1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
29
30 static struct ia64_cpu *sysfs_cpus;
31
arch_fix_phys_package_id(int num,u32 slot)32 void arch_fix_phys_package_id(int num, u32 slot)
33 {
34 #ifdef CONFIG_SMP
35 if (cpu_data(num)->socket_id == -1)
36 cpu_data(num)->socket_id = slot;
37 #endif
38 }
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40
41
42 #ifdef CONFIG_HOTPLUG_CPU
arch_register_cpu(int num)43 int __ref arch_register_cpu(int num)
44 {
45 #ifdef CONFIG_ACPI
46 /*
47 * If CPEI can be re-targeted or if this is not
48 * CPEI target, then it is hotpluggable
49 */
50 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51 sysfs_cpus[num].cpu.hotpluggable = 1;
52 map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54 return register_cpu(&sysfs_cpus[num].cpu, num);
55 }
56 EXPORT_SYMBOL(arch_register_cpu);
57
arch_unregister_cpu(int num)58 void __ref arch_unregister_cpu(int num)
59 {
60 unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
62 unmap_cpu_from_node(num, cpu_to_node(num));
63 #endif
64 }
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
arch_register_cpu(int num)67 static int __init arch_register_cpu(int num)
68 {
69 return register_cpu(&sysfs_cpus[num].cpu, num);
70 }
71 #endif /*CONFIG_HOTPLUG_CPU*/
72
73
topology_init(void)74 static int __init topology_init(void)
75 {
76 int i, err = 0;
77
78 #ifdef CONFIG_NUMA
79 /*
80 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81 */
82 for_each_online_node(i) {
83 if ((err = register_one_node(i)))
84 goto out;
85 }
86 #endif
87
88 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89 if (!sysfs_cpus)
90 panic("kzalloc in topology_init failed - NR_CPUS too big?");
91
92 for_each_present_cpu(i) {
93 if((err = arch_register_cpu(i)))
94 goto out;
95 }
96 out:
97 return err;
98 }
99
100 subsys_initcall(topology_init);
101
102
103 /*
104 * Export cpu cache information through sysfs
105 */
106
107 /*
108 * A bunch of string array to get pretty printing
109 */
110 static const char *cache_types[] = {
111 "", /* not used */
112 "Instruction",
113 "Data",
114 "Unified" /* unified */
115 };
116
117 static const char *cache_mattrib[]={
118 "WriteThrough",
119 "WriteBack",
120 "", /* reserved */
121 "" /* reserved */
122 };
123
124 struct cache_info {
125 pal_cache_config_info_t cci;
126 cpumask_t shared_cpu_map;
127 int level;
128 int type;
129 struct kobject kobj;
130 };
131
132 struct cpu_cache_info {
133 struct cache_info *cache_leaves;
134 int num_cache_leaves;
135 struct kobject kobj;
136 };
137
138 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
139 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
140
141 #ifdef CONFIG_SMP
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)142 static void cache_shared_cpu_map_setup(unsigned int cpu,
143 struct cache_info * this_leaf)
144 {
145 pal_cache_shared_info_t csi;
146 int num_shared, i = 0;
147 unsigned int j;
148
149 if (cpu_data(cpu)->threads_per_core <= 1 &&
150 cpu_data(cpu)->cores_per_socket <= 1) {
151 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
152 return;
153 }
154
155 if (ia64_pal_cache_shared_info(this_leaf->level,
156 this_leaf->type,
157 0,
158 &csi) != PAL_STATUS_SUCCESS)
159 return;
160
161 num_shared = (int) csi.num_shared;
162 do {
163 for_each_possible_cpu(j)
164 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165 && cpu_data(j)->core_id == csi.log1_cid
166 && cpu_data(j)->thread_id == csi.log1_tid)
167 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
168
169 i++;
170 } while (i < num_shared &&
171 ia64_pal_cache_shared_info(this_leaf->level,
172 this_leaf->type,
173 i,
174 &csi) == PAL_STATUS_SUCCESS);
175 }
176 #else
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)177 static void cache_shared_cpu_map_setup(unsigned int cpu,
178 struct cache_info * this_leaf)
179 {
180 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
181 return;
182 }
183 #endif
184
show_coherency_line_size(struct cache_info * this_leaf,char * buf)185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186 char *buf)
