• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59 
60 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
61 EXPORT_PER_CPU_SYMBOL(cpu_number);
62 
63 /*
64  * as from 2.5, kernels no longer have an init_tasks structure
65  * so we need some other way of telling a new secondary core
66  * where to place its SVC stack
67  */
68 struct secondary_data secondary_data;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP
77 };
78 
79 /*
80  * Boot a secondary CPU, and assign it the specified idle task.
81  * This also gives us the initial stack to use for this CPU.
82  */
boot_secondary(unsigned int cpu,struct task_struct * idle)83 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
84 {
85 	if (cpu_ops[cpu]->cpu_boot)
86 		return cpu_ops[cpu]->cpu_boot(cpu);
87 
88 	return -EOPNOTSUPP;
89 }
90 
91 static DECLARE_COMPLETION(cpu_running);
92 
__cpu_up(unsigned int cpu,struct task_struct * idle)93 int __cpu_up(unsigned int cpu, struct task_struct *idle)
94 {
95 	int ret;
96 
97 	/*
98 	 * We need to tell the secondary core where to find its stack and the
99 	 * page tables.
100 	 */
101 #ifdef CONFIG_THREAD_INFO_IN_TASK
102 	secondary_data.task = idle;
103 #endif
104 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
105 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
106 
107 	/*
108 	 * Now bring the CPU into our world.
109 	 */
110 	ret = boot_secondary(cpu, idle);
111 	if (ret == 0) {
112 		/*
113 		 * CPU was successfully started, wait for it to come online or
114 		 * time out.
115 		 */
116 		wait_for_completion_timeout(&cpu_running,
117 					    msecs_to_jiffies(1000));
118 
119 		if (!cpu_online(cpu)) {
120 			pr_crit("CPU%u: failed to come online\n", cpu);
121 			ret = -EIO;
122 		}
123 	} else {
124 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
125 		return ret;
126 	}
127 
128 #ifdef CONFIG_THREAD_INFO_IN_TASK
129 	secondary_data.task = NULL;
130 #endif
131 	secondary_data.stack = NULL;
132 
133 	return ret;
134 }
135 
smp_store_cpu_info(unsigned int cpuid)136 static void smp_store_cpu_info(unsigned int cpuid)
137 {
138 	store_cpu_topology(cpuid);
139 }
140 
141 /*
142  * This is the secondary CPU boot entry.  We're using this CPUs
143  * idle thread stack, but a set of temporary page tables.
144  */
secondary_start_kernel(void)145 asmlinkage notrace void secondary_start_kernel(void)
146 {
147 	struct mm_struct *mm = &init_mm;
148 	unsigned int cpu;
149 
150 	cpu = task_cpu(current);
151 	set_my_cpu_offset(per_cpu_offset(cpu));
152 
153 	/*
154 	 * All kernel threads share the same mm context; grab a
155 	 * reference and switch to it.
156 	 */
157 	atomic_inc(&mm->mm_count);
158 	current->active_mm = mm;
159 
160 	/*
161 	 * TTBR0 is only used for the identity mapping at this stage. Make it
162 	 * point to zero page to avoid speculatively fetching new entries.
163 	 */
164 	cpu_uninstall_idmap();
165 
166 	preempt_disable();
167 	trace_hardirqs_off();
168 
169 	/*
170 	 * If the system has established the capabilities, make sure
171 	 * this CPU ticks all of those. If it doesn't, the CPU will
172 	 * fail to come online.
173 	 */
174 	verify_local_cpu_capabilities();
175 
176 	if (cpu_ops[cpu]->cpu_postboot)
177 		cpu_ops[cpu]->cpu_postboot();
178 
179 	/*
180 	 * Log the CPU info before it is marked online and might get read.
181 	 */
182 	cpuinfo_store_cpu();
183 
184 	/*
185 	 * Enable GIC and timers.
