• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * BF561 memory map
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  * Licensed under the GPL-2 or later.
6  */
7 
8 #ifndef __BFIN_MACH_MEM_MAP_H__
9 #define __BFIN_MACH_MEM_MAP_H__
10 
11 #ifndef __BFIN_MEM_MAP_H__
12 # error "do not include mach/mem_map.h directly -- use asm/mem_map.h"
13 #endif
14 
15 /* Async Memory Banks */
16 #define ASYNC_BANK3_BASE	0x2C000000	 /* Async Bank 3 */
17 #define ASYNC_BANK3_SIZE	0x04000000	/* 64M */
18 #define ASYNC_BANK2_BASE	0x28000000	 /* Async Bank 2 */
19 #define ASYNC_BANK2_SIZE	0x04000000	/* 64M */
20 #define ASYNC_BANK1_BASE	0x24000000	 /* Async Bank 1 */
21 #define ASYNC_BANK1_SIZE	0x04000000	/* 64M */
22 #define ASYNC_BANK0_BASE	0x20000000	 /* Async Bank 0 */
23 #define ASYNC_BANK0_SIZE	0x04000000	/* 64M */
24 
25 /* Boot ROM Memory */
26 
27 #define BOOT_ROM_START		0xEF000000
28 #define BOOT_ROM_LENGTH		0x800
29 
30 /* Level 1 Memory */
31 
32 #ifdef CONFIG_BFIN_ICACHE
33 #define BFIN_ICACHESIZE	(16*1024)
34 #else
35 #define BFIN_ICACHESIZE	(0*1024)
36 #endif
37 
38 /* Memory Map for ADSP-BF561 processors */
39 
40 #define COREA_L1_CODE_START       0xFFA00000
41 #define COREA_L1_DATA_A_START     0xFF800000
42 #define COREA_L1_DATA_B_START     0xFF900000
43 #define COREB_L1_CODE_START       0xFF600000
44 #define COREB_L1_DATA_A_START     0xFF400000
45 #define COREB_L1_DATA_B_START     0xFF500000
46 
47 #define L1_CODE_START       COREA_L1_CODE_START
48 #define L1_DATA_A_START     COREA_L1_DATA_A_START
49 #define L1_DATA_B_START     COREA_L1_DATA_B_START
50 
51 #define L1_CODE_LENGTH      0x4000
52 
53 #ifdef CONFIG_BFIN_DCACHE
54 
55 #ifdef CONFIG_BFIN_DCACHE_BANKA
56 #define DMEM_CNTR (ACACHE_BSRAM | ENDCPLB | PORT_PREF0)
57 #define L1_DATA_A_LENGTH      (0x8000 - 0x4000)
58 #define L1_DATA_B_LENGTH      0x8000
59 #define BFIN_DCACHESIZE	(16*1024)
60 #define BFIN_DSUPBANKS	1
61 #else
62 #define DMEM_CNTR (ACACHE_BCACHE | ENDCPLB | PORT_PREF0)
63 #define L1_DATA_A_LENGTH      (0x8000 - 0x4000)
64 #define L1_DATA_B_LENGTH      (0x8000 - 0x4000)
65 #define BFIN_DCACHESIZE	(32*1024)
66 #define BFIN_DSUPBANKS	2
67 #endif
68 
69 #else
70 #define DMEM_CNTR (ASRAM_BSRAM | ENDCPLB | PORT_PREF0)
71 #define L1_DATA_A_LENGTH      0x8000
72 #define L1_DATA_B_LENGTH      0x8000
73 #define BFIN_DCACHESIZE	(0*1024)
74 #define BFIN_DSUPBANKS	0
75 #endif /*CONFIG_BFIN_DCACHE*/
76 
77 /*
78  * If we are in SMP mode, then the cache settings of Core B will match
79  * the settings of Core A.  If we aren't, then we assume Core B is not
80  * using any cache.  This allows the rest of the kernel to work with
81  * the core in either mode as we are only loading user code into it and
82  * it is the user's problem to make sure they aren't doing something
83  * stupid there.
84  *
85  * Note that we treat the L1 code region as a contiguous blob to make
86  * the rest of the kernel simpler.  Easier to check one region than a
87  * bunch of small ones.  Again, possible misbehavior here is the fault
88  * of the user -- don't try to use memory that doesn't exist.
89  */
90 #ifdef CONFIG_SMP
91 # define COREB_L1_CODE_LENGTH     L1_CODE_LENGTH
92 # define COREB_L1_DATA_A_LENGTH   L1_DATA_A_LENGTH
93 # define COREB_L1_DATA_B_LENGTH   L1_DATA_B_LENGTH
94 #else
95 # define COREB_L1_CODE_LENGTH     0x14000
96 # define COREB_L1_DATA_A_LENGTH   0x8000
97 # define COREB_L1_DATA_B_LENGTH   0x8000
98 #endif
99 
100 /* Level 2 Memory */
101 #define L2_START		0xFEB00000
102 #define L2_LENGTH		0x20000
103 
104 /* Scratch Pad Memory */
105 
106 #define COREA_L1_SCRATCH_START	0xFFB00000
107 #define COREB_L1_SCRATCH_START	0xFF700000
108 
109 #ifdef CONFIG_SMP
110 
111 /*
112  * The following macros both return the address of the PDA for the
113  * current core.
