• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Physical mapping layer for MTD using the Axis partitiontable format
3  *
4  * Copyright (c) 2001-2007 Axis Communications AB
5  *
6  * This file is under the GPL.
7  *
8  * First partition is always sector 0 regardless of if we find a partitiontable
9  * or not. In the start of the next sector, there can be a partitiontable that
10  * tells us what other partitions to define. If there isn't, we use a default
11  * partition split defined below.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
26 
27 #include <asm/axisflashmap.h>
28 #include <asm/mmu.h>
29 
30 #define MEM_CSE0_SIZE (0x04000000)
31 #define MEM_CSE1_SIZE (0x04000000)
32 
33 #define FLASH_UNCACHED_ADDR  KSEG_E
34 #define FLASH_CACHED_ADDR    KSEG_F
35 
36 #define PAGESIZE (512)
37 
38 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
39 #define flash_data __u8
40 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
41 #define flash_data __u16
42 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
43 #define flash_data __u32
44 #endif
45 
46 /* From head.S */
47 extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
48 extern unsigned long romfs_start, romfs_length;
49 extern unsigned long nand_boot; /* 1 when booted from nand flash */
50 
51 struct partition_name {
52 	char name[6];
53 };
54 
55 /* The master mtd for the entire flash. */
56 struct mtd_info* axisflash_mtd = NULL;
57 
58 /* Map driver functions. */
59 
flash_read(struct map_info * map,unsigned long ofs)60 static map_word flash_read(struct map_info *map, unsigned long ofs)
61 {
62 	map_word tmp;
63 	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
64 	return tmp;
65 }
66 
flash_copy_from(struct map_info * map,void * to,unsigned long from,ssize_t len)67 static void flash_copy_from(struct map_info *map, void *to,
68 			    unsigned long from, ssize_t len)
69 {
70 	memcpy(to, (void *)(map->map_priv_1 + from), len);
71 }
72 
flash_write(struct map_info * map,map_word d,unsigned long adr)73 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
74 {
75 	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
76 }
77 
78 /*
79  * The map for chip select e0.
80  *
81  * We run into tricky coherence situations if we mix cached with uncached
82  * accesses to we only use the uncached version here.
83  *
84  * The size field is the total size where the flash chips may be mapped on the
85  * chip select. MTD probes should find all devices there and it does not matter
86  * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
87  * probes will ignore them.
88  *
89  * The start address in map_priv_1 is in virtual memory so we cannot use
90  * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
91  * address of cse0.
92  */
93 static struct map_info map_cse0 = {
94 	.name = "cse0",
95 	.size = MEM_CSE0_SIZE,
96 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
97 	.read = flash_read,
98 	.copy_from = flash_copy_from,
99 	.write = flash_write,
100 	.map_priv_1 = FLASH_UNCACHED_ADDR
101 };
102 
103 /*
104  * The map for chip select e1.
105  *
106  * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
107  * address, but there isn't.
108  */
109 static struct map_info map_cse1 = {
110 	.name = "cse1",
111 	.size = MEM_CSE1_SIZE,
112 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
113 	.read = flash_read,
114 	.copy_from = flash_copy_from,
115 	.write = flash_write,
116 	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
117 };
118 
119 #define MAX_PARTITIONS			7
120 #ifdef CONFIG_ETRAX_NANDBOOT
121 #define NUM_DEFAULT_PARTITIONS		4
122 #define DEFAULT_ROOTFS_PARTITION_NO	2
123 #define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
124 #else
125 #define NUM_DEFAULT_PARTITIONS		3
126 #define DEFAULT_ROOTFS_PARTITION_NO	(-1)
127 #define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
128 #endif
129 
130 #if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
131 #error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
132 #endif
133 
134 /* Initialize the ones normally used. */
135 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
136 	{
137 		.name = "part0",
138 		.size = CONFIG_ETRAX_PTABLE_SECTOR,
139 		.offset = 0
140 	},
141 	{
142 		.name = "part1",
143 		.size = 0,
144 		.offset = 0
145 	},
146 	{
147 		.name = "part2",
148 		.size = 0,
149 		.offset = 0
150 	},
151 	{
152 		.name = "part3",
153 		.size = 0,
154 		.offset = 0
155 	},
156 	{
157 		.name = "part4",
158 		.size = 0,
159 		.offset = 0
160 	},
161 	{
162 		.name = "part5",
163 		.size = 0,
164 		.offset = 0
165 	},
166 	{
167 		.name = "part6",
168 		.size = 0,
169 		.offset = 0
170 	},
171 };
172 
173 
174 /* If no partition-table was found, we use this default-set.