186 	 */
187 	notify_cpu_starting(cpu);
188 
189 	smp_store_cpu_info(cpu);
190 
191 	/*
192 	 * OK, now it's safe to let the boot CPU continue.  Wait for
193 	 * the CPU migration code to notice that the CPU is online
194 	 * before we continue.
195 	 */
196 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
197 					 cpu, read_cpuid_id());
198 	set_cpu_online(cpu, true);
199 	complete(&cpu_running);
200 
201 	local_irq_enable();
202 	local_async_enable();
203 
204 	/*
205 	 * OK, it's off to the idle thread for us
206 	 */
207 	cpu_startup_entry(CPUHP_ONLINE);
208 }
209 
210 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)211 static int op_cpu_disable(unsigned int cpu)
212 {
213 	/*
214 	 * If we don't have a cpu_die method, abort before we reach the point
215 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
216 	 */
217 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
218 		return -EOPNOTSUPP;
219 
220 	/*
221 	 * We may need to abort a hot unplug for some other mechanism-specific
222 	 * reason.
223 	 */
224 	if (cpu_ops[cpu]->cpu_disable)
225 		return cpu_ops[cpu]->cpu_disable(cpu);
226 
227 	return 0;
228 }
229 
230 /*
231  * __cpu_disable runs on the processor to be shutdown.
232  */
__cpu_disable(void)233 int __cpu_disable(void)
234 {
235 	unsigned int cpu = smp_processor_id();
236 	int ret;
237 
238 	ret = op_cpu_disable(cpu);
239 	if (ret)
240 		return ret;
241 
242 	/*
243 	 * Take this CPU offline.  Once we clear this, we can't return,
244 	 * and we must not schedule until we're ready to give up the cpu.
245 	 */
246 	set_cpu_online(cpu, false);
247 
248 	/*
249 	 * OK - migrate IRQs away from this CPU
250 	 */
251 	irq_migrate_all_off_this_cpu();
252 
253 	return 0;
254 }
255 
op_cpu_kill(unsigned int cpu)256 static int op_cpu_kill(unsigned int cpu)
257 {
258 	/*
259 	 * If we have no means of synchronising with the dying CPU, then assume
260 	 * that it is really dead. We can only wait for an arbitrary length of
261 	 * time and hope that it's dead, so let's skip the wait and just hope.
262 	 */
263 	if (!cpu_ops[cpu]->cpu_kill)
264 		return 0;
265 
266 	return cpu_ops[cpu]->cpu_kill(cpu);
267 }
268 
269 /*
270  * called on the thread which is asking for a CPU to be shutdown -
271  * waits until shutdown has completed, or it is timed out.
272  */
__cpu_die(unsigned int cpu)273 void __cpu_die(unsigned int cpu)
274 {
275 	int err;
276 
277 	if (!cpu_wait_death(cpu, 5)) {
278 		pr_crit("CPU%u: cpu didn't die\n", cpu);
279 		return;
280 	}
281 	pr_notice("CPU%u: shutdown\n", cpu);
282 
283 	/*
284 	 * Now that the dying CPU is beyond the point of no return w.r.t.
285 	 * in-kernel synchronisation, try to get the firwmare to help us to
286 	 * verify that it has really left the kernel before we consider
287 	 * clobbering anything it might still be using.
288 	 */
289 	err = op_cpu_kill(cpu);
290 	if (err)
291 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
292 			cpu, err);
293 }
294 
295 /*
296  * Called from the idle thread for the CPU which has been shutdown.
297  *
298  * Note that we disable IRQs here, but do not re-enable them
299  * before returning to the caller. This is also the behaviour
300  * of the other hotplug-cpu capable cores, so presumably coming
301  * out of idle fixes this.
302  */
cpu_die(void)303 void cpu_die(void)
304 {
305 	unsigned int cpu = smp_processor_id();
306 
307 	idle_task_exit();
308 
309 	local_irq_disable();
310 
311 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
312 	(void)cpu_report_death();
313 
314 	/*
315 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
316 	 * mechanism must perform all required cache maintenance to ensure that
317 	 * no dirty lines are lost in the process of shutting down the CPU.
