• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
3  *
4  * Copyright 2005-2008 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/ptrace.h>		/* for linux pt_regs struct */
10 #include <linux/kgdb.h>
11 #include <linux/uaccess.h>
12 #include <asm/irq_regs.h>
13 
pt_regs_to_gdb_regs(unsigned long * gdb_regs,struct pt_regs * regs)14 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
15 {
16 	gdb_regs[BFIN_R0] = regs->r0;
17 	gdb_regs[BFIN_R1] = regs->r1;
18 	gdb_regs[BFIN_R2] = regs->r2;
19 	gdb_regs[BFIN_R3] = regs->r3;
20 	gdb_regs[BFIN_R4] = regs->r4;
21 	gdb_regs[BFIN_R5] = regs->r5;
22 	gdb_regs[BFIN_R6] = regs->r6;
23 	gdb_regs[BFIN_R7] = regs->r7;
24 	gdb_regs[BFIN_P0] = regs->p0;
25 	gdb_regs[BFIN_P1] = regs->p1;
26 	gdb_regs[BFIN_P2] = regs->p2;
27 	gdb_regs[BFIN_P3] = regs->p3;
28 	gdb_regs[BFIN_P4] = regs->p4;
29 	gdb_regs[BFIN_P5] = regs->p5;
30 	gdb_regs[BFIN_SP] = regs->reserved;
31 	gdb_regs[BFIN_FP] = regs->fp;
32 	gdb_regs[BFIN_I0] = regs->i0;
33 	gdb_regs[BFIN_I1] = regs->i1;
34 	gdb_regs[BFIN_I2] = regs->i2;
35 	gdb_regs[BFIN_I3] = regs->i3;
36 	gdb_regs[BFIN_M0] = regs->m0;
37 	gdb_regs[BFIN_M1] = regs->m1;
38 	gdb_regs[BFIN_M2] = regs->m2;
39 	gdb_regs[BFIN_M3] = regs->m3;
40 	gdb_regs[BFIN_B0] = regs->b0;
41 	gdb_regs[BFIN_B1] = regs->b1;
42 	gdb_regs[BFIN_B2] = regs->b2;
43 	gdb_regs[BFIN_B3] = regs->b3;
44 	gdb_regs[BFIN_L0] = regs->l0;
45 	gdb_regs[BFIN_L1] = regs->l1;
46 	gdb_regs[BFIN_L2] = regs->l2;
47 	gdb_regs[BFIN_L3] = regs->l3;
48 	gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
49 	gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
50 	gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
51 	gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
52 	gdb_regs[BFIN_ASTAT] = regs->astat;
53 	gdb_regs[BFIN_RETS] = regs->rets;
54 	gdb_regs[BFIN_LC0] = regs->lc0;
55 	gdb_regs[BFIN_LT0] = regs->lt0;
56 	gdb_regs[BFIN_LB0] = regs->lb0;
57 	gdb_regs[BFIN_LC1] = regs->lc1;
58 	gdb_regs[BFIN_LT1] = regs->lt1;
59 	gdb_regs[BFIN_LB1] = regs->lb1;
60 	gdb_regs[BFIN_CYCLES] = 0;
61 	gdb_regs[BFIN_CYCLES2] = 0;
62 	gdb_regs[BFIN_USP] = regs->usp;
63 	gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
64 	gdb_regs[BFIN_SYSCFG] = regs->syscfg;
65 	gdb_regs[BFIN_RETI] = regs->pc;
66 	gdb_regs[BFIN_RETX] = regs->retx;
67 	gdb_regs[BFIN_RETN] = regs->retn;
68 	gdb_regs[BFIN_RETE] = regs->rete;
69 	gdb_regs[BFIN_PC] = regs->pc;
70 	gdb_regs[BFIN_CC] = (regs->astat >> 5) & 1;
71 	gdb_regs[BFIN_EXTRA1] = 0;
72 	gdb_regs[BFIN_EXTRA2] = 0;
73 	gdb_regs[BFIN_EXTRA3] = 0;
74 	gdb_regs[BFIN_IPEND] = regs->ipend;
75 }
76 
77 /*
78  * Extracts ebp, esp and eip values understandable by gdb from the values
79  * saved by switch_to.