175  * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
176  * likely the size of one flash block and "filesystem"-partition needs
177  * to be >=5 blocks to be able to use JFFS.
178  */
179 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
180 	{
181 		.name = "boot firmware",
182 		.size = CONFIG_ETRAX_PTABLE_SECTOR,
183 		.offset = 0
184 	},
185 	{
186 		.name = "kernel",
187 		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
188 		.offset = CONFIG_ETRAX_PTABLE_SECTOR
189 	},
190 #define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
191 #ifdef CONFIG_ETRAX_NANDBOOT
192 	{
193 		.name = "rootfs",
194 		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
195 		.offset = FILESYSTEM_SECTOR
196 	},
197 #undef FILESYSTEM_SECTOR
198 #define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
199 #endif
200 	{
201 		.name = "rwfs",
202 		.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
203 		.offset = FILESYSTEM_SECTOR
204 	}
205 };
206 
207 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
208 /* Main flash device */
209 static struct mtd_partition main_partition = {
210 	.name = "main",
211 	.size = 0,
212 	.offset = 0
213 };
214 #endif
215 
216 /* Auxiliary partition if we find another flash */
217 static struct mtd_partition aux_partition = {
218 	.name = "aux",
219 	.size = 0,
220 	.offset = 0
221 };
222 
223 /*
224  * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
225  * chips in that order (because the amd_flash-driver is faster).
226  */
probe_cs(struct map_info * map_cs)227 static struct mtd_info *probe_cs(struct map_info *map_cs)
228 {
229 	struct mtd_info *mtd_cs = NULL;
230 
231 	printk(KERN_INFO
232 	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
233 	       map_cs->name, map_cs->size, map_cs->map_priv_1);
234 
235 #ifdef CONFIG_MTD_CFI
236 	mtd_cs = do_map_probe("cfi_probe", map_cs);
237 #endif
238 #ifdef CONFIG_MTD_JEDECPROBE
239 	if (!mtd_cs)
240 		mtd_cs = do_map_probe("jedec_probe", map_cs);
241 #endif
242 
243 	return mtd_cs;
244 }
245 
246 /*
247  * Probe each chip select individually for flash chips. If there are chips on
248  * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
249  * so that MTD partitions can cross chip boundries.
250  *
251  * The only known restriction to how you can mount your chips is that each
252  * chip select must hold similar flash chips. But you need external hardware
253  * to do that anyway and you can put totally different chips on cse0 and cse1
254  * so it isn't really much of a restriction.
255  */
256 extern struct mtd_info* __init crisv32_nand_flash_probe (void);
flash_probe(void)257 static struct mtd_info *flash_probe(void)
258 {
259 	struct mtd_info *mtd_cse0;
260 	struct mtd_info *mtd_cse1;
261 	struct mtd_info *mtd_total;
262 	struct mtd_info *mtds[2];
263 	int count = 0;
264 
265 	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
266 		mtds[count++] = mtd_cse0;
267 	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
268 		mtds[count++] = mtd_cse1;
269 
270 	if (!mtd_cse0 && !mtd_cse1) {
271 		/* No chip found. */
272 		return NULL;
273 	}
274 
275 	if (count > 1) {
276 		/* Since the concatenation layer adds a small overhead we
277 		 * could try to figure out if the chips in cse0 and cse1 are
278 		 * identical and reprobe the whole cse0+cse1 window. But since
279 		 * flash chips are slow, the overhead is relatively small.
