• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <asm/blackfin.h>
23 #include <asm/mem_map.h>
24 #include "blackfin_sram.h"
25 
26 /* the data structure for L1 scratchpad and DATA SRAM */
27 struct sram_piece {
28 	void *paddr;
29 	int size;
30 	pid_t pid;
31 	struct sram_piece *next;
32 };
33 
34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37 
38 #if L1_DATA_A_LENGTH != 0
39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41 #endif
42 
43 #if L1_DATA_B_LENGTH != 0
44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46 #endif
47 
48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50 #endif
51 
52 #if L1_CODE_LENGTH != 0
53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56 #endif
57 
58 #if L2_LENGTH != 0
59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61 #endif
62 
63 static struct kmem_cache *sram_piece_cache;
64 
65 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)66 static void __init l1sram_init(void)
67 {
68 	unsigned int cpu;
69 	unsigned long reserve;
70 
71 #ifdef CONFIG_SMP
72 	reserve = 0;
73 #else
74 	reserve = sizeof(struct l1_scratch_task_info);
75 #endif
76 
77 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78 		per_cpu(free_l1_ssram_head, cpu).next =
79 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80 		if (!per_cpu(free_l1_ssram_head, cpu).next) {
81 			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82 			return;
83 		}
84 
85 		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86 		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87 		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88 		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89 
90 		per_cpu(used_l1_ssram_head, cpu).next = NULL;
91 
92 		/* mutex initialize */
93 		spin_lock_init(&per_cpu(l1sram_lock, cpu));
94 		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95 			L1_SCRATCH_LENGTH >> 10);
96 	}
97 }
98 
l1_data_sram_init(void)99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102 	unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106 		per_cpu(free_l1_data_A_sram_head, cpu).next =
107 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108 		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109 			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110 			return;
111 		}
112 
113 		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114 			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115 		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116 			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117 		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118 		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119 
120 		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121 
122 		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123 			L1_DATA_A_LENGTH >> 10,
124 			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125 	}
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129 		per_cpu(free_l1_data_B_sram_head, cpu).next =
130 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131 		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132 			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133 			return;
134 		}
135 
136 		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137 			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138 		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139 			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140 		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141 		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142 
143 		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144 
145 		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146 			L1_DATA_B_LENGTH >> 10,
147 			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148 		/* mutex initialize */
149 	}
150 #endif
151 
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154 		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157 
l1_inst_sram_init(void)158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161 	unsigned int cpu;
162 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163 		per_cpu(free_l1_inst_sram_head, cpu).next =