318 	 */
319 	cpu_ops[cpu]->cpu_die(cpu);
320 
321 	BUG();
322 }
323 #endif
324 
hyp_mode_check(void)325 static void __init hyp_mode_check(void)
326 {
327 	if (is_hyp_mode_available())
328 		pr_info("CPU: All CPU(s) started at EL2\n");
329 	else if (is_hyp_mode_mismatched())
330 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
331 			   "CPU: CPUs started in inconsistent modes");
332 	else
333 		pr_info("CPU: All CPU(s) started at EL1\n");
334 }
335 
smp_cpus_done(unsigned int max_cpus)336 void __init smp_cpus_done(unsigned int max_cpus)
337 {
338 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
339 	setup_cpu_features();
340 	hyp_mode_check();
341 	apply_alternatives_all();
342 }
343 
smp_prepare_boot_cpu(void)344 void __init smp_prepare_boot_cpu(void)
345 {
346 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
347 	cpuinfo_store_boot_cpu();
348 }
349 
of_get_cpu_mpidr(struct device_node * dn)350 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
351 {
352 	const __be32 *cell;
353 	u64 hwid;
354 
355 	/*
356 	 * A cpu node with missing "reg" property is
357 	 * considered invalid to build a cpu_logical_map
358 	 * entry.
359 	 */
360 	cell = of_get_property(dn, "reg", NULL);
361 	if (!cell) {
362 		pr_err("%s: missing reg property\n", dn->full_name);
363 		return INVALID_HWID;
364 	}
365 
366 	hwid = of_read_number(cell, of_n_addr_cells(dn));
367 	/*
368 	 * Non affinity bits must be set to 0 in the DT
369 	 */
370 	if (hwid & ~MPIDR_HWID_BITMASK) {
371 		pr_err("%s: invalid reg property\n", dn->full_name);
372 		return INVALID_HWID;
373 	}
374 	return hwid;
375 }
376 
377 /*
378  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
379  * entries and check for duplicates. If any is found just ignore the
380  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
381  * matching valid MPIDR values.
382  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)383 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
384 {
385 	unsigned int i;
386 
387 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
388 		if (cpu_logical_map(i) == hwid)
389 			return true;
390 	return false;
391 }
392 
393 /*
394  * Initialize cpu operations for a logical cpu and
395  * set it in the possible mask on success
396  */
smp_cpu_setup(int cpu)397 static int __init smp_cpu_setup(int cpu)
398 {
399 	if (cpu_read_ops(cpu))
400 		return -ENODEV;
401 
402 	if (cpu_ops[cpu]->cpu_init(cpu))
403 		return -ENODEV;
404 
405 	set_cpu_possible(cpu, true);
406 
407 	return 0;
408 }
409 
410 static bool bootcpu_valid __initdata;
411 static unsigned int cpu_count = 1;
412 
413 #ifdef CONFIG_ACPI
414 /*
415  * acpi_map_gic_cpu_interface - parse processor MADT entry
416  *
417  * Carry out sanity checks on MADT processor entry and initialize
418  * cpu_logical_map on success
419  */
420 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)421 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
422 {
423 	u64 hwid = processor->arm_mpidr;
424 
425 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
426 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
427 		return;
428 	}
429 
430 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
431 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
432 		return;
433 	}
434 
435 	if (is_mpidr_duplicate(cpu_count, hwid)) {
436 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
437 		return;
438 	}
439 
440 	/* Check if GICC structure of boot CPU is available in the MADT */
441 	if (cpu_logical_map(0) == hwid) {
442 		if (bootcpu_valid) {
443 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
444 			       hwid);
445 			return;
446 		}
447 		bootcpu_valid = true;
448 		return;
449 	}
450 
451 	if (cpu_count >= NR_CPUS)
452 		return;
453 
454 	/* map the logical cpu id to cpu MPIDR */
455 	cpu_logical_map(cpu_count) = hwid;
456 
457 	/*
458 	 * Set-up the ACPI parking protocol cpu entries
459 	 * while initializing the cpu_logical_map to
460 	 * avoid parsing MADT entries multiple times for
461 	 * nothing (ie a valid cpu_logical_map entry should
462 	 * contain a valid parking protocol data set to
463 	 * initialize the cpu if the parking protocol is
464 	 * the only available enable method).