80  * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
81  * prior to entering switch_to is 8 greater than the value that is saved.
82  * If switch_to changes, change following code appropriately.
83  */
sleeping_thread_to_gdb_regs(unsigned long * gdb_regs,struct task_struct * p)84 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
85 {
86 	gdb_regs[BFIN_SP] = p->thread.ksp;
87 	gdb_regs[BFIN_PC] = p->thread.pc;
88 	gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
89 }
90 
gdb_regs_to_pt_regs(unsigned long * gdb_regs,struct pt_regs * regs)91 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
92 {
93 	regs->r0 = gdb_regs[BFIN_R0];
94 	regs->r1 = gdb_regs[BFIN_R1];
95 	regs->r2 = gdb_regs[BFIN_R2];
96 	regs->r3 = gdb_regs[BFIN_R3];
97 	regs->r4 = gdb_regs[BFIN_R4];
98 	regs->r5 = gdb_regs[BFIN_R5];
99 	regs->r6 = gdb_regs[BFIN_R6];
100 	regs->r7 = gdb_regs[BFIN_R7];
101 	regs->p0 = gdb_regs[BFIN_P0];
102 	regs->p1 = gdb_regs[BFIN_P1];
103 	regs->p2 = gdb_regs[BFIN_P2];
104 	regs->p3 = gdb_regs[BFIN_P3];
105 	regs->p4 = gdb_regs[BFIN_P4];
106 	regs->p5 = gdb_regs[BFIN_P5];
107 	regs->fp = gdb_regs[BFIN_FP];
108 	regs->i0 = gdb_regs[BFIN_I0];
109 	regs->i1 = gdb_regs[BFIN_I1];
110 	regs->i2 = gdb_regs[BFIN_I2];
111 	regs->i3 = gdb_regs[BFIN_I3];
112 	regs->m0 = gdb_regs[BFIN_M0];
113 	regs->m1 = gdb_regs[BFIN_M1];
114 	regs->m2 = gdb_regs[BFIN_M2];
115 	regs->m3 = gdb_regs[BFIN_M3];
116 	regs->b0 = gdb_regs[BFIN_B0];
117 	regs->b1 = gdb_regs[BFIN_B1];
118 	regs->b2 = gdb_regs[BFIN_B2];
119 	regs->b3 = gdb_regs[BFIN_B3];
120 	regs->l0 = gdb_regs[BFIN_L0];
121 	regs->l1 = gdb_regs[BFIN_L1];
122 	regs->l2 = gdb_regs[BFIN_L2];
123 	regs->l3 = gdb_regs[BFIN_L3];
124 	regs->a0x = gdb_regs[BFIN_A0_DOT_X];
125 	regs->a0w = gdb_regs[BFIN_A0_DOT_W];
126 	regs->a1x = gdb_regs[BFIN_A1_DOT_X];
127 	regs->a1w = gdb_regs[BFIN_A1_DOT_W];
128 	regs->rets = gdb_regs[BFIN_RETS];
129 	regs->lc0 = gdb_regs[BFIN_LC0];
130 	regs->lt0 = gdb_regs[BFIN_LT0];
131 	regs->lb0 = gdb_regs[BFIN_LB0];
132 	regs->lc1 = gdb_regs[BFIN_LC1];
133 	regs->lt1 = gdb_regs[BFIN_LT1];
134 	regs->lb1 = gdb_regs[BFIN_LB1];
135 	regs->usp = gdb_regs[BFIN_USP];
136 	regs->syscfg = gdb_regs[BFIN_SYSCFG];
137 	regs->retx = gdb_regs[BFIN_RETX];
138 	regs->retn = gdb_regs[BFIN_RETN];
139 	regs->rete = gdb_regs[BFIN_RETE];
140 	regs->pc = gdb_regs[BFIN_PC];
141 
142 #if 0				/* can't change these */
143 	regs->astat = gdb_regs[BFIN_ASTAT];
144 	regs->seqstat = gdb_regs[BFIN_SEQSTAT];
145 	regs->ipend = gdb_regs[BFIN_IPEND];
146 #endif
147 }
148 
149 static struct hw_breakpoint {
150 	unsigned int occupied:1;
151 	unsigned int skip:1;
152 	unsigned int enabled:1;
153 	unsigned int type:1;
154 	unsigned int dataacc:2;
155 	unsigned short count;
156 	unsigned int addr;
157 } breakinfo[HW_WATCHPOINT_NUM];
158 
bfin_set_hw_break(unsigned long addr,int len,enum kgdb_bptype type)159 static int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
160 {
161 	int breakno;
162 	int bfin_type;
163 	int dataacc = 0;
164 
165 	switch (type) {
166 	case BP_HARDWARE_BREAKPOINT:
167 		bfin_type = TYPE_INST_WATCHPOINT;