164 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165 		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166 			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167 			return;
168 		}
169 
170 		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171 			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172 		per_cpu(free_l1_inst_sram_head, cpu).next->size =
173 			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174 		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175 		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176 
177 		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178 
179 		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180 			L1_CODE_LENGTH >> 10,
181 			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182 
183 		/* mutex initialize */
184 		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185 	}
186 #endif
187 }
188 
189 #ifdef __ADSPBF60x__
l2_ecc_err(int irq,void * dev_id)190 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191 {
192 	int status;
193 
194 	printk(KERN_ERR "L2 ecc error happened\n");
195 	status = bfin_read32(L2CTL0_STAT);
196 	if (status & 0x1)
197 		printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
198 			bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
199 	if (status & 0x2)
200 		printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
201 			bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
202 
203 	status = status >> 8;
204 	if (status)
205 		printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206 			status, bfin_read32(L2CTL0_ERRADDR0 + status));
207 
208 	panic("L2 Ecc error");
209 	return IRQ_HANDLED;
210 }
211 #endif
212 
l2_sram_init(void)213 static void __init l2_sram_init(void)
214 {
215 #if L2_LENGTH != 0
216 
217 #ifdef __ADSPBF60x__
218 	int ret;
219 
220 	ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221 			NULL);
222 	if (unlikely(ret < 0)) {
223 		printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224 		return;
225 	}
226 #endif
227 
228 	free_l2_sram_head.next =
229 		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230 	if (!free_l2_sram_head.next) {
231 		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232 		return;
233 	}
234 
235 	free_l2_sram_head.next->paddr =
236 		(void *)L2_START + (_ebss_l2 - _stext_l2);
237 	free_l2_sram_head.next->size =
238 		L2_LENGTH - (_ebss_l2 - _stext_l2);
239 	free_l2_sram_head.next->pid = 0;
240 	free_l2_sram_head.next->next = NULL;
241 
242 	used_l2_sram_head.next = NULL;
243 
244 	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245 		L2_LENGTH >> 10,
246 		free_l2_sram_head.next->size >> 10);
247 
248 	/* mutex initialize */
249 	spin_lock_init(&l2_sram_lock);
250 #endif
251 }
252 
bfin_sram_init(void)253 static int __init bfin_sram_init(void)
254 {
255 	sram_piece_cache = kmem_cache_create("sram_piece_cache",
256 				sizeof(struct sram_piece),
257 				0, SLAB_PANIC, NULL);
258 
259 	l1sram_init();
260 	l1_data_sram_init();
261 	l1_inst_sram_init();
262 	l2_sram_init();
263 
264 	return 0;
265 }
266 pure_initcall(bfin_sram_init);
267 
268 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)269 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270 		struct sram_piece *pused_head)
271 {
272 	struct sram_piece *pslot, *plast, *pavail;
273 
274 	if (size <= 0 || !pfree_head || !pused_head)
275 		return NULL;
276 
277 	/* Align the size */
278 	size = (size + 3) & ~3;
279 
280 	pslot = pfree_head->next;
281 	plast = pfree_head;
282 
283 	/* search an available piece slot */
284 	while (pslot != NULL && size > pslot->size) {
285 		plast = pslot;
286 		pslot = pslot->next;
287 	}
288 
289 	if (!pslot)
290 		return NULL;
291 
292 	if (pslot->size == size) {
293 		plast->next = pslot->next;
294 		pavail = pslot;
295 	} else {
296 		/* use atomic so our L1 allocator can be used atomically */
297 		pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298 
299 		if (!pavail)
300 			return NULL;
301 
302 		pavail->paddr = pslot->paddr;
303 		pavail->size = size;
304 		pslot->paddr += size;
305 		pslot->size -= size;
306 	}
307 
308 	pavail->pid = current->pid;
309 
310 	pslot = pused_head->next;
311 	plast = pused_head;
312 
313 	/* insert new piece into used piece list !!! */