114  *
115  * In its first safe (and hairy) form, the macro neither clobbers any
116  * register aside of the output Preg, nor uses the stack, since it
117  * could be called with an invalid stack pointer, or the current stack
118  * space being uncovered by any CPLB (e.g. early exception handling).
119  *
120  * The constraints on the second form are a bit relaxed, and the code
121  * is allowed to use the specified Dreg for determining the PDA
122  * address to be returned into Preg.
123  */
124 # define GET_PDA_SAFE(preg)		\
125 	preg.l = lo(DSPID);		\
126 	preg.h = hi(DSPID);		\
127 	preg = [preg];			\
128 	preg = preg << 2;		\
129 	preg = preg << 2;		\
130 	preg = preg << 2;		\
131 	preg = preg << 2;		\
132 	preg = preg << 2;		\
133 	preg = preg << 2;		\
134 	preg = preg << 2;		\
135 	preg = preg << 2;		\
136 	preg = preg << 2;		\
137 	preg = preg << 2;		\
138 	preg = preg << 2;		\
139 	preg = preg << 2;		\
140 	if cc jump 2f;			\
141 	cc = preg == 0x0;		\
142 	preg.l = _cpu_pda;		\
143 	preg.h = _cpu_pda;		\
144 	if !cc jump 3f;			\
145 1:					\
146 	/* preg = 0x0; */		\
147 	cc = !cc; /* restore cc to 0 */	\
148 	jump 4f;			\
149 2:					\
150 	cc = preg == 0x0;		\
151 	preg.l = _cpu_pda;		\
152 	preg.h = _cpu_pda;		\
153 	if cc jump 4f;			\
154 	/* preg = 0x1000000; */		\
155 	cc = !cc; /* restore cc to 1 */	\
156 3:					\
157 	preg = [preg];			\
158 4:
159 
160 # define GET_PDA(preg, dreg)		\
161 	preg.l = lo(DSPID);		\
162 	preg.h = hi(DSPID);		\
163 	dreg = [preg];			\
164 	preg.l = _cpu_pda;		\
165 	preg.h = _cpu_pda;		\
166 	cc = bittst(dreg, 0);		\
167 	if !cc jump 1f;			\
168 	preg = [preg];			\
169 1:					\
170 
171 # define GET_CPUID(preg, dreg)		\
172 	preg.l = lo(DSPID);		\
173 	preg.h = hi(DSPID);		\
174 	dreg = [preg];			\
175 	dreg = ROT dreg BY -1;		\
176 	dreg = CC;
177 
178 # ifndef __ASSEMBLY__
179 
180 #  include <asm/processor.h>
181 
get_l1_scratch_start_cpu(int cpu)182 static inline unsigned long get_l1_scratch_start_cpu(int cpu)
183 {
184 	return cpu ? COREB_L1_SCRATCH_START : COREA_L1_SCRATCH_START;
185 }
get_l1_code_start_cpu(int cpu)186 static inline unsigned long get_l1_code_start_cpu(int cpu)
187 {
188 	return cpu ? COREB_L1_CODE_START : COREA_L1_CODE_START;
189 }
get_l1_data_a_start_cpu(int cpu)190 static inline unsigned long get_l1_data_a_start_cpu(int cpu)
191 {
192 	return cpu ? COREB_L1_DATA_A_START : COREA_L1_DATA_A_START;
193 }
get_l1_data_b_start_cpu(int cpu)194 static inline unsigned long get_l1_data_b_start_cpu(int cpu)
195 {
196 	return cpu ? COREB_L1_DATA_B_START : COREA_L1_DATA_B_START;
197 }
198 
get_l1_scratch_start(void)199 static inline unsigned long get_l1_scratch_start(void)
200 {
201 	return get_l1_scratch_start_cpu(blackfin_core_id());
202 }
get_l1_code_start(void)203 static inline unsigned long get_l1_code_start(void)
204 {
205 	return get_l1_code_start_cpu(blackfin_core_id());
206 }
get_l1_data_a_start(void)207 static inline unsigned long get_l1_data_a_start(void)
208 {
209 	return get_l1_data_a_start_cpu(blackfin_core_id());
210 }
get_l1_data_b_start(void)211 static inline unsigned long get_l1_data_b_start(void)
212 {
213 	return get_l1_data_b_start_cpu(blackfin_core_id());
214 }
215 
216 # endif /* __ASSEMBLY__ */
217 #endif /* CONFIG_SMP */
218 
219 #endif
220