280 		 * So we use the MTD concatenation layer instead of further
281 		 * complicating the probing procedure.
282 		 */
283 		mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
284 		if (!mtd_total) {
285 			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
286 				map_cse0.name, map_cse1.name);
287 
288 			/* The best we can do now is to only use what we found
289 			 * at cse0. */
290 			mtd_total = mtd_cse0;
291 			map_destroy(mtd_cse1);
292 		}
293 	} else
294 		mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
295 
296 	return mtd_total;
297 }
298 
299 /*
300  * Probe the flash chip(s) and, if it succeeds, read the partition-table
301  * and register the partitions with MTD.
302  */
init_axis_flash(void)303 static int __init init_axis_flash(void)
304 {
305 	struct mtd_info *main_mtd;
306 	struct mtd_info *aux_mtd = NULL;
307 	int err = 0;
308 	int pidx = 0;
309 	struct partitiontable_head *ptable_head = NULL;
310 	struct partitiontable_entry *ptable;
311 	int ptable_ok = 0;
312 	static char page[PAGESIZE];
313 	size_t len;
314 	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
315 	int part;
316 	struct mtd_partition *partition;
317 
318 	/* We need a root fs. If it resides in RAM, we need to use an
319 	 * MTDRAM device, so it must be enabled in the kernel config,
320 	 * but its size must be configured as 0 so as not to conflict
321 	 * with our usage.
322 	 */
323 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
324 	if (!romfs_in_flash && !nand_boot) {
325 		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
326 		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
327 		panic("This kernel cannot boot from RAM!\n");
328 	}
329 #endif
330 
331 	main_mtd = flash_probe();
332 	if (main_mtd)
333 		printk(KERN_INFO "%s: 0x%08llx bytes of NOR flash memory.\n",
334 		       main_mtd->name, main_mtd->size);
335 
336 #ifdef CONFIG_ETRAX_NANDFLASH
337 	aux_mtd = crisv32_nand_flash_probe();
338 	if (aux_mtd)
339 		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
340 			aux_mtd->name, aux_mtd->size);
341 
342 #ifdef CONFIG_ETRAX_NANDBOOT
343 	{
344 		struct mtd_info *tmp_mtd;
345 
346 		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
347 		       "making NAND flash primary device.\n");
348 		tmp_mtd = main_mtd;
349 		main_mtd = aux_mtd;
350 		aux_mtd = tmp_mtd;
351 	}
352 #endif /* CONFIG_ETRAX_NANDBOOT */
353 #endif /* CONFIG_ETRAX_NANDFLASH */
354 
355 	if (!main_mtd && !aux_mtd) {
356 		/* There's no reason to use this module if no flash chip can
357 		 * be identified. Make sure that's understood.
358 		 */
359 		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
360 	}
361 
362 #if 0 /* Dump flash memory so we can see what is going on */
363 	if (main_mtd) {
364 		int sectoraddr;
365 		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
366 				sectoraddr += PAGESIZE) {
367 			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
368 				page);
369 			printk(KERN_INFO
370 			       "Sector at %d (length %d):\n",
371 			       sectoraddr, len);
372 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, page, PAGESIZE, false);
373 		}
374 	}
375 #endif
376 
377 	if (main_mtd) {
378 		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
379 		main_mtd->owner = THIS_MODULE;
380 		axisflash_mtd = main_mtd;
381 
382 
383 		/* First partition (rescue) is always set to the default. */
384 		pidx++;
385 #ifdef CONFIG_ETRAX_NANDBOOT
386 		/* We know where the partition table should be located,
387 		 * it will be in first good block after that.