314 	while (pslot != NULL && pavail->paddr < pslot->paddr) {
315 		plast = pslot;
316 		pslot = pslot->next;
317 	}
318 
319 	pavail->next = pslot;
320 	plast->next = pavail;
321 
322 	return pavail->paddr;
323 }
324 
325 /* Allocate the largest available block.  */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)326 static void *_sram_alloc_max(struct sram_piece *pfree_head,
327 				struct sram_piece *pused_head,
328 				unsigned long *psize)
329 {
330 	struct sram_piece *pslot, *pmax;
331 
332 	if (!pfree_head || !pused_head)
333 		return NULL;
334 
335 	pmax = pslot = pfree_head->next;
336 
337 	/* search an available piece slot */
338 	while (pslot != NULL) {
339 		if (pslot->size > pmax->size)
340 			pmax = pslot;
341 		pslot = pslot->next;
342 	}
343 
344 	if (!pmax)
345 		return NULL;
346 
347 	*psize = pmax->size;
348 
349 	return _sram_alloc(*psize, pfree_head, pused_head);
350 }
351 
352 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)353 static int _sram_free(const void *addr,
354 			struct sram_piece *pfree_head,
355 			struct sram_piece *pused_head)
356 {
357 	struct sram_piece *pslot, *plast, *pavail;
358 
359 	if (!pfree_head || !pused_head)
360 		return -1;
361 
362 	/* search the relevant memory slot */
363 	pslot = pused_head->next;
364 	plast = pused_head;
365 
366 	/* search an available piece slot */
367 	while (pslot != NULL && pslot->paddr != addr) {
368 		plast = pslot;
369 		pslot = pslot->next;
370 	}
371 
372 	if (!pslot)
373 		return -1;
374 
375 	plast->next = pslot->next;
376 	pavail = pslot;
377 	pavail->pid = 0;
378 
379 	/* insert free pieces back to the free list */
380 	pslot = pfree_head->next;
381 	plast = pfree_head;
382 
383 	while (pslot != NULL && addr > pslot->paddr) {
384 		plast = pslot;
385 		pslot = pslot->next;
386 	}
387 
388 	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389 		plast->size += pavail->size;
390 		kmem_cache_free(sram_piece_cache, pavail);
391 	} else {
392 		pavail->next = plast->next;
393 		plast->next = pavail;
394 		plast = pavail;
395 	}
396 
397 	if (pslot && plast->paddr + plast->size == pslot->paddr) {
398 		plast->size += pslot->size;
399 		plast->next = pslot->next;
400 		kmem_cache_free(sram_piece_cache, pslot);
401 	}
402 
403 	return 0;
404 }
405 
sram_free(const void * addr)406 int sram_free(const void *addr)
407 {
408 
409 #if L1_CODE_LENGTH != 0
410 	if (addr >= (void *)get_l1_code_start()
411 		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412 		return l1_inst_sram_free(addr);
413 	else
414 #endif
415 #if L1_DATA_A_LENGTH != 0
416 	if (addr >= (void *)get_l1_data_a_start()
417 		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418 		return l1_data_A_sram_free(addr);
419 	else
420 #endif
421 #if L1_DATA_B_LENGTH != 0
422 	if (addr >= (void *)get_l1_data_b_start()
423 		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424 		return l1_data_B_sram_free(addr);
425 	else
426 #endif
427 #if L2_LENGTH != 0
428 	if (addr >= (void *)L2_START
429 		 && addr < (void *)(L2_START + L2_LENGTH))
430 		return l2_sram_free(addr);
431 	else
432 #endif
433 		return -1;
434 }
435 EXPORT_SYMBOL(sram_free);
436 
l1_data_A_sram_alloc(size_t size)437 void *l1_data_A_sram_alloc(size_t size)
438 {
439 #if L1_DATA_A_LENGTH != 0
440 	unsigned long flags;
441 	void *addr;
442 	unsigned int cpu;
443 
444 	cpu = smp_processor_id();
445 	/* add mutex operation */
446 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447 
448 	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449 			&per_cpu(used_l1_data_A_sram_head, cpu));
450 
451 	/* add mutex operation */
452 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453 
454 	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455 		 (long unsigned int)addr, size);
456 
457 	return addr;
458 #else
459 	return NULL;
460 #endif
461 }
462 EXPORT_SYMBOL(l1_data_A_sram_alloc);
463 
l1_data_A_sram_free(const void * addr)464 int l1_data_A_sram_free(const void *addr)
465 {
466 #if L1_DATA_A_LENGTH != 0
467 	unsigned long flags;
468 	int ret;
469 	unsigned int cpu;
470 
471 	cpu = smp_processor_id();
472 	/* add mutex operation */
473 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474 