168 		break;
169 	case BP_WRITE_WATCHPOINT:
170 		dataacc = 1;
171 		bfin_type = TYPE_DATA_WATCHPOINT;
172 		break;
173 	case BP_READ_WATCHPOINT:
174 		dataacc = 2;
175 		bfin_type = TYPE_DATA_WATCHPOINT;
176 		break;
177 	case BP_ACCESS_WATCHPOINT:
178 		dataacc = 3;
179 		bfin_type = TYPE_DATA_WATCHPOINT;
180 		break;
181 	default:
182 		return -ENOSPC;
183 	}
184 
185 	/* Because hardware data watchpoint impelemented in current
186 	 * Blackfin can not trigger an exception event as the hardware
187 	 * instrction watchpoint does, we ignaore all data watch point here.
188 	 * They can be turned on easily after future blackfin design
189 	 * supports this feature.
190 	 */
191 	for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
192 		if (bfin_type == breakinfo[breakno].type
193 			&& !breakinfo[breakno].occupied) {
194 			breakinfo[breakno].occupied = 1;
195 			breakinfo[breakno].skip = 0;
196 			breakinfo[breakno].enabled = 1;
197 			breakinfo[breakno].addr = addr;
198 			breakinfo[breakno].dataacc = dataacc;
199 			breakinfo[breakno].count = 0;
200 			return 0;
201 		}
202 
203 	return -ENOSPC;
204 }
205 
bfin_remove_hw_break(unsigned long addr,int len,enum kgdb_bptype type)206 static int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
207 {
208 	int breakno;
209 	int bfin_type;
210 
211 	switch (type) {
212 	case BP_HARDWARE_BREAKPOINT:
213 		bfin_type = TYPE_INST_WATCHPOINT;
214 		break;
215 	case BP_WRITE_WATCHPOINT:
216 	case BP_READ_WATCHPOINT:
217 	case BP_ACCESS_WATCHPOINT:
218 		bfin_type = TYPE_DATA_WATCHPOINT;
219 		break;
220 	default:
221 		return 0;
222 	}
223 	for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
224 		if (bfin_type == breakinfo[breakno].type
225 			&& breakinfo[breakno].occupied
226 			&& breakinfo[breakno].addr == addr) {
227 			breakinfo[breakno].occupied = 0;
228 			breakinfo[breakno].enabled = 0;
229 		}
230 
231 	return 0;
232 }
233 
bfin_remove_all_hw_break(void)234 static void bfin_remove_all_hw_break(void)
235 {
236 	int breakno;
237 
238 	memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
239 
240 	for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
241 		breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
242 	for (; breakno < HW_WATCHPOINT_NUM; breakno++)
243 		breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
244 }
245 
bfin_correct_hw_break(void)246 static void bfin_correct_hw_break(void)
247 {
248 	int breakno;
249 	unsigned int wpiactl = 0;
250 	unsigned int wpdactl = 0;
251 	int enable_wp = 0;
252 
253 	for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
254 		if (breakinfo[breakno].enabled) {
255 			enable_wp = 1;
256 
257 			switch (breakno) {
258 			case 0:
259 				wpiactl |= WPIAEN0|WPICNTEN0;
260 				bfin_write_WPIA0(breakinfo[breakno].addr);
261 				bfin_write_WPIACNT0(breakinfo[breakno].count
262 					+ breakinfo->skip);
263 				break;
264 			case 1:
265 				wpiactl |= WPIAEN1|WPICNTEN1;
266 				bfin_write_WPIA1(breakinfo[breakno].addr);
267 				bfin_write_WPIACNT1(breakinfo[breakno].count
268 					+ breakinfo->skip);
269 				break;
270 			case 2:
