109 	}
1110 
1111 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1112 		/* Could be optimized better */
1113 		*nr -= refs;
1114 		while (refs--)
1115 			put_page(head);
1116 		return 0;
1117 	}
1118 
1119 	/*
1120 	 * Any tail page need their mapcount reference taken before we
1121 	 * return.
1122 	 */
1123 	while (refs--) {
1124 		if (PageTail(tail))
1125 			get_huge_page_tail(tail);
1126 		tail++;
1127 	}
1128 
1129 	return 1;
1130 }
1131