475 	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476 			&per_cpu(used_l1_data_A_sram_head, cpu));
477 
478 	/* add mutex operation */
479 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480 
481 	return ret;
482 #else
483 	return -1;
484 #endif
485 }
486 EXPORT_SYMBOL(l1_data_A_sram_free);
487 
l1_data_B_sram_alloc(size_t size)488 void *l1_data_B_sram_alloc(size_t size)
489 {
490 #if L1_DATA_B_LENGTH != 0
491 	unsigned long flags;
492 	void *addr;
493 	unsigned int cpu;
494 
495 	cpu = smp_processor_id();
496 	/* add mutex operation */
497 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498 
499 	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500 			&per_cpu(used_l1_data_B_sram_head, cpu));
501 
502 	/* add mutex operation */
503 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504 
505 	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506 		 (long unsigned int)addr, size);
507 
508 	return addr;
509 #else
510 	return NULL;
511 #endif
512 }
513 EXPORT_SYMBOL(l1_data_B_sram_alloc);
514 
l1_data_B_sram_free(const void * addr)515 int l1_data_B_sram_free(const void *addr)
516 {
517 #if L1_DATA_B_LENGTH != 0
518 	unsigned long flags;
519 	int ret;
520 	unsigned int cpu;
521 
522 	cpu = smp_processor_id();
523 	/* add mutex operation */
524 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525 
526 	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527 			&per_cpu(used_l1_data_B_sram_head, cpu));
528 
529 	/* add mutex operation */
530 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531 
532 	return ret;
533 #else
534 	return -1;
535 #endif
536 }
537 EXPORT_SYMBOL(l1_data_B_sram_free);
538 
l1_data_sram_alloc(size_t size)539 void *l1_data_sram_alloc(size_t size)
540 {
541 	void *addr = l1_data_A_sram_alloc(size);
542 
543 	if (!addr)
544 		addr = l1_data_B_sram_alloc(size);
545 
546 	return addr;
547 }
548 EXPORT_SYMBOL(l1_data_sram_alloc);
549 
l1_data_sram_zalloc(size_t size)550 void *l1_data_sram_zalloc(size_t size)
551 {
552 	void *addr = l1_data_sram_alloc(size);
553 
554 	if (addr)
555 		memset(addr, 0x00, size);
556 
557 	return addr;
558 }
559 EXPORT_SYMBOL(l1_data_sram_zalloc);
560 
l1_data_sram_free(const void * addr)561 int l1_data_sram_free(const void *addr)
562 {
563 	int ret;
564 	ret = l1_data_A_sram_free(addr);
565 	if (ret == -1)
566 		ret = l1_data_B_sram_free(addr);
567 	return ret;
568 }
569 EXPORT_SYMBOL(l1_data_sram_free);
570 
l1_inst_sram_alloc(size_t size)571 void *l1_inst_sram_alloc(size_t size)
572 {
573 #if L1_CODE_LENGTH != 0
574 	unsigned long flags;
575 	void *addr;
576 	unsigned int cpu;
577 
578 	cpu = smp_processor_id();
579 	/* add mutex operation */
580 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581 
582 	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583 			&per_cpu(used_l1_inst_sram_head, cpu));
584 
585 	/* add mutex operation */
586 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587 
588 	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589 		 (long unsigned int)addr, size);
590 
591 	return addr;
592 #else
593 	return NULL;
594 #endif
595 }
596 EXPORT_SYMBOL(l1_inst_sram_alloc);
597 
l1_inst_sram_free(const void * addr)598 int l1_inst_sram_free(const void *addr)
599 {
600 #if L1_CODE_LENGTH != 0
601 	unsigned long flags;
602 	int ret;
603 	unsigned int cpu;
604 
605 	cpu = smp_processor_id();
606 	/* add mutex operation */
607 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608 
609 	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610 			&per_cpu(used_l1_inst_sram_head, cpu));
611 
612 	/* add mutex operation */
613 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614 
615 	return ret;
616 #else
617 	return -1;
618 #endif
619 }
620 EXPORT_SYMBOL(l1_inst_sram_free);
621 
622 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)623 void *l1sram_alloc(size_t size)
624 {
625 	unsigned long flags;
626 	void *addr;
627 	unsigned int cpu;
628 
629 	cpu = smp_processor_id();
630 	/* add mutex operation */
631 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632 
633 	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634 			&per_cpu(used_l1_ssram_head, cpu));
635 