388 		 */
389 		int blockstat;
390 		do {
391 			blockstat = mtd_block_isbad(main_mtd, ptable_sector);
392 			if (blockstat < 0)
393 				ptable_sector = 0; /* read error */
394 			else if (blockstat)
395 				ptable_sector += main_mtd->erasesize;
396 		} while (blockstat && ptable_sector);
397 #endif
398 		if (ptable_sector) {
399 			mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
400 				 page);
401 			ptable_head = &((struct partitiontable *) page)->head;
402 		}
403 
404 #if 0 /* Dump partition table so we can see what is going on */
405 		printk(KERN_INFO
406 		       "axisflashmap: flash read %d bytes at 0x%08x, data: %8ph\n",
407 		       len, CONFIG_ETRAX_PTABLE_SECTOR, page);
408 		printk(KERN_INFO
409 		       "axisflashmap: partition table offset %d, data: %8ph\n",
410 		       PARTITION_TABLE_OFFSET, page + PARTITION_TABLE_OFFSET);
411 #endif
412 	}
413 
414 	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
415 	    && (ptable_head->size <
416 		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
417 		PARTITIONTABLE_END_MARKER_SIZE))
418 	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
419 				  ptable_head->size -
420 				  PARTITIONTABLE_END_MARKER_SIZE)
421 		== PARTITIONTABLE_END_MARKER)) {
422 		/* Looks like a start, sane length and end of a
423 		 * partition table, lets check csum etc.
424 		 */
425 		struct partitiontable_entry *max_addr =
426 			(struct partitiontable_entry *)
427 			((unsigned long)ptable_head + sizeof(*ptable_head) +
428 			 ptable_head->size);
429 		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
430 		unsigned char *p;
431 		unsigned long csum = 0;
432 
433 		ptable = (struct partitiontable_entry *)
434 			((unsigned long)ptable_head + sizeof(*ptable_head));
435 
436 		/* Lets be PARANOID, and check the checksum. */
437 		p = (unsigned char*) ptable;
438 
439 		while (p <= (unsigned char*)max_addr) {
440 			csum += *p++;
441 			csum += *p++;
442 			csum += *p++;
443 			csum += *p++;
444 		}
445 		ptable_ok = (csum == ptable_head->checksum);
446 
447 		/* Read the entries and use/show the info.  */
448 		printk(KERN_INFO "axisflashmap: "
449 		       "Found a%s partition table at 0x%p-0x%p.\n",
450 		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
451 		       max_addr);
452 
453 		/* We have found a working bootblock.  Now read the
454 		 * partition table.  Scan the table.  It ends with 0xffffffff.
455 		 */
456 		while (ptable_ok
457 		       && ptable->offset != PARTITIONTABLE_END_MARKER
458 		       && ptable < max_addr
459 		       && pidx < MAX_PARTITIONS - 1) {
460 
461 			axis_partitions[pidx].offset = offset + ptable->offset;
462 #ifdef CONFIG_ETRAX_NANDFLASH
463 			if (main_mtd->type == MTD_NANDFLASH) {
464 				axis_partitions[pidx].size =
465 					(((ptable+1)->offset ==
466 					  PARTITIONTABLE_END_MARKER) ?
467 					  main_mtd->size :
468 					  ((ptable+1)->offset + offset)) -
469 					(ptable->offset + offset);
470 
471 			} else
472 #endif /* CONFIG_ETRAX_NANDFLASH */
473 				axis_partitions[pidx].size = ptable->size;
474 #ifdef CONFIG_ETRAX_NANDBOOT
475 			/* Save partition number of jffs2 ro partition.
476 			 * Needed if RAM booting or root file system in RAM.
477 			 */
478 			if (!nand_boot &&
479 			    ram_rootfs_partition < 0 && /* not already set */
480 			    ptable->type == PARTITION_TYPE_JFFS2 &&
481 			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
482 				PARTITION_FLAGS_READONLY)
483 				ram_rootfs_partition = pidx;
484 #endif /* CONFIG_ETRAX_NANDBOOT */
485 			pidx++;
486 			ptable++;
487 		}
488 	}
489 
490 	/* Decide whether to use default partition table. */
491 	/* Only use default table if we actually have a device (main_mtd) */
492 
493 	partition = &axis_partitions[0];
494 	if (main_mtd && !ptable_ok) {
495 		memcpy(axis_partitions, axis_default_partitions,
496 		       sizeof(axis_default_partitions));
497 		pidx = NUM_DEFAULT_PARTITIONS;
498 		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
499 	}
500 
501 	/* Add artificial partitions for rootfs if necessary */
502 	if (romfs_in_flash) {
503 		/* rootfs is in directly accessible flash memory = NOR flash.