465 	 */
466 	acpi_set_mailbox_entry(cpu_count, processor);
467 
468 	cpu_count++;
469 }
470 
471 static int __init
acpi_parse_gic_cpu_interface(struct acpi_subtable_header * header,const unsigned long end)472 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
473 			     const unsigned long end)
474 {
475 	struct acpi_madt_generic_interrupt *processor;
476 
477 	processor = (struct acpi_madt_generic_interrupt *)header;
478 	if (BAD_MADT_GICC_ENTRY(processor, end))
479 		return -EINVAL;
480 
481 	acpi_table_print_madt_entry(header);
482 
483 	acpi_map_gic_cpu_interface(processor);
484 
485 	return 0;
486 }
487 #else
488 #define acpi_table_parse_madt(...)	do { } while (0)
489 #endif
490 
491 /*
492  * Enumerate the possible CPU set from the device tree and build the
493  * cpu logical map array containing MPIDR values related to logical
494  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
495  */
of_parse_and_init_cpus(void)496 static void __init of_parse_and_init_cpus(void)
497 {
498 	struct device_node *dn = NULL;
499 
500 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
501 		u64 hwid = of_get_cpu_mpidr(dn);
502 
503 		if (hwid == INVALID_HWID)
504 			goto next;
505 
506 		if (is_mpidr_duplicate(cpu_count, hwid)) {
507 			pr_err("%s: duplicate cpu reg properties in the DT\n",
508 				dn->full_name);
509 			goto next;
510 		}
511 
512 		/*
513 		 * The numbering scheme requires that the boot CPU
514 		 * must be assigned logical id 0. Record it so that
515 		 * the logical map built from DT is validated and can
516 		 * be used.
517 		 */
518 		if (hwid == cpu_logical_map(0)) {
519 			if (bootcpu_valid) {
520 				pr_err("%s: duplicate boot cpu reg property in DT\n",
521 					dn->full_name);
522 				goto next;
523 			}
524 
525 			bootcpu_valid = true;
526 
527 			/*
528 			 * cpu_logical_map has already been
529 			 * initialized and the boot cpu doesn't need
530 			 * the enable-method so continue without
531 			 * incrementing cpu.
532 			 */
533 			continue;
534 		}
535 
536 		if (cpu_count >= NR_CPUS)
537 			goto next;
538 
539 		pr_debug("cpu logical map 0x%llx\n", hwid);
540 		cpu_logical_map(cpu_count) = hwid;
541 next:
542 		cpu_count++;
543 	}
544 }
545 
546 /*
547  * Enumerate the possible CPU set from the device tree or ACPI and build the
548  * cpu logical map array containing MPIDR values related to logical
549  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
550  */
smp_init_cpus(void)551 void __init smp_init_cpus(void)
552 {
553 	int i;
554 
555 	if (acpi_disabled)
556 		of_parse_and_init_cpus();
557 	else
558 		/*
559 		 * do a walk of MADT to determine how many CPUs
560 		 * we have including disabled CPUs, and get information
561 		 * we need for SMP init
562 		 */
563 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
564 				      acpi_parse_gic_cpu_interface, 0);
565 
566 	if (cpu_count > NR_CPUS)
567 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
568 			cpu_count, NR_CPUS);
569 
570 	if (!bootcpu_valid) {
571 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
572 		return;
573 	}
574 
575 	/*
576 	 * We need to set the cpu_logical_map entries before enabling
577 	 * the cpus so that cpu processor description entries (DT cpu nodes
578 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
579 	 * with entries in cpu_logical_map while initializing the cpus.