187 {
188 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189 }
190
show_ways_of_associativity(struct cache_info * this_leaf,char * buf)191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192 char *buf)
193 {
194 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195 }
196
show_attributes(struct cache_info * this_leaf,char * buf)197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198 {
199 return sprintf(buf,
200 "%s\n",
201 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202 }
203
show_size(struct cache_info * this_leaf,char * buf)204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205 {
206 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207 }
208
show_number_of_sets(struct cache_info * this_leaf,char * buf)209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210 {
211 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212 number_of_sets /= this_leaf->cci.pcci_assoc;
213 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214
215 return sprintf(buf, "%u\n", number_of_sets);
216 }
217
show_shared_cpu_map(struct cache_info * this_leaf,char * buf)218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219 {
220 cpumask_t shared_cpu_map;
221
222 cpumask_and(&shared_cpu_map,
223 &this_leaf->shared_cpu_map, cpu_online_mask);
224 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
225 cpumask_pr_args(&shared_cpu_map));
226 }
227
show_type(struct cache_info * this_leaf,char * buf)228 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229 {
230 int type = this_leaf->type + this_leaf->cci.pcci_unified;
231 return sprintf(buf, "%s\n", cache_types[type]);
232 }
233
show_level(struct cache_info * this_leaf,char * buf)234 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235 {
236 return sprintf(buf, "%u\n", this_leaf->level);
237 }
238
239 struct cache_attr {
240 struct attribute attr;
241 ssize_t (*show)(struct cache_info *, char *);
242 ssize_t (*store)(struct cache_info *, const char *, size_t count);
243 };
244
245 #ifdef define_one_ro
246 #undef define_one_ro
247 #endif
248 #define define_one_ro(_name) \
249 static struct cache_attr _name = \
250 __ATTR(_name, 0444, show_##_name, NULL)
251
252 define_one_ro(level);
253 define_one_ro(type);
254 define_one_ro(coherency_line_size);
255 define_one_ro(ways_of_associativity);
256 define_one_ro(size);
257 define_one_ro(number_of_sets);
258 define_one_ro(shared_cpu_map);
259 define_one_ro(attributes);
260
261 static struct attribute * cache_default_attrs[] = {
262 &type.attr,
263 &level.attr,
264 &coherency_line_size.attr,
265 &ways_of_associativity.attr,
266 &attributes.attr,
267 &size.attr,
268 &number_of_sets.attr,
269 &shared_cpu_map.attr,
270 NULL
271 };
272
273 #define to_object(k) container_of(k, struct cache_info, kobj)
274 #define to_attr(a) container_of(a, struct cache_attr, attr)
275
ia64_cache_show(struct kobject * kobj,struct attribute * attr,char * buf)276 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277 {
278 struct cache_attr *fattr = to_attr(attr);
279 struct cache_info *this_leaf = to_object(kobj);
280 ssize_t ret;
281
282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283 return ret;
284 }
285
286 static const struct sysfs_ops cache_sysfs_ops = {
287 .show = ia64_cache_show
288 };
289
290 static struct kobj_type cache_ktype = {
291 .sysfs_ops = &cache_sysfs_ops,
292 .default_attrs = cache_default_attrs,
293 };
294
295 static struct kobj_type cache_ktype_percpu_entry = {
296 .sysfs_ops = &cache_sysfs_ops,
297 };
298
cpu_cache_sysfs_exit(unsigned int cpu)299 static void cpu_cache_sysfs_exit(unsigned int cpu)
300 {
301 kfree(all_cpu_cache_info[cpu].cache_leaves);
302 all_cpu_cache_info[cpu].cache_leaves = NULL;
303 all_cpu_cache_info[cpu].num_cache_leaves = 0;
304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305 return;
306 }
307
cpu_cache_sysfs_init(unsigned int cpu)308 static int cpu_cache_sysfs_init(unsigned int cpu)
309 {
310 unsigned long i, levels, unique_caches;