636 	/* add mutex operation */
637 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638 
639 	return addr;
640 }
641 
642 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)643 void *l1sram_alloc_max(size_t *psize)
644 {
645 	unsigned long flags;
646 	void *addr;
647 	unsigned int cpu;
648 
649 	cpu = smp_processor_id();
650 	/* add mutex operation */
651 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652 
653 	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654 			&per_cpu(used_l1_ssram_head, cpu), psize);
655 
656 	/* add mutex operation */
657 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658 
659 	return addr;
660 }
661 
662 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)663 int l1sram_free(const void *addr)
664 {
665 	unsigned long flags;
666 	int ret;
667 	unsigned int cpu;
668 
669 	cpu = smp_processor_id();
670 	/* add mutex operation */
671 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672 
673 	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674 			&per_cpu(used_l1_ssram_head, cpu));
675 
676 	/* add mutex operation */
677 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678 
679 	return ret;
680 }
681 
l2_sram_alloc(size_t size)682 void *l2_sram_alloc(size_t size)
683 {
684 #if L2_LENGTH != 0
685 	unsigned long flags;
686 	void *addr;
687 
688 	/* add mutex operation */
689 	spin_lock_irqsave(&l2_sram_lock, flags);
690 
691 	addr = _sram_alloc(size, &free_l2_sram_head,
692 			&used_l2_sram_head);
693 
694 	/* add mutex operation */
695 	spin_unlock_irqrestore(&l2_sram_lock, flags);
696 
697 	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698 		 (long unsigned int)addr, size);
699 
700 	return addr;
701 #else
702 	return NULL;
703 #endif
704 }
705 EXPORT_SYMBOL(l2_sram_alloc);
706 
l2_sram_zalloc(size_t size)707 void *l2_sram_zalloc(size_t size)
708 {
709 	void *addr = l2_sram_alloc(size);
710 
711 	if (addr)
712 		memset(addr, 0x00, size);
713 
714 	return addr;
715 }
716 EXPORT_SYMBOL(l2_sram_zalloc);
717 
l2_sram_free(const void * addr)718 int l2_sram_free(const void *addr)
719 {
720 #if L2_LENGTH != 0
721 	unsigned long flags;
722 	int ret;
723 
724 	/* add mutex operation */
725 	spin_lock_irqsave(&l2_sram_lock, flags);
726 
727 	ret = _sram_free(addr, &free_l2_sram_head,
728 			&used_l2_sram_head);
729 
730 	/* add mutex operation */
731 	spin_unlock_irqrestore(&l2_sram_lock, flags);
732 
733 	return ret;
734 #else
735 	return -1;
736 #endif
737 }
738 EXPORT_SYMBOL(l2_sram_free);
739 
sram_free_with_lsl(const void * addr)740 int sram_free_with_lsl(const void *addr)
741 {
742 	struct sram_list_struct *lsl, **tmp;
743 	struct mm_struct *mm = current->mm;
744 	int ret = -1;
745 
746 	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747 		if ((*tmp)->addr == addr) {
748 			lsl = *tmp;
749 			ret = sram_free(addr);
750 			*tmp = lsl->next;
751 			kfree(lsl);
752 			break;
753 		}
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL(sram_free_with_lsl);
758 
759 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760  * tracked.  These are designed for userspace so that when a process exits,
761  * we can safely reap their resources.
762  */
sram_alloc_with_lsl(size_t size,unsigned long flags)763 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764 {
765 	void *addr = NULL;
766 	struct sram_list_struct *lsl = NULL;
767 	struct mm_struct *mm = current->mm;
768 
769 	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770 	if (!lsl)
771 		return NULL;
772 
773 	if (flags & L1_INST_SRAM)
774 		addr = l1_inst_sram_alloc(size);
775 
776 	if (addr == NULL && (flags & L1_DATA_A_SRAM))
777 		addr = l1_data_A_sram_alloc(size);
778 
779 	if (addr == NULL && (flags & L1_DATA_B_SRAM))
780 		addr = l1_data_B_sram_alloc(size);
781 
782 	if (addr == NULL && (flags & L2_SRAM))
783 		addr = l2_sram_alloc(size);
784 
785 	if (addr == NULL) {
786 		kfree(lsl);
787 		return NULL;
788 	}
789 	lsl->addr = addr;
790 	lsl->length = size;
791 	lsl->next = mm->context.sram_list;
792 	mm->context.sram_list = lsl;
793 	return addr;
794 }
795 EXPORT_SYMBOL(sram_alloc_with_lsl);
796 
797 #ifdef CONFIG_PROC_FS
798 /* Once we get a real allocator, we'll throw all of this away.