580 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
581 	 */
582 	for (i = 1; i < NR_CPUS; i++) {
583 		if (cpu_logical_map(i) != INVALID_HWID) {
584 			if (smp_cpu_setup(i))
585 				cpu_logical_map(i) = INVALID_HWID;
586 		}
587 	}
588 }
589 
smp_prepare_cpus(unsigned int max_cpus)590 void __init smp_prepare_cpus(unsigned int max_cpus)
591 {
592 	int err;
593 	unsigned int cpu, ncores = num_possible_cpus();
594 
595 	init_cpu_topology();
596 
597 	smp_store_cpu_info(smp_processor_id());
598 
599 	/*
600 	 * are we trying to boot more cores than exist?
601 	 */
602 	if (max_cpus > ncores)
603 		max_cpus = ncores;
604 
605 	/* Don't bother if we're effectively UP */
606 	if (max_cpus <= 1)
607 		return;
608 
609 	/*
610 	 * Initialise the present map (which describes the set of CPUs
611 	 * actually populated at the present time) and release the
612 	 * secondaries from the bootloader.
613 	 *
614 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
615 	 */
616 	max_cpus--;
617 	for_each_possible_cpu(cpu) {
618 		if (max_cpus == 0)
619 			break;
620 
621 		per_cpu(cpu_number, cpu) = cpu;
622 
623 		if (cpu == smp_processor_id())
624 			continue;
625 
626 		if (!cpu_ops[cpu])
627 			continue;
628 
629 		err = cpu_ops[cpu]->cpu_prepare(cpu);
630 		if (err)
631 			continue;
632 
633 		set_cpu_present(cpu, true);
634 		max_cpus--;
635 	}
636 }
637 
638 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
639 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))640 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
641 {
642 	__smp_cross_call = fn;
643 }
644 
645 static const char *ipi_types[NR_IPI] __tracepoint_string = {
646 #define S(x,s)	[x] = s
647 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
648 	S(IPI_CALL_FUNC, "Function call interrupts"),
649 	S(IPI_CPU_STOP, "CPU stop interrupts"),
650 	S(IPI_TIMER, "Timer broadcast interrupts"),
651 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
652 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
653 };
654 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)655 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
656 {
657 	trace_ipi_raise(target, ipi_types[ipinr]);
658 	__smp_cross_call(target, ipinr);
659 }
660 
show_ipi_list(struct seq_file * p,int prec)661 void show_ipi_list(struct seq_file *p, int prec)
662 {
663 	unsigned int cpu, i;
664 
665 	for (i = 0; i < NR_IPI; i++) {
666 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
667 			   prec >= 4 ? " " : "");
668 		for_each_online_cpu(cpu)
669 			seq_printf(p, "%10u ",
670 				   __get_irq_stat(cpu, ipi_irqs[i]));
671 		seq_printf(p, "      %s\n", ipi_types[i]);
672 	}
673 }
674 
smp_irq_stat_cpu(unsigned int cpu)675 u64 smp_irq_stat_cpu(unsigned int cpu)
676 {
677 	u64 sum = 0;
678 	int i;
679 
680 	for (i = 0; i < NR_IPI; i++)
681 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
682 
683 	return sum;
684 }
685 
arch_send_call_function_ipi_mask(const struct cpumask * mask)686 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
687 {
688 	smp_cross_call(mask, IPI_CALL_FUNC);
689 }
690 
arch_send_call_function_single_ipi(int cpu)691 void arch_send_call_function_single_ipi(int cpu)
692 {
693 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
694 }
695 
696 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)697 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
698 {
699 	smp_cross_call(mask, IPI_WAKEUP);
700 }
701 #endif
702 
703 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)704 void arch_irq_work_raise(void)
705 {
706 	if (__smp_cross_call)