271 				wpiactl |= WPIAEN2|WPICNTEN2;
272 				bfin_write_WPIA2(breakinfo[breakno].addr);
273 				bfin_write_WPIACNT2(breakinfo[breakno].count
274 					+ breakinfo->skip);
275 				break;
276 			case 3:
277 				wpiactl |= WPIAEN3|WPICNTEN3;
278 				bfin_write_WPIA3(breakinfo[breakno].addr);
279 				bfin_write_WPIACNT3(breakinfo[breakno].count
280 					+ breakinfo->skip);
281 				break;
282 			case 4:
283 				wpiactl |= WPIAEN4|WPICNTEN4;
284 				bfin_write_WPIA4(breakinfo[breakno].addr);
285 				bfin_write_WPIACNT4(breakinfo[breakno].count
286 					+ breakinfo->skip);
287 				break;
288 			case 5:
289 				wpiactl |= WPIAEN5|WPICNTEN5;
290 				bfin_write_WPIA5(breakinfo[breakno].addr);
291 				bfin_write_WPIACNT5(breakinfo[breakno].count
292 					+ breakinfo->skip);
293 				break;
294 			case 6:
295 				wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
296 				wpdactl |= breakinfo[breakno].dataacc
297 					<< WPDACC0_OFFSET;
298 				bfin_write_WPDA0(breakinfo[breakno].addr);
299 				bfin_write_WPDACNT0(breakinfo[breakno].count
300 					+ breakinfo->skip);
301 				break;
302 			case 7:
303 				wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
304 				wpdactl |= breakinfo[breakno].dataacc
305 					<< WPDACC1_OFFSET;
306 				bfin_write_WPDA1(breakinfo[breakno].addr);
307 				bfin_write_WPDACNT1(breakinfo[breakno].count
308 					+ breakinfo->skip);
309 				break;
310 			}
311 		}
312 
313 	/* Should enable WPPWR bit first before set any other
314 	 * WPIACTL and WPDACTL bits */
315 	if (enable_wp) {
316 		bfin_write_WPIACTL(WPPWR);
317 		CSYNC();
318 		bfin_write_WPIACTL(wpiactl|WPPWR);
319 		bfin_write_WPDACTL(wpdactl);
320 		CSYNC();
321 	}
322 }
323 
bfin_disable_hw_debug(struct pt_regs * regs)324 static void bfin_disable_hw_debug(struct pt_regs *regs)
325 {
326 	/* Disable hardware debugging while we are in kgdb */
327 	bfin_write_WPIACTL(0);
328 	bfin_write_WPDACTL(0);
329 	CSYNC();
330 }
331 
332 #ifdef CONFIG_SMP
kgdb_passive_cpu_callback(void * info)333 void kgdb_passive_cpu_callback(void *info)
334 {
335 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
336 }
337 
kgdb_roundup_cpus(unsigned long flags)338 void kgdb_roundup_cpus(unsigned long flags)
339 {
340 	unsigned int cpu;
341 
342 	for (cpu = cpumask_first(cpu_online_mask); cpu < nr_cpu_ids;
343 		cpu = cpumask_next(cpu, cpu_online_mask))
344 		smp_call_function_single(cpu, kgdb_passive_cpu_callback,
345 					 NULL, 0);
346 }
347 
kgdb_roundup_cpu(int cpu,unsigned long flags)348 void kgdb_roundup_cpu(int cpu, unsigned long flags)
349 {
350 	smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
351 }
352 #endif
353 
354 #ifdef CONFIG_IPIPE
355 static unsigned long kgdb_arch_imask;
356 #endif
357 
kgdb_arch_handle_exception(int vector,int signo,int err_code,char * remcom_in_buffer,char * remcom_out_buffer,struct pt_regs * regs)358 int kgdb_arch_handle_exception(int vector, int signo,
359 			       int err_code, char *remcom_in_buffer,
360 			       char *remcom_out_buffer,
361 			       struct pt_regs *regs)
362 {
363 	long addr;
364 	char *ptr;
365 	int newPC;
366 	int i;
367 
368 	switch (remcom_in_buffer[0]) {