799  * Until then, we need some sort of visibility into the L1 alloc.
800  */
801 /* Need to keep line of output the same.  Currently, that is 44 bytes
802  * (including newline).
803  */
_sram_proc_show(struct seq_file * m,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)804 static int _sram_proc_show(struct seq_file *m, const char *desc,
805 		struct sram_piece *pfree_head,
806 		struct sram_piece *pused_head)
807 {
808 	struct sram_piece *pslot;
809 
810 	if (!pfree_head || !pused_head)
811 		return -1;
812 
813 	seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
814 
815 	/* search the relevant memory slot */
816 	pslot = pused_head->next;
817 
818 	while (pslot != NULL) {
819 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
820 			pslot->paddr, pslot->paddr + pslot->size,
821 			pslot->size, pslot->pid, "ALLOCATED");
822 
823 		pslot = pslot->next;
824 	}
825 
826 	pslot = pfree_head->next;
827 
828 	while (pslot != NULL) {
829 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
830 			pslot->paddr, pslot->paddr + pslot->size,
831 			pslot->size, pslot->pid, "FREE");
832 
833 		pslot = pslot->next;
834 	}
835 
836 	return 0;
837 }
sram_proc_show(struct seq_file * m,void * v)838 static int sram_proc_show(struct seq_file *m, void *v)
839 {
840 	unsigned int cpu;
841 
842 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843 		if (_sram_proc_show(m, "Scratchpad",
844 			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845 			goto not_done;
846 #if L1_DATA_A_LENGTH != 0
847 		if (_sram_proc_show(m, "L1 Data A",
848 			&per_cpu(free_l1_data_A_sram_head, cpu),
849 			&per_cpu(used_l1_data_A_sram_head, cpu)))
850 			goto not_done;
851 #endif
852 #if L1_DATA_B_LENGTH != 0
853 		if (_sram_proc_show(m, "L1 Data B",
854 			&per_cpu(free_l1_data_B_sram_head, cpu),
855 			&per_cpu(used_l1_data_B_sram_head, cpu)))
856 			goto not_done;
857 #endif
858 #if L1_CODE_LENGTH != 0
859 		if (_sram_proc_show(m, "L1 Instruction",
860 			&per_cpu(free_l1_inst_sram_head, cpu),
861 			&per_cpu(used_l1_inst_sram_head, cpu)))
862 			goto not_done;
863 #endif
864 	}
865 #if L2_LENGTH != 0
866 	if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867 		goto not_done;
868 #endif
869  not_done:
870 	return 0;
871 }
872 
sram_proc_open(struct inode * inode,struct file * file)873 static int sram_proc_open(struct inode *inode, struct file *file)
874 {
875 	return single_open(file, sram_proc_show, NULL);
876 }
877 
878 static const struct file_operations sram_proc_ops = {
879 	.open		= sram_proc_open,
880 	.read		= seq_read,
881 	.llseek		= seq_lseek,
882 	.release	= single_release,
883 };
884 
sram_proc_init(void)885 static int __init sram_proc_init(void)
886 {
887 	struct proc_dir_entry *ptr;
888 
889 	ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890 	if (!ptr) {
891 		printk(KERN_WARNING "unable to create /proc/sram\n");
892 		return -1;
893 	}
894 	return 0;
895 }
896 late_initcall(sram_proc_init);
897 #endif
898