707 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
708 }
709 #endif
710 
711 static DEFINE_RAW_SPINLOCK(stop_lock);
712 
713 /*
714  * ipi_cpu_stop - handle IPI from smp_send_stop()
715  */
ipi_cpu_stop(unsigned int cpu)716 static void ipi_cpu_stop(unsigned int cpu)
717 {
718 	if (system_state == SYSTEM_BOOTING ||
719 	    system_state == SYSTEM_RUNNING) {
720 		raw_spin_lock(&stop_lock);
721 		pr_crit("CPU%u: stopping\n", cpu);
722 		dump_stack();
723 		raw_spin_unlock(&stop_lock);
724 	}
725 
726 	set_cpu_online(cpu, false);
727 
728 	local_irq_disable();
729 
730 	while (1)
731 		cpu_relax();
732 }
733 
734 /*
735  * Main handler for inter-processor interrupts
736  */
handle_IPI(int ipinr,struct pt_regs * regs)737 void handle_IPI(int ipinr, struct pt_regs *regs)
738 {
739 	unsigned int cpu = smp_processor_id();
740 	struct pt_regs *old_regs = set_irq_regs(regs);
741 
742 	if ((unsigned)ipinr < NR_IPI) {
743 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
744 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
745 	}
746 
747 	switch (ipinr) {
748 	case IPI_RESCHEDULE:
749 		scheduler_ipi();
750 		break;
751 
752 	case IPI_CALL_FUNC:
753 		irq_enter();
754 		generic_smp_call_function_interrupt();
755 		irq_exit();
756 		break;
757 
758 	case IPI_CPU_STOP:
759 		irq_enter();
760 		ipi_cpu_stop(cpu);
761 		irq_exit();
762 		break;
763 
764 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
765 	case IPI_TIMER:
766 		irq_enter();
767 		tick_receive_broadcast();
768 		irq_exit();
769 		break;
770 #endif
771 
772 #ifdef CONFIG_IRQ_WORK
773 	case IPI_IRQ_WORK:
774 		irq_enter();
775 		irq_work_run();
776 		irq_exit();
777 		break;
778 #endif
779 
780 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
781 	case IPI_WAKEUP:
782 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
783 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
784 			  cpu);
785 		break;
786 #endif
787 
788 	default:
789 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
790 		break;
791 	}
792 
793 	if ((unsigned)ipinr < NR_IPI)
794 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
795 	set_irq_regs(old_regs);
796 }
797 
smp_send_reschedule(int cpu)798 void smp_send_reschedule(int cpu)
799 {
800 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
801 }
802 
803 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)804 void tick_broadcast(const struct cpumask *mask)
805 {
806 	smp_cross_call(mask, IPI_TIMER);
807 }
808 #endif
809 
810 /*
811  * The number of CPUs online, not counting this CPU (which may not be
812  * fully online and so not counted in num_online_cpus()).
813  */
num_other_online_cpus(void)814 static inline unsigned int num_other_online_cpus(void)
815 {
816 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
817 
818 	return num_online_cpus() - this_cpu_online;
819 }
820 
smp_send_stop(void)821 void smp_send_stop(void)
822 {
823 	unsigned long timeout;
824 
825 	if (num_other_online_cpus()) {
826 		cpumask_t mask;
827 
828 		cpumask_copy(&mask, cpu_online_mask);
829 		cpumask_clear_cpu(smp_processor_id(), &mask);
830 
831 		smp_cross_call(&mask, IPI_CPU_STOP);
832 	}
833 
834 	/* Wait up to one second for other CPUs to stop */
835 	timeout = USEC_PER_SEC;
836 	while (num_other_online_cpus() && timeout--)
837 		udelay(1);
838 
839 	if (num_other_online_cpus())
840 		pr_warning("SMP: failed to stop secondary CPUs\n");
841 }
842 
843 /*
844  * not supported here
845  */
setup_profiling_timer(unsigned int multiplier)846 int setup_profiling_timer(unsigned int multiplier)
847 {
848 	return -EINVAL;
849 }
850