369 	case 'c':
370 	case 's':
371 		if (kgdb_contthread && kgdb_contthread != current) {
372 			strcpy(remcom_out_buffer, "E00");
373 			break;
374 		}
375 
376 		kgdb_contthread = NULL;
377 
378 		/* try to read optional parameter, pc unchanged if no parm */
379 		ptr = &remcom_in_buffer[1];
380 		if (kgdb_hex2long(&ptr, &addr)) {
381 			regs->retx = addr;
382 		}
383 		newPC = regs->retx;
384 
385 		/* clear the trace bit */
386 		regs->syscfg &= 0xfffffffe;
387 
388 		/* set the trace bit if we're stepping */
389 		if (remcom_in_buffer[0] == 's') {
390 			regs->syscfg |= 0x1;
391 			kgdb_single_step = regs->ipend;
392 			kgdb_single_step >>= 6;
393 			for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
394 				if (kgdb_single_step & 1)
395 					break;
396 			/* i indicate event priority of current stopped instruction
397 			 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
398 			 * kgdb_single_step > 0 means in single step mode
399 			 */
400 			kgdb_single_step = i + 1;
401 
402 			preempt_disable();
403 #ifdef CONFIG_IPIPE
404 			kgdb_arch_imask = cpu_pda[raw_smp_processor_id()].ex_imask;
405 			cpu_pda[raw_smp_processor_id()].ex_imask = 0;
406 #endif
407 		}
408 
409 		bfin_correct_hw_break();
410 
411 		return 0;
412 	}			/* switch */
413 	return -1;		/* this means that we do not want to exit from the handler */
414 }
415 
416 struct kgdb_arch arch_kgdb_ops = {
417 	.gdb_bpt_instr = {0xa1},
418 	.flags = KGDB_HW_BREAKPOINT,
419 	.set_hw_breakpoint = bfin_set_hw_break,
420 	.remove_hw_breakpoint = bfin_remove_hw_break,
421 	.disable_hw_break = bfin_disable_hw_debug,
422 	.remove_all_hw_break = bfin_remove_all_hw_break,
423 	.correct_hw_break = bfin_correct_hw_break,
424 };
425 
426 #define IN_MEM(addr, size, l1_addr, l1_size) \
427 ({ \
428 	unsigned long __addr = (unsigned long)(addr); \
429 	(l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \
430 })
431 #define ASYNC_BANK_SIZE \
432 	(ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \
433 	 ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE)
434 
kgdb_validate_break_address(unsigned long addr)435 int kgdb_validate_break_address(unsigned long addr)
436 {
437 	int cpu = raw_smp_processor_id();
438 
439 	if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
440 		return 0;
441 	if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE))
442 		return 0;
443 	if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH))
444 		return 0;
445 #ifdef CONFIG_SMP
446 	else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH))
447 		return 0;
448 #endif
449 	if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH))
450 		return 0;
451 
452 	return -EFAULT;
453 }
454 
kgdb_arch_set_pc(struct pt_regs * regs,unsigned long ip)455 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
456 {
457 	regs->retx = ip;
458 }
459 
kgdb_arch_init(void)460 int kgdb_arch_init(void)
461 {
462 	kgdb_single_step = 0;
463 #ifdef CONFIG_IPIPE
464 	kgdb_arch_imask = 0;
465 #endif
466 
467 	bfin_remove_all_hw_break();
468 	return 0;
469 }
470 
kgdb_arch_exit(void)471 void kgdb_arch_exit(void)
472 {
473 }
474