311 pal_cache_config_info_t cci;
312 int j;
313 long status;
314 struct cache_info *this_cache;
315 int num_cache_leaves = 0;
316
317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319 return -1;
320 }
321
322 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323 GFP_KERNEL);
324 if (this_cache == NULL)
325 return -ENOMEM;
326
327 for (i=0; i < levels; i++) {
328 for (j=2; j >0 ; j--) {
329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330 PAL_STATUS_SUCCESS)
331 continue;
332
333 this_cache[num_cache_leaves].cci = cci;
334 this_cache[num_cache_leaves].level = i + 1;
335 this_cache[num_cache_leaves].type = j;
336
337 cache_shared_cpu_map_setup(cpu,
338 &this_cache[num_cache_leaves]);
339 num_cache_leaves ++;
340 }
341 }
342
343 all_cpu_cache_info[cpu].cache_leaves = this_cache;
344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348 return 0;
349 }
350
351 /* Add cache interface for CPU device */
cache_add_dev(struct device * sys_dev)352 static int cache_add_dev(struct device *sys_dev)
353 {
354 unsigned int cpu = sys_dev->id;
355 unsigned long i, j;
356 struct cache_info *this_object;
357 int retval = 0;
358 cpumask_t oldmask;
359
360 if (all_cpu_cache_info[cpu].kobj.parent)
361 return 0;
362
363 oldmask = current->cpus_allowed;
364 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
365 if (unlikely(retval))
366 return retval;
367
368 retval = cpu_cache_sysfs_init(cpu);
369 set_cpus_allowed_ptr(current, &oldmask);
370 if (unlikely(retval < 0))
371 return retval;
372
373 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374 &cache_ktype_percpu_entry, &sys_dev->kobj,
375 "%s", "cache");
376 if (unlikely(retval < 0)) {
377 cpu_cache_sysfs_exit(cpu);
378 return retval;
379 }
380
381 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382 this_object = LEAF_KOBJECT_PTR(cpu,i);
383 retval = kobject_init_and_add(&(this_object->kobj),
384 &cache_ktype,
385 &all_cpu_cache_info[cpu].kobj,
386 "index%1lu", i);
387 if (unlikely(retval)) {
388 for (j = 0; j < i; j++) {
389 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
390 }
391 kobject_put(&all_cpu_cache_info[cpu].kobj);
392 cpu_cache_sysfs_exit(cpu);
393 return retval;
394 }
395 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
396 }
397 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398 return retval;
399 }
400
401 /* Remove cache interface for CPU device */
cache_remove_dev(struct device * sys_dev)402 static int cache_remove_dev(struct device *sys_dev)
403 {
404 unsigned int cpu = sys_dev->id;
405 unsigned long i;
406
407 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
409
410 if (all_cpu_cache_info[cpu].kobj.parent) {
411 kobject_put(&all_cpu_cache_info[cpu].kobj);
412 memset(&all_cpu_cache_info[cpu].kobj,
413 0,
414 sizeof(struct kobject));
415 }
416
417 cpu_cache_sysfs_exit(cpu);
418
419 return 0;
420 }
421
422 /*
423 * When a cpu is hot-plugged, do a check and initiate
424 * cache kobject if necessary
425 */
cache_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)426 static int cache_cpu_callback(struct notifier_block *nfb,
427 unsigned long action, void *hcpu)
428 {
429 unsigned int cpu = (unsigned long)hcpu;
430 struct device *sys_dev;
431
432 sys_dev = get_cpu_device(cpu);
433 switch (action) {
434 case CPU_ONLINE:
435 case CPU_ONLINE_FROZEN:
436 cache_add_dev(sys_dev);
437 break;
438 case CPU_DEAD:
439 case CPU_DEAD_FROZEN:
440 cache_remove_dev(sys_dev);
441 break;
442 }
443 return NOTIFY_OK;
444 }
445
446 static struct notifier_block cache_cpu_notifier =
447 {
448 .notifier_call = cache_cpu_callback
449 };
450
cache_sysfs_init(void)451 static int __init cache_sysfs_init(void)
452 {
453 int i;
454
455 cpu_notifier_register_begin();
456
457 for_each_online_cpu(i) {
458 struct device *sys_dev = get_cpu_device((unsigned int)i);
459 cache_add_dev(sys_dev);
460 }
461
462 __register_hotcpu_notifier(&cache_cpu_notifier);
463
464 cpu_notifier_register_done();
465
466 return 0;
467 }
468
469 device_initcall(cache_sysfs_init);
470
471