504 		   Add an overlapping device for the rootfs partition. */
505 		printk(KERN_INFO "axisflashmap: Adding partition for "
506 		       "overlapping root file system image\n");
507 		axis_partitions[pidx].size = romfs_length;
508 		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
509 		axis_partitions[pidx].name = "romfs";
510 		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
511 		ram_rootfs_partition = -1;
512 		pidx++;
513 	} else if (romfs_length && !nand_boot) {
514 		/* romfs exists in memory, but not in flash, so must be in RAM.
515 		 * Configure an MTDRAM partition. */
516 		if (ram_rootfs_partition < 0) {
517 			/* None set yet, put it at the end */
518 			ram_rootfs_partition = pidx;
519 			pidx++;
520 		}
521 		printk(KERN_INFO "axisflashmap: Adding partition for "
522 		       "root file system image in RAM\n");
523 		axis_partitions[ram_rootfs_partition].size = romfs_length;
524 		axis_partitions[ram_rootfs_partition].offset = romfs_start;
525 		axis_partitions[ram_rootfs_partition].name = "romfs";
526 		axis_partitions[ram_rootfs_partition].mask_flags |=
527 			MTD_WRITEABLE;
528 	}
529 
530 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
531 	if (main_mtd) {
532 		main_partition.size = main_mtd->size;
533 		err = mtd_device_register(main_mtd, &main_partition, 1);
534 		if (err)
535 			panic("axisflashmap: Could not initialize "
536 			      "partition for whole main mtd device!\n");
537 	}
538 #endif
539 
540 	/* Now, register all partitions with mtd.
541 	 * We do this one at a time so we can slip in an MTDRAM device
542 	 * in the proper place if required. */
543 
544 	for (part = 0; part < pidx; part++) {
545 		if (part == ram_rootfs_partition) {
546 			/* add MTDRAM partition here */
547 			struct mtd_info *mtd_ram;
548 
549 			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
550 			if (!mtd_ram)
551 				panic("axisflashmap: Couldn't allocate memory "
552 				      "for mtd_info!\n");
553 			printk(KERN_INFO "axisflashmap: Adding RAM partition "
554 			       "for rootfs image.\n");
555 			err = mtdram_init_device(mtd_ram,
556 						 (void *)(u_int32_t)partition[part].offset,
557 						 partition[part].size,
558 						 partition[part].name);
559 			if (err)
560 				panic("axisflashmap: Could not initialize "
561 				      "MTD RAM device!\n");
562 			/* JFFS2 likes to have an erasesize. Keep potential
563 			 * JFFS2 rootfs happy by providing one. Since image
564 			 * was most likely created for main mtd, use that
565 			 * erasesize, if available. Otherwise, make a guess. */
566 			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
567 				CONFIG_ETRAX_PTABLE_SECTOR);
568 		} else {
569 			err = mtd_device_register(main_mtd, &partition[part],
570 						  1);
571 			if (err)
572 				panic("axisflashmap: Could not add mtd "
573 					"partition %d\n", part);
574 		}
575 	}
576 
577 	if (aux_mtd) {
578 		aux_partition.size = aux_mtd->size;
579 		err = mtd_device_register(aux_mtd, &aux_partition, 1);
580 		if (err)
581 			panic("axisflashmap: Could not initialize "
582 			      "aux mtd device!\n");
583 
584 	}
585 
586 	return err;
587 }
588 
589 /* This adds the above to the kernels init-call chain. */
590 module_init(init_axis_flash);
591 
592 EXPORT_SYMBOL(axisflash_